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Abstract

Meta-learning aims to learn a model from a stream of tasks such that the model
is able to generalize across tasks and rapidly adapt to new tasks. We propose to
learn an energy-based model (EBM) in the latent space of a top-down generative
model such that the EBM in the low dimensional latent space is able to be learned
efficiently and adapt to each task rapidly. Furthermore, the energy term couples a
continuous latent vector and a symbolic one-hot label. Such coupling formulation
allows the model to be learned in an unsupervised manner when the labels are
unknown. Our model is learned unsupervisedly in the meta-training phase and
evaluated semi-supervisedly in the meta-test phase. We evaluate our model on
widely used benchmarks for few-shot meta-learning, Omniglot, and Mini-ImageNet.
Our model achieves competitive or superior performance compared to previous
state-of-the-art meta-learning models.

1 Introduction

Meta-learning, or learning how to learn enjoys rapid progress as machine learning is maturing. It
was originally proposed in the [26] to interpret human learning from experience. Human beings are
not only able to learn the concept[25] from the recurrent tasks, but also learn the bias to generalize
the learned concept into new scenarios.

Most few-shot meta-learning algorithms are based on supervised learning [6, 7, 8, 23, 18]. Although
each task requires a small to a modest amount of labeled data, the model needs to learn from a large
number of tasks in the meta-training phrase. Hence learning these models still require a considerable
amount of human effort to label data. A few recent works [17] have started investigating unsupervised
meta-learning, where the meta-training phrase is done in an unsupervised manner.

Recent works [20, 29] have demonstrated that EBM is highly effective in modeling high-dimensional
signals like images but expensive to train since it involves MCMC sampling in the high-dimensional
data space. In our model, EBM is in a low dimensional latent space and thus MCMC is efficient and
mixes well.

Furthermore, the latent space EBM couples a continuous latent vector and a discrete one-hot symbolic
vector. The continuous latent vector allows for convenient gradient-based sampling such as Langevin
dynamics, and thus the model can be learned by maximum likelihood or its approximate variants.
The one-hot symbolic vector naturally connects the generative model to a discriminative model.
Due to the coupling formulation, given the inferred continuous vector, the class label of an input
example can be inferred from it via a standard softmax classifier (see Equation 3). A similar model
has been studied in [22] for conditional text generation and text classification, but their model is
designed to solve a single fixed task. In contrast, we leverage the expressiveness and efficiency of
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EBM in the latent space to adapt to novel tasks rapidly after learning from a stream of tasks. Since we
learn a symbol-vector coupling EBM to achieve meta-learning, we call our model as Symbol-Vector
Coupling Energy-Based Model for Meta-Learning (Meta-SVEBM).

The proposed Meta-SVEBM based on a top-down generative model can be learned in an unsupervised
setting when no category labels are provided. The symbol-vector coupling, the generator network,
and the inference network are learned jointly by maximizing the variational lower bound of the
log-likelihood. The model can also be learned in a semi-supervised setting where the category labels
are provided for a subset of training examples. We leverage the flexibility of Meta-SVEBM to achieve
unsupervised or semi-supervised meta-learning.

During the meta-training phase, we sample a series of tasks from an unlabeled dataset. The inference
network and the top-down generation network are considered as meta-parameters and shared across
tasks. The EBM prior adapts to each task. Although the one-hot symbolic vector (i.e., symbol) is
summed out, the sampling of the continuous vector (i.e., vector) is aware of the symbol due to the
symbol-vector coupling. Thus, the model is able to learn the category structure of each task in the
unsupervised meta-training. During the meta-test phase, we adapt the model to novel tasks where a
small number of labels are available. The meta-parameters are assumed to be generalizable to new
tasks and thus fixed. The small EBM is updated to adapt to each task through semi-supervised learning.
To test the effectiveness of the proposed Meta-SVEBM, we evaluate our model on two standard
few-shot learning benchmarks with various settings. Our model achieves competitive performance on
Omniglot and outperforms prior state-of-the-arts models on the challenging Mini-ImageNet dataset.

Our main contributions are as follows.

• We propose to learn the latent space EBM with a symbol-vector coupling formulation such
that meta-training can be done in an unsupervised manner, while meta-test can be done in a
semi-supervised manner.

• We demonstrate that our model achieves competitive or superior performance on standard
benchmarks in various settings, compared to prior state-of-the-arts models.

2 Unsupervised meta-learning via Meta-SVEBM

2.1 Problem statement

As in [6], meta-learning treats each few-shot classification task Ti with its associating dataset Di as a
training example and assume that they all come from the same task distribution as {Ti}Ni=1 ∼ p(T ).
To be specific, a supervised K-way, S-shot, Q-query classification task Ti with corresponding
dataset Di = {Si,Qi} can be defined as to utilize the learned knowledge from the support set
Si = {(xsij ,ysij)}KSj=1 with S data and labels per class and K total classes to correctly predict the
labels of query set with Q unlabelled data per class as Qi = {xqij}

KQ
j=1.

In the unsupervised meta-learning setting as suggested in [11], we only assume the task with
unlabelled dataset Di = {xuij}Uj=1 in the meta-training phase. The goal is to learn the meaningful
meta-parameters in the meta-training stage so that they can be successfully adapted to solve a
supervised M -way, S-shot classification task in the meta-test stage as mentioned above.

2.2 Model: SVEBM

We shall first describe the model in a general form. Let x ∈ RD be an observed example, z ∈ Rd
be the contious latent vector (vector) and y ∈ {0, 1}K be the corresponding symbolic one-hot label
(symbol) indicating its belonging in total K categories. With the assumption that y is conditionally
independent of x given z, our model is defined as

pθ(y, z,x) = pα(y, z)pβ(x|z) (1)

where pα(y, z) is the EBM prior model with parameters α. pβ(x|z) is the top-down generative model
with parameters β and θ = (α, β). With this definition, the label y can be sufficiently inferred from
the contious vector z after the inference of z from the sample x, i.e. z is the information bottleneck.
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Figure 1: Graphical illustration of Meta-SVEBM. Gray circles denote the unobserved parameters and
white circles denote the observed examples. Dashed lines indicates variational inference and dotted
lines means the short-run MCMC procedure[20]. (a) Our model treats ϕ, β as meta-parameters and
introduces task-specific prior αi in the meta-training phase. (b) We transfer the learned ϕ and makes
predictions over yqij by semi-supervised updates of αi.

The vector z and symbol y are coupled together in the latent space as the form of EBM prior model,

pα(y, z) =
1

Zα
exp (⟨y, fα(z)⟩) p0(z) (2)

where p0(z) is the reference distribution as isotropic Gaussian, fα(z) ∈ RK is a small multi-layer
perceptron and Zα is the normalizing constant or partition function.

The negative energy term ⟨y, fα(z)⟩ couples the contious vector z and symbolic vector y as asso-
ciative memory. The inference of symbolic vector y can be achieved from latent vector z using a
softmax classifier,

pα(y|z) ∝ exp (⟨y, fα(z)⟩) . (3)

Therefore, fα(z) maps a latent vector in Rd to logit scores in RK .

The marginal distribution of latent variable z is computed by summation over y,

pα(z) =
1

Zα
exp (Fα(z)) p0(z) (4)

where Fα(z) denotes marginal energy as the form of log-sum-exponential

Fα(z) = log
∑
y

exp (⟨y, fα(z)⟩) . (5)

Similar to the top-down network in VAE, the above prior model pα(y, z) stands on a generative
model pβ(x|z) with parameters β. To be specific, for each observed example x as an image or feature,

x = gβ(z) + ϵ (6)

where ϵ ∼ N(0, σ2ID) is random noise with assumed variance σ2, and x ∼ N(gβ(z), σ
2ID).

Sampling the prior pα(z) and the posterior pθ(z|x) can be both accomplished by Langevin
dynamics[27]. The prior sampling is affordable and computationally efficient due to the low-
dimensional latent space while the posterior sampling requires more expensive backpropagation
through the whole top-down model. Hence we shall recruit another inference network qϕ(z|x) to
approximate the true posterior pθ(z|x) and amortize the sampling procedure as in VAE. Our model
SVEBM is illustrated in Figure 2.

2.3 Unsupervised meta-training

Since we only assume the unlabelled dataset in the meta-training phase, we are supposed to perform
unsupervised learning of SVEBM as in [22] and we recruit another inference network qϕ(z|x) to
approximate the true posterior pθ(z|x). Following VAE, we tend to learn the inference model qϕ(z|x),
the generator model pβ(x|z) with additional prior model pα(z) jointly.
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Figure 2: Graphical illustration of SVEBM. The white circle denotes the variable that can be observed
and the grey circle is unobserved. Dashed lines denote variational inference. In the latent space, y
and z are coupled by the prior model pα(y, z) where y can be sufficiently inferred from z. Given
z, x can be generated by the top-down model pβ(x|z) and the inference of z is accomplished by an
inference network qϕ(z|x).

Here we denote each randomly sampled unlabelled dataset as Di = {xj}Uj=1 for simplicity and treat
each dataset as an training example. We also adopt the set-dependent variational posterior [17] in
the sense that the additional multi-head self-attention modules are added in the inference network to
model the data dependency within each dataset such that the posterior of each instance is inferred
conditioned on the given dataset as qϕ(zj |xj ,Di).
The log-likelihood pθ(Di) is lower bounded by evidence lower bound (ELBO).

ELBO(θ, ϕ,Di) =
U∑
j=1

[log pθ(xj)− DKL (qϕ(zj |xj ,Di)∥pθ(zj |xj))]

=

U∑
j=1

[
Eqϕ(zj |xj ,Di) [log pβ(xj |zj)]− DKL (qϕ(zj |xj ,Di)∥pαi(zj))

] (7)

where DKL denotes the Kullback-Leibler divergence.

For the task-specific prior parameter αi, the learning gradient for a dataset Di is

∇αi
ELBO =

U∑
j=1

[
Eqϕ(zj |xj ,Di) [∇αi

Fαi
(zj)]− Epαi

(zj) [∇αi
Fαi

(zj)]
]

(8)

where Eqϕ(zj |xj ,Di) is approximated by samples from the inference network with the reparametriza-
tion trick[15], while Epαi

(zj) is approximated by short-run MCMC[20] from the prior. The short-run
MCMC dynamics is initialized from the fixed distribution p0 as z0j ∼ p0(zj) and runs a fixed number
of steps t = 1, . . . , T .

zt+1
j = ztj + s∇zj

log pαi
(ztj) +

√
2sϵt, ϵt ∼ N(0, Id) (9)

Let ψ = (ϕ, β) be the placeholder for the meta-parameters, i.e. the inference network ϕ and the
generator network β. The learning gradient for ψ is

∇ψELBO =

U∑
j=1

[
∇ψEqϕ(zj |xj ,Di) [log pβ(xj |zj)]

−∇ψDKL (qϕ(zj |xj ,Di)∥p0(zj)) +∇ψEqϕ(zj |xj ,Di) [Fαi(zj)]
] (10)

where Eqϕ(zj |xj ,Di) involved in the two terms is approximated by samples from the inference network
with reparametrization trick and the DKL term is analytical tractable.

2.4 Semi-supervised meta-test

During the meta-test phase, we aim to learn a task-specific prior αi according to the held-out few-shot
classification task using the learned parameter ϕ in the meta-training phase. For a randomly sampled
meta-test dataset Di = {Si,Qi} where Si = {(xsj ,ysj)}KSj=1 and Qi = {xqj}

KQ
j=1, we can still perform

unsupervised updates of task-specific parameters αi as in meta-training phase using the query set.

∇αi
ELBO(Qi) =

KQ∑
j=1

[
Eqϕ(zq

j |x
q
j ,Qi)

[
∇αi

Fαi
(zqj)

]
− Epαi

(zq
j )

[
∇αi

Fαi
(zqj)

]]
(11)
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While for the support set with labels, the log-likelihood can be decomposed into

log pθ(Si) =
KS∑
j=1

[
log pθ(x

s
j) + log pθ(y

s
j |xsj)

]
(12)

The first term can be optimized as the unsupervised learning above and the second term can also be
approximated by samples from the inference network,

log pθ(y
s
j |xsj) = logEpθ(zs

j |xs
j)

[
pαi

(ysj |zsj)
]
≈ logEqϕ(zs

j |xs
j ,Si)

[
pαi

(ysj |zsj)
]
. (13)

The learning gradients for task-specific prior model is computed accordingly. As in (3), pαi
(ysj |zsj)

is a softmax classifier.

∇αi
log pθ(y

s
j |xsj) ≈ ∇αi

logEqϕ(zs
j |xs

j ,Si)

[
pαi

(ysi |zsj)
]

(14)

Algorithm 1: Unsupervised meta-training
Input :An unlabelled dataset Du, T training

iterations, batch size B.
Output :Meta-parameter ϕ
for t = 0 : T − 1 do

Sample B tasks. Each task is {xj}Uj=1.
for i = 0 : B − 1 do

1. Sample z−j ∼ pαi(zj) using (9) and
z+j ∼ qϕ(zj |xj ,Di) from the
inference network.

2. Compute task-specific parameters
αt+1
i = αti − η∇αi

ELBO using (8).
3. Update meta-parameters using (10)
ψt+1 = ψt − η′∇ψELBO , where
ψ = (ϕ, β).

Algorithm 2: Meta-test for a held-out task
Input :A meta-test dataset D = {S,Q},

S = {(xsj ,ysj)}KSj=1, Q = {xqj}
KQ
j=1,

T iterations, meta-parameter ϕ.
Output :{yqj}

KQ
j=1

for t = 0 : T − 1 do
1. Sample z−j ∼ pαi(zj) using (9) and
z+j ∼ qϕ(zj |xj ,Di) from the inference
network for each xsj and xqj .

2. Unsupervised updates of α with each
xsj and xqj : α

t+1 = αt − η∇αELBO
using (11).

3. Supervised updates of α with support
set S: αt+1 = αt − η′∇α log pθ(y

s
j |xsj)

using (14).
Predict the labels of query set:
yqj = argmax pα(y

q
j |z

q
j).

3 Related work

Unsupervised meta-learning Unsupervised meta-learning tends to learn meaningful internal repre-
sentations from a given unlabelled dataset during the meta-training phase and transfers the learned
knowledge to solve a held-out tasks. There are two lines of research around unsupervised meta-
learning. The first one learns to generate synthetic tasks from the unlabelled dataset. [11] learns to
cluster the feature embeddings. [12] learns to augment and randomly sample the in-class datapoints.
[1] augment the data through random selection. [13] leverages the generative models to group the
in-class and out-of-class data pairs. Another line of research directly learns the multi-modality
within each randomly sampled task without explicit task generation[17]. Our meta-SVEBM also
follows this type of method. However, our method differs from [17] in that our task-specific prior is
formulated as a much more flexible latent space EBM that is learned jointly with inference network
and generative network, while Meta-GMVAE updates a Gaussian Mixture prior with on-the-fly
Expectation Maximization (EM) algorithm, which makes the whole learning dynamics distinct.

Energy-based Model Energy-Based Model (EBM) captures dependencies between variables by
assigning an energy scalar to each configuration of the variables, where observed examples are
assigned with low energy. [10][20][29] have shown the expressiveness and effectiveness of EBM
in the data space. [21] defines an EBM in the latent space as a correction of the non-informative
uniform prior or isotropic Gaussian prior. Since the learning of EBM in the data space requires
expensive MCMC sampling, this latent space EBM prior model can benefit from the much lower
dimensional latent space sampling and well-mixed MCMC steps. [9] introduced joint EBM to
reinterpret the discriminative classifier as a generative model and [30] further applied it on semi-
supervised classification tasks.
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4 Experiments

4.1 Experiment settings

We shall validate the effectiveness and expressiveness of meta-SVEBM on two commom benchmarks
as Omniglot[16] and Mini-ImageNet[28]. (a) Omniglot consists of 1623 distinct categories of
28× 28× 1 gray-scale hand-written characters, each of which has 20 instances. We split the dataset
into three subsets with 1200/100/323 classes for meta-training, validation and meta-test respectively.
Following [11], each instance is further rotated by 90, 180, and 270 degrees so that we have total
1623×4 classes. We test 5-way and 20-way classification tasks on Omniglot where each task is given
1 or 5 labelled data to predict 15 queries. (b) Mini-ImageNet is composed of 60, 000 colour images
of size 84× 84× 3 with 100 classes, each having 600 examples. We use 64 classes for meta-training,
16 classes for validation and meta-test on the remaining 20 classes. We report S-shot 5-way 15-query
classification results on Mini-ImageNet, where S = 1, 5, 20, 50.

4.2 Baselines

We compare our model with current state-of-the-art unsupervised meta-learning approaches.
CACTUs[11] learns the clustering in the latent space and construct the meta tasks automatically.
UMTRA[12] learns to generate meta-tasks using domain-specific augmentations. LASIUM[13]
groups in-class pairs and out-of-class pairs sampled from the latent space into a meta-task. Meta-
GMVAE[17] learns a VAE with task-specific Gaussian mixture prior and set-dependent variational
posterior to solve meta-test tasks. We also compare our proposed method with supervised meta-
learning algorithms as MAML[6] and ProtoNets[24].

A naive baseline might be training the raw images from scratch, while better performance could be
obtained if training from the feature embeddings learned from the off-the-shelf unsupervised learning
algorithms as ACAI[2], BiGAN[5], DeepCluster[3] and SimCLR[4].

4.3 Model architectures

We use neural networks to parameterize the three models as the inference network ϕ, the generative
network β and the EBM prior model α.

In comparison to aforesaid baselines with fair heuristics, we adopt the same model choice as [17]
for inference network and generative network. On Omniglot, we start from the raw image and learn
from the scratch. The inference network comprises four stacked convolutional blocks (as conv4 in
[13]), two multi-head self-attention layers and one additional linear layer to predict set-dependent
mean and log-variance. Each convolutional block consists of one convolutional layer with 64 3× 3
filters, batch normalization, ReLU activation and 2 × 2 max-pooling in sequence. The generative
network is symmetric to the inference network with deconvolution operations. On Mini-ImageNet,
we start from the feature embeddings learned from SimCLR. Therefore we can eliminate the feature
extraction modules used before. The inference network has two multi-head self-attention layers and
one linear projection layer to get the mean and log-variance and the generative network only has
three linear layers with ReLU activation to project from the latent space to the feature embeddings.

As for the EBM prior model, we parametrize it as a simple multi-layer perceptron with three linear
layers and leaky ReLU activation. In the meta-training phase, we add spectral normalization[19] for
each linear layer to stabilize the long-term training procedure.

The three models are trained jointly in the meta-training phase with 9× 104 iterations and batch size
4 by Adam optimizer[14] with learning rate 10−4 for inference and generative networks, 10−5 for the
prior model. During the meta-test stage, only the prior model is updated for few-shot classification
using Adam with learning rate 10−3 for both supervised and unsupervised updates, and we report
the best classification accuracy with batch size 1 for 1-shot tasks and batch size 4 for the rest. All
experiments have be done on a single Nvidia GeForce RTX 3080 GPU.

4.4 Experiment results

Table 1 shows the results on the Omniglot dataset. We find that the our method achieves competitive
results comparing to the unsupervised approaches. Table 2 shows the experiments on Mini-ImageNet.
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Meta-SVEBM outperforms all state-of-the-art baselines and even outperforms the supervised Pro-
toNets on 5-way 50-shot classification task with ∼ 1% labels used. Although the use of feature
embeddings extracted from SimCLR seems to be better representations, the comparison with CAC-
TUs, UMTRA and Meta-GMVAE still demonstrate the expressiveness of the Meta-SVEBM.

Table 1: Summary of few-shot classification results (way, shot) on the Omniglot dataset. The
accuracy is calculated over 1000 randomly sampled meta-test tasks. Bold number denotes the best
performance.

Method Feature Extractor (5,1) (5,5) (20,1) (20,5)

CACTUs-MAML[11] BiGAN 58.18 78.66 35.56 58.62
CACTUs-ProtoNets[11] BiGAN 54.74 71.69 33.40 50.62
CACTUs-MAML[11] ACAI 68.84 87.78 48.09 73.36
CACTUs-ProtoNets[11] ACAI 68.12 83.58 47.75 66.27
UMTRA-MAML[12] N/A 83.80 95.43 74.25 92.12
LASIUM-N-VAE-MAML[13] N/A 76.11 94.42 − −
LASIUM-OC-VAE-ProtoNets[13] N/A 73.22 85.05 − −
LASIUM-RO-GAN-MAML[13] N/A 83.26 95.29 − −
LASIUM-RO-GAN-ProtoNets[13] N/A 80.15 91.10 − −
Meta-GMVAE[17] N/A 94.92 97.09 82.21 90.06
Meta-SVEBM (Ours) N/A 91.85 97.21 79.66 92.21
MAML (supervised) N/A 94.46 98.83 84.60 96.29
ProtoNets (supervised) N/A 98.35 99.58 95.31 98.81

Table 2: Summary of few-shot classification results (way, shot) on the Mini-ImageNet dataset. The
accuracy is calculated over 1000 randomly sampled meta-test tasks. Bold number denotes the best
performance.

Method Feature Extractor (5,1) (5,5) (5,20) (5,50)

CACTUs-MAML[11] BiGAN 36.24 51.28 61.33 66.91
CACTUs-ProtoNets[11] BiGAN 36.62 50.16 59.56 63.27
CACTUs-MAML[11] DeepCluster 39.90 53.97 63.84 69.64
CACTUs-ProtoNets[11] DeepCluster 39.18 53.36 61.54 63.55
UMTRA-MAML[12] N/A 39.93 50.73 61.11 67.15
LASIUM-N-GAN-MAML[13] N/A 40.19 54.56 65.17 69.13
LASIUM-N-GAN-ProtoNets[13] N/A 40.05 52.53 59.45 61.43
CACTUs-MAML[17] SimCLR 40.39 52.35 61.09 64.89
UMTRA-MAML[17] SimCLR 40.85 51.47 61.03 67.30
Meta-GMVAE[17] SimCLR 42.82 55.73 63.14 68.26
Meta-SVEBM (Ours) SimCLR 43.38 58.03 67.07 72.28
MAML (supervised) N/A 46.81 62.12 71.03 75.54
ProtoNets (supervised) N/A 46.56 62.29 70.07 72.04

5 Conclusion

Meta-learning is a key step for artificial intelligence to achieve the efficiency of human learning.
In this work, drawing inspirations from a theory of human learning, Meta-SVEBM is top-down
generative model with an EBM as its prior, and we jointly learn a variational inference network to
infer the latent variables. Due to the low-dimensionality of the latent space and the expressiveness of
the top-down generation network, a small multi-layer perceptron is able to capture the data regularities
effectively in the latent space, and the EBM can rapidly adapt to the specifics of each task. Evaluation
on standard benchmarks demonstrates that our model achieves competitive or superior performance
compared to previous state-of-the-arts meta-learning models.
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