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Abstract
The design of widespread vision-and-language
datasets and pre-trained encoders directly adopts,
or draws inspiration from, the concepts and im-
ages of ImageNet. While one can hardly overes-
timate how much this benchmark contributed to
progress in computer vision, it is mostly derived
from lexical databases and image queries in En-
glish, resulting in source material with a North
American or Western European bias. There-
fore, we devise a new protocol to construct an
ImageNet-style hierarchy representative of more
languages and cultures. In particular, we let the
selection of both concepts and images be entirely
driven by native speakers, rather than scraping
them automatically. Specifically, we focus on a
typologically diverse set of languages, namely,
Indonesian, Mandarin Chinese, Swahili, Tamil,
and Turkish. On top of the concepts and images
obtained through this new protocol, we create a
multilingual dataset for Multicultural Reasoning
over Vision and Language (MaRVL) by elicit-
ing statements from native speaker annotators
about pairs of images. The task consists of dis-
criminating whether each grounded statement is
true or false. We establish a series of baselines
using state-of-the-art models and find that their
cross-lingual transfer performance lags dramati-
cally behind supervised performance in English.
These results invite us to reassess the robustness
and accuracy of current state-of-the-art models
beyond a narrow domain, but also open up new
exciting challenges for the development of truly
multilingual and multicultural systems.

1 Introduction
Since its creation, ImageNet (Deng et al., 2009) has
charted the course for research in computer vision
(Russakovsky et al., 2014). Its backbone consists of
a hierarchy of concepts selected from English Word-
Net (Fellbaum, 2010), a database for lexical seman-
tics. Several other datasets, such as NLVR2 (Suhr
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(a)࣢ࣣ࣓ࣵ࣫ࣵࣔࣘࣝ⑳ࣉ ࣢࣐ࣵ࣫࣡ࣵࣜ ࣵࣞ⑨ࣵ࣡✲ࣵࣙ࣠ࣉ ࣰࣞ࣡ࣵࣝࣘࣵࣘ ࣣࣞࣗࣵࣕࣵ ࣱࣕࣘࣵࣘ
ࣚࣵࣛ࣫ࣙࣇ ࣓ࣣࣥ࣬࣠࣠ࣵࣵ ࣱࣱ࣓ࣣ࣪ࣟ ࣵࣞ⑨࣓ࣵࣘࣇ ࣝࣙ࣫ࣟ࣫࣢ࣵ �ࣝࣵࣝ⑳✲ࣵࣘࣝࣵࣝ⑬࣊
ࣱࣚ ࣓࣪ࣙ⑱✲࣓࣫࣡⑮� (“In one of the two photos, more than two
yellow-shirted players are seen engaged in bull taming.”). Label:
TRUE.

(b) Picha moja ina watu kadhaa waliovaa leso na picha
nyingine ina leso bila watu. (“One picture contains several
people wearing handkerchiefs and another picture has a hand-
kerchief without people.”). Label: FALSE.

Figure 1: Two examples from MaRVL. The Tamil images
(a) are from the concept ࣢ࣵࣥ⑶ࣚ⑸࣎ (JALLIKATTU, part of
an Indian festivity), while the Swahili images (b) are from
the concept leso (HANDKERCHIEF).

et al., 2019), MS-COCO (Lin et al., 2014), and Visual
Genome (Krishna et al., 2017) are built on top of this
hierarchy,1 and likewise many pre-trained encoders
of visual data (e.g., ResNet), which are instrumental
for transfer learning (Huh et al., 2016).

How suitable are the concepts and images found in
ImageNet, beyond the English language and North-
ern American and European culture in which it was
created? Their ideal distribution may be challeng-
ing to define and is—to some extent—specific to the
intended application (Yang et al., 2020). However,
if the goal is world-wide representation, evidence
suggests that both the origin (Shankar et al., 2017;
de Vries et al., 2019) and content (Stock and Cisse,
2018) of ImageNet data is skewed. To remedy this,

1Often, only a subset of 1K concepts from the ILSVRC chal-
lenges of 2012-2017 (Russakovsky et al., 2014) is considered.
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Yang et al. (2020) proposed to intervene on the data,
filtering and re-balancing a subset of categories.

Nevertheless, this remains insufficient if the cov-
erage of the original distribution does not encom-
pass multiple languages and cultures in the first place.
Hence, to extend the global outreach of multimodal
technology, a more radical overhaul of its hierar-
chy is necessary. In fact, both the most salient con-
cepts (Malt, 1995; Berlin, 2014) and their prototyp-
ical members (MacLaury, 1991; Lakoff and John-
son, 1980)—as well as their visual denotations—may
vary across cultural or environmental lines. This
variation can be obfuscated by common practices in
dataset creation, such as (randomly) selecting con-
cepts from language-specific resources, or automat-
ically scraping images from web queries (cf. §2).

In this work, we streamline existing protocols by
mitigating the biases they introduce, in order to cre-
ate multicultural and multilingual datasets. In par-
ticular, we let the selection of both concepts and
images be driven by members of a community of
native speakers. We focus on a diverse set of cul-
tures and languages, including Indonesian, Swahili,
Tamil, Turkish, and Mandarin Chinese. In addition,
we elicit native-language descriptions by asking an-
notators to compare and contrast image pairs. The
task is to determine whether these grounded descrip-
tions are true or false. We choose this specific task,
pioneered by Suhr et al. (2017), as it requires the
integration of information across modalities (Goyal
et al., 2017) and deep linguistic understanding (Suhr
et al., 2019), rather than just matching superficial fea-
tures (Agrawal et al., 2016). Two examples from
our dataset, Multicultural Reasoning over Vision and
Language (henceforth, MaRVL), are shown in Fig. 1.

We benchmark a series of state-of-the-art visiolin-
guistic models (Liu et al., 2019; Chen et al., 2020)
on MaRVL through both zero-shot and translation-
based cross-lingual transfer. Their performance dete-
riorates considerably compared to an English dataset
for the same task (NLVR2; Suhr et al., 2019). Investi-
gating the causes of this failure, we find that while not
constructed adversarially, the combined domain shift
in concepts, images, and language variety conspires
to make MaRVL extremely challenging. Therefore,
we conclude, it may provide more reliable estimates
of the generalisation abilities of state-of-the-art mod-
els compared to existing benchmarks. The dataset,
annotation guideline, code and models are available
at marvl-challenge.github.io.

2 Motivation

The ImageNet Large-Scale Visual Recognition Chal-
lenge (Russakovsky et al., 2014, ILSRVC1K) is a
landmark evaluation benchmark for computer vision.
It is based on a subset of 1,000 concepts from Ima-
geNet (Deng et al., 2009), which consists of a collec-
tion of images associated to concepts extracted from
the WordNet lexical database (Fellbaum, 2010). This
subset is also used as the basis for other multimodal
datasets, such as NLVR2 (Suhr et al., 2019). To what
extent, however, are images and concepts in these
datasets capable of representing multiple languages
and cultures? To address this question, we first need
to define concepts more precisely.

2.1 Concepts: Basic Level and Prototypes
A concept is the mental representation of a category
(e.g. BIRD), where instances of objects and events
with similar properties are grouped together (Mur-
phy, 2021). Category members, however, do not
all have equal status: some are more prototypical
than others (e.g. PENGUINS are more atypical BIRDS
than ROBINS; Rosch, 1973b; Rosch and Mervis, 1975)
and boundaries of peripheral members are fuzzy (Mc-
Closkey and Glucksberg, 1978; Hampton, 1979). Al-
though prototypes (e.g. for hues and forms) are not
entirely arbitrary (Rosch, 1973a), they display a de-
gree of variation across cultures (MacLaury, 1991;
Lakoff and Johnson, 1980).

Categories form a hierarchy, from the general to
the specific. Among them, basic-level categories
are cognitively most salient (Rosch et al., 1976).
These are used most often to name things by adults
(Anglin, 1977) and are the first to be learned by chil-
dren (Brown, 1958). The basic level, however, is not
universal, as different cultures may adopt different
basic-level concepts (Berlin, 2014). Familiarity of
individuals with the domain also plays a role (Wis-
niewski and Murphy, 1989). So, for instance, in
the case of plants, Tzeltal Mayans will choose finer-
grained nouns than American undergraduates to indi-
cate the same vine.

Hence, prototypes, basic-level categories, and
number of categories for a domain are restricted both
by perceptive, cognitive, and environmental factors
on the one hand, and by cultural and individual pref-
erences on the other (Malt, 1995; Wierzbicka, 1996).

2.2 Limitations of ImageNet
The original annotation of ImageNet was not in-
tended to ensure that its concepts are universal and
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Figure 2: Multilingual and multicultural pervasiveness of ImageNet 1k, NLVR2 and MaRVL synsets by language (left),
language family (middle) and macro-area (right) coverage. The Eurasian macro-area is over-represented in ImageNet.
Concepts in MaRVL cover more languages and are represented in more language families than the ones in ImageNet.

lie at the basic level (i.e. are most salient for hu-
mans); however, these design choices may prove im-
portant limitations for the purpose of enabling multi-
modal systems to reason over everyday life scenarios
in many languages and cultures.

ImageNet concepts are not universal. Since Ima-
geNet is based on the English WordNet, its synsets
comprise concepts that are familiar in the Anglo-
sphere but might be exotic or even unknown in other
cultures, such as TAILGATING (van Miltenburg et al.,
2017). Conversely, it may fail to cover concepts from
other cultures (cf. §3.3). To quantify the relevance
of the ImageNet concepts across languages, we map
each synset manually onto its Wikipedia page2 and
use the Wikipedia API to extract the languages for
which a given page is available. Fig. 2 (left) illus-
trates that most of the synsets are only present in
30 or fewer languages, and that only a small num-
ber of “universal” concepts exist. Relying on the
WALS database (Dryer and Haspelmath, 2013), we
also show that the same argument applies to language
families (middle) and that most of these languages
are from the Eurasian macro-area (right).

ImageNet concepts are overly specific to English.
ImageNet contains overly specific concepts that be-
long to leaf nodes in WordNet, e.g. BLENHEIM
SPANIEL, rather than basic-level concepts such as
DOG. To demonstrate this, we calculate the (shortest-
path) depth in WordNet of a subset of 447 ImageNet
concepts from Ordonez et al. (2013),3 and compare
them with the depth of the labels that people used
to refer to objects in corresponding images (Ordonez
et al., 2013). Whereas humans tend to employ higher-
level synsets (depth µ = 8.92, σ2 = 3.94), Im-
ageNet systematically prefers finer-grained synsets
(µ = 10.61, σ2 = 6.13). Therefore, not only are
the concepts overly specific for English, but this mis-

2Automatic mapping is hard (Nielsen, 2018).
3Please refer to Fig. 5 in App. §B for more details.

match may be aggravated in other cultures. Anec-
dotally, we found that KOTO, a Japanese instrument,
was simply denoted as instrument by English speak-
ers; while we expect Japanese annotators to prefer the
more precise expression箏 (koto).

2.3 Sources of Bias
We now turn our attention to the potential sources
of the biases emerging from §2.2. In particular, we
scrutinise each individual step that is part of the cre-
ation of datasets such as ImageNet, ILSVRC 1K, and
NLVR2: 1) Concept selection, 2) Candidate image
retrieval, and 3) Manual cleanup.

A first source of bias is the selection of concepts.
From WordNet, ImageNet originally selected 12 sub-
trees for a total of 5,247 synsets.4 Finer-grained
synsets were preferred to obtain a “densely popu-
lated semantic hierarchy” (Deng et al., 2009, p. 2).
Among these, 1K concepts were selected randomly
for the ILSVRC 2012-2017 shared tasks.5 Thus,
the 1K concepts form a random sample that may be
skewed towards non-basic levels (e.g. 147 synsets are
species of dogs).

The second source of bias is candidate image re-
trieval. Image results from search engines (Flickr and
other unspecified engines for ILSVRC 1K; Google
Images for NLVR2) do not follow the real-world dis-
tribution, e.g. of gender (Kay et al., 2015) and eth-
nicity (Noble, 2018). In fact, they tend to customise
results according to the user’s individual profile and
localisation. Moreover, queries for ImageNet were
again expressed in English, and to a minor (unspeci-
fied) extent in Spanish, Dutch, Italian, and Mandarin
Chinese, all Western European except for the latter.

Thirdly, additional bias may lie also in image filter-
ing, which is necessary as only an estimate of 10%
results per query are of acceptable quality (Torralba

4Currently expanded to 21,841 synsets according to https:
//www.image-net.org as of 9 May 2021.

5411 were subsequently substituted to accommodate new
challenges (object localisation and fine-grained classification).
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et al., 2008). In ImageNet, cleanup was performed
via crowdsourcing (in particular, Amazon Mechani-
cal Turk). While no information about the language
and culture of the annotators is available, there ex-
ists no reason to assume that they were representative
of global diversity. Moreover, annotations without
consensus were discarded, hence possibly eliminat-
ing cultural variations (where disagreement may just
represent different basic levels or prototypes).

3 MaRVL: Dataset Annotation

Given the biases in ImageNet-derived or inspired
datasets, we define a protocol to collect data that is
driven by native speakers of a language, consisting of
concepts arising from their lived experiences.6 The
dataset creation consists of five distinct phases: 1)
selection of languages; 2) selection of universal con-
cepts; 3) selection of language-specific concepts; 4)
selection of images; 5) annotation of captions.

3.1 Selection of Languages
We chose five languages, i.e. Indonesian (ID), Swahili
(SW), Tamil (TA), Turkish (TR), and Mandarin Chi-
nese (ZH), that are typologically, genealogically, and
geographically diverse (Ponti et al., 2020; Clark
et al., 2020; Vulić et al., 2020). In addition, this sam-
ple covers different writing systems and includes low-
resource languages (Tamil and Swahili).7 This aims
at demonstrating the universal applicability of our an-
notation protocol and reflecting the world’s linguistic
and cultural diversity during evaluation.

3.2 Selection of Universal Concepts
Ideally, datasets for different languages and cultures
should reflect the most salient concepts and their typi-
cal visual denotations, while retaining some thematic
coherence for comparability. Hence, we start from a
shared pool of universal semantic fields.

There are multiple lists of human universals from
ethnographic studies (Brown, 1991) and from com-
parative linguistics (Swadesh, 1971; Haspelmath and
Tadmor, 2009). As a source for our pool of con-
cepts, we opt for the Intercontinental Dictionary Se-
ries (Key and Comrie, 2015), because it is an open-
source cooperative and evolving database, and it is
cross-lingually comprehensive, as it collects lexical

6We discard the alternative of selecting concepts from Word-
Nets in other languages (Artale et al., 1997, inter alia) as they
are often translations from English (thus, bare of culture-specific
concepts) and do not specify the basic level for synsets.

7All of these languages have large populations of speakers to
ensure the availability of sufficient annotators.

material about languages from all over the world.
From its 22 chapters, we retain only the set of 18 se-
mantic fields that cover concrete objects and events.
The full list is available in Tab. 6 (App. §A).

3.3 Selection of Language-Specific Concepts
For each language, we hire 5 native speaker anno-
tators8 to provide Wikipedia page links for 5-10
specific concepts in their culture9 of each semantic
field.10

The two key requirements are for the concepts to
be “commonly seen or representative in the speaking
population of the language;” and “ideally, to be phys-
ical and concrete.” For example, for the semantic
field MUSIC INSTRUMENT, a Chinese annotator might
supply “https://zh.wikipedia.org/wiki/古筝.” We re-
iterated the requirement that the concepts need to
be “common/popular” so unusual concepts related
to heritage, traditions, folklore, etc. can be avoided.
Then, we obtain a ranked list for the most popular
concepts in each semantic field and keep only the top
5 concepts (more in case of ties) that have been se-
lected by more than 1 annotator (> 1 vote). As a re-
sult, we obtain 86–96 specific concepts for each lan-
guage (see detailed statistics in §4). Among the se-
lected concepts, 72.4% are with ≥ 3 votes while the
remaining 27.6% have 2 votes. The high consensus
among annotators suggest that the chosen concepts
are representative in the culture.

3.4 Selection of Images
After obtaining the full list of concepts, we again hire
native annotators to select images for these concepts
by collecting image links from the web. We provided
a detailed guideline to specify the desired images. In
particular, we adopted the image selection require-
ments of NLVR2: finding images that (1) contain
more than one instance of the concept; (2) show an
instance of the concept interacting with other objects;
(3) show an instance of the concept performing an ac-
tivity; and (4) display a diverse set of objects or fea-
tures. These requirements help elicit complex images
where the challenges are more likely to lie on compo-
sitional reasoning instead of object detection (Suhr
et al., 2019). In addition to these, to ensure that the

8We hired 5 speakers per language as we found this was gen-
erally enough to achieve a high agreement of selected concepts.

9Eliciting the selection from native speakers is ideal as salient
concepts are generated first and prototypical members to repre-
sent them (such as images) are preferred (cf. §2.1).

10In the rare cases where a Wikipedia page is unavailable, the
annotators are asked to write the names of the concept directly.
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右图中的⼈在发球，左图中的⼈在接球。 
(The man in the right image is serving a ball while the man in the left image is returning a ball.)

右图中的⼈在发球，左图中的⼈在接球。 
(The man in the right image is serving a ball while 
the man in the left image is returning a ball.)

FalseTrue

Figure 3: Left: For each annotation instance, eight images are randomly picked from the image set of a concept and
randomly paired into four pairs. Annotators then write a caption that is True for two pairs but False for the other two.
Right: Labels are hidden and a different set of annotators will relabel them.

images authentically reflect the native annotators’ ev-
eryday experience, annotators were also required to
select images that are “commonly found or represen-
tative in the speaking population of the language.”
As a result, annotators from different cultures tend to
pick visually diverse images even for the same con-
cept, as shown in Fig. 7 (App. §C). Other require-
ments include images are CC-licensed, natural im-
ages, etc. (view App. §D for details). The annotators
are allowed to crowd-source the images by any means
(local websites, search engines, Wikipedia, etc.) as
long as all requirements are met. In general, we made
a detailed guideline (available online) to guide the
annotators through the whole process and encourage
them to find qualified images. We hire two annotators
per language. For each concept, we ask for 12 im-
ages. Concepts with < 8 valid images are discarded.

3.5 Annotation of Captions
To generate an annotation instance for a given con-
cept, we randomly draw 8 images from its image set,
and randomly form 4 image pairs. An annotator is
asked to write a caption that is true for two pairs
but false for the other two pairs (Fig. 3, left). The
captions are required to centre around the “theme
concept,” which is given during annotation. We
do so to prevent annotators from writing captions
that rely on oversimplified cues and instead focus
on the main objects in the images. Note that each
annotation instance contributes 4 data points to our
dataset (2 true pairs and 2 false pairs). This annota-
tion scheme largely follows that of NLVR2’s (Suhr
et al., 2019). We generate 4 annotation instances
from each concept.11 During caption writing, anno-
tators are obliged to report any error (e.g. duplicated
images, wrong theme concept name, etc.), and can

11We aim to collect >1K examples per language, which can
be achieved by generating 4 annotation instances per concept.

choose to skip an instance if they find it too hard.
We hire native-speaking professional linguists (trans-
lators) from proz.com with at least a bachelor’s de-
gree to write the captions. Before caption writing,
a training session is conducted. For each language,
two to four annotators are hired (subject to the avail-
ability of annotators in the language).

After a batch of captions is written, we hide the
True/False labels and hire a set of validators to relabel
all photo-caption pairs (Fig. 3, right). The validators
are also required to flag any grammatical errors and
typos. After finishing labelling, the “ground-truths”
(i.e., labels by the original annotator) are revealed
and all conflicted answers are highlighted. Valida-
tors then write down why they disagree with the la-
bel. The instances with different True/False assign-
ments, along with grammatical errors or typos, are
returned to the original annotator for revision. After
revisions, the captions are considered finalised. Fi-
nally, a native speaker runs a final pass on the exam-
ples resolving minor typos and inconsistencies.

In the final dataset, a data point consists of two
images, a caption, and a True/False label (Fig. 1).

4 Dataset Analysis

Human validation. We run a final-round eval-
uation for reporting human accuracy and inter-
annotator agreement (without changing the finalised
captions). For each language, 200 examples are
randomly sampled from our dataset. We mask the
True/False labels and ask two new validators to re-
label the examples (same as Fig. 3, right). Across
all languages, the Fleiss’ kappas among three anno-
tators (one caption writer and two final-round valida-
tors) are at least 0.887 (Tab. 1). According to Lan-
dis and Koch (1977), it indicates almost perfect inter-
annotator agreement. Suppose the labels given by the
caption writer are correct, the average human accu-
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ID SW ZH TR TA avg.

Human accuracy .963 .930 .955 .970 .980 .960
Fleiss’ kappa .913 .887 .933 .954 .966 .931

Table 1: Human accuracy of validators on ground-truth
labels and inter-annotator agreement (Fleiss’ kappa).

ID SW ZH TR TA tot.

Concepts selected 96 88 94 90 86 454
with >8 images 95 78 94 79 83 429
% not in WordNet 18.8% 8.0% 27.7% 21.1% 30.2% 21.1%

Total images 1153 1110 1271 972 946 5464
used for captions 1091 875 1107 917 924 4914

Total examples 1128 1108 1012 1180 1242 5670
Total unique captions 282 276 253 295 305 1411

Table 2: Key stats of concepts and images in MaRVL.

NLVR2 MaRVL
EN ID SW ZH TR TA avg.

Avg. length 15.8 18.2 17.8 16.1 11.0 11.7 15.0
Word types 811 684 516 848 784 775 721
TTR 0.21 0.15 0.12 0.21 0.28 0.26 0.20

Table 3: Key stats of MaRVL captions: average length,
number of word types, and type-to-token ratio (TTR).

racy scores12 are also very high, mostly in the high
90%s except for Swahili (93.0%).

Concept and image statistics. For a detailed statis-
tics about our dataset, see Tab. 2. After the image
collection, on average 5 concepts are filtered out for
each language. Among the final concepts, several are
not found in the English WordNet, e.g. sports like
yağlı güreş (OIL WRESTLING), architectures like 四合院 (SIHEYUAN), or food like ࣰࣱࣚ࣪ࣕ (DOSA).

Caption statistics. We report the key statistics of
MaRVL captions as well as 250 randomly sampled
NLVR2 captions in Tab. 3 The length distributions
of the captions are visualised in Fig. 6 (App. §E).

Image distribution. To better understand the dis-
tribution of MaRVL images (and also how it differs
from NLVR2), we extract the features of (1) MaRVL
images and (2) 1K randomly sampled NLVR2 images
using an ImageNet pre-trained ResNet50 (He et al.,
2016), then visualise their embedding distribution us-
ing UMAP (McInnes et al., 2018).13

As shown in Fig. 4 (top), the Chinese images have
very different distributions compared to the English

12We report human accuracy scores as the average correct pre-
diction ratios of the two validators.

13We tried running UMAP for multiple times and found the
embedding structure generally stable.

担杖 (CARRYING POLE)

Various 
species of 

dogs…

⽕锅 (HOTPOT)

Kakatua 
(COCKATOO)

Kasuari (CASSOWARY)

Chui  
(LEOPARD)

Nyani 
(BABOON)

Mbuni 
(OSTRICH)

Figure 4: Image feature distributions of MaRVL-ZH and
NLVR2 (top) and MaRVL-ID and MaRVL-SW (bottom).

ones (from NLVR2). Specifically, we note that a lot
of the clusters of English NLVR2 images are differ-
ent species of dogs. This is caused by the granular-
ity problem induced by ImageNet. In Fig. 4 (bot-
tom), we compare the image distribution of two lan-
guages (Indonesian and Swahili) in MaRVL. Within
MaRVL, we still find distributions of images across
languages vary. This is largely caused by the distinct
concept sets. As shown in the figure, the different
clusters stem from the fact that the two regions have
very different animal species. We note that, since
ResNet50 is pre-trained on ImageNet, the formed
clusters may be biased towards ImageNet concepts.
As suggested in Fig. 4 (top), the NLVR2 images are
usually better clustered than the Chinese ones from
MaRVL. UMAP visualisations for more languages
are shown in App. §F.
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Multilingual and multicultural statistics. Fig. 2
compares key multilingual and multicultural statis-
tics of the concepts in MaRVL with the ones in Ima-
geNet and NLVR2. We can clearly see that MaRVL
concepts are present in more languages than the ones
in ImageNet and NLVR2 despite being language-
specific. We hypothesise this is a result of the con-
cepts in MaRVL being more prototypical and hence
reflecting more neighbouring cultures. This is sup-
ported by the middle and right plots in Fig. 2 that
show how more concepts in MaRVL are found in
more language families and macro-areas.

Limitations. While we selected the international
annotation platforms that cover the most languages
(proz.com and prolific.co), it remains challenging
to recruit speakers of low-resource languages: we
could find only 2-4 qualified annotators per language
for caption writing. This might amplify the bias from
individual annotators. The authors of the present
work do not speak some of the languages considered
natively. Moreover, all our concepts are mapped to
Wikipedia pages. For low-resource languages, these
might be missing for certain concepts. Finally, only
∼5 concepts are selected for each semantic field.
This could also inject some bias as frequent concepts
are likely to distribute in different categories in an im-
balanced way. In general, the protocol for MaRVL
can still be improved, albeit our goal to minimise our
biases as dataset creators was partly achieved.

5 Baselines
Several pre-trained Transformer models for vision-
and-language tasks have been proposed, inspired by
the BERT architecture (Devlin et al., 2019), and re-
designed to handle multimodal inputs. They are pre-
trained on large-scale image–text corpora (Sharma
et al., 2018), that are usually only available in En-
glish. The M3P model (Ni et al., 2021) extends
Unicoder-VL (Li et al., 2020a) to encode multilin-
gual inputs, resulting in the first multilingual mul-
timodal BERT-like architecture. Pre-training alter-
nates between modelling multimodal English data
and text-only multilingual data. In this paper, we fol-
low this approach and propose two multilingual vari-
ants of UNITER (Chen et al., 2020): mUNITER, ob-
tained by initialising UNITER with mBERT (Devlin
et al., 2019), and xUNITER, obtained by initialising
UNITER with XLM-RBASE (Conneau et al., 2020).

The UNITER architecture consists of a stack of
Transformer layers similar to BERTBASE, whose in-
put is the concatenation of language and vision

embeddings. The language inputs are first split
into sub-word units (Wu et al., 2016; Sennrich
et al., 2016) and surrounded by two special tokens,
{[CLS], w1, . . . , wT , [SEP]}. The language embed-
dings are then obtained as in the original BERT ar-
chitecture. The vision input consists of a set of vi-
sual features given by a pre-trained object detector,
to which we add a special feature [IMG] that en-
codes the entire image, {[IMG], v1, . . . , vK}. Each
feature is embedded using a BERT-like embedding
layer by using its bounding box coordinates as the in-
put position. Finally, the global representation for an
image–text pair is obtained via multiplicative pool-
ing (Lu et al., 2019) wherein the pooled representa-
tions for the text modality, extracted from the [CLS]
token, and for the visual modality, extracted from the
[IMG] feature, are element-wise multiplied to obtain
a single vector for the image–text pair.

We code our models in VOLTA14 and pre-train
them using the same data and hyperparameters as in
the controlled setup proposed by Bugliarello et al.
(2021).15 This lets us fairly compare the perfor-
mance of our multilingual versions with the corre-
sponding monolingual ones. Afterwards, our mod-
els are fine-tuned on NLVR2 following the approach
initially proposed by Lu et al. (2020). For more de-
tails regarding our architecture, pre-training and fine-
tuning, see App. §G. After English fine-tuning, multi-
lingual models are tested on MaRVL in a ‘zero-shot’
cross-lingual transfer setting.

In addition, we also benchmark the performance of
five monolingual vision-and-language BERT mod-
els available in VOLTA: UNITER, VL-BERT (Su
et al., 2020), VisualBERT (Li et al., 2019a), ViL-
BERT (Lu et al., 2019) and LXMERT (Tan and
Bansal, 2019). These models are also pre-trained
in the same controlled setup and fine-tuned on the
English training set of NLVR2. Following the estab-
lished ‘translate test’ approach to cross-lingual trans-
fer (Banea et al., 2008; Conneau et al., 2018; Ponti
et al., 2021b), they are evaluated on the test sets of
MaRVL automatically translated into English.16

6 Results

In Tab. 4, we show the performance of the baselines
outlined in §5 on MaRVL. We report two metrics:
accuracy across all examples and consistency, the
proportion of unique sentences for which predictions

14https://github.com/e-bug/volta.
15As multilingual data, we use Wikipedia in 104 languages.
16We use neural machine translation in the Google Cloud API.
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NLVR2 MaRVL
EN ZH TA SW ID TR avg.

Zero-shot
mUNITER 73.2 / 37.7 56.8 / 6.7 52.2 / 2.3 51.5 / 4.7 55.0 / 7.8 54.7 / 6.8 54.0 / 5.7
xUNITER 72.8 / 35.6 55.0 / 5.9 55.1 / 7.2 55.5 / 5.1 57.1 / 9.6 58.0 / 8.5 56.1 / 7.3

Translate test
LXMERT 71.1 / 34.1 59.4 / 11.2 61.9 / 15.4 62.6 / 16.5 61.4 / 12.4 65.7 / 22.0 62.2 / 15.5
ViLBERT 72.2 / 35.9 58.4 / 13.2 64.3 / 17.5 63.8 / 15.7 60.7 / 11.7 70.4 / 25.1 63.5 / 16.6
VisualBERT 72.7 / 35.4 58.5 / 13.5 60.6 / 11.6 62.5 / 15.4 59.7 / 10.6 69.4 / 24.7 62.1 / 15.2
VL-BERT 73.3 / 37.1 62.8 / 14.7 62.5 / 19.2 65.8 / 20.6 61.0 / 14.9 70.3 / 27.5 64.5 / 19.4
UNITER 73.7 / 38.2 62.8 / 17.1 63.5 / 18.2 61.9 / 13.9 61.6 / 14.5 70.3 / 26.1 64.0 / 18.0
mUNITER 73.2 / 37.7 62.7 / 17.9 62.3 / 19.2 63.4 / 16.5 59.8 / 11.4 69.2 / 27.1 63.5 / 18.4
xUNITER 72.8 / 35.6 63.3 / 16.7 62.4 / 16.1 64.1 / 15.0 62.4 / 14.9 69.8 / 16.7 64.4 / 17.9

Table 4: Performance (accuracy/consistency) in MaRVL and NLVR2 (Test-P). Translate test denotes the setup of the
multilingual MaRVL datasets translated into English. Best scores are put in bold, but do not imply statistical significance.

Model MaRVL NLVR21K NLVR21K
ZH→EN EN EN→ZH

LXMERT 61.7 / 14.3 - -
ViLBERT 62.5 / 13.5 - -
VisualBERT 59.8 / 13.1 - -
VL-BERT 65.4 / 20.6 - -
UNITER 63.8 / 19.4 - -
mUNITER 61.3 / 17.1 72.2 / 33.2 56.2 / 6.8
xUNITER 64.4 / 20.6 73.0 / 31.6 57.1 / 9.2

Table 5: Performance (accuracy/consistency) in MaRVL-
ZH when manually translated into English and NLVR2 1k
when manually translated into Mandarin Chinese.

on all corresponding image pairs are correct. We
note that the differences among all models for spe-
cific transfer methods are not statistically significant.
This indicates that varying neural architectures does
not have an appreciable impact on performance once
they are pre-trained on the same amount of data.

Zero-shot vs. translate test. We find that both mul-
tilingual and monolingual models perform compara-
bly well in English (NLVR2). When evaluated on the
languages in MaRVL, however, the performance of
zero-shot multilingual baselines dramatically drops
by 10−20% points, floating just above chance level.
Remarkably, this is also the case for resource-rich
languages like Mandarin Chinese (ZH), for which un-
labelled text is abundant. Compared to zero-shot
transfer, all translate-test baselines gain 4 − 15%
across the different languages, with Turkish improv-
ing the most. Yet, there persists a considerable gap
of more than 10% compared to the performance on
English in NLVR2. Arguably, this is caused by the
out-of-distribution nature of the data in MaRVL.

Disentangling shifts in distribution. There are two
sources of difficulty that make MaRVL challenging:

1) cross-lingual transfer and 2) out-of-distribution
concepts, in both images and descriptions, with re-
spect to English datasets. To assess the effect of each
of these factors on model performance, we conduct a
controlled study on Mandarin Chinese (MaRVL-ZH).

First, we manually translate MaRVL-ZH into En-
glish, hence removing any possible confound due to
machine translation in Tab. 4. As shown in Tab. 5
(left column), compared to the Translate test evalua-
tion, each model improves its accuracy by only 1-2%,
with the exception of mUNITER. Thus, the transla-
tion is fairly reliable. Moreover, out-of-distribution
concepts are responsible for the largest share of er-
rors (on average, a drop in accuracy of 10%).

Second, we sample 250 unique descriptions, corre-
sponding to 1,000 data points, from the NLVR2 test
set and manually translate them into Mandarin Chi-
nese. The performance of mUNITER and xUNITER
on this subset, which we denote as NLVR21k, is listed
in Tab. 5 (right column). Although all data points
are in-domain, both our multilingual models, mU-
NITER and xUNITER, lose 16% in accuracy com-
pared to the English NLVR2 1k test set (central col-
umn). Hence, this gap can be attributed to cross-
lingual transfer from English into Chinese.

Translate train. Finally, we establish a baseline for
a third possible approach to cross-lingual transfer,
‘translate train’. To this end, we machine translate
the training set of NLVR2 into Mandarin Chinese and
then evaluate on MaRVL-ZH. We find that the per-
formance of mUNITER (62.5/18.7) and xUNITER
(61.8/16.7) is close to their respective performance
when machine translating MaRVL-ZH into English
(translate test). Again, the lack of access to cultur-
ally relevant concepts hinders generalisation.
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7 Related Work

Grounded language reasoning. Several datasets
to assess reasoning over language and vision have
been released in the recent years (Antol et al., 2015;
Kazemzadeh et al., 2014; Xie et al., 2019; Zellers
et al., 2019). Most notably, CLEVR and its exten-
sions (Johnson et al., 2017a,b; Liu et al., 2019; Kot-
tur et al., 2019), as well as GQA (Hudson and Man-
ning, 2019), address the task of answering complex,
compositional questions over images. NLVR (Suhr
et al., 2017), on the other hand, compares and con-
trasts pairs of synthetic images via human-written
descriptions. The reasoning capabilities of artifi-
cial models are evaluated through binary classifica-
tion over these grounded descriptions. We closely
follow the task formulation of NLVR2 (Suhr et al.,
2019), which extends the NLVR collection to real-
world photographs. Our dataset, MaRVL, is the first
multilingual and multicultural dataset for grounded
language reasoning.

Multilingual multimodal datasets. Elliott et al.
(2016) introduced Multi30k, one of the most widely
used multilingual image-caption datasets. Multi30k
enriches Flickr30K (Young et al., 2014)—originally
in English—with translated and newly written Ger-
man captions. Others provided captions for subsets
of MS-COCO images in German and French (Rajen-
dran et al., 2016), Japanese (Yoshikawa et al., 2017),
and Chinese (Li et al., 2019b). Chinese captions were
made available also for videos by Wang et al. (2019).
All these datasets suffer from at least one of these two
deficiencies: 1) they start from a sample of images
crowd-sourced from North America and Western Eu-
rope; 2) they contain at most three (high-resource)
languages, only a pale reflection of the world’s cross-
lingual and cross-cultural variation. Finally, Srini-
vasan et al. (2021) automatically scraped a multilin-
gual text–image dataset from Wikipedia. While not
suitable for evaluation, this is a promising training
resource for multilingual multimodal models.

8 Conclusions and Future Work

Our empirical and theoretical analyses reveal that
concepts and images documented in existing visiolin-
guistic datasets are likely neither salient nor prototyp-
ical in many languages different from English and in
cultures outside Europe and North America. There-
fore, to mitigate these biases, we devise a new an-
notation protocol where the selection of images and
captions is entirely driven by native speakers. More-

over, we elicit descriptions comparing and contrast-
ing image pairs in 5 typologically diverse languages:
Indonesian, Mandarin Chinese, Swahili, Tamil, and
Turkish. We publicly release the resulting multicul-
tural and multilingual dataset for grounded language
reasoning, MaRVL, and its annotation guidelines,
with the hope that other members of the scientific
community will be able to further expand it.

Moreover, we develop and benchmark a series
of multilingual and multimodal baselines, includ-
ing model- and translation-based transfer. We
find that their performance is sometimes just above
chance level and suffers considerably from the out-
of-distribution nature of concepts, images, and lan-
guages in MaRVL compared to English datasets.
This gives us reason to believe that it offers a more
faithful estimate of state-of-the-art models’ suitabil-
ity in real-world applications, outside a narrow lin-
guistic and cultural domain.

Better methods for out-of-distribution cross-
lingual transfer (Ponti et al., 2021a) and a deeper
understanding of how visual stimuli affect language
(Li et al., 2020b; Rodríguez Luna et al., 2020) might
prove essential for future progress in the MaRVL
challenge. In future work, we will also assess model
performance on additional tasks already supported
by our dataset, such as object recognition, and exper-
iment with multilingual extensions of visiolinguistic
models based on contrastive learning (Carlsson and
Ekgren, 2021).
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A Chapter to Semantic Field Mapping
We list all chapters, semantic fields, and the mapping
between them in Tab. 6.

B Depth of ImageNet Concepts in the
WordNet Hierarchy

Fig. 5 compares the distribution of minimum and
maximum depth in WordNet for 447 synsets from Or-
donez et al. (2013) according to their labels in Ima-
geNet and to the labels given by the annotators (i.e.
basic-level categories). The mapping of human la-
bels onto WordNet was done manually, resolving any
disambiguation. We find that humans typically tend
to prefer higher-level synsets than the ones present
in ImageNet, showing that concepts in ImageNet are
already over-specific for English.

C BASKETBALL across Languages
Fig. 7 shows images for the concept BASKETBALL
across our five languages in MaRVL.

D Additional Annotation Details
Selection of language-specific concepts. We pay
0.1 GBP for each Wikipedia link (maximum 10 links
for each semantic field) such that annotators would
have incentives to write down as many concepts as
possible for each semantic field. Annotators hired in
this phase are from prolific.co17 and proz.com.

Selection of images. We have also included require-
ments such as avoid (1) synthetic images (2) col-
lages (3) watermarks (4) low-resolution images, etc.
to make sure that only natural images (photos) are in-
cluded in our dataset. CC-license is also demanded
for all collected images. For each valid image, we
pay 0.12 GBP. After collecting enough images, we
run a second round check by ourselves to delete all
unqualified images. Annotators hired in this phase
are from prolific.co and proz.com.

Annotation of descriptions. Before assigning the
task, we conduct training sessions with the descrip-
tion writers. They are required to complete a sam-
ple. We then provide feedback and ask for revi-
sions if the sample is not perfectly aligned with the
guideline. Each valid description is paid with 0.6
GBP. During quality control, 0.1 GBP is paid for ev-
ery reviewed example. Description writers are all
hired from proz.com while validators are from both
proz.com and prolific.co.

17An extra 33.3% VAT is paid to the platform for all prolific.
co payment.

Figure 5: Distributions of minimum and maximum synset
depth in the WordNet hierarchy for 447 ImageNet la-
bels compared to basic-level categories provided by hu-
mans (Ordonez et al., 2013). The lower depth of the latter
suggests that ImageNet categories may be over-specific.

Figure 6: Description length distribution by languages.

Final-round human validation. In this round, the
re-labelling annotators are asked to focus on logical
correctness instead of the grammaticality/fluency of
the language. Again, 0.1 GBP is paid for every as-
signed label. Validators are from both proz.com and
prolific.co.

E Additional Dataset Statistics

We plot the distribution of the description lengths in
Fig. 6. Except for Turkish and Tamil, our collected
descriptions are longer than the ones in NLVR2.

F More Image Embedding Visualisations

We plotted image feature distributions of MaRVL-
ZH, SW, ID in the main text. Here we also visualise
the features of TA, TR (Fig. 8, left), and provide a full
graph for all languages (Fig. 8, right).

G Baselines Details

In this section, we describe our multilingual vision-
and-language models, mUNITER and xUNITER, as
well as their training procedures in detail. We use
the same hyperparameters as in the controlled study
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Chapter Index Semantic field
Animal 3 Bird, mammal
Food and Beverages 5 Food, Beverages
Clothing and grooming 6 Clothing
The house 7 Interior, exterior
Agriculture and vegetation 8 Flower, fruit, vegetable, agriculture
Basic actions and technology 9 Utensil/tool
Motion 10 Sport
Time 14 Celebrations
Cognition 17 Education
Speech and language 18 Music (instruments), visual arts
Religion and belief 19 Religion

Table 6: Chapter to semantic field mapping.

Mpira wa kikapu (Swahili) 篮球 (Chinese) !"#$%&'()#* (Tamil)Bola basket (Indonesian) Basketbol (Turkish)

Mpira wa kikapu (Swahili)Bola basket (Indonesian)

Figure 7: Five examples of “basketball” from our dataset (one per language). Though describing the same concept, the
visual representations can vary drastically across languages/cultures, e.g. in the personal attributes of the players or the
field background.

of Bugliarello et al. (2021) and build our models on
top of the VOLTA repository.18

Architecture. Our models extend the
UNITER (Chen et al., 2020) architecture. This
is a single-stream system consisting of a single stack
of Transformer layers, similar to BERT (Devlin
et al., 2019). The input to the model is the con-
catenation of language and vision inputs. The text
input consists of a sequence of sub-word units (Wu
et al., 2016; Sennrich et al., 2016) surrounded by
two special tokens, {[CLS], w1, . . . , wT , [SEP]}.
The vision input consists of a set of visual features
given by a pre-trained object detector and a spe-
cial feature [IMG] that encodes the entire image,
{[IMG], v1, . . . , vK}. Specifically, we use K = 36
visual features per image given by a Faster R-CNN
architecture (Anderson et al., 2018). Similar to
BERTBASE, the body of our Transformers consists
of 12 layers, each with 12 attention heads, and a
hidden size with dimension 768. Finally, the global
representation for an image–text pair is obtained
via multiplicative pooling (Lu et al., 2019) wherein
the pooled representations for the text modality,
extracted from the [CLS] token, and for the visual
modality, extracted from the [IMG] feature, are
element-wise multiplied to obtain a single vector for

18https://github.com/e-bug/volta.

the image–text pair.

Pre-training. Following Ni et al. (2021), we pre-
train our models by alternating multilingual text-
only batches and multimodal English-only batches.
Masked language modelling (MLM; Devlin et al.
2019) is the sole objective used in the multilingual
steps, while the loss in multimodal batches is given
by the sum of three objectives: MLM, masked region
classification with KL-divergence (MRC-KL; Lu
et al. 2019) and image–text matching (ITM; Chen
et al. 2020). During multimodal pre-training, some
of the image regions are randomly masked19 and the
model is tasked to predict the distribution of the corre-
sponding classes given by the Faster R-CNN model.
ITM is the multimodal version of next sentence pre-
diction in BERT. Here, the caption of an image is
replaced with probability 0.5 with a random caption
in the training corpus. The model is then trained to
identify whether the given image–caption pairs are a
match or not. Following Lu et al. (2020), MLM and
MRC-KL losses are not computed when image and
captions are not matched to avoid sub-optimal map-
ping between visual and linguistic inputs. For multi-
lingual pre-training, we use Wikipedia dumps (Rosa,

19Regions whose IoU is greater than 0.4 are also masked.
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Figure 8: Left: image feature distributions of MaRVL-TA, TR. Right: image feature distributions of all languages in
MaRVL and NLVR2.

Figure 9: Accuracy of mUNITER and xUNITER when grouping concepts by chapter. ‘ALL’ denotes the overall accuracy.

2018) for 104 languages,20 while we rely on Concep-
tual Captions for multimodal pre-training.21 In the
multilingual steps, we first sample languages accord-
ing to the following multinomial distribution that ac-
counts for the size of each Wikipedia dump (Con-
neau and Lample, 2019), and then, for each sampled
language, a sentence is uniformly sampled. We set
the multinomial parameter α as in the original pa-
pers: 0.7 for mBERT-based mUNITER and 0.3 for
XLM-R-based xUNITER. Each model is pre-trained
for 10 Conceptual Captions epochs as done in pre-
vious work. Following the implementation of Ni
et al. (2021), the models’ parameters are updated af-
ter each multilingual and multimodal batch, while the
learning rate scheduler only after both of them.

20https://github.com/google-research/bert/blob/
master/multilingual.md

21We use the 2.77M data points available in VOLTA.

Fine-tuning. We fine-tune our models on the En-
glish NLVR2 dataset and then measure zero-shot per-
formance on our MaRVL dataset. In NLVR2, given
two images (Il and Ir) and a description D, the
model is trained to assess the validity of the descrip-
tion given the images (true or false for both images).
We follow Lu et al. (2020) and cast this as a classi-
fication problem: Given embeddings that encode the
two image–description pairs, (Il, D) and (Ir, D), the
probability that they are both valid is predicted by a
2-layer MLP with a GeLU (Hendrycks and Gimpel,
2016) activation in between, followed by a softmax
over two classes (representing true and false labels):

P(C|Il, Ir, D) = softmax

(
MLP

([
hl[IMG] $ hl[CLS]
hr[IMG] $ hr[CLS]

]))
,

(1)
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where [ ] denotes the concatenation of the pooled rep-
resentations.

Experimental setup. We train our models on a sin-
gle NVIDIA Titan RTX. Pre-training each model
takes 9 days, while NLVR2 fine-tuning for 20 epochs
takes 1 day. The parameter sets giving the best vali-
dation performance in NLVR2 are used for zero-shot,
cross-lingual evaluation on MaRVL.

H Performance by Chapter
Fig. 9 shows the performance of mUNITER and xU-
NITER for each chapter in each language. Compared
to the overall performance (“ALL”), we find that
no chapter is easier or difficult in all languages for
both models. Cross-lingual performance of the two
models varies acriss chapters: While both models
find smaller fluctuations on “Speech and language”,
mUNITER shows minimal deviation on “Agriculture
and vegetation” but twice as much as xUNITER’s on
“Cognition.” Interestingly, in Swahili, mUNITER
and xUNITER show opposite behaviour for “Mo-
tion,” with mUNITER largely outperforming the
overall accuracy, while a similarly large drop is given
by xUNITER. Overall, we find that both models find
almost every chapter almost as difficult, resulting in
per-chapter accuracy close to the overall one.

I More Examples from MaRVL
To demonstrate more details of our dataset, we pick
two examples from each language (TA: Fig. 10, ZH:
Fig. 11, SW: Fig. 12, ID: Fig. 13 TR: Fig. 14).

(a) ⑬ࣵࣙ࣠ࣉ ࣓ࣣࣝࣘࣔࣵ࣫⑴ࣞࣵ ࣱࣛ࣫࣡ࣟ ࣞࣕ࣪࣢ࣵ ࣱ࣓ࣣࣥࣘࣵ �ࣣࣣࣜࣵ࣋
(“Both images contain a lot of masala vadas.”, concept: ࣱࣥࣘ
(VADA, a popular Indian food), label: FALSE)

(b) ࣢ࣣ࣓ࣵ࣫ࣵࣔࣘࣝ⑬ࣵࣙ࣠ࣉ ࣢࣐ࣵ࣫࣡ࣵࣜ ࣓࣓࣓࣪ࣙࣵࣝ࣫ࣵࣝࣵࣝ⑬ࣞࣵ ࣥ࣫࣠࣢࣫࣢ࣵ ࣓ࣥ࣪ࣵ⑨
ࣱࣱࣞࣟ ࣓࣪ࣙ⑱✲࣓࣫࣡⑮� (“In one of the two pictures, the finger
shows the vote.”, concept: ࣱࣞ (INK), label: TRUE)

Figure 10: More examples from MaRVL-TA.

(a)两张图加起来总共超过五个人在打鼓，并且两张图中的人所打鼓的种类不同。(“In total, there are more than five
people playing drums in the two images combined and people in
the two images are playing different kinds of drums.”, concept:鼓 (DRUM), label: TRUE)

(b)两图中至少有一张图里面是一口鴛鴦鍋。(“At least one
of the two pictures shows a mandarin duck pot.”, concept: 鴛鴦鍋 (MANDARIN DUCK POT, a specific type of pot), label: TRUE)

Figure 11: More examples from MaRVL-ZH.

(a) Picha moja ina mti wa maparachichi na picha nyingine ina
maparachich yaliyokatwa vipande. (“One picture contains
an avocado tree and another has avocados chopped.”, concept:
Parachichi (AVOCADO), label: FALSE)

(b) Picha ya upande wa kushoto mtu mmoja tu anapiga zumari
na picha ya upande wa kulia watu wawili wanapiga zumari.
(“Picture on the left is just one person blowing the flute and in the
picture on the right two people are blowing the flute.”, concept:
Zumari (FLUTE), label: TRUE)

Figure 12: More examples from MaRVL-SW.
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(a) Salah satu gambar adalah gambar rendang yang disedi-
akan di restoran Padang, dan gambar di sebelahnya adalah
gambar rendang yang disajikan dengan lauk-pauk lain. (“One
of the pictures contains rendang provided at Padang restaurant,
and the picture next to it contains rendang served with other
side dishes.”, concept: rendang (RENDANG, a popular Indone-
sian dish), label: TRUE)

(b) Salah satu gambar adalah topeng yang sedang dipakai
seseorang, dan gambar di sebelahnya adalah gambar topeng
yang dipajang. (“In one of the pictures, someone wears a mask,
and the picture next to it is a mask display.”, concept: Topeng
(MASK), label: TRUE)

Figure 13: More examples from MaRVL-ID.

(a) Sağdaki fotoğrafta kurban bayramı nedeniyle boynuzları
süslenmiş en az iki kurbanlık hayvan bulunuyor. (“In the
right, there are at least two sacrificial animals decorated by the
horns due for the sacrifice feat.”, concept: Kurban Bayramı (EID
AL-ADHA, an Islamic holiday), label: FALSE)

(b) Görsellerden birinde dizlerinde kanun bulunan birden çok
insan var. (“In one of the images, there are multiple people
with qanuns on their knees.”, concept: Kanun (çalgı) (QANUN,
a popular instrument in Turkey), label: TRUE)

Figure 14: More examples from MaRVL-TR.
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