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ABSTRACT

Our work focuses on the exploration of the internal relationships of signals in
an individual sensor. In particular, we address the problem of not being able to
evaluate such inter-sensor relationships due to missing rich and explicit feature
representation. To solve this problem, we propose GRAPHSENSOR, a graph
attention network, with a shared-weight convolution feature encoder to generate the
signal segments and learn the internal relationships between them. Furthermore, we
enrich the representation of the features by utilizing a multi-head approach when
creating the internal relationship graph. Compared with traditional multi-head
approaches, we propose a more efficient convolution-based multi-head mechanism,
which only requires 56% of model parameters compared with the best multi-head
baseline as demonstrated in the experiments. Moreover, GRAPHSENSOR is
capable of achieving the state-of-the-art performance in the electroencephalography
dataset and improving the accuracy by 13.8% compared to the best baseline in an
inertial measurement unit (IMU) dataset.

1 INTRODUCTION

Recent years have seen a greater focus on human behavior recognition, especially monitoring health
status of a person. The stress of modern living, coupled with poor living behaviors, has resulted in
various chronic diseases, such as cervical spondylosis, endocrine dyscrasia, heart disease, and mental
illnesses (Sharma & Majumdar, 2009). The sensor based approach to the detection of human behavior
can assist in dealing with these problems. For instance, electroencephalography (EEG) may help
diagnose a number of conditions including epilepsy (Siddiqui et al., 2013), sleep disorders, and brain
tumors while surface electromyography (sEMG) and electrocardiography (ECG) can detect driver
drowsiness (Lu et al., 2021). In addition, inertial measurement units (IMUs) are used to detect falls,
heavy smoking, and alcohol intake (Rokni et al., 2018). Nowadays, since sensor fusion technology
provides a more comprehensive view into people’s behavior, graph based neural networks, such
as Graph Convolutional Networks (GCNs) (Duvenaud et al., 2015) and Graph Attention Networks
(GATs) (Veličković et al., 2018), have been developed for modeling sensor fusion data among various
sensors.

However, it is also necessary to evaluate the internal relationships among time-series sensor data
within an individual sensor, which was paid less attention in the previous work. Such internal
relationships are crucial for human behavior recognition due to several reasons. Psychophysiological
processes, for example, change across time due to the external and internal factors (Morales & Bowers,
2022), and therefore identifying what factors are relevant to the processes can measure dynamic
changes and benefit the model inference (Reason 1 - R1) . Moreover, rich temporal information
is embedded in the time-series sensor data (Morales & Bowers, 2022; Liu et al., 2021) (Reason
2 - R2). For instance, Alpha waves, Spindle waves, and K-complex waves can all be observed in
sleep stages N1 and N2. However, in stage N1, Alpha waves predominate over Spindle waves and
K-complex waves. On the other hand, as the sleep stage deepens, Spindle waves and K-complex
waves become more prevalent than Alpha waves in stage N2 (Eldele et al., 2021). It shows some
temporal correlations among such wave signals. We believe an in-depth internal relationship analysis
among signal segments can improve the model inference with richer and more relevant features.

Deep learning techniques, such as convolutional neural networks (CNNs), have proven to be capable
of learning useful representations from the underlying time-series data, but fail to elaborate on the
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pair-wise connections (importance) between them. Using the standard multi-channel convolution
method, channels are summed to form feature representations. Whereas using the depthwise sepa-
rable convolution method, a single convolutional filter is applied to each channel, yet a pointwise
convolution creates a linear combination (Chollet, 2017). Both of these prior works compromise the
independence of the channels (e.g., salient waves). On the other hand, using graph attention neural
networks can map each sensor as an independent node and learn the pairwise relationships between
them. For an individual sensor, however, it is insufficient to construct a graph as the data from a
single sensor has no explicit relationship to itself.

We propose GRAPHSENSOR to explore the internal relationships in an individual sensor, consisting
of two key modules: (1) single segment representation module, and (2) relationship learning module.
Inspired by the Vision Transformer (ViT), in the single segment representation module, we split
individual sensor data into signal segments for evaluating the internal relationships. Through the
application of an overlapping sliding window method, we aim to collect as many signal segments as
possible from the raw data, thus preventing the loss of important signal patterns (information). The
signal segments are then mapped to informative features. Instead of using the feature representation
mechanism of CNN, which convolves across all signal segments, to maintain their independence, in
this work, we apply a convolution encoder to every signal segment with shared weights. After that,
all the signal segments are treated as an input to the relationship learning module. The relationship
learning module consists of two blocks, global node attention layers and graph based attention
layers. The former allows the model to selectively access what it considers to be the most important
parts of the signal segments (R1), while the latter focus on segment-by-segment correlation analysis
between these selected segments (R2). Moreover, we further enrich the feature representation by
using a multi-head method when constructing the internal relationship graph. Compared with the
standard multi-head methods, we propose a convolution-based multi-head approach, where multi-head
features per signal segment are convolved to enrich the feature representation in a more efficient way.
Comparatively, the proposed multi-head attention allows us to expand heads using lesser parameters
and training time than the standard approach (more discussions can be found in Appendix C.5). In a
nutshell, the main contributions of this paper are as follows:

• Our work is one of the first to explore inter-sensor relationships using convolution encoder
for feature representation and graph-based self-attention for establishing antisymmetric
correlations among signal segments.

• To improve the efficiency of our approach, we propose a convolution-based multi-head
attention, which allows the heads to be expanded with less parameters and training time
than the traditional multi-head approach.

• The experimental results demonstrate that our method can learn internal relationships
between signal segments while achieving the state-of-the-art performance. Through the
ablation studies across different settings, we provide an analysis of the effectiveness of the
method’s key components. The implementation and experimental details of GRAPHSEN-
SOR are available at an anonymous site1.

2 GRAPHSENSOR

Unlike the standard CNN, GRAPHSENSOR in segment representation (Section 2.1) encodes each
signal segment individually. Moreover, in contrast to a regular RNN, GRAPHSENSOR in relationship
learning (Section 2.2) assigns different attention weights to each signal segment. These attention
weights designate how important or relevant a given signal segment is at a given time step. GRAPH-
SENSOR using graph-based self-attention learns the rich temporal relationships between the signal
segments. In the graph-based self-attention, the edge between two signal segments is created only
when the corresponding Pearson correlation coefficient is positive to rule out the irrelevant relation.
Two attention coefficients are created for every pair of the signal segments to capture the temporal
dependencies in Section 2.2.2. Multi-head method is applied to self attention. Our convolution-based
multi-head self attention achieves a similar performance while requiring fewer parameters than the
standard transformer (see discussion in Appendix C.5). We list the notations that are used in this
work for convenience (as shown in Table 1).

1https://github.com/graphsensor/graphsensor-code
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Table 1: Notations.
Symbol Definition

L (L ∈ N, L > 1) Length of the time series
K (K ∈ N,K > 1) Number of the signal segments
D (D ∈ N, D > 1) Dimension of the signal segments
C (C ∈ N, C > 1) Dimension of the signal segment representation before Grl

E (E ∈ N, E > 1) Dimension of the signal segment representation after Grl

Overall Architecture: the proposed method (see Fig. 1) consists of two major parts, signal segment
representation Fsr(S) = V and relationship learning Grl(V) = Vmh, where S is a signal segment
set, V is a feature map, and Vmh represents multi-head features.

Given a time series X = {x1, x2, ..., xl} ∈ R1×L, an overlapping sliding window method is
used to obtain a signal segment set S = {s1, s2, ..., sK} ∈ RK×D that is then mapped to V =
{v1, v2, ..., vK} ∈ RK×C by a convolution-based feature encoder Fsr , (see the details in Section 2.1).
This is followed by the construction of a graph using a graph attention neural network Grl to learn
signal internal relationships (see the details in Section 2.2). After graph feature V ∗ is extracted, the
classification is performed using a two-layer neural network consisting of GELU and Softmax, and
the cross-entropy is used as a loss function when optimizing classification.

Figure 1: The overall architecture of GRAPHSENSOR.

2.1 SIGNAL SEGMENT REPRESENTATION

Signal Segment Definition: Signal segments S ∈ RK×D are used for measuring internal relation-
ships within a given time series. An individual signal segment is defined as a stream of data values
si ∈ R1×D at times ti (i ∈ N), where D is the length of a stream of data. Signal segments are
generated from individual segments of a time series X ∈ R1×L that are split by a sliding window
with a fixed length N (N ∈ N, N > 1) and an overlapping rate P (P ∈ (0, 1)). The length of the
signal segment D is determined by the sliding window length, i.e., D = N , while the number of the
signal segments K is calculated as follows:

K =
⌊ L−N × P

N −N × P

⌋
(1)

Signal Segment Representation: Signal segment representation is a convolutional encoder which
maps signal segments S = {s1, s2, ..., sK} ∈ RK×D into a feature space V = {v1, v2, ..., vK} ∈
RK×C . Three 1D convolution layers are used in the convolutional encoder, where a large-kernel with
the size of 1× 49 has been used in the first 1D convolution layer for the purpose of boosting CNN’s
performance by significantly enlarging its effective receptive field (Ding et al., 2022). Following
that, a smaller-kernel with a size of 1 × 7 is used on the remaining 2 layers to further extract the
feature map. At the end of the encoder, we utilize a residual Squeeze-and-Excitation (SE) block (Hu
et al., 2018) to recalibrate the features learned from previous convolution layers. Note that each
signal segment (row) shares the same encoder. The detailed convolutional encoder architecture is
described in Appendix B.
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2.2 RELATIONSHIP LEARNING

2.2.1 GLOBAL NODE ATTENTION

After the signal segment representation, a global node attention is implemented. As the human
behavior changes across time due to the external and internal factors (R1), we design a global node
attention to learn the important factor vector WG ∈ RK×1, where an adaptive average pooling is
operated on V to project its dimension from RK×C to RK×1. The output in turn is used as an input
to a two-layer fully-connected network to learn the important factor vector WG:

WG = σ1

(
W2(σ2(W1(Pooling(V)))

)
(2)

The encodings of signal segments V ′
are then weighted accordingly:

V
′
= WG × V (3)

The detailed global node attention architecture is described in Appendix C.1.

2.2.2 GRAPH-BASED SELF ATTENTION

Adjacency Matrix: A number of previous studies have used Pearson correlations to derive the
adjacency matrix (Sun et al., 2014; Tijms et al., 2014; Xue et al., 2019). In this study, the adjacency
matrix is constructed to represent the connection relationship between the signal segments vi and
vj based on the Pearson’s correlation coefficient, forming the edge between the signal segments.
It is notable that the correlation coefficient between two signal segments determines only the edge
between them. No matter what the correlation coefficient is, as long as it is positive, an edge is
formed between two segments. Two examples of relationship visualization using Pearson correlations
is given in Appendix D.

Attention Coefficients: The attention coefficient matrix is usually symmetric, however, most time
series data in the real world are causal in nature (Dahlhaus & Eichler, 2003) and their relationship is
therefore antisymmetric. Taking this characteristic into account, and inspired by (Veličković et al.,
2018), our attention mechanism with softmax normalization is expressed as:

αij =
exp(Sigmoid(a[ pos1 × vi∥pos2 × vj ]))∑

k∈Ni
exp(Sigmoid(a[ pos1 × vi∥pos2 × vk]))

(4)

where pos1 and pos2 are the positional encoding, ∥ is the concatenation operation, and applying the
Sigmoid nonlinearity. Here, a is a self-attention mechanism based on a two-layer fully-connected
layer, where the signal segment representation matrix V is expanded from RK × C to RK × K×2C

via a concatenation operation. After that, an adaptive average pooling is operated on the new signal
segment representation matrix to project its dimension from RK × K×2C to RK × K×1, which in
turn is used as an input to a two-layer fully-connected network to learn the attention coefficient vector.
By permuting the attention coefficient vector (∈ RK2

), we obtain the attention coefficient matrix
(∈ RK×K). The detailed graph-based self attention architecture is described in Appendix C.2.

Positional Encoding: The positional encoding in this study is derived from earlier positional encoding
approaches in NLP, where the first word is given “1”, the second word is given “2”, and so on (Wang
et al., 2019). Similarly, we present “1” for the first segment and “2” for the second segment.

2.2.3 MULTI-HEAD ATTENTION

In this work, the multi-head matrix is regarded as one feature map, and valuable features are extracted
using a convolutional layer (as shown in Fig 2). The self-attention module in this work is split into
two blocks: the dense layers and the attention layers (Pan et al., 2022).

Dense layers. Initially, 1 × 1 convolutions are conducted in the dense layer to project the signal
segments to a higher dimension space (Veličković et al., 2018), where a multi-head method is applied
to stabilize self-attention learning. As the multiple-head attention block is stacked many times in our
work and in the first run, a dummy axis is used to expand the input tensor, which results in a change
of input size from RK×C to R1 × K × C (i.e., J = 1 in Fig 2). The expanded dimension is used to
generate the independent attention heads (the detailed architecture can be found in Appendix C.3).
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Figure 2: Illustration of the multi-head mechanism.

Attention Layers. To extract the signal segment features from Vmh, we permute the channels of the
signal segments from the second dimension to the first dimension (RM × K × C → RK × M × C).
Feature extraction (RK × M × C → RK × M

′
× C

′

) is then performed using a depthwise convolution
with the group size = K to preserve the identity of signal segments, where M

′
and C

′
are the

dimensions after mapping, and the padding in the depthwise convolution is set to the half of the
kernel size (as in Howard et al. (2019)).

A two-layer convolutional neural network based feedforward layer is then applied to map the features
from RK × M

′
× C

′

to RK × M
′′

× C
′′

. In addition, the input dimension is mapped to the same
dimension of the output by applying a convolutional layer with the same stride and padding settings
of the attention layers. This facilitates the stacking of skip connections. The multi-head attention
is composed of a stack of H identical layers (see Appendix C.4). Eventually, the feature map of
multiple heads is consolidated into a single head (RK × 1 × E) through an adaptive average pooling
after the H identical layers.

3 EXPERIMENTS

3.1 THE DATASETS AND IMPLEMENTATION DETAILS

Datasets: The experiments are conducted based on two widely used datasets, Sleep-EDF-202 (Eldele
et al., 2021; Supratak et al., 2017; Sun et al., 2018; Phan et al., 2018; Mousavi et al., 2019) (SLEEP)
and WISDM Smartphone and Smartwatch Activity and Biometrics Dataset3 (Weiss et al., 2019;

Mekruksavanich et al., 2020; Mekruksavanich & Jitpattanakul, 2020; Singh et al., 2020) (WISDM).
The SLEEP dataset is used to assess the performance of the model on EEG signals, and WISDM
is used to assess the performance of the model on inertial measurement unit (IMU) signals. The
specification of signal segment definition in SLEEP and WISDM datasets is listed in Appendix A.

Training: We implement the model with PyTorch. All experiments are conducted using a single
NVIDIA RTX 2080Ti GPU. We use the Adam optimizer for both datasets. The training consists
of 100 epochs, starting at a learning rate of 0.001 for the first 10 epochs, then decaying to 0.0001
toward the end of the training. Random seed and batch size are set to 123 and 64, respectively.

2https://gist.github.com/emadeldeen24/a22691e36759934e53984289a94cb09b
3https://archive.ics.uci.edu/ml/datasets/WISDM+Smartphone+and+Smartwatch+Activity+and+Biometrics+Dataset+
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3.2 COMPARISON WITH PEER METHODS

We evaluate the benefits of our solution against a number of state-of-the-art methods (see the details
in Appendix E), with the goal of understanding the following questions:

• Q1: How does our model compare to the other baseline models?
Our model is compared to the other baseline models based on two publicly available
datasets, SLEEP and WISDM. Specifically, in SLEEP the experiments are conducted by
using the Fpz-Cz channel as the input, following the previous studies (Eldele et al., 2021;
Supratak et al., 2017; Mousavi et al., 2019; Sun et al., 2018; Phan et al., 2018) used as
the baselines. The datasets are prepared with 20-fold cross validation and all the 20 folds
are used to train the model. When constructing and evaluating the internal relationships
between the signal segments in an individual IMU signal from WISDM, the accelerometer
magnitudes =

√
x2 + y2 + z2 is calculated (as previous studies (Lu et al., 2020; Bhandari

et al., 2017; Chow et al., 2021)) for each signal segment, where x, y, z are the three axes
of an accelermometer. Most previous work has been developed to evaluate the multiple
sensor data collected from sensors deployed simultaneously on different parts of the body,
therefore these related models cannot be used to evaluate data collected from a single sensor.
For comparison for WISDM, three state-of-the-art convolution based neural networks are
applied as benchmarks, including EfficientNet b4 (Tan & Le, 2019), ResNet16 (Ismail Fawaz
et al., 2020), and MobileNet V3 (Gupta, 2021), which have their input channels modified to
1 to allow them to fit the dataset. All the models are trained without using the pretrained
weights.

• Q2: How does our proposed multi-head attention solution compare to the state-of-the-
art?
Our proposed multi-head attention solution is compared with the methods in standard
Transformer (Veličković et al., 2018), and Graph Attention Networks (GAT) (Vaswani et al.,
2017) using SLEEP. With the former, the output node feature dimension of a single head
is reduced to ( dh ) so as to increase the number of heads, where d is the total output node
feature dimension and h is the number of head used. With the latter, the output node feature
dimension of a single head remains unchanged to keep the original full dimensionality (F

′

defined on Page 3 in (Vaswani et al., 2017)).

Table 2: The performance comparison of the state-of-the-art approaches.
Datasets Methods Accuracy

SLEEP

DeepSleepNet (Supratak et al., 2017) 81.9
ResnetLSTM (Sun et al., 2018) 82.5
MultitaskCNN (Phan et al., 2018) 83.1
SleepEEGNet (Mousavi et al., 2019) 81.5
AttnSleepNet (Eldele et al., 2021) 84.4
Ours 84.3

WISDM

EfficientNet b4 (Tan & Le, 2019) 27.0
ResNet16 (Ismail Fawaz et al., 2020) 55.5
MobileNet V3 (Gupta, 2021) 48.8
Ours 69.3

We answer Q1 using Table 2 which shows the comparison of our method with baseline algorithms
on the SLEEP and the WISDM. Specifically, our method’s accuracy is 84.3 on SLEEP. According
to the results from SLEEP, our method with the adaptively learned graph representation is more
suitable than many of the grid representations used by CNN and LSTM based algorithms (Supratak
et al., 2017; Sun et al., 2018; Phan et al., 2018; Mousavi et al., 2019). Meanwhile, our method
achieves the SOTA performance that is provided by AttnSleepNet (Eldele et al., 2021). However, it
must be emphasized that AttnSleepNet includes two specially designed CNN modules, which cover
detection of two specific bands of data: (1) using a filter with the size of 400 to extract the feature in
4-second windows for capturing the delta band, and (2) using a filter with the size of 50 to extract the
feature in 0.5-second windows for capturing the alpha and theta bands, whereas our method covers
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Table 3: The performance comparison of the multi-head approaches. (OM: GPU out of memory,
#par: Model’s number of parameters)

Methods 32 Heads(#par) 128 Heads(#par) 512 Heads (#par)

Transformer (Vaswani et al., 2017) 86.3 (2098K) 87.1 (3311K) Error

GAT (Veličković et al., 2018) 85.4 (31897K) 86.4 (125416K) OM (499494K)

Ours 87.3 (1177K) 89.4 (1713K) 90.1 (7033K)

general sensor data without a specific targeting band. The GRAPHSENSOR model also performs
significantly better than other baseline models in WISDM target band, with an accuracy of 69.3.

We investigate the reason why GRAPHSENSOR performs much better in WISDM, and note that
many activities in WISDM, such as walking, jogging, and stair climbing are confounding activities. In
the traditional convolutional models, local features are extracted. In these confounding activities, these
local features corresponding to a single arm movement are very similar. However, the relationships
between these movements can differ. Whereas the traditional convolution-based models fail to detect
such activities, GRAPHSENSOR recognizes the underlying relationship among signal segments
(confounding movements), thus allowing for improved classification.

The response to Q2 is given in Table 3, which shows how our performance compares to the base-
line multi-head approaches using the SLEEP dataset. Our method achieves the best performance
with the fewest parameters when the number of heads is 32 and 128. GAT-based multi-head ap-
proach (Veličković et al., 2018) runs out of GPU memory when the head number reaches 512, which
indicates limited head scaling. After increasing the number of heads to 512, the transformation-based
multi-head approach presents a run-time error. This occurs because the number of heads (h) is greater
than the number of features (d = 180) of the output, resulting in d

h approaching zero. In contrast, our
method shows a gradual increase in performance with increasing head numbers, indicating a strong
scalability. Moreover, the number of parameters used by GRAPHSENSOR is significantly much
less than the best baselines (1177K VS 2098K for 32 heads and 1713K VS 3311K for 128 heads).
Such dramatic reduction of model parameters allow GRAPHSENSOR to be used for embedded
devices for activity recognition and is significant contribution for the community. Investigating the
applicability of using model compression (Cheng et al., 2017) on GRAPHSENSOR and conducting
real-world experiments are our future work.

Table 4: Ablation and Sensitivity Study
Questions Methods Accuracy #Parameters Time Cost

Q3

GRAPHSENSOR (1,000, 5) 87.4 1253K ≈ 1.0h
GRAPHSENSOR (800, 6) 87.5 1323K ≈ 1.0h
GRAPHSENSOR (600, 9) 88.9 1545K ≈ 1.7h
GRAPHSENSOR (500, 11) 89.4 1713K ≈ 1.7h

Q4

GRAPHSENSOR (500, 11) with head number 16 85.9 826K ≈ 0.6h
GRAPHSENSOR (500, 11) with head number 32 87.3 1177K ≈ 0.6h
GRAPHSENSOR (500, 11) with head number 128 89.4 1713K ≈ 1.7h
GRAPHSENSOR (500, 11) with head number 512 90.1 7033K ≈ 3.0h

3.3 ABLATION STUDY

To further investigate the effectiveness of our solution, we conduct an ablation study on the SLEEP
dataset as shown in Table 4. Specifically, we derive a set of model variants from our solution with the
goal of understanding the following questions:

• Q3: How does the number of signal segments affect the performance of the solution?
GRAPHSENSOR (x, y): our model is investigated in terms of the number of signal seg-
ments. We vary the size of each signal segment x from {1000, 800, 600, 500}, corresponding
to the number of signal segments y from {5, 6, 9, 11}.
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• Q4: How does the number of heads affect the performance of the solution?
Our model is investigated in terms of the the number of heads on GRAPHSENSOR (500,
11). We vary the number of heads from {16, 32, 128, 512}.

• Q5: What are the effects of permuting the signal segments randomly on the model
performance?

• Q6: How does GRAPHSENSOR perform when the original signals are already-short?

For Q3, from Table 4, we can see that GRAPHSENSOR shows consistency in performance when
given different numbers of signal segments. The results demonstrate that GRAPHSENSOR is able
to stabilize the learning process of graphs even when the signal segment x varies greatly in size.
On the other hand, we see that the model performance with similar numbers of signal segment is
close, while using the higher number of signal segments (9 and 11) we can achieve a better result
than using the smaller number of signal segments (5 and 6). The finding suggests that containing
more signal segments in an individual sensor data can enrich its internal relationships, thus benefit
the classification accuracy. However, a higher number of signal segments leads to a larger number
of model parameters. The GRAPHSENSOR (500, 11) achieves the best accuracy, but has the
most parameters. The time cost of a model is defined as its training speed in 100 epochs. The
signal segments of size 9 and 11 have a higher accuracy, but they take longer to train than the signal
segments of size 5 and 6. The results provide guidelines on how to balance accuracy and computation
costs when using GRAPHSENSOR. We consider accuracy-first in this work and therefore use
GRAPHSENSOR (500, 11) as the base setting for the classification problem.

The results of Q4 in Table 4 provide a comparison of the performance of the model when varying
the number of heads, indicating that the model performance increases from a smaller to a larger
number of heads. Moreover, GRAPHSENSOR (500, 11) with head number 512 achieves highest
performance (accuracy of 90.1). However, it requires about double of the training time and four times
the parameters than the second-best setting (128 heads), while the improvement is only about 0.7%.
These results help in understanding how attention heads can enhance learning on graphs at different
costs. Considering the efficiency of GRAPHSENSOR (500,11), we use head number 128 in our
experiment (Q1).

For Q5, we permute the signal segments with 500 data points (window size) randomly using the
WISDM dataset. After permutation, the performance decreases from 69.3% (no permutation) to
68.9%−67.8% (5 random permutation rounds), demonstrating that GRAPHSENSO provides valuable
information regarding temporal aspects.

For Q6, we perform a stress test on the WISDM dataset (as shown in Fig. 5), rearranging the length of
the samples from n = 200 (10s) to n = 20 (1s). Our method still performs better than the other three
state-of-the-art baselines even with the original length (EfficientNet -27%, ResNet - 55%, MobileNet
V3 - 48.8%), despite the drop in accuracy from 69.3% to 56.1%. This suggests that our approach is
practical to learn useful intra-sensor relationships even for a super-short sensor signal. The drop in
accuracy is due to information loss.

Table 5: Stress test on the WISDM dataset.
Datasets Methods Accuracy Sample Length (n)

WISDM

EfficientNet b4 (Tan & Le, 2019) 27.0 200
ResNet16 (Ismail Fawaz et al., 2020) 55.5 200
MobileNet V3 (Gupta, 2021) 48.8 200
Ours 56.1 20

4 RELATED WORK

Feature Representation: Convolutional Neural Networks (CNNs) have been proven to be very
effective for feature representation. Each standard CNN model follows a similar design, where
convolution is performed by sliding the filter over the input. An element-wise matrix multiplication is
carried out at each location and the results are ultimately summed. This sum is then used to formulate
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the feature map. Recently, CNN models, such as Restnet (He et al., 2016) and EfficientNet (Tan &
Le, 2019), have become increasingly effective at object classification. In addition to the standard
convolution based neural networks, Chollet (Chollet, 2017) proposed a new network structure
called depthwise separable convolutional neural network, which includes depthwise and pointwise
convolutions. As opposed to standard CNN’s, where convolution occurs simultaneously for all
channels, depthwise convolution is performed for a single channel at a time. A linear combination is
then produced by applying pointwise convolution to all channels. One of the most popular models
in this direction is MobileNet (Howard et al., 2019). However, the prior works compromise the
independence of the channels and cannot be directly applied to map the signal segment features before
learning the internal relationships. Another widely used approach for feature representation adopts
Recurrent Neural Networks (RNNs). The models, such as Long Short-Time Memory (LSTM) (Greff
et al., 2016) and Bi-directional Long Short-Term Memory (BiLSTM) (Graves et al., 2005), learn
the important parts of the time-series data seen so far and forget the least important ones. While
RNNs are used to learn a one-way relationship as a directed acyclic graph (Zhou et al., 2020),
GRAPHSENSOR is able to learn the pairwise relationships between the single segments.

Relationship Learning: The non-Euclidean nature of the signal segment relationships makes it more
appropriate to describe them with a graph data structure. Graph Neural Networks with attention
mechanisms have demonstrated enhanced performance in dealing with graph structure data. Graph
neural networks, such as the Graph Attention Network (GAT) (Veličković et al., 2018), compute
attention scores using feed-forward neural networks, while the Graph convolutional neural Network
(GCN) (Kipf & Welling, 2016) and GraphSAGE (Hamilton et al., 2017) computes attention scores
by utilizing cosine similarity (dot product). Considering the fact that most time series data in the
real world are causal in nature, and their relationship is asymmetric, the attention mechanism in
GAT (Veličković et al., 2018) is more suitable for measuring the internal relationship between
signal segments. We use GAT as one of our baselines. Another similar work can also be found in
GraphSleepNet (Jia et al., 2020), which adaptively learns the external relationships of the time-series
data. In addition, it uses multiple sensor nodes to enhance graph structure learning. Since our work
explores one single sensor data, instead we look into the original multi-head attention (Vaswani
et al., 2017). The attention mechanism is implemented by lowering the output dimension and then
concatenating the respective outputs from the different heads. With lower dimensional outputs, more
heads can be generated. The model appears to have more expressive power when it has more heads.
Since many state-of-the-art works are built on top of this multi-head attention (Hamilton et al., 2017;
Guo et al., 2020; Hao et al., 2020), we use the transformer architecture (Vaswani et al., 2017) as
another baseline.

5 CONCLUSION

In this paper, we present GRAPHSENSOR, a novel deep graph attention network for modeling the
internal relationships among signal segments generated by a single sensor, which does not receive
enough attention yet from the research community. Specifically, GRAPHSENSOR is capable of
generating graph nodes from the signal segments and efficiently learning the graph structure to
determine the pairwise connections between the signal segments using convolution-based multi-head
graph attention network. The experimental results demonstrate that GRAPHSENSOR achieves the
state-of-the-art performance across two representative datasets and is more efficient than the baseline
multi-head solutions (minimum 50% improvement in model size reduction) while having better
accuracy. GRAPHSENSOR offers pioneering investigation into deep exploration of the interval
relationships inside a single sensor’s time-series data. We argue that such improvement is essential
for sensor-based human behavior recognition. Moreover, the proposed multi-head mechanism is
able to increase the number of heads to a great extent, which is appealing to explore opportunities
that leverage GRAPHSENSOR for much diverse applications based on sensors. For instance, it is
worthwhile to investigate how to apply GRAPHSENSOR to improve perception, prediction and
planning models in autonomous driving relying on Lidar or multi-sensor fusion.
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APPENDIX

A SPECIFICATION FOR SIGNAL SEGMENT DEFINITION

Table 6 lists the specification of signal segment definition in SLEEP and WISDM
datasets.

Table 6: Specification for Signal Segment Definition.

Dataset L K D P

SLEEP 3,000 11 500 0.5
WISDM 200 9 40 0.5

In the SLEEP dataset, each Fpz-Cz channel has a length of 3, 000 data points (L),
from which 11 signal segments (K) are generated using a sliding window method
with the window size of 500 data points (D) and 50% overlapping rate (P). In the
WISDM dataset, each accelerometer magnitude has a length of 200 data points (L),
from which 9 signal segments (K) are generated using a sliding window method
with the window size of 40 data points (D) and 50% overlapping rate (P).

B SIGNAL SEGMENT REPRESENTATION - CONVOLUTIONAL ENCODER

The convolutional encoder, as shown in Figure 3, starts from a 1D convolution
layer with the input X = {x1, x2, ..., xD}, xi ∈ R, where D is a hyperparame-
ter that represents the length of a signal segment. After that, a max pooling is
used to down sample the feature map from I = Conv1D_1(X), I ∈ RA×D to
I ′ = Maxpooling_1(I), I ′ ∈ RA′×D′ , where A and A′ denote the 1D convolu-
tion output size before and after the max pooling, D and D′ refer to a length of
feature sequence before and after the max pooling. Following this, two 1D con-
volution layers and another max pooling are sequentially implemented to I ′ such
that φ = Maxpooling_2

(
Conv1D_3(Conv1D_2(I ′))

)
, φ ∈ RA′′×D′′ , where A′′

is the output size after two 1D convolution layers and max pooling, and D′′ is the

Figure 3: The Convolutional Encoder in Signal Segment Representation.
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dimension of the feature output. Afterwards, we utilize a residual Squeeze-and-
Excitation (SE) block (Hu et al., 2018) to recalibrate the features learned from
previous convolutional layers, thus improving the performance. Given the feature
map φ learned from previous convolutional layers, we apply two 1D convolution
layers to φ such that φ′ = Conv1D_5(Conv1D_4(φ)), φ′ ∈ RB×M , where B
is the output dimension, M is the length of features. A method of adaptive aver-
age pooling is then used to compress spatial information, thereby shrinking φ′ to
ϕ = Avgpooling(φ′), ϕ ∈ RB×M . Next, two fully connected (FC) layers are applied
to make use of the aggregated information ψ = δ(W2σ(W1(ϕ))), ψ ∈ RB×M , where
δ and σ refer to Sigmoid and GELU activation functions respectively, and W1 and
W2 represent two FC layers. The feature map φ′ is subsequently scaled by ψ as
follows:

F = φ′ ⊗ ψ (5)

where ⊗ represents a point-wise multiplication between φ′ and ψ. Lastly, a shortcut
connection is applied to combine φ learned from previous convolutional layers with
the enhanced features F derived from the residual SE block:

O = σ(φ+ F ) (6)

where σ is a GELU activation function. The output O is the spatial features extracted
from the basis segments. Table 7 presents the parameters’ value for the convolutional
encoder.

Table 7: Specification for Convolutional Encoder.
Layer Input channel Output channel Kernel size Stride Padding

Conv1d_1 1 64 49 6 49//2
Maxpooling_1 - - 7 4 7//2
Conv1d_2 64 128 7 1 7//2
Conv1d_3 128 128 7 1 7//2
Maxpooling_2 - - 3 4 3//2
Conv1d_4 128 30 1 1 0
Conv1d_5 30 30 1 1 0

C RELATIONSHIP LEARNING

C.1 GLOBAL NODE ATTENTION

The global node attention WG is defined as:

WG = σ1
(
W2(σ2(W1(Pooling(V)))

)
(7)

where W1 and W2 denote a double layer MLP, σ2 is a GELU activation function,
and σ1 is a Sigmoid activation function.

As shown in Fig. 4, an adaptive average pooling is first used to squeeze the signal
segment representation V from RK×C to RK×1. After that, two 1× 1 convolution
based FC layers are used to learn the attention score, where FC1 is a dimensionality-
reduction layer with reduction ratio r = 2 to reduce the output of adaptive average
pooling from RK×1 to RK

r
×1. A nonlinear transformation (GELU) is then applied to
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Figure 4: The architecture of the global node attention module.

Figure 5: The architecture of graph attention.

FC1 output, followed by a dimensional-increasing layer FC2, which increases the
channel dimension of FC1’s output back to RK×1. Finally, we calculate the attention
score by mapping the FC2’s output between 0 and 1 using a Sigmoid function. The
signal segment representation V ′ is updated using the Eq. 2 on Page 4 of the paper.

C.2 GRAPH ATTENTION

The graph attention module has a similar architecture with the global node attention
model as shown in Fig 5. An concatenation with positional encoding is firstly used to
transform the signal segment representation V from RK×C to RK2×2C . After that, an
adaptive average pooling squeezes the concatenated signal segment representation
from RK2×2C to RK2×1. Then, two 1x1 convolution based FC layers with a GELU
and Sigmoid activation functions are applied to learn the attention score, where
FC1 reduces the concatenated signal segment representation from RK2×1 to RK2

r
×1

with the reduction ratio r = 2, and FC2 maps it back to RK2×1. After using the
Sigmoid function to process the output, the result is reshaped into RK×K to represent
the attention coefficients. Following the attention coefficients normalization, node
aggregation is performed on the edges with exactly the direct neighbors of the central
node and the central node itself:

v∗i =
∑
j∈Ni

αijvj (8)

where Ni is the neighborhood of node i in the graph, αij is the attention coefficient.
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Figure 6: The architecture of dense layers.

C.3 DENSE LAYERS

Why Double-layer structure:

We discuss the model in the paper when H = 1, and now we move on to discussing
the model when H > 1, where H represents the number of the graph attention
network that will be stacked (as shown in Fig. 1).

• Layer 1: This layer summarizes information extracted by the previous at-
tention layer when H >1. When #filters = 1, a single set of summarized
information is generated using a 1×1×J filter, whereas diverse information
with different focuses is generated when #filters > 1.

• Layer 2: Using Layer 2, the summaries of the information obtained by Layer
1 are combined linearly to generate various multiple heads using a 1× 1×Q
filter. When #filters = 1, a new head is prepared for the graph attention
implementation, while more heads are generated to benefit the graph learning
process when #filters > 1.

C.4 MULTI-HEAD ATTENTION

In the paper, the multi-head attention is composed of a stack of identical blocks
(H = 4). The specification for the multi-head attention is illustrated in Table 8:

Table 8: Specification for multi-head attention (H = 4).
Layer Input channel Output channel (multi-head) Kernel size Stride Padding

Block_1 1 64 5 2 5//2
Block_2 64 32 5 2 5//2
Block_3 32 64 5 1 5//2
Block_4 64 128 5 1 5//2

C.5 DISCUSSION

Based on the prior work (Vaswani et al., 2017), the standard multi-head attention
concatenates every single-head from different representation subspaces at different
positions, resulting in the final values using a fully-connected based feedforward
layer as shown in Eq. 9:

MultiHead(standard) = Concat(head1, ..., headH)W
O (9)

where WO is a fully-connected based feedforward layer and H is the number of
heads. Our multi-head attention mechanism stacks every single head together to
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create a multi-channel feature map, where each channel represents an individual
signal head. We then apply a convolution based module to process the feature map
as shown in Eq. 10:

MultiHead(ours) = Stack(head1, ..., headH)⊗K (10)

where ⊗ is a convolution process, and K is a convolution filter (kernel).

In general, a convolutional layer is much more specialized, and efficient, than a fully
connected layer. Each neuron in a fully connected layer is connected to every other
neuron from the previous layer, and each connection has its own weight, so it is quite
expensive to operate in terms of memory (weights) and computation (connections).
Conversely, in a convolutional layer, each neuron is only connected to a few nearby
neurons from the previous layer, and the weights (and local connections) are the same
for all neurons. Due to the lower number of parameters used, convolution-based
multi-head attention is more efficient than the standard one in terms of the reduction
of model size (parameters) and training time as shown in Table 3 in the paper.

Figure 7: Illustration of the internal relationship using Pearson Correlation (SLEEP).

D RELATIONSHIP VISUALIZATION

SLEEP. There are five different stages of sleep (W, N1, N2, N3, REM) in SLEEP.
The heatmaps as shown in Fig. 7 depict the internal relationship between the signal
segments in EEG at different stages of sleep. Each row reflects the heatmaps for
a specific stage of sleep and each heatmap on the row is retrieved from different
batch representing different signal segments for the same sleep stage. As shown in
Fig. 7, in each label, all the signal segments exhibit similar heatmap patterns but
with distinct difference with signal segments from different labels (even from the
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Figure 8: The internal relationship using Pearson Correlation (WISDM).

same column, that is from the same batch). This shows that GRAPHSENSOR
indeed can learn unique relationship among signal segments for the same activity
and human behavior can be classified with much better accuracy with such higher
granularity feature representation.

WISDM. There are 18 different activities in the WISDM dataset. The heatmaps
as shown in Fig. 8 depict the internal relationship between five activities (Walking,
Jogging, Climbing Stairs, Eating Soup, and Playing Tennis Ball) using Pearson
Correlation. From Fig. 8, we can observe that eating soup and playing tennis have
unique patterns, while walking, jogging, and climbing stairs, as three confounding
activities, have similar intra-sensor relationships.

E BASELINE METHODS IN SLEEP

• DeepSleepNet (Supratak et al., 2017): The model exploits a custom CNN
architecture followed by an LSTM with a residual connection for sleep stage
classification.

• ResnetLSTM (Sun et al., 2018): The model implements a ResNet architec-
ture for feature extraction, followed by an LSTM to classify EEG signals
into different sleep stages.

• MultitaskCNN (Phan et al., 2018): The model starts by converting the
raw EEG signals into power spectrum images, and then applies a joint
classification and prediction technique using a multi-task CNN architecture
for identifying sleep stages.

• SleepEEGNet (Mousavi et al., 2019): This model employs the same CNN
architecture as DeepSleepNet (Supratak et al., 2017) followed by an encoder-
decoder with attention mechanism.

• AttnSleepNet (Eldele et al., 2021): The model starts with a feature extrac-
tion module that draws on a multi-resolution convolutional neural network
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and adaptive feature recalibration, followed by a temporal context encoder
that uses a multi-head attention mechanism to capture the temporal depen-
dency feature for recognizing sleep stages.
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