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Abstract

Despite the success of large-scale empirical risk minimization (ERM) at achieving
high accuracy across a variety of machine learning tasks, fair ERM is hindered by
the incompatibility of fairness constraints with stochastic optimization. We consider
the problem of fair classification with discrete sensitive attributes and potentially
large models and data sets, requiring stochastic solvers. Existing in-processing
fairness algorithms are either impractical in the large-scale setting because they
require large batches of data at each iteration or they are not guaranteed to converge.
In this paper, we develop the first stochastic in-processing fairness algorithm
with guaranteed convergence. For demographic parity, equalized odds, and equal
opportunity notions of fairness, we provide slight variations of our algorithm–
called FERMI–and prove that each of these variations converges in stochastic
optimization with any batch size. Empirically, we show that FERMI is amenable
to stochastic solvers with multiple (non-binary) sensitive attributes and non-binary
targets, performing well even with minibatch size as small as one. Extensive
experiments show that FERMI achieves the most favorable tradeoffs between
fairness violation and test accuracy across all tested setups compared with state-
of-the-art baselines for demographic parity, equalized odds, equal opportunity.
These benefits are especially significant with small batch sizes and for non-binary
classification with large number of sensitive attributes, making FERMI a practical,
scalable fairness algorithm.

1 Introduction

Ensuring that decisions made using machine learning (ML) algorithms are fair to different subgroups
is of utmost importance. Without any mitigation strategy, learning algorithms may result in discrimi-
nation against certain subgroups based on sensitive attributes, such as gender or race, even if such
discrimination is absent in the training data Mehrabi et al. [2021], and algorithmic fairness literature
aims to remedy such discrimination issues Sweeney [2013], Datta et al. [2015], Feldman et al. [2015],
Bolukbasi et al. [2016], Angwin et al. [2016], Calmon et al. [2017a], Hardt et al. [2016], Fish et al.
[2016], Woodworth et al. [2017], Zafar et al. [2017], Bechavod and Ligett [2017], Agarwal et al.
[2018], Kearns et al. [2018], Prost et al. [2019], Lahoti et al. [2020]. Modern ML problems often
involve large-scale models with hundreds of millions or even billions of parameters, e.g., BART
Lewis et al. [2019], ViT Dosovitskiy et al. [2020], GPT-2 Radford et al. [2019]. In such cases, during
∗Equal contribution.
†Work done at Meta AI.
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Reference NB NB NB Beyond Stoch. alg. Converg.
target attrib. code logistic (unbiased∗∗) (stoch.)

FERMI (this work) 3 3 3 3 3 (3) 3 (3)
Cho et al. [2020a] 3 3 3 3 3 (7) 7
Cho et al. [2020b] 3 3 7 3 3 (3) 7
Baharlouei et al. [2020] 3 3 3 3 7 3 (7)
Rezaei et al. [2020] 7 7 7 7 7 7
Jiang et al. [2020]∗ 7 3 7 7 7 7
Mary et al. [2019] 3 3 3 3 3 (7) 7
Prost et al. [2019] 7 7 7 3 3 (7) 7
Donini et al. [2018] 7 3 7 3 7 7
Zhang et al. [2018] 3 3 7 3 3 (7) 7
Agarwal et al. [2018] 7 3 7 3 7 3 (7)

Table 1: Comparison of state-of-the-art in-processing methods (NB = non-binary) on whether they (a) handle
non-binary targets (beyond binary classification), (b) handle non-binary sensitive attributes, (c) release code
that applies to non-binary targets/attributes, (d) extend to arbitrary models, (e) provide code for stochastic
optimization (and whether the gradients are unbiased), (f) provide convergence guarantees (for stochastic
optimization). FERMI is the only method compatible with stochastic optimization and guaranteed convergence.
The only existing baselines for non-binary classification with non-binary sensitive attributes are Mary et al.
[2019], Baharlouei et al. [2020], Cho et al. [2020a] (NB code). ∗We refer to the in-processing method of Jiang
et al. [2020], not their post-processing method. ∗∗We use the term “unbiased” in statistical estimation sense; not
to be confused with bias in the fairness sense.

fine-tuning, the available memory on a node constrains us to use stochastic optimization with (small)
minibatches in each training iteration. In this paper, we address the dual challenges of fair and
stochastic ML, providing the first stochastic fairness algorithm that provably converges with any
batch size.

A machine learning algorithm satisfies the demographic parity fairness notion if the predicted target
is independent of the sensitive attributes Dwork et al. [2012]. Promoting demographic parity can
lead to poor performance, especially if the true outcome is not independent of the sensitive attributes.
To remedy this, Hardt et al. [2016] proposed equalized odds to ensure that the predicted target is
conditionally independent of the sensitive attributes given the true label. A further relaxed version
of this notion is equal opportunity which is satisfied if predicted target is conditionally independent
of sensitive attributes given that the true label is in an advantaged class Hardt et al. [2016]. Equal
opportunity ensures that false positive rates are equal across different demographics, where negative
outcome is considered an advantaged class, e.g., extending a loan. See Appendix A for formal
definitions of these fairness notions.

Measuring fairness violation. In practice, the learner only has access to finite samples and cannot
verify demographic parity, equalized odds, or equal opportunity. This has led the machine learning
community to define several fairness violation metrics that quantify the degree of (conditional)
independence between random variables, e.g., L∞ distance Dwork et al. [2012], Hardt et al. [2016],
mutual information Kamishima et al. [2011], Rezaei et al. [2020], Steinberg et al. [2020], Zhang
et al. [2018], Cho et al. [2020b], Roh et al. [2020], Pearson correlation Zafar et al. [2017], Beutel
et al. [2019], false positive/negative rate difference Bechavod and Ligett [2017], Hilbert Schmidt
independence criterion (HSIC) Pérez-Suay et al. [2017], kernel-based minimum mean discrepancy
(MMD) Prost et al. [2019], Rényi correlation Mary et al. [2019], Baharlouei et al. [2020], Grari et al.
[2019, 2020], and exponential Rényi mutual information (ERMI) Mary et al. [2019]. In this paper,
we focus on three variants of ERMI specialized to demographic parity, equalized odds, and equal
opportunity. The motivation for the use of ERMI is two-fold. First, we will see in Sec. 2 that ERMI is
amenable to stochastic optimization. Moreover, we observe (Appendix C) that ERMI provides an
upper bound on several of the above notions of fairness violation. Consequently, a model trained to
reduce ERMI will also provide guarantees on these other fairness violations.3

Related work & contributions. Fairness-promoting machine learning algorithms can be categorized
in three main classes: pre-processing, post-processing, and in-processing methods. Pre-processing
algorithms Feldman et al. [2015], Zemel et al. [2013], Calmon et al. [2017a] transform the biased data
features to a new space in which the labels and sensitive attributes are statistically independent. This

3Nevertheless, we use L∞ distance for measuring fairness violation in our numerical experiments, since L∞
is broadly used.
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transform is oblivious to the training procedure. Post-processing approaches Hardt et al. [2016], Pleiss
et al. [2017] mitigate the discrimination of the classifier by altering the final decision. In-processing
approaches focus on the training procedure and impose the notions of fairness as constraints or
regularization terms in the training procedure. Several regularization-based methods are proposed
in the literature to promote fairness Ristanoski et al. [2013], Quadrianto and Sharmanska [2017] in
decision-trees Kamiran et al. [2010], Raff et al. [2018], Aghaei et al. [2019], support vector machines
Donini et al. [2018], boosting Fish et al. [2015], neural networks Grari et al. [2020], Cho et al. [2020a],
Prost et al. [2019], or (logistic) regression models Zafar et al. [2017], Berk et al. [2017], Taskesen
et al. [2020], Chzhen and Schreuder [2020], Baharlouei et al. [2020], Jiang et al. [2020], Grari et al.
[2019]. See the recent paper by Hort et al. [2022] for a more comprehensive literature survey.

While in-processing approaches generally give rise to better tradeoffs between fairness violation and
performance, existing approaches are mostly incompatible with stochastic optimization. This paper
addresses this problem in the context of fair (non-binary) classification with discrete (non-binary)
sensitive attributes. See Table 1 for a summary of the main differences between FERMI and existing
in-processing methods.

Our main contributions are as follows:

1. For each given fairness notion (demographic parity, equalized odds, or equal opportunity), we
formulate an objective that uses ERMI as a regularizer to balance fairness and accuracy (Eq. (FRMI
obj.)), and derive an empirical version of this objective (Eq. (FERMI obj.)). We propose an
algorithm (Algorithm 1) for solving each of these objectives, which is the first stochastic in-
processing fairness algorithm with guaranteed convergence. The main property needed to obtain
a convergent stochastic algorithm is to derive a (stochastically) unbiased estimator of the gradient
of the objective function. The existing stochastic fairness algorithms by Zhang et al. [2018], Mary
et al. [2019], Prost et al. [2019], Cho et al. [2020b,a] are not guaranteed to converge since there
is no straightforward way to obtain such unbiased estimator of the gradients for their fairness
regularizers.4 For any minibatch size (even as small as 1), we prove (Theorem 1) that our algorithm
converges to an approximate solution of the empirical objective (Eq. (FERMI obj.)).

2. We show that if the number of training examples is large enough, then our algorithm (Algorithm 1)
converges to an approximate solution of the population-level objective (Theorem 2). The proofs
of these convergence theorems require the development of novel techniques (see e.g. Proposition 1
and Proposition 2), and the resourceful application of many classical results from optimization,
probability theory, and statistics.

3. We demonstrate through extensive numerical experiments that our stochastic algorithm achieves
superior fairness-accuracy tradeoff curves against all comparable baselines for demographic parity,
equalized odds, and equal opportunity. In particular, the performance gap is very large when
minibatch size is small (as is practically necessary for large-scale problems) and the number of
sensitive attributes is large.

2 Fair Risk Minimization through ERMI Regularization
In this section, we propose a fair learning objective (Eq. (FRMI obj.)) and derive an empirical
variation (Eq. (FERMI obj.)) of this objective. We then develop a stochastic optimization algorithm
(Algorithm 1) that we use to solve these objectives, and prove that our algorithm converges to an
approximate solution of the two objectives.

Consider a learner who trains a model to make a prediction, Ŷ , e.g., whether or not to extend a loan,
supported on [m] := {1, . . . ,m}. The prediction is made using a set of features, X, e.g., financial
history features. Assume that there is a set of discrete sensitive attributes, S, e.g., race and sex,
supported on [k].

We now define the fairness violation notion that we will use to enforce fairness in our model.

Definition 1 (ERMI – exponential Rényi mutual information). We define the exponential Rényi
mutual information between random variables Ŷ and S with joint distribution pŶ ,S and marginals

4We suspect it might be possible to derive a provably convergent stochastic algorithm from the framework
in Prost et al. [2019] using our techniques, but their approach is limited to binary classification with binary
sensitive attributes. By contrast, we provide (empirical and population-level) convergence guarantees for our
algorithm with any number of sensitive attributes and any number of classes.
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pŶ , pS by:

DR(Ŷ ;S) := E

{
pŶ ,S(Ŷ , S)

pŶ (Ŷ )pS(S)

}
− 1 =

∑
j∈[m]

∑
r∈[k]

pŶ ,S(j, r)2

pŶ (j)pS(r)
− 1. (ERMI)

Definition 1 is what we would use if demographic parity were the fairness notion of interest. If
instead one wanted to promote fairness with respect to equalized odds or equal opportunity, then it
is straightforward to modify the definition by substituting appropriate conditional probabilities for
pŶ ,S , pŶ , and pS in Eq. (ERMI): see Appendix B. In Appendix B, we also discuss that ERMI is the
χ2-divergence (which is an f -divergence) between the joint distribution, pŶ ,S , and the Kronecker
product of marginals, pŶ ⊗ pS Calmon et al. [2017b]. In particular, ERMI is non-negative, and zero
if and only if demographic parity (or equalized odds or equal opportunity, for the conditional version
of ERMI) is satisfied. Additionally, we show in Appendix C that ERMI provides an upper bound on
other commonly used measures of fairness violation: Shannon mutual information Cho et al. [2020b],
Rényi correlation Baharlouei et al. [2020], Lq fairness violation Kearns et al. [2018], Hardt et al.
[2016]. Therefore, any algorithm that makes ERMI small will also have small fairness violation with
respect to these other notions.

We can now define our fair risk minimization through exponential Rényi mutual information frame-
work:5

min
θ

{
FRMI(θ) := L(θ) + λDR

(
Ŷθ(X);S

)}
, (FRMI obj.)

where L(θ) := E(X,Y )[`(X, Y ;θ)] for a given loss function ` (e.g. L2 loss or cross entropy loss);
λ > 0 is a scalar balancing the accuracy versus fairness objectives; and Ŷθ(X) is the output of the
learned model (i.e. the predicted label in a classification task). While Ŷθ(X) = Ŷ (X;θ) inherently
depends on X and θ, in the rest of this paper, we sometimes leave the dependence of Ŷ on X and/or
θ implicit for brevity of notation. Notice that we have also left the dependence of the loss on the
predicted outcome Ŷ = Ŷθ(X) implicit.

As is standard, we assume that the prediction function satisfies P(Ŷ (θ,X) = j|X) =
Fj(θ,X), where F(θ,X) = (F1(θ,X), . . . ,Fm(θ,X))T ∈ [0, 1]m is differentiable in θ and∑m
j=1 Fj(θ,X) = 1. For example, F(θ,X) could represent the probability label given by a

logistic regression model or the output of a neural network after softmax layer. Indeed, this as-
sumption is natural for most classifiers. Further, even classifiers, such as SVM, that are not typ-
ically expressed using probabilities can often be well approximated by a classifier of the form
P(Ŷ (θ,X) = j|X) = Fj(θ,X), e.g. by using Platt Scaling Platt et al. [1999], Niculescu-Mizil and
Caruana [2005].

The work of Mary et al. [2019] considered the same objective Eq. (FRMI obj.), and tried to empirically
solve it through a kernel approximation. We propose a different approach to solving this problem,
which we shall describe below. Essentially, we express ERMI as a “max” function (Proposition 1),
which enables us to re-formulate Eq. (FRMI obj.) (and its empirical counterpart Eq. (FERMI obj.))
as a stochastic min-max optimization problem. This allows us to use stochastic gradient descent
ascent (SGDA) to solve Eq. (FRMI obj.). Unlike the algorithm of Mary et al. [2019], our algorithm
provably converges. Our algorithm also empirically outperforms the algorithm of Mary et al. [2019],
as we show in Sec. 3 and Appendix E.2.

2.1 A Convergent Stochastic Algorithm for Fair Empirical Risk Minimization

In practice, the true joint distribution of (X, S, Y, Ŷ ) is unknown and we only have N samples at
our disposal. Let D = {xi, si, yi, ŷ(xi;θ)}i∈[N ] denote the features, sensitive attributes, targets,
and the predictions of the model parameterized by θ for these given samples. For now, we consider
the empirical risk minimization (ERM) problem and do not require any assumptions on the data set

5In this section, we present all results in the context of demographic parity, leaving off all conditional
expectations for clarity of presentation. The algorithm/results are readily extended to equalized odds and equal
opportunity by using the conditional version of Eq. (ERMI) (which is described in Appendix B); we use these
resulting algorithms for numerical experiments.
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(e.g. we allow for different samples in D to be drawn from different, heterogeneous distributions).
Consider the empirical objective

min
θ

{
FERMI(θ) := L̂(θ) + λD̂R(Ŷθ(X), S)

}
, (FERMI obj.)

where L̂(θ) := 1
N

∑N
i=1 `(xi, yi;θ) is the empirical loss and6

D̂R(Ŷ , S) := E

{
p̂Ŷ ,S(Ŷ , S)

p̂Ŷ (Ŷ )p̂S(S)

}
− 1 =

∑
j∈[m]

∑
r∈[k]

p̂Ŷ ,S(j, r)2

p̂Ŷ (j)p̂S(r)
− 1

is empirical ERMI with p̂ denoting empirical probabilities with respect to D: p̂S(r) =
1
N

∑N
i=1 1{si=r}; p̂ŷ(j) = 1

N

∑N
i=1 Fj(θ,xi); and p̂Ŷ ,S(j, r) = 1

N

∑N
i=1 Fj(θ,xi)si,r for

j ∈ [m], r ∈ [k]. We shall see (Proposition 2) that empirical ERMI is a good approximation
of ERMI when N is large. Now, it is straightforward to derive an unbiased estimate for L̂(θ) via

1
|B|
∑
i∈B `

(
xi, yi;θ

)
where B ⊆ [N ] is a random minibatch of data points drawn from D. However,

unbiasedly estimating D̂R(Ŷ , S) in the objective function Eq. (FERMI obj.) with |B| < N samples
is more difficult. In what follows, we present our approach to deriving statistically unbiased stochastic
estimators of the gradients of D̂R(Ŷ , S) given a random batch of data points B. This stochastic
estimator is key to developing a stochastic convergent algorithm for solving Eq. (FERMI obj.). The
key novel observation that allows us to derive this estimator is that Equation FERMI obj. can be
written as a min-max optimization problem (see Corollary 1). This observation, in turn, follows from
the following result:

Proposition 1. For random variables Ŷ and S with joint distribution p̂Ŷ ,S , where Ŷ ∈ [m], S ∈ [k],

we have
D̂R(Ŷ ;S) = max

W∈Rk×m
{−Tr(WP̂ŷW

T ) + 2 Tr(WP̂ŷ,sP̂
−1/2
s )− 1},

if P̂ŷ = diag(p̂Ŷ (1), . . . , p̂Ŷ (m)), P̂s = diag(p̂S(1), . . . , p̂S(k)), and (P̂ŷ,s)i,j = p̂Ŷ ,S(i, j) with
p̂Ŷ (i), p̂S(j) > 0 for i ∈ [m], j ∈ [k].

The proof is a direct calculation, given in Appendix D. Let ŷ(xi,θ) ∈ {0, 1}m and si =
(si,1, . . . , si,k)T ∈ {0, 1}k be the one-hot encodings of ŷ(xi,θ) and si, respectively for i ∈ [N ].
Then, Proposition 1 provides a useful variational form of Eq. (FERMI obj.), which forms the backbone
of our novel algorithmic approach:

Corollary 1. Let (xi, si, yi) be a random draw from D. Then, Eq. (FERMI obj.) is equivalent to

min
θ

max
W∈Rk×m

{
F̂ (θ,W ) := L̂(θ) + λΨ̂(θ,W )

}
, (1)

where Ψ̂(θ,W ) = −Tr(WP̂ŷW
T ) + 2 Tr(WP̂ŷ,sP̂

−1/2
s )− 1 = 1

N

∑N
i=1 ψ̂i(θ,W ) and

ψ̂i(θ,W ) := −Tr(WE[ŷ(xi,θ)ŷ(xi,θ)T |xi]WT ) + 2 Tr(WE[ŷ(xi;θ)sTi |xi, si]P̂−1/2
s )− 1

= −Tr(Wdiag(F1(θ,xi), . . . ,Fm(θ,xi))W
T ) + 2 Tr(WE[ŷ(xi;θ)sTi |xi, si]P̂−1/2

s )− 1.

Corollary 1 implies that for any given data set D, the quantity `(xi, yi;θ)+λψ̂i(θ,W ) is an unbiased
estimator of F̂ (θ,W ) (with respect to the uniformly random draw of i ∈ [N ]). Thus, we can use
stochastic optimization (e.g. SGDA) to solve Eq. (FERMI obj.) with any batch size 1 ≤ |B| ≤ N , and
the resulting algorithm will be guaranteed to converge since the stochastic gradients are unbiased. We
present our proposed algorithm, which we call FERMI, for solving Eq. (FERMI obj.) in Algorithm 1.

Note that the matrix P̂−1/2
s depends only on the full data set of sensitive attributes {s1, · · · , sN}

and has no dependence on θ, and can therefore be computed just once, in line 2 of Algorithm 1.
On the other hand, the quantities E[ŷ(xi,θ)ŷ(xi,θ)T |xi] and E[ŷ(xi;θ)sTi |xi, si] depend on the
sample (xi, si, ŷi) that is drawn in a given iteration and on the model parameters θ, and are therefore
computed at each iteration of the algorithm.

6We overload notation slightly here and use E to denote expectation with respect to the empirical (joint)
distribution.

5



Algorithm 1 FERMI Algorithm
1: Input: θ0 ∈ Rdθ , W 0 = 0 ∈ Rk×m, step-sizes (ηθ, ηw), fairness parameter λ ≥ 0, iteration

number T , minibatch sizes |Bt|, t ∈ {0, 1, · · · , T}, W := Frobenius norm ball of radius D
around 0 ∈ Rk×m for D given in Appendix D.

2: Compute P̂−1/2
s = diag(p̂S(1)−1/2, . . . , p̂S(k)−1/2).

3: for t = 0, 1, . . . , T do
4: Draw a mini-batch Bt of data points {(xi, si, yi)}i∈Bt
5: Set θt+1 ← θt − ηθ

|Bt|
∑
i∈Bt [∇θ`(xi, yi;θ

t) + λ∇θψ̂i(θt,W t)].

6: Set W t+1 ← ΠW
(
W t + 2ληw

|Bt|
∑
i∈Bt

[
− W tE[ŷ(xi,θ)ŷ(xi,θ)T |xi] +

P̂
−1/2
s E[siŷ

T (xi;θ
t)|xi, si]

])
7: end for
8: Pick t̂ uniformly at random from {1, . . . , T}.
9: Return: θt̂.

Although the min-max problem Eq. (FERMI obj.) that we aim to solve is unconstrained, we
project the iterates W t (in line 5 of Algorithm 1) onto a bounded set W in order to satisfy a
technical assumption that is needed to prove convergence of Algorithm 17. We chooseW to be a
sufficiently large ball that containsW ∗(θ) := arg maxW F̂ (θ,W ) for every θ in some neighborhood
of θ∗ ∈ arg minθ maxW F̂ (θ,W ), so that Eq. (FERMI obj.) is equivalent to

min
θ

max
W∈W

{
F̂ (θ,W ) = L̂(θ) + λΨ̂(θ,W )

}
.

See Appendix D for details. When applying Algorithm 1 in practice, it is not necessary to project the
iterates; e.g. in Sec. 3, we obtain strong empirical results without projection in Algorithm 1.

Since Eq. (FERMI obj.) is potentially nonconvex in θ, a global minimum might not exist and even
computing a local minimum is NP-hard in general Murty and Kabadi [1985]. Thus, as is standard
in the nonconvex optimization literature, we aim for the milder goal of finding an approximate
stationary point of Eq. (FERMI obj.). That is, given any ε > 0, we aim to find a point θ∗ such
that E‖∇FERMI(θ∗)‖ ≤ ε, where the expectation is solely with respect to the randomness of the
algorithm (minibatch sampling). The following theorem guarantees that Algorithm 1 will find such a
point efficiently:
Theorem 1. (Informal statement) Let ε > 0. Assume that `(x, y; ·) and F(·,x) are Lipschitz
continuous and differentiable with Lipschitz continuous gradient (see Appendix D for definitions),
p̂S(j) > 0 for all sensitive attributes j ∈ [k] and p̂Ŷ (l) ≥ µ > 0 for all labels l ∈ [m] and at
every iterate θt. Then for any batch sizes 1 ≤ |Bt| ≤ N , Algorithm 1 converges to an ε-first order
stationary point of the Eq. (FERMI obj.) objective in O

(
1
ε5

)
stochastic gradient evaluations.

The formal statement of Theorem 1 can be found in Theorem 3 in Appendix D. Theorem 1 implies
that Algorithm 1 can efficiently achieve any tradeoff between fairness (ERMI) violation and (empiri-
cal) accuracy, depending on the choice of λ.8 However, if smaller fairness violation is desired (i.e. if
larger λ is chosen), then the algorithm needs to run for more iterations (see Appendix D). The proof
of Theorem 1 follows from Corollary 1 and the observation that ψ̂i is strongly concave in W (see
Lemma 11 in Appendix D). This implies that Eq. (1) is a nonconvex-strongly concave min-max prob-
lem, so the convergence guarantee of SGDA Lin et al. [2020] yields Theorem 1.9 The detailed proof
of Theorem 1 is given in Appendix D. Increasing the batch size to Θ(ε−2) improves the stochastic
gradient complexity to O(ε−4). On the other hand, increasing the batch size further to |Bt| = N
results in a deterministic algorithm which is guaranteed to find a point θ∗ such ‖∇FERMI(θ∗)‖ ≤ ε
(no expectation) in O(ε−2) iterations [Lin et al., 2020, Theorem 4.4],[Ostrovskii et al., 2020, Re-
mark 4.2]; this iteration complexity has the optimal dependence on ε Carmon et al. [2020], Zhang

7Namely, bounded W t ensures that the gradient of F̂ is Lipschitz continuous at every iterate and the variance
of the stochastic gradients is bounded.

8This sentence is accurate to the degree that an approximate stationary point of the non-convex objective
Eq. (FERMI obj.) corresponds to an approximate risk minimizer.

9A faster convergence rate of O(ε−3) could be obtained by using the (more complicated) SREDA method of
Luo et al. [2020] instead of SGDA to solve FERMI objective. We omit the details here.
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et al. [2021]. However, like existing fairness algorithms in the literature, this full-batch variant is
impractical for large-scale problems.
Remark 1. The condition p̂Ŷ (l) ≥ µ in Theorem 1 is assumed in order to ensure strong concavity of
F̂ (θt, ·) at every iterate θt, which leads to theO(ε−5) convergence rate. This assumption is typically
satisfied in practice: for example, if the iterates θt remain in a compact region during the algorithm
and the classifier uses softmax, then p̂Ŷ (l) ≥ µ > 0. Having said that, it is worth noting that this
condition is not absolutely necessary to ensure convergence of Algorithm 1. Even if this condition
doesn’t hold, then Eq. (1) is still a nonconvex-concave min-max problem. Hence SGDA still converges
to an ε-stationary point, albeit at the slower rate of O(ε−8) Lin et al. [2020]. Alternatively, one
can add a small `2 regularization term to the objective to enforce strong concavity and get the fast
convergence rate of O(ε−5).

2.2 Asymptotic Convergence of Algorithm 1 for Population-level FRMI Objective
So far, we have let N ≥ 1 be arbitrary and have not made any assumptions on the underlying
distribution(s) from which the data was drawn. Even so, we showed that Algorithm 1 always
converges to a stationary point of Eq. (FERMI obj.). Now, we will show that if D contains i.i.d.
samples from an unknown joint distribution D and if N � 1, then Algorithm 1 converges to an
approximate solution of the population risk minimization problem Eq. (FRMI obj.). Precisely, we
will use a one-pass sample-without-replacement (“online”) variant of Algorithm 1 to obtain this
population loss guarantee. The one-pass variant is identical to Algorithm 1 except that: a) once we
draw a batch of samples Bt, we remove these samples from the data set so that they are never re-used;
and b) the for-loop terminates when we have used all n samples.
Theorem 2. Let ε > 0. Assume that `(x, y; ·) and F(·,x) are Lipschitz continuous and differentiable
with Lipschitz continuous gradient, and that minr∈[k] pS(r) > 0. Then, there exists N ∈ N such
that if n ≥ N and D ∼ Dn, then a one-pass sample-without-replacement variant of Algorithm 1
converges to an ε-first order stationary point of the Eq. (FRMI obj.) objective in O

(
1
ε5

)
stochastic

gradient evaluations, for any batch sizes |Bt|.

Theorem 2 provides a guarantee on the fairness/accuracy loss that can be achieved on unseen “test
data.” This is important because the main goal of (fair) machine learning is to (fairly) give accurate
predictions on test data, rather than merely fitting the training data well. Specifically, Theorem 2
shows that with enough (i.i.d.) training examples at our disposal, (one-pass) Algorithm 1 finds an
approximate stationary point of the population-level fairness objective Eq. (FRMI obj.). Furthermore,
the gradient complexity is the same as it was in the empirical case. The proof of Theorem 2 will
be aided by the following result, which shows that ψ̂i is an asymptotically unbiased estimator of Ψ,
where maxW Ψ(θ,W ) equals ERMI:
Proposition 2. Let {zi}ni=1 = {xi, si, yi}ni=1 be drawn i.i.d. from an unknown
joint distribution D. Denote ψ̂

(n)
i (θ,W ) = −Tr(WE[ŷ(xi,θ)ŷ(xi,θ)T |xi]WT ) +

2 Tr

(
WE[ŷ(xi;θ)sTi |xi, si]

(
P̂

(n)
s

)−1/2
)

− 1, where P̂
(n)
s =

1
n

∑n
i=1 diag(1{si=1}, · · · ,1{si=k}). Denote Ψ(θ,W ) = −Tr(WPŷW

T )+2 Tr(WPŷ,sP
−1/2
s )−

1, where Pŷ = diag(EF1(θ,x), · · · ,EFm(θ,x)), (Pŷ,s)j,r = Exi,si [Fj(θ,xi)si,r] for
j ∈ [m], r ∈ [k], and Ps = diag(PS(1), · · · , PS(k)). Assume pS(r) > 0 for all r ∈ [k]. Then,

max
W

Ψ(θ,W ) = DR(Ŷ (θ);S)

and
lim
n→∞

E[ψ̂
(n)
i (θ,W )] = Ψ(θ,W ).

The proof of Proposition 2 is given in Appendix D.1. The first claim is immediate from Proposition 1
and its proof, while the second claim is proved using the strong law of large numbers, the continuous
mapping theorem, and Lebesgue’s dominated convergence theorem.

Proposition 2 implies that the empirical stochastic gradients computed in Algorithm 1 are good
approximations of the true gradients of Eq. (FRMI obj.). Intuitively, this suggests that when we
use Algorithm 1 to solve the fair ERM problem Eq. (FERMI obj.), the output of Algorithm 1
will also be an approximate solution of Eq. (FRMI obj.). While Theorem 2 shows this intuition
does indeed hold, the proof of Theorem 2 requires additional work. A reasonable first attempt at
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proving Theorem 2 might be to try to bound the expected distance between the gradient of FRMI
and the gradient of FERMI (evaluated at the point θ̂ that is output by Algorithm 1) via Danskin’s
theorem Danskin [1966] and strong concavity, and then leverage Theorem 1 to conclude that the
gradient of FRMI must also be small. However, the dependence of θ̂ on the training data prevents
us from obtaining a tight enough bound on the distance between the empirical and population
gradients at θ̂. Thus, we take a different approach to proving Theorem 2, in which we consider the
output of two different algorithms: one is the conceptual algorithm that runs one-pass Algorithm 1
as if we had access to the true sensitive attributes Ps (“Algorithm A”); the other is the realistic
one-pass Algorithm 1 that only uses the training data (“Algorithm B”). We argue: 1) the output of
the conceptual algorithm is a stationary point of the population-level objective; and 2) the distance
between the gradients of the population-level objective at θA and θB is small. While 1) follows
easily from the proof of Theorem 1 and the online-to-batch conversion, establishing 2) requires a
careful argument. The main tools we use in the proof of Theorem 2 are Theorem 1, Proposition 2,
Danskin’s theorem, Lipschitz continuity of the arg max function for strongly concave objective, the
continuous mapping theorem, and Lebesgue’s dominated convergence theorem: see Appendix D.1
for the detailed proof.

Note that the online-to-batch conversion used to prove Theorem 2 requires a convergent stochastic
optimization algorithm; this implies that our arguments could not be used to prove an analogue
of Theorem 2 for existing fair learning algorithms, since existing convergent fairness algorithms
are not stochastic. An alternate approach to bounding the “generalization error” of our algorithm
would be to use a standard covering/uniform convergence argument. However, this approach would
not yield as tight a guarantee as Theorem 2. Specifically, the accuracy and/or gradient complexity
guarantee would depend on the dimension of the space (i.e. the number of model parameters), since
the covering number depends (exponentially) on the dimension. For large-scale problems with a huge
number of model parameters, such dimension dependence is prohibitive.

As previously mentioned, we can interpret Theorem 2 as providing a guarantee that Algorithm 1
generalizes well, achieving small fairness violation and test error, even on unseen “test” examples–as
long as the data is i.i.d. and N is sufficiently large. In the next section, we empirically corrobo-
rate Theorem 2, by evaluating the fairness-accuracy tradeoffs of the FERMI algorithm (Algorithm 1)
in several numerical experiments.

3 Numerical Experiments

In this section, we evaluate the performance of FERMI in terms of the fairness violation vs. test error
for different notions of fairness (e.g. demographic parity, equalized odds, and equality of opportunity).
To this end, we perform diverse experiments comparing FERMI to other state-of-the-art approaches
on several benchmarks. In Section 3.1, we showcase the performance of FERMI applied to a logistic
regression model on binary classification tasks with binary sensitive attributes on Adult, German
Credit, and COMPAS datasets. In Section 3.2, we utilize FERMI with a convolutional neural network
base model for fair (to different religious groups) toxic comment detection. In Section 3.3, we explore
fairness in non-binary classification with non-binary sensitive attributes. Finally, Section 3.4 shows
how FERMI may be used beyond fair empirical risk minimization in domain generalization problems
to learn a model independent of spurious features.

3.1 Fair Binary Classification with Binary Sensitive Attributes using Logistic Regression

3.1.1 Benchmarking full-batch performance
In the first set of experiments, we use FERMI to learn a fair logistic regression model on the Adult
dataset. With the Adult data set, the task is to predict whether or not a person earns over $50k annually
without discriminating based on the sensitive attribute, gender. We compare FERMI against state-
of-the-art in-processing full-batch (|B| = N ) baselines, including Zafar et al. [2017], Feldman et al.
[2015], Kamishima et al. [2011], Jiang et al. [2020], Hardt et al. [2016], Prost et al. [2019], Baharlouei
et al. [2020], Rezaei et al. [2020], Donini et al. [2018], Cho et al. [2020a]. Since the majority of
existing fair learning algorithms cannot be implemented with |B| < N , these experiments allow us
to benchmark the performance of FERMI against a wider range of baselines. To contextualize the
performance of these methods, we also include a Naïve Baseline that randomly replaces the model
output with the majority label (0 in Adult dataset), with probability p (independent of the data), and
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sweep p in [0, 1]. At one end (p = 1), the output will be provably fair with performance reaching that
of a naive classifier that outputs the majority class. At the other end (p = 0), the algorithm has no
fairness mitigation and obtains the best performance (accuracy). By sweeping p, we obtain a tradeoff
curve between performance and fairness violation.

Figure 1: Accuracy/Fairness trade-off of FERMI and several state-of-the-art in-processing approaches on Adult
dataset. FERMI offers the best fairness vs. accuracy tradeoff curve in all experiments against all baselines.
Rezaei et al. [2020] only allow for a single output and do not yield a tradeoff curve. Further, the algorithms
by Mary et al. [2019] and Baharlouei et al. [2020] are equivalent in this binary setting and shown by the red curve.
In the binary/binary setting, FERMI, Mary et al. [2019] and Baharlouei et al. [2020] all try to solve the same
objective Eq. (FRMI obj.). However, the empirical formulation Eq. (FERMI obj.) and FERMI algorithm that we
use results in better performance, even though we are using a full-batch for all baselines in this experiment.

In Fig. 1, we report the fairness violation (demographic parity, equalized odds, and equality of
opportunity violations) vs. test error of the aforementioned in-processing approaches on the Adult
dataset. The upper left corner of the tradeoff curves coincides with the unmitigated baseline, which
only optimizes for performance (smallest test error). As can be seen, FERMI offers a fairness-
accuracy tradeoff curve that dominates all state-of-the-art baselines in each experiment and with
respect to each notion of fairness, even in the full batch setting. Aside from in-processing approaches,
we compare FERMI with several pre-processing and post-processing algorithms on Adult, German
Credit, and COMPAS datasets in Appendix E.5, where we show that the tradeoff curves obtained
from FERMI dominate that of all other baselines considered. See Appendix E for details on the data
sets and experiments.

It is noteworthy that the empirical objectives of Mary et al. [2019] and Baharlouei et al. [2020] are
exactly the same in the binary/binary setting, and their algorithms also coincide to the red curve
in Fig. 1. This is because Exponential Rényi mutual information is equal to Rényi correlation for
binary targets and/or binary sensitive attributes (see Lemma 2), which is the setting of all experiments
in Sec. 3.1. Additionally, like us, in the binary/binary setting these works are trying to empirically
solve Eq. (FRMI obj.), albeit using different estimation techniques; i.e., their empirical objective is
different from Eq. (FERMI obj.). This demonstrates the effectiveness of our empirical formulation
(FERMI obj.) and our solver (Algorithm 1), even though we are using all baselines in full batch
mode in this experiment. See Appendix E.5 for the complete version of Fig. 1 which also includes
pre-processing and post-processing baselines.

Fig. 8 in Appendix E illustrates that FERMI outperforms baselines in the presence of noisy outliers
and class imbalance. Our theory did not consider the role of noisy outliers and class imbalance, so
the theoretical investigation of this phenomenon could be an interesting direction for future work.

3.1.2 The effect of batch size on fairness/accuracy tradeoffs
Next, we evaluate the performance of FERMI on smaller batch sizes ranging from 1 to 64. To this end,
we compare FERMI against several state-of-the-art in-processing algorithms that permit stochastic
implementation for demographic parity: Mary et al. [2019], Baharlouei et al. [2020], and Cho et al.
[2020a]. Similarly to the full batch setting, for all methods, we train a logistic regression model with
a respective regularizer for each method. We use demographic parity L∞ violation (Definition 10) to
measure demographic parity violation. More details about the dataset and experiments, and additional
experimental results, can be found in Appendix E.

Fig. 2 shows that FERMI offers a superior fairness-accuracy tradeoff curve against all baselines, for
each tested batch size, empirically confirming Theorem 1, as FERMI is the only algorithm that is
guaranteed to converge for small minibatches. It is also noteworthy that all other baselines cannot
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Figure 2: Performance of FERMI, Cho et al. [2020b], Mary et al. [2019], Baharlouei et al. [2020] with different
batch-sizes on Adult dataset. FERMI demonstrates the best accuracy/fainess tradeoff across different batch sizes.

beat Naïve Baseline when the batch size is very small, e.g., |B| = 1. Furthermore, FERMI with
|B| = 4 almost achieves the same fairness-accuracy tradeoff as the full batch variant.

3.1.3 The effect of missing sensitive attributes on fairness/accuracy tradeoffs
Sensitive attributes might be partially unavailable in many real-world applications due to legal issues,
privacy concerns, and data gathering limitations Zhao et al. [2022], Coston et al. [2019]. Missing
sensitive attributes make fair learning tasks more challenging in practice.

Figure 3: Performance of FERMI and
other state-of-the-art approaches on the
Adult dataset where 90% of gender en-
tries are missing. Full-sensitive FERMI
is obtained by applying FERMI on the
data without any missing entries.

The unbiased nature of the estimator used in FERMI algorithm
motivates that it may be able to handle cases where sensitive
attributes are partially available and are dropped uniformly at
random. As a case study on the Adult dataset, we randomly
masked 90% of the sensitive attribute (i.e., gender entries). To
estimate the fairness regularization term, we rely on the remain-
ing 10% of the training samples (≈ 3k) with sensitive attribute
information. Figure 3 depicts the tradeoff between accuracy
and fairness (demographic parity) violation for FERMI and
other baselines. We suspect that the superior accuracy-fairness
tradeoff of FERMI compared to other approaches is due to the
fact that the estimator of the gradient remains unbiased since
the missing entries are missing completely at random (MCAR).
Note that the Naïve Baseline is similar to the one implemented
in the previous section, and Full-sensitive FERMI is an ora-
cle method that applies FERMI to the data with no missing
attributes (for comparison purposes only). We observe that
FERMI achieves a slightly worse fairness-accuracy tradeoff
compared to Full-sensitive FERMI oracle, whereas the other
baselines are hurt significantly and are only narrowly outperforming the Naïve Baseline.

3.2 Fair Binary Classification using Neural Models

Figure 4: Fair toxic comment detection with different batch sizes. For |B| = 128, the performance of Prost et al.
[2019] and FERMI are close to each other, however, when the batch size is reduced to 16, FERMI demonstrates
a better fairness/ performance trade-off. The performance and fairness are measured by the overall false positive
rate and the false positive gap between different religious sub-groups (Christians vs Muslim-Jews), respectively.

In this experiment, our goal is to showcase the efficacy of FERMI in stochastic optimization with
neural network function approximation. To this end, we apply FERMI, Prost et al. [2019], Baharlouei
et al. [2020], and Mary et al. [2019] (which coincides with Baharlouei et al. [2020]) to the Toxic
Comment Classification dataset where the underlying task is to predict whether a given published
comment in social media is toxic. The sensitive attribute is religion that is binarized into two
groups: Christians in one group; Muslims and Jews in the other group. Training a neural network
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Figure 5: Comparison between FERMI, Mary et al. [2019], Baharlouei et al. [2020], and Cho et al. [2020a] on
Communities dataset. Mary et al. [2019] outperforms Baharlouei et al. [2020], Cho et al. [2020a], which we
believe could be attributed to the effectiveness of ERMI as a regularizer. FERMI outperforms Mary et al. [2019].
This can be attributed to our empirical formulation Eq. (FERMI obj.) and unbiased stochastic optimization
algorithm.

without considering fairness leads to higher false positive rate for the Jew-Muslim group. Figure 4
demonstrates the performance of FERMI, MinDiff Prost et al. [2019], Baharlouei et al. [2020], and
naïve baseline on two different batch-sizes: 128 and 16. Performance is measured by the overall
false positive rate of the trained network and fairness violation is measured by the false positive gap
between two sensitive groups (Christians and Jews-Muslims). The network structure is exactly same
as the one used by MinDiff Prost et al. [2019]. We can observe that by decreasing the batch size,
FERMI maintains the best fairness-accuracy tradeoff compared to other baselines.

3.3 Fair Non-binary Classification with Multiple Sensitive Attributes

In this section, we consider a non-binary classification problem with multiple binary sensitive
attributes. In this case, we consider the Communities and Crime dataset, which has 18 binary
sensitive attributes in total. For our experiments, we pick a subset of 1, 2, 3, . . . , 18 sensitive at-
tributes, which corresponds to |S| ∈ {2, 4, 8, . . . , 218}. We discretize the target into three classes
{high,medium, low}. The only baselines that we are aware of that can handle non-binary classifi-
cation with multiple sensitive attributes are Mary et al. [2019], Baharlouei et al. [2020], Cho et al.
[2020a], Cho et al. [2020b], and Zhang et al. [2018]. We used the publicly available implementations
of Baharlouei et al. [2020] and Cho et al. [2020a] and extended their binary classification algorithms
to the non-binary setting.

The results are presented in Fig. 5, where we use conditional demographic parity L∞ violation
(Definition 10) and conditional equal opportunity L∞ violation (Definition 11) as the fairness
violation notions for the two experiments. In each panel, we compare the test error for different
number of sensitive attributes for a fixed value of DP violation. It is expected that test error increases
with the number of sensitive attributes, as we will have a more stringent fairness constraint to satisfy.
As can be seen, compared to the baselines, FERMI offers the most favorable test error vs. fairness
violation tradeoffs, particularly as the number of sensitive attributes increases and for the more
stringent fairness violation levels, e.g., 0.02.10

3.4 Beyond Fairness: Domain Parity Regularization for Domain Generalization
In this section, we demonstrate that our approach may extend beyond fair empirical risk minimization
to other problems such as domain generalization. In fact, Li and Vasconcelos [2019], Lahoti et al.
[2020], Creager et al. [2021] have already established connections between fair ERM and domain
generalization. We consider the Color MNIST dataset Li and Vasconcelos [2019], where all 60,000
training digits are colored with different colors drawn from a class conditional Gaussian distribution

10Sec. 3.4 demonstrated that using smaller batch sizes results in much more pronounced advantages of FERMI
over these baselines.
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Figure 6: Domain generalization on Color MNIST Li and Vasconcelos [2019] using in-process fair algorithms
for demographic parity. Left panel: The dashed line is the training error and the solid line is test error. As λ
increases, fairness regularization results in a learned representation that is less dependent on color; hence training
error increases while test error decreases (all algorithms reach a plateau around λ = 8). We use |B| = 512 for
all baselines. Right panel: We plot test error vs. batch size using an optimized value of λ for each algorithm
selected via a validation set. The performance of baselines drops 10-20% as batch size becomes small, whereas
FERMI is less sensitive to batch size.

with variance σ2 around a certain average color for each digit, while the test set remains black and
white. Li and Vasconcelos [2019] show that as σ2 → 0, a convolutional network model overfits
significantly to each digit’s color on the training set, and achieves vanishing training error. However,
the learned representation does not generalize to the black and white test set, due to the spurious
correlation between digits and color.

Conceptually, the goal of the classifier in this problem is to achieve high classification accuracy with
predictions that are independent of the color of the digit. We view color as the sensitive attribute
in this experiment, and apply fairness baselines for the demographic parity notion of fairness. One
would expect that by promoting such independence through a fairness regularizer, generalization
would improve (i.e. lower test error on the black and white test set), at the cost of increased training
error (on the colored training set). We compare against Mary et al. [2019], Baharlouei et al. [2020],
and Cho et al. [2020a] as baselines in this experiment.

The results of this experiment are illustrated in Fig. 6. In the left panel, we see that with no
regularization (λ = 0), the test error is around 80%. As λ increases, all methods achieve smaller
test error while training error increases. We also observe that FERMI offers the best test error in
this setup. In the right panel, we observe that decreasing the batch size results in significantly worse
generalization for the three baselines considered (due to their biased estimators for the regularizer).
However, the negative impact of small batch size is much less severe for FERMI, since FERMI uses
unbiased stochastic gradients. In particular, the performance gap between FERMI and other baselines
is more than 20% for |B| = 64. Moreover, FERMI with minibatch size |B| = 64 still outperforms all
other baselines with |B| > 1, 000. Finally, notice that the test error achieved by FERMI when σ = 0
is ∼ 30%, as compared to more than 50% obtained using REPAIR Li and Vasconcelos [2019] for
σ ≤ 0.05.

4 Discussion and Concluding Remarks
In this paper, we tackled the challenge of developing a fairness-promoting algorithm that is amenable
to stochastic optimization. As discussed, algorithms for large-scale ML problems are constrained
to use stochastic optimization with (small) minibatches of data in each iteration. To this end, we
formulated an empirical objective (FERMI obj.) using ERMI as a regularizer, and derived unbiased
stochastic gradient estimators. We proposed the stochastic FERMI algorithm (Algorithm 1) for
solving this objective. We then provided the first theoretical convergence guarantees for a stochastic
in-processing fairness algorithm, by showing that FERMI converges to stationary points of the
empirical and population-level objectives (Theorem 1, Theorem 2). Further, these convergence results
hold even for non-binary sensitive attributes and non-binary target variables, with any minibatch size.

From an experimental perspective, we showed that FERMI leads to better fairness-accuracy tradeoffs
than all of the state-of-the-art baselines on a wide variety of binary and non-binary classification tasks
(for demographic parity, equalized odds, and equal opportunity). We also showed that these benefits
are particularly significant when the number of sensitive attributes grows or the batch size is small. In
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particular, we observed that FERMI consistently outperforms Mary et al. [2019] (which tries to solve
the same objective Eq. (FRMI obj.)) by up to 20% when the batch size is small. This is not surprising
since FERMI is the only algorithm that is guaranteed to find an approximate solution of the fair
learning objective with any batch size |B| ≥ 1. Also, we show in Fig. 7 that the lack of convergence
guarantee of Mary et al. [2019] is not just due to more limited analysis: in fact, their stochastic
algorithm does not converge. Even in full batch mode, FERMI outperforms all baselines, including
Mary et al. [2019] (Fig. 1, Fig. 5). In full batch mode, all baselines should be expected to converge to
an approximate solution of their respective empirical objectives, so this suggests that our empirical
objective Eq. (FERMI obj.) is fundamentally better, in some sense, than the empirical objectives
proposed in prior works. In what sense is Eq. (FERMI obj.) a better empirical objective (apart from
permitting stochastic optimization)? For one, it is an asymptotically unbiased estimator of Eq. (FRMI
obj.) (by Proposition 2), and Theorem 2 suggests that FERMI algorithm outputs an approximate
solution of Eq. (FRMI obj.) for large enough N . By contrast, the empirical objectives considered
in prior works do not provably yield an approximate solution to the corresponding population-level
objective.

The superior fairness-accuracy tradeoffs of FERMI algorithm over the (full batch) baselines also
suggests that the underlying population-level objective Eq. (FRMI obj.) has benefits over other
fairness objectives. What might these benefits be? First, ERMI upper bounds all other fairness
violations (e.g. Shannon mutual information, Lq, L∞) used in the literature: see Appendix C. This
implies that ERMI-regularized training yields a model that has small fairness violation with respect
to these other notions. Could this also somehow help explain the superior fairness-accuracy tradeoffs
achieved by FERMI? Second, the objective function Eq. (FRMI obj.) is easier to optimize than the
objectives of competing in-processing methods: ERMI is smooth and is equal to the trace of a matrix
(see Lemma 5 in the Appendix), which is easy to compute. Contrast this with the larger computational
overhead of Rényi correlation used by Baharlouei et al. [2020], for example, which requires finding
the second singular value of a matrix. Perhaps these computational benefits contribute to the observed
performance gains? We leave it as future work to rigorously understand the factors that are most
responsible for the favorable fairness-accuracy tradeoffs observed from FERMI.

Broader Impact and Limitations
This paper studied the important problem of developing practical machine learning (ML) algorithms
that are fair (i.e. non-discriminatory) towards different demographic groups (e.g. race, gender,
age). We hope that the societal impacts of our work will be positive, as the deployment of our
FERMI algorithm may enable/help companies, government agencies, and other organizations to train
large-scale ML models that do not discriminate against certain groups of users. On the other hand,
any technology has its limitations, and our algorithm is no exception.

One important limitation of our work is that we have (implicitly) assumed that the data set at hand
is labeled accurately and fairly. For example, if race is the sensitive attribute and “likelihood of
committing a crime” is the target, then we assume that the training data accurately reflects the criminal
histories of all individuals (and in particular does not disproportionately inflate the criminal histories
of racial minorities). If this assumption is not satisfied in practice, then the outcomes promoted
by our algorithm may not be as fair (in the philosophical sense) as the computed level of fairness
violation might suggest. It is even possible that our mitigation strategy could result in more unfairness
than unmitigated ERM in this case. More generally, conditional fairness notions like equalized odds
suffer from a potential amplification of the inherent discrimination that may exist in the training data.
Tackling such issues is beyond the scope of this work; c.f. Kilbertus et al. [2020] and Bechavod et al.
[2019].

Another consideration that was not addressed in this paper is the interplay between fairness and
other socially consequential AI metrics, such as privacy and robustness (e.g. to data poisoning).
It is possible that our algorithm could leak sensitive information about individuals in the training
data set (e.g. via membership inference attacks or model inversion attacks), even if the data is
anonymous Fredrikson et al. [2015], Shokri et al. [2017], Faizullabhoy and Korolova [2018], Nasr
et al. [2019], Carlini et al. [2021]. Such leaks could be used maliciously, e.g. to discriminate against
an individual with a confidential disability. Differential privacy Dwork et al. [2006] ensures that
sensitive data cannot be leaked (with high probability), and the interplay between fairness and privacy
has been explored (see e.g. Jagielski et al. [2019], Xu et al. [2019], Cummings et al. [2019], Mozannar
et al. [2020], Tran et al. [2021a,b]. Developing and analyzing a differentially private version of
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FERMI could be an interesting direction for future work. Another potential threat to FERMI-trained
models is data poisoning attacks. While our experiments demonstrated that FERMI is relatively
effective with missing sensitive attributes, we did not investigate its performance in the presence
of label flipping or other poisoning attacks. Exploring and improving the robustness of FERMI is
another avenue for future research.
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A Notions of Fairness

Let (Y, Ŷ ,A, S) denote the true target, predicted target, the advantaged outcome class, and the
sensitive attribute, respectively. We review three major notions of fairness.
Definition 2 (demographic parity Dwork et al. [2012]). We say that a learning machine satisfies
demographic parity if Ŷ is independent of S.

Definition 3 (equalized odds Hardt et al. [2016]). We say that a learning machine satisfies equalized
odds, if Ŷ is conditionally independent of S given Y .

Definition 4 (equal opportunity Hardt et al. [2016]). We say that a learning machine satisfies equal
opportunity with respect to A, if Ŷ is conditionally independent of S given Y = y for all y ∈ A.

Notice that the equal opportunity as defined here generalizes the definition in Hardt et al. [2016].
It recovers equalized odds if A = Y, and it recovers equal opportunity of Hardt et al. [2016] for
A = {1} in binary classification.
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B ERMI: General Definition, Properties, and Special Cases Unraveled

We begin by stating a notion of fairness that generalizes demographic parity, equalized odds, and
equal opportunity fairness definitions (the three notions considered in this paper). This will be
convenient for defining ERMI in its general form and presenting the results in Appendix C. Consider
a learner who trains a model to make a prediction, Ŷ , e.g., whether or not to extend a loan, supported
on a set Y . Here we allow Ŷ to be either discrete or continuous. The prediction is made using a
set of features, X, e.g., financial history features. We assume that there is a set of discrete sensitive
attributes, S, e.g., race and sex, supported on S, associated with each sample. Further, let A ⊆ Y
denote an advantaged outcome class, e.g., the outcome where a loan is extended.

Definition 5 ((Z,Z)-fairness). Given a random variable Z, let Z be a subset of values that Z can
take. We say that a learning machine satisfies (Z,Z)-fairness if for every z ∈ Z, Ŷ is conditionally
independent of S given Z = z, i.e. ∀ŷ ∈ Y, s ∈ S, z ∈ Z, pŶ ,S|Z(ŷ, s|z) = pŶ |Z(ŷ|z)pS|Z(s|z).

(Z,Z)-fairness includes the popular demographic parity, equalized odds, and equal opportunity
notions of fairness as special cases:

1. (Z,Z)-fairness recovers demographic parity Dwork et al. [2012] if Z = 0 and Z = {0}. In this
case, conditioning on Z has no effect, and hence (0, {0}) fairness is equivalent to the independence
between Ŷ and S (see Definition 2, Appendix A).

2. (Z,Z)-fairness recovers equalized odds Hardt et al. [2016] if Z = Y and Z = Y. In this case,
Z ∈ Z is trivially satisfied. Hence, conditioning on Z is equivalent to conditioning on Y, which
recovers the equalized odds notion of fairness, i.e., conditional independence of Ŷ and S given Y
(see Definition 3, Appendix A).

3. (Z,Z)-fairness recovers equal opportunity Hardt et al. [2016] if Z = Y and Z = A. This is also
similar to the previous case with Y replaced with A (see Definition 4, Appendix A).

Note that verifying (Z,Z)-fairness requires having access to the joint distribution of random variables
(Z, Ŷ , S). This joint distribution is unavailable to the learner in the context of machine learning, and
hence the learner would resort to empirical estimation of the amount of violation of independence,
measured through some divergence. See Williamson and Menon [2019] for a related discussion.

In this general context, here is the general definition of ERMI:

Definition 6 (ERMI – exponential Rényi mutual information). We define the exponential Rényi
mutual information between Ŷ and S given Z ∈ Z as

DR(Ŷ ;S|Z ∈ Z) := EZ,Ŷ ,S

{
pŶ ,S|Z(Ŷ , S|Z)

pŶ |Z(Ŷ |Z)pS|Z(S|Z)

∣∣∣∣∣Z ∈ Z
}
− 1. (ERMI)

Notice that ERMI is in fact the χ2-divergence between the conditional joint distribution, pŶ ,S , and
the Kronecker product of conditional marginals, pŶ ⊗ pS , where the conditioning is on Z ∈ Z.
Further, χ2-divergence is an f -divergence with f(t) = (t − 1)2. See [Csiszár and Shields, 2004,
Section 4] for a discussion. As an immediate result of this observation and well-known properties of
f -divergences, we can state the following property of ERMI:

Remark 2. DR(Ŷ ;S|Z ∈ Z) ≥ 0 with equality if and only if for all z ∈ Z , Ŷ and S are
conditionally independent given Z = z.

To further clarify the definition of ERMI, especially as it relates to demographic parity, equalized
odds, and equal opportunity, we will unravel the definition explicitly in a few special cases.
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First, let Z = 0 and Z = {0}. In this case, Z ∈ Z trivially holds, and conditioning on Z has no
effect, resulting in:

DR(Ŷ ;S) := DR(Ŷ ;S|Z ∈ Z)
∣∣∣
Z=0,Z={0}

= EŶ ,S

{
pŶ ,S(Ŷ , S)

pŶ (Ŷ )pS(S)

}
− 1

=
∑
s∈S

∫
ŷ∈Y

pŶ ,S(ŷ, s)− pŶ (ŷ)pS(s)

pŶ (ŷ)pS(s)
pŶ ,S(ŷ, s)dŷ. (2)

DR(Ŷ ;S) is the notion of ERMI that should be used when the desired notion of fairness is de-
mographic parity. In particular, DR(Ŷ ;S) = 0 implies that χ2 divergence between pŶ ,S , and the

Kronecker product of marginals, pŶ ⊗ pS is zero. This in turn implies that Ŷ and S are independent,
which is the definition of demographic parity. We note that when Ŷ and S are discrete, this special
case (Z = 0 and Z = {0}) of ERMI is referred to as χ2-information by Calmon et al. [2017b].

Next, we consider Z = Y and Z = Y. In this case, Z ∈ Z is trivially satisfied, and hence,

DR(Ŷ ;S|Y ) := DR(Ŷ ;S|Z ∈ Z)
∣∣∣
Z=Y,Z=Y

= EY,Ŷ ,S

{
pŶ ,S|Y (Ŷ , S|Y )

pŶ |Y (Ŷ |Y )pS|Y (S|Y )

}
− 1

=
∑
s∈S

∫
y∈Y

∫
ŷ∈Y

pŶ ,S|Y (ŷ, s|y)− pŶ |Y (ŷ|y)pS|Y (s|y)

pŶ |Y (ŷ|y)pS|Y (s|y)
pY,Ŷ ,S(y, ŷ, s)dŷdy

=
∑
s∈S

∫
y∈Y

∫
ŷ∈Y

pŶ ,S|Y (ŷ, s|y)2

pŶ |Y (ŷ|y)pS|Y (s|y)
pY (y)dŷdy − 1. (3)

DR(Ŷ ;S|Y ) should be used when the desired notion of fairness is equalized odds. In particular,
DR(Ŷ ;S|Y ) = 0 directly implies the conditional independence of Ŷ and S given Y.

Finally, we consider Z = Y and Z = A. In this case, we have

DAR (Ŷ ;S|Y ) := DR(Ŷ ;S|Z ∈ Z)
∣∣∣
Z=Y,Z=A

= EY,Ŷ ,S

{
pŶ ,S|Y (Ŷ , S|Y )

pŶ |Y (Ŷ |Y )pS|Y (S|Y )

∣∣∣∣∣Y ∈ A
}
− 1

=
∑
s∈S

∫
y∈A

∫
ŷ∈Y

pŶ ,S|Y (ŷ, s|y)− pŶ |Y (ŷ|y)pS|Y (s|y)

pŶ |Y (ŷ|y)pS|Y (s|y)
pAY (y)dŷdy

=
∑
s∈S

∫
y∈A

∫
ŷ∈Y

pŶ ,S|Y (ŷ, s|y)2

pŶ |Y (ŷ|y)pS|Y (s|y)
pŶ ,S|Y (ŷ, s|y)pAY (y)dŷdy − 1, (4)

where

pAY (y) :=
pY (y)∫

y′∈A pY (y′)dy′
. (5)

This notion is what should be used when the desired notion of fairness is equal opportunity. This
can be further simplified when the advantaged class is a singleton (which is the case in binary
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classification). If Z = Y and Z = {y}, then

DR(Ŷ ;S|Y = y) := D
{y}
R (Ŷ ;S|Y )

=
∑
s∈S

∫
ŷ∈Y

pŶ ,S|Y (ŷ, s|y)− pŶ |Y (ŷ|y)pS|Y (s|y)

pŶ |Y (ŷ|y)pS|Y (s|y)
pŶ ,S|Y (ŷ, s|y)dŷ

=
∑
s∈S

∫
ŷ∈Y

pŶ ,S|Y (ŷ, s|y)2

pŶ |Y (ŷ|y)pS|Y (s|y)
dŷ − 1. (6)

Finally, we note that we use the notation DR(Ŷ ;S|Y ) and DR(Ŷ ;S|Y = y) to be consistent with
the definition of conditional mutual information in Cover and Thomas [1991].
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C Relations Between ERMI and Other Fairness Violation Notions

Recall that most existing in-processing methods use some notion of fairness violation as a regularizer
to enforce fairness in the trained model. These notions of fairness violation typically take the form of
some information divergence between the sensitive attributes and the predicted targets (e.g. Mary et al.
[2019], Baharlouei et al. [2020], Cho et al. [2020b]). In this section, we show that ERMI provides
an upper bound on all of the existing measures of fairness violations for demographic parity, equal
opportunity, and equalized odds. As mentioned in the main body, this insight might help explain the
favorable empirical performance of our algorithm compared to baselines–even when full batch is
used. In particular, the results in this section imply that FERMI algorithm leads to small fairness
violation with respect to ERMI and all of these other measures.

We should mention that many of these properties of f divergences are well-known or easily derived
from existing results, so we do not intend to claim great originality with any of these results. That
said, we include proofs of all results for which we are not aware of any references with proofs. The
results in this section also hold for continuous (or discrete) Ŷ . We will now state and discuss these
results before proving them.
Definition 7 (Rényi mutual information Rényi [1961]). Let the Rényi mutual information of order
α > 1 between random variables Ŷ and S given Z ∈ Z be defined as:

Iα(Ŷ ;S|Z ∈ Z) :=
1

α− 1
log

(
EZ,Ŷ ,S


(

pŶ ,S|Z(Ŷ , S|Z)

pŶ |Z(Ŷ |Z)pS|Z(S|Z)

)α−1
∣∣∣∣∣∣Z ∈ Z


)
, (RMI)

which generalizes Shannon mutual information

I1(Ŷ ;S|Z ∈ Z) := EZ,Ŷ ,S

{
log

(
pŶ ,S|Z(Ŷ , S|Z)

pŶ |Z(Ŷ |Z)pS|Z(S|Z)

)∣∣∣∣∣Z ∈ Z
}
, (MI)

and recovers it as limα→1+ Iα(Ŷ ;S|Z ∈ Z) = I1(Ŷ ;S|Z ∈ Z).

Note that Iα(Ŷ ;S|Z ∈ Z) ≥ 0 with equality if and only if (Z,Z)-fairness is satisfied.

The following is a minor change from results in Sason and Verdú [2016]:
Lemma 1 (ERMI provides an upper bound for Shannon mutual information). We have

0 ≤ I1(Ŷ ;S|Z ∈ Z) ≤ I2(Ŷ ;S|Z ∈ Z) ≤ eI2(Ŷ ;S|Z∈Z) − 1 = DR(Ŷ ;S|Z ∈ Z). (7)

Lemma 1 also shows that ERMI is exponentially related to the Rényi mutual information of order 2.
We include a proof below for completeness.

Definition 8 (Rényi correlation Hirschfeld [1935], Gebelein [1941], Rényi [1959]). Let F and
G be the set of measurable functions such that for random variables Ŷ and S, EŶ {f(Ŷ ; z)} =

ES {g(S; z)} = 0, EŶ {f(Ŷ ; z)2} = ES
{
g(S; z)2

}
= 1, for all z ∈ Z. Rényi correlation is:

ρR(Ŷ , S|Z ∈ Z) := sup
f,g∈F×G

EZ,Ŷ ,S
{
f(Ŷ ;Z)g(S;Z)

∣∣∣Z ∈ Z} . (RC)

Rényi correlation generalizes Pearson correlation,

ρ(Ŷ , S|Z ∈ Z) := EZ

 EŶ ,S{Ŷ S|Z}√
EŶ {Ŷ 2|Z}ES{S2|Z}

∣∣∣∣∣∣Z ∈ Z
 , (PC)

to capture nonlinear dependencies between the random variables by finding functions of random
variables that maximize the Pearson correlation coefficient between the random variables. In fact,
it is true that ρR(Ŷ , S|Z ∈ Z) ≥ 0 with equality if and only if (Z,Z)-fairness is satisfied. Rényi
correlation has gained popularity as a measure of fairness violation Mary et al. [2019], Baharlouei
et al. [2020], Grari et al. [2020]. Rényi correlation is also upper bounded by ERMI. The following
result has already been shown by Mary et al. [2019] and we present it for completeness.
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Lemma 2 (ERMI provides an upper bound for Rényi correlation). We have

0 ≤ |ρ(Ŷ , S|Z ∈ Z)| ≤ ρR(Ŷ , S|Z ∈ Z) ≤ DR(Ŷ ;S|Z ∈ Z), (8)

and if |S| = 2, DR(Ŷ ;S|Z ∈ Z) = ρR(Ŷ , S|Z ∈ Z).

Definition 9 (Lq fairness violation). We define the Lq fairness violation for q ≥ 1 by:

Lq(Ŷ , S|Z ∈ Z) := EZ

{(∫
ŷ∈Y0

∑
s∈S0

∣∣∣pŶ ,S|Z(ŷ, s|Z)− pŶ |Z(ŷ|Z)pS|Z(s|Z)
∣∣∣q dy) 1

q
∣∣∣∣∣Z ∈ Z

}
.

(Lq)

Note that Lq(Ŷ , S|Z ∈ Z) = 0 if and only if (Z,Z)-fairness is satisfied. In particular, L∞ fairness
violation recovers demographic parity violation [Kearns et al., 2018, Definition 2.1] if we letZ = {0}
and Z = 0. It also recovers equal opportunity violation Hardt et al. [2016] if Z = A and Z = Y .

Lemma 3 (ERMI provides an upper bound for L∞ fairness violation). Let Ŷ be a discrete or
continuous random variable, and S be a discrete random variable supported on a finite set. Then for
any q ≥ 1,

0 ≤ Lq(Ŷ , S|Z ∈ Z) ≤
√
DR(Ŷ , S|Z ∈ Z). (9)

The above lemma says that if a method controls ERMI value for imposing fairness, then L∞ violation
is controlled. In particular, the variant of ERMI that is specialized to demographic parity also controls
L∞ demographic parity violation Kearns et al. [2018]. The variant of ERMI that is specialized to
equal opportunity also controls the L∞ equal opportunity violation Hardt et al. [2016]. While our
algorithm uses ERMI as a regularizer, in our experiments, we measure fairness violation through the
more commonly used L∞ violation. Despite this, we show that our approach leads to better tradeoff
curves between fairness violation and performance.

Remark. The bounds in Lemmas 1-3 are not tight in general, but this is not of practical concern. They
show that bounding ERMI is sufficient because any model that achieves small ERMI is guaranteed to
satisfy any other fairness violation. This makes ERMI an effective regularizer for promoting fairness.
In fact, in Sec. 3, we saw that our algorithm, FERMI, achieves the best tradeoffs between fairness
violation and performance across state-of-the-art baselines.

Proof of Lemma 1. We proceed to prove all the (in)equalities one by one:

• 0 ≤ IS(Ŷ ;S|Z ∈ Z). This is well known and the proof can be found in any information
theory textbook Cover and Thomas [1991].

• I1(Ŷ ;S|Z ∈ Z) ≤ I2(Ŷ ;S|Z ∈ Z). This is a known property of Rényi mutual information,
but we provide a proof for completeness in Lemma 4 below.

• I2(Ŷ ;S|Z ∈ Z) ≤ eI2(Ŷ ;S|Z∈Z) − 1. This follows from the fact that x ≤ ex − 1.

• eI2(Ŷ ;S)|Z∈Z − 1 = DR(Ŷ ;S|Z ∈ Z). This follows from simple algebraic manipulation.

Lemma 4. Let Ŷ , S, Z be discrete or continuous random variables. Then:

(a) For any α, β ∈ [1,∞], Iβ(Ŷ ;S|Z ∈ Z) ≥ Iα(Ŷ ;S|Z ∈ Z) if β > α.

(b) limα→1+ Iα(Ŷ ;S|Z ∈ Z) = I1(Ŷ ;S) := EZ
{
DKL(pŶ ,S|Z ||pŶ |Z ⊗ pS|Z)

∣∣∣Z ∈ Z} ,
where I1(·; ·) denotes the Shannon mutual information and DKL is Kullback-Leibler diver-
gence (relative entropy).

(c) For all α ∈ [1,∞], Iα(Ŷ ;S|Z ∈ Z) ≥ 0 with equality if and only if for all z ∈ Z , Ŷ and
S are conditionally independent given z.
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Proof. (a) First assume 0 < α < β <∞ and that α, β 6= 1. Define a = α− 1, and b = β − 1. Then
the function φ(t) = tb/a is convex for all t ≥ 0, so by Jensen’s inequality we have:

1

b
log

E


(

p(Ŷ , S|Z)

p(Ŷ |Z)p(S|Z)

)b∣∣∣∣∣∣Z ∈ Z

 ≥ 1

b
log

E

{(
p(Ŷ , S|Z)

p(Ŷ |Z)p(S|Z)

)a∣∣∣∣∣Z ∈ Z
}b/a

=
1

a
log

(
E

{(
p(Ŷ , S|Z)

p(Ŷ |Z)p(S|Z)

)a∣∣∣∣∣Z ∈ Z
})

.

(10)

Now suppose α = 1. Then by the monotonicity for α 6= 1 proved above, we have
I1(Ŷ ;S) = limα→1− Iα(Ŷ ;S) = supα∈(0,1) Iα(Ŷ ;S) ≤ infα>1 Iα(Ŷ ;S). Also, I∞(Ŷ ;S) =

limα→∞ Iα(Ŷ ;S) = supα>0 Iα(Ŷ ;S).

(b) This is a standard property of the cumulant generating function (see Dembo and Zeitouni [2009]).

(c) It is straightforward to observe that independence implies that Rényi mutual information vanishes.
On the other hand, if Rényi mutual information vanishes, then part (a) implies that Shannon mutual
information also vanishes, which implies the desired conditional independence.

Proof of Lemma 2. The proof is completed using the following pieces.

• 0 ≤ |ρ(Ŷ , S|Z ∈ Z)| ≤ ρR(Ŷ , S|Z ∈ Z). This is obvious from the definition of
ρR(Ŷ , S|Z ∈ Z).

• ρR(Ŷ , S|Z ∈ Z) ≤ DR(Ŷ ;S|Z ∈ Z). This follows from Lemma 5 below.

• Notice that if |S| = 2, Lemma 5 implies that DR(Ŷ ;S|Z ∈ Z) = ρR(Ŷ , S|Z ∈ Z).

Next, we recall the following lemma, which is stated in Mary et al. [2019] and derives from Witsen-
hausen’s characterization of Renyi correlation:
Lemma 5. Suppose that S = [k]. Let the k × k matrix P be defined as P = {Pij}i,j∈[k]×[k], where

Pij :=
1√

pS(i)pS(j)

∫
y∈Y

(
pŶ ,S(y, i)pŶ ,S(y, j)

pŶ (y)

)
dy. (11)

Let 1 = σ1 ≥ σ2 ≥ . . . ≥ σk ≥ 0 be the eigenvalues of P . Then,

ρR(Ŷ , S) = σ2, (12)

DR(Ŷ ;S) = Tr(P )− 1 =

k∑
i=2

σi. (13)

Proof. Eq. (12) is proved in [Witsenhausen, 1975, Section 3]. To prove Eq. (13), notice that

Tr(P ) =
∑
i∈[k]

Pii

=
∑
i∈[k]

1

pS(i)

∫
y∈Y

(
pŶ ,S(y, i)2

pŶ (y)

)
dy

= EŶ ,S

{(
pŶ ,S(Ŷ , S)

pŶ (Ŷ )pS(S)

)}
= 1 +DR(Ŷ ;S),

which completes the proof.
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Proof of Lemma 3. It suffices to prove the inequality for L1, as Lq is bounded above by L1 for
all q ≥ 1. The proof for the case where Z = 0 and Z = {0} follows from the following set of
inequalities:

L1(Ŷ , S|Z ∈ Z) =
∑
s∈S

∫
y∈Y

∣∣∣pŶ ,S(y, s)− pŶ (y)pS(s)
∣∣∣ dy (14)

=
∑
s∈S

∫
y∈Y

√
pŶ (y)pS(s)

∣∣∣pŶ ,S(y, s)− pŶ (y)pS(s)
∣∣∣√

pŶ (y)pS(s)
dy (15)

≤

√√√√(∑
s∈S

∫
y∈Y

pŶ (y)pS(s)dy

)(∑
s∈S

∫
y∈Y

(
(pŶ ,S(y, s)− pŶ (y)pS(s))2

pŶ (y)pS(s)

))
(16)

≤

√√√√∑
s∈S

∫
y∈Y

(
(pŶ ,S(y, s)− pŶ (y)pS(s))2

pŶ (y)pS(s)

)
dy (17)

=

√
DR(Ŷ ;S), (18)

where Eq. (16) follows from Cauchy-Schwarz inequality, and Eq. (18) follows from Lemma 6.
The extension to general Z and Z is immediate by observing that ρ(Ŷ , S|Z ∈ Z) =

EZ
[
ρ(Ŷ , S|Z)

∣∣∣Z ∈ Z], ρR(Ŷ , S|Z ∈ Z) = EZ
[
ρR(Ŷ , S|Z)

∣∣∣Z ∈ Z], and DR(Ŷ , S|Z ∈

Z) = EZ
[
DR(Ŷ , S|Z)

∣∣∣Z ∈ Z].
Lemma 6. We have

DR(Ŷ ;S) =
∑
s∈S

∫
y∈Y

(
(pŶ ,S(y, s)− pŶ (y)pS(s))2

pŶ (y)pS(s)

)
dy. (19)

Proof. The proof follows from the following set of identities:∑
s∈S

∫
y∈Y

(
(pŶ ,S(y, s)− pŶ (y)pS(s))2

pŶ (y)pS(s)

)
dy =

∑
s∈S

∫
y∈Y

(pŶ ,S(y, s))2

pŶ (y)pS(s)
dy

− 2
∑
s∈S

∫
y∈Y

pŶ ,S(y, s)dy

+
∑
s∈S

∫
y∈Y

pŶ (y)pS(s)dy (20)

= E

{
pŶ ,S(Ŷ , S)

pŶ (Ŷ )pS(S)

}
− 1 (21)

= DR(Ŷ ;S). (22)

Next, we present some alternative fairness definitions and show that they are also upper bounded by
ERMI.
Definition 10 (conditional demographic parity L∞ violation). Given a predictor Ŷ supported on Y
and a discrete sensitive attribute S supported on a finite set S , we define the conditional demographic
parity violation by:

d̃p(Ŷ |S) := sup
ŷ∈Y

max
s∈S

∣∣∣pŶ |S(ŷ|s)− pŶ (ŷ)
∣∣∣ . (23)
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First, we show that d̃p(Ŷ |S) is a reasonable notion of fairness violation.

Lemma 7. d̃p(Ŷ |S) = 0 iff (if and only if) Ŷ and S are independent.

Proof. By definition, d̃p(Ŷ |S) = 0 iff for all ŷ ∈ Y, s ∈ S, pŶ ,S(ŷ|s) = pŶ (ŷ) iff Ŷ and S are
independent (since we always assume p(s) > 0 for all s ∈ S).

Lemma 8 (ERMI provides an upper bound for conditional demographic parity L∞ violation). Let Ŷ
be a discrete or continuous random variable supported on Y , and S be a discrete random variable
supported on a finite set S. Denote pmin

S := mins∈S pS(s) > 0. Then,

0 ≤ d̃p(Ŷ |S) ≤ 1

pmin
S

√
DR(Ŷ ;S). (24)

Proof. The proof follows from the following set of (in)equalities:(
d̃p(Ŷ |S)

)2

= sup
ŷ∈Y

max
s∈S

(
pŶ |S(ŷ|s)− pŶ (ŷ)

)2

(25)

≤ 1

(pmin
S )2

sup
ŷ∈Y

max
s∈S

(
pŶ ,S(ŷ, s)− pŶ (ŷ)pS(s))

)2

(26)

≤ 1

(pmin
S )2

∫
ŷ∈Y

∑
s∈S

(
pŶ ,S(ŷ, s)− pŶ (ŷ)pS(s))

)2

(27)

=
1

(pmin
S )2

DR(Ŷ ;S), (28)

where Eq. (28) follows from Lemma 3.

Definition 11 (conditional equal opportunity L∞ violation Hardt et al. [2016]). Let Y, Ŷ take values
in Y and let A ⊆ Y be a compact subset denoting the advantaged outcomes (For example, the
decision “to interview" an individual or classify an individual as a “low risk" for financial purposes).
We define the conditional equal opportunity L∞ violation of Ŷ with respect to the sensitive attribute
S and the advantaged outcome A by

ẽo(Ŷ |S, Y ∈ A) := EY

{
sup
ŷ∈Y

max
s∈S

∣∣∣pŶ ,S|Y (ŷ|s, Y )− pŶ |Y (ŷ|Y )
∣∣∣Y ∈ A} . (29)

Lemma 9 (ERMI provides an upper bound for conditional equal opportunity L∞ violation). Let
Ŷ , Y, be discrete or continuous random variables supported on Y, and let S be a discrete random
variable supported on a finite set S. Let A ⊆ Y be a compact subset of Y.
Denote pmin

S|A = mins∈S,y∈A pS|Y (s|y). Then,

0 ≤ ẽo(Ŷ |S, Y ∈ A) ≤ 1

pmin
S|A

√
DR(Ŷ ;S|Y ∈ A). (30)

Proof. Notice that the same proof for Lemma 8 would give that for all y ∈ A:

0 ≤ sup
ŷ∈Y

max
s∈S

∣∣∣pŶ ,S|Y (ŷ|s, y)− pŶ |Y (ŷ|y)
∣∣∣ := ẽo(Ŷ |S, Y = y)

≤ 1

pmin
S|y (y)

√
DR(Ŷ ;S|Y = y)

≤ 1

pmin
S|C

√
DR(Ŷ ;S|Y = y).
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Hence,

ẽo(Ŷ |S, Y ∈ A) = EY
{

ẽo(Ŷ |S, Y )
∣∣∣Y ∈ A}

≤ 1

pmin
S|A

EY
{√

DR(Ŷ ;S|Y )

∣∣∣∣Y ∈ A}
≤ 1

pmin
S|A

√
EY
{
DR(Ŷ ;S|Y )

∣∣∣Y ∈ A}
=

1

pmin
S|A

√
DR(Ŷ ;S|Y ∈ A),

where the last inequality follows from Jensen’s inequality. This completes the proof.
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D Precise Statement and Proofs of Theorem 1 and Theorem 2

To begin, we provide the proof of Proposition 1:

Proposition 3 (Re-statement of Proposition 1). For random variables Ŷ and S with joint distribution
p̂Ŷ ,S , where Ŷ ∈ [m], S ∈ [k], we have

D̂R(Ŷ ;S) = max
W∈Rk×m

{−Tr(WP̂ŷW
T ) + 2 Tr(WP̂ŷ,sP̂

−1/2
s )− 1},

if P̂ŷ = diag(p̂Ŷ (1), . . . , p̂Ŷ (m)), P̂s = diag(p̂S(1), . . . , p̂S(k)), and (P̂ŷ,s)i,j = p̂Ŷ ,S(i, j) with
p̂Ŷ (i), p̂S(j) > 0 for i ∈ [m], j ∈ [k].

Proof. Let W ∗ ∈ arg maxW∈Rk×m −Tr(WP̂ŷW
T ) + 2 Tr(WP̂ŷ,sP̂

−1/2
s ). Setting the derivative

of the expression on the RHS equal to zero leads to:

−2WP̂ŷ + 2P̂−1/2
s P̂Tŷ,s = 0 =⇒ W ∗ = P̂−1/2

s P̂Tŷ,sP̂
−1
ŷ .

Plugging this expression for W ∗, we have

max
W∈Rk×m

− Tr(WP̂ŷW
T ) + 2 Tr(WP̂ŷ,sP̂

−1/2
s )

= −Tr(P̂−1/2
s P̂Tŷ,sP

−1
ŷ P̂ŷ,sP̂

−1/2
s ) + 2 Tr(P̂−1/2

s P̂Tŷ,sP
−1
ŷ P̂ŷ,sP̂

−1/2
s )

= Tr(P̂−1/2
s P̂Tŷ,sP

−1
ŷ P̂ŷ,sP̂

−1/2
s )

= Tr(P̂−1
s P̂Tŷ,sP

−1
ŷ P̂ŷ,s).

Writing out the matrix multiplication explicitly in the last expression, we have

P̂−1
s P̂Tŷ,sP̂

−1
ŷ P̂ŷ,s = UV T ,

where Ui,j = p̂S(i)−1p̂Ŷ ,S(j, i) and Vi,j = p̂Ŷ (j)−1p̂Ŷ ,S(j, i), for i ∈ [k], j ∈ [m]. Hence

max
W∈Rk×m

−Tr(WP̂ŷW
T ) + 2 Tr(WP̂ŷ,sP̂

−1/2
s )

= Tr(UV T )

=
∑
i∈[k]

∑
j∈[m]

p̂Ŷ ,S(j, i)2

p̂S(i)p̂Ŷ (j)

= D̂R(Ŷ ;S) + 1,

which completes the proof.

Corollary 2 (Re-statement of Corollary 1). Let (xi, si, yi) be a random draw from D. Then,
Eq. (FERMI obj.) is equivalent to

min
θ

max
W∈Rk×m

{
F̂ (θ,W ) := L̂(θ) + λΨ̂(θ,W )

}
, (31)

where Ψ̂(θ,W ) = −Tr(WP̂ŷW
T ) + 2 Tr(WP̂ŷ,sP̂

−1/2
s )− 1 = 1

N

∑N
i=1 ψ̂i(θ,W ) and

ψ̂i(θ,W ) := −Tr(WE[ŷ(xi,θ)ŷ(xi,θ)T |xi]WT ) + 2 Tr(WE[ŷ(xi;θ)sTi |xi, si]P̂−1/2
s )− 1

= −Tr(Wdiag(F1(θ,xi), . . . ,Fm(θ,xi))W
T ) + 2 Tr(WE[ŷ(xi;θ)sTi |xi, si]P̂−1/2

s )− 1.

Proof. The proof simply follows the fact that

max
W∈Rk×m

E
[
ψ̂i(θ,W )

]
= max
W∈Rk×m

(
−Tr(WP̂ŷW

T ) + 2 Tr(WP̂ŷ,sP̂
−1/2
s )− 1

)
= D̂R(Ŷ ;S),

where the last equality is due to Proposition 1.

Next, we will state and prove the precise form of Theorem 1. We first recall some basic definitions:
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Definition 12. A function f is L-Lipschitz if for all u,u′ ∈ domain(f) we have ‖f(u)− f(u)‖ ≤
L‖u− u′‖.
Definition 13. A differentiable function f is β-smooth if for all u,u′ ∈ domain(∇f) we have
‖∇f(u)−∇f(u)‖ ≤ β‖u− u′‖.
Definition 14. A differentiable function f is µ-strongly concave if for all x,y ∈ domain(f), we have
f(x) + f(x)T (y − x)− µ

2 ‖y − x‖2 ≥ f(y)

Definition 15. A point θ∗ = A(D) output by a randomized algorithm A is an ε-stationary point of
a differentiable function Φ if E‖∇Φ(θ∗)‖ ≤ ε. We say θ∗ is an ε-stationary point of the nonconvex-
strongly concave min-max problem minθ maxW F (θ,W ) if it is an ε-stationary point of the differen-
tiable function Φ(θ) := maxW F (θ,W ).

Recall that Eq. (FERMI obj.) is equivalent to

min
θ

max
W∈Rk×m

{
F̂ (θ,W ) := L̂(θ) + λΨ̂(θ,W ) =

1

N

N∑
i=1

[
`(xi, yi,θ) + λψ̂i(θ,W )

]}
, (32)

where Ψ̂(θ,W ) = −Tr(WP̂ŷW
T ) + 2 Tr(WP̂ŷ,sP̂

−1/2
s )− 1 = 1

N

∑N
i=1 ψ̂i(θ,W ) and

ψ̂i(θ,W ) := −Tr(WE[ŷ(xi,θ)ŷ(xi,θ)T |xi]WT ) + 2 Tr(WE[ŷ(xi;θ)sTi |xi, si]P̂−1/2
s )− 1

= −Tr(Wdiag(F1(θ,xi), . . . ,Fm(θ,xi))W
T ) + 2 Tr(WE[ŷ(xi;θ)sTi |xi, si]P̂−1/2

s )− 1,

where ŷ(xi;θ) and si are the one-hot encodings of ŷ(xi;θ) and si, respectively.

Assumption 1. • `(·,x, y) is G-Lipscthiz, and β`-smooth for all x, y.

• F(·,x) is L-Lipschitz and b-smooth for all x.

• p̂min
ŷ := inf{θt,t∈[T ]}minj∈[m]

1
N

∑N
i=1 Fj(θ, xi) ≥

µ
2 > 0.

• p̂min
S := 1

N

∑N
i=1 1{si=j} > 0.

Remark 3. As mentioned in remark 1, the third bullet in Assumption 1 is convenient and allows for
a faster convergence rate, but not strictly necessary for convergence of Algorithm 1.

Theorem 3 (Precise statement of Theorem 1). Let {xi,yi, si}i∈[N ] be any given data set of features,
labels, and sensitive attributes and grant Assumption 1. LetW := BF (0, D) ⊂ Rk×m (Frobenius
norm ball of radius D), where D := 2

p̂min
Ŷ

√
p̂min
S

in Algorithm 1. Denote ∆Φ̂ := Φ̂(θ0)− infθ Φ̂(θ),

where Φ̂(θ) := maxW F̂ (θ,W ). In Algorithm 1, choose the step-sizes as ηθ = Θ(1/κ2β) and
ηW = Θ(1/β) and mini-batch size as |Bt| = Θ

(
max

{
1, κσ2ε−2

})
. Then under Assumption 1, the

iteration complexity of Algorithm 1 to return an ε-stationary point of Φ̂ is bounded by

O
(
κ2β∆Φ̂ + κβ2D2

ε2

)
,

which gives the total stochastic gradient complexity of

O
((

κ2β∆Φ̂ + κβ2D2

ε2

)
max

{
1, κσ2ε−2

})
,

where

β = 2

(
β` + 2λDmb

(
D +

1√
p̂min
S

)
+ 2 + 8L

(
D +

1√
p̂min
S

))
,

µ = 2λp̂min
Ŷ

,

κ = β/µ,

σ2 = 16λ2(D2 + 1) + 4G2 + 32λ2D2L2

(
1 +

mk

p̂min
S

)
.
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Remark 4. The larger minibatch size is necessary to obtain the faster O(ε−4) convergence rate
via two-timescale SGDA. However, as noted in [Lin et al., 2020, p.8], their proof readily extends to
any batch size |Bt| ≥ 1, showing that two-timescale SGDA still converges. But with |Bt| = 1, the
iteration complexity becomes slower: O(κ3ε−5). This is the informal Theorem 1 that was stated in
the main body.

In light of Corollary 1, Theorem 3 follows from [Lin et al., 2020, Theorem 4.5] combined with
the following technical lemmas. We assume Assumption 1 holds for the remainder of the proof of
Theorem 3:
Lemma 10. If xi, yi, si are drawn uniformly at random from data set D, then the gradients of
`(xi, yi,θ) + λ∇ψ̂i(θ,W ) are unbiased estimators of the gradients of F̂ (θ,W ) for all θ,W, λ:

E[∇θ`(xi, yi,θ) + λ∇θψ̂i(θ,W )] = ∇θF̂ (θ,W ), and

E[λ∇W ψ̂i(θ,W )] = ∇W F̂ (θ,W ).

Furthermore, if ‖W‖F ≤ D, then the variance of the stochastic gradients is bounded as follows:

sup
θ,W

E‖∇`(xi, yi,θ) + λ∇ψ̂i(θ,W )−∇F̂ (θ,W )‖2 ≤ σ2, (33)

where σ2 = 16λ2(D2 + 1) + 4G2 + 32λ2D2L2
(

1 + mk
p̂min
S

)
.

Proof. Unbiasedness is obvious. For the variance bound, we will show that

sup
θ,W

E‖λ∇W ψ̂i(θ,W )−∇W F̂ (θ,W )‖2 ≤ σ2
w, (34)

and
sup
θ,W

E‖∇θ`(xi, yi,θ) + λ∇θψ̂i(θ,W )−∇θF̂ (θ,W )‖2 ≤ σ2
θ, (35)

where σ2 = σ2
θ + σ2

w. First,

∇W ψ̂i(θ,W ) = −2WE[ŷ(xi,θ)ŷ(xi,θ)T |xi] + 2p̂s(r)
−1/2E[siŷ(xi,θ)|xi, si]. (36)

Thus, for any θ,W, λ, we have

E‖λ∇W ψ̂i(θ,W )−∇W F̂ (θ,W )‖2F =
4λ2

N

N∑
i=1

∥∥∥∥∥WE[ŷ(xi,θ)ŷ(xi,θ)T |xi]− p̂s(r)−1/2E[siŷ(xi,θ)T |xi, si]

− 1

N

N∑
i=1

(
WE[ŷ(xi,θ)ŷ(xi,θ)T |xi]− p̂s(r)−1/2E[siŷ(xi,θ)T |xi, si]

)∥∥∥∥∥
2

F

≤ 4λ2

N

N∑
i=1

2

[
‖W‖2F

∥∥∥E[ŷ(xi,θ)ŷ(xi,θ)T |xi]− P̂ŷ
∥∥∥2

F

+
∥∥∥P̂−1/2

s

(
E[siŷ(xi,θ)T |xi, si]− P̂Tŷ,s

)∥∥∥2

F

]

≤ 4λ2

N

N∑
i=1

2

[
2D2 +

∥∥∥P̂−1/2
s

(
E[siŷ(xi,θ)T |xi, si]− P̂Tŷ,s

)∥∥∥2

F

]

≤ 4λ2

N

N∑
i=1

2
[
2D2 + 2

]
≤ 16λ2(D2 + 1),

where we used Young’s inequality, the Frobenius norm inequality ‖AB‖F ≤ ‖A‖F ‖B‖F , the facts
that ‖E[ŷ(xi,θ)ŷ(xi,θ)T |xi]‖2F =

∑m
j=1 Fj(θ,xi)2 ≤ 1 and ‖P̂−1/2

s E[siŷ(xi,θ)T |xi, si]‖2F =∑k
j=1 s

2
i,j

∑m
l=1 Fl(xi,θ)2 ≤ 1 for all i ∈ [N ] (since for every i ∈ [N ], only one of the si,j is
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non-zero and equal to 1, and
∑m
l=1 Fl(θ,xi) = 1).

Next,

λ∇θψ̂i(θ,W ) = λ
[
−∇θ vec(E[ŷ(xi,θ)ŷ(xi,θ)T |xi])T vec(WTW ) + 2∇θ vec(E[siŷ(xi,θ)T |xi, si]) vec(WT P̂−1/2

s )
]
.

(37)
Hence, for any θ,W , we have

E‖∇θ`(xi, yi,θ) + λ∇θψ̂i(θ,W )−∇θF̂ (θ,W )‖2 ≤ 2

[
2 sup
xi,yi

‖∇θ`(xi, yi,θ)‖2

+ λ2 sup
xi,yi,si

∥∥∥−∇θ vec(E[ŷ(xi,θ)ŷ(xi,θ)T |xi])T vec(WTW )

+ 2∇θ vec(E[siŷ(xi,θ)T |xi, si]) vec(WT P̂−1/2
s )

∥∥∥2
]

≤ 4

[
G2 + 2λ2

(
sup
xi

∥∥∇θ vec(E[ŷ(xi,θ)ŷ(xi,θ)T |xi])T vec(WTW )
∥∥2

+ 4 sup
xi,si

∥∥∥∇θ vec(E[siŷ(xi,θ)T |xi, si]) vec(WT P̂−1/2
s )

∥∥∥2
)]

,

by Young’s and Jensen’s inequalities and the assumption that `(xi, yi, ·) is G-Lipschitz. Now,

∇θ vec(E[ŷ(xi,θ)ŷ(xi,θ)T |xi])T vec(WTW ) =

m∑
l=1

∇Fl(xi,θ)

k∑
j=1

Wj,1Wj,l,

which implies

‖∇θ vec(E[ŷ(xi,θ)ŷ(xi,θ)T |xi])T vec(WTW )‖2 ≤
∑
j,l

W 2
j,l sup
l∈[m],x,θ

‖∇Fl(x,θ)‖2 ≤ D2L2,

(38)
by L-Lipschitzness of F(·,x). Also,

∇θ vec(E[siŷ(xi,θ)T |xi, si]) vec(WT P̂−1/2
s ) =

k∑
r=1

m∑
j=1

∇Fj(θ,xi)
si,rWr,j√
p̂S(r)

,

which implies∥∥∥∇θ vec(E[siŷ(xi,θ)T |xi, si]) vec(WT P̂−1/2
s )

∥∥∥2

≤ mk
k∑
r=1

m∑
j=1

sup
xi,θ
‖∇Fj(θ,xi)‖2

(
si,rWr,j√
p̂S(r)

)2

≤ mk

p̂min
S

L2D2.

Thus,

σ2
θ ≤ 4G2 + 32λ2D2L2

(
1 +

mk

p̂min
S

)
.

Combining the θ- and W -variance bounds yields the lemma.

Lemma 11. Let

F̂ (θ,W ) =
1

N

∑
i∈[N ]

`(xi, yi;θ) + λψ̂i(θ,W )

where

ψ̂i(θ,W ) = −Tr(WE[ŷ(xi,θ)ŷ(xi,θ)T |xi]WT ) + 2 Tr(WE[ŷ(xi;θ)sTi |xi, si]P̂−1/2
s )− 1.

Then:

1. F̂ is β-smooth, where β = 2

(
β` + 2λDmb

(
D + 1√

p̂min
S

)
+ 2 + 8L

(
D + 1√

p̂min
S

))
.
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2. F̂ (θ, ·) is 2λp̂min
Ŷ

-strongly concave for all θt.

3. IfW = BF (0, D) with D ≥ 2

p̂min
Ŷ

√
p̂min
S

, then Eq. (1) = minθ maxW∈W F̂ (θ,W ).

Proof. We shall freely use the expressions for the derivatives of ψ̂i obtained in the proof of Lemma 10.
1. First,

‖∇wF̂ (θ,W )−∇wF̂ (θ,W ′)‖F ≤ 2 sup
xi

‖WE[ŷ(xi,θ)ŷ(xi,θ)T |xi]−W ′E[ŷ(xi,θ)ŷ(xi,θ)T |xi]‖F

≤ 2‖W −W ′‖F ,

since Fj(θ,xi) ≤ 1 for all j ∈ [m]. Next,

‖∇wF̂ (θ,W )−∇wF̂ (θ′,W )‖2F

≤ 8 sup
xi,si,yi

[
D2
∥∥∥E[ŷ(xi,θ)ŷ(xi,θ)T |xi]− E[Ŷ(xi,θ

′)Ŷ(xi,θ
′)T |xi]

∥∥∥2

F

+
∥∥∥P̂−1/2

s

(
E[siŷ(xi,θ)T |xi, si]− E[siŶ(xi,θ

′)T |xi, si]
)∥∥∥2

F

]

≤ 8 sup
xi,si,yi

[
D2 ‖F(θ,xi)−F(θ′,xi)‖

2
F

+

m∑
j=1

k∑
r=1

|Fj(θ,xi)−Fj(θ′,xi)|2p̂s(r)(r)−1s2
i,r

]

≤ 8 sup
xi,si,yi

[
D2L2‖θ − θ′‖2 +

L2

p̂min
S

‖θ − θ′‖2
]
,

which implies

‖∇wF̂ (θ,W )−∇wF̂ (θ′,W )‖F ≤ 8L

(
D +

1√
p̂min
S

)
‖θ − θ′‖.

Lastly,

‖∇θF̂ (θ,W )−∇θF̂ (θ′,W )‖ ≤ sup
xi,yi,si

[
‖∇`(xi, yi,θ)−∇`(xi, yi,θ′)‖

+ λ
∥∥∥ [−∇θ vec(E[ŷ(xi,θ)ŷ(xi,θ)T |xi])T +∇θ vec(E[ŷ(xi,θ

′)ŷ(xi,θ
′)T |xi])T

]
· vec(WTW )

∥∥∥+ 2λ
∥∥∥[∇θ vec(E[siŷ(xi,θ)T |xi, si])−∇θ vec(E[siŷ(xi,θ

′)T |xi, si])]

· vec(WT P̂−1/2
s )

∥∥∥]

≤ β`‖θ − θ′‖+ λD2 sup
x

m∑
l=1

‖∇Fl(θ,x)−∇Fl(θ′,x)‖

+ 2λ sup
x,r∈[k]

∥∥∥∥∥∥
m∑
j=1

∇Fj(θ,x)−∇Fj(θ′,x)p̂S(r)−1/2Wr,j

∥∥∥∥∥∥
≤

[
β` + 2λ

(
D2b+

Db√
p̂min
S

)]
‖θ − θ′‖,

by Assumption 1. Combining the above inequalities yields part 1.
2. We have ∇2

wwF̂ (θ,W ) = −2λP̂ŷ, which is a diagonal matrix with (∇2
wwF̂ (θ,W ))j,j =
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−2λ 1
N

∑N
i=1 Fj(xi,θ) ≤ −2λp̂min

Ŷ
, by Assumption 1. Thus, F̂ (·,θ) is 2λp̂min

Ŷ
-strongly concave

for all θ.
3. Our choice of D ensures that W ∗(θ∗) ∈ int(W), since

‖W ∗(θ∗)‖F = ‖P̂−1/2
s P̂ŷ,s(θ

∗)T P̂ŷ(θ∗)−1‖F (39)

≤ 1

p̂min
Ŷ

√
p̂min
S

. (40)

Therefore, maxW∈W F̂ (θ,W ) = maxW F̂ (θ,W ), which implies part 3 of the lemma.

By Assumption 1 and Lemma 11, our choice ofW implies that W ∗(θ∗) ∈ W and hence that the
solution of Eq. (FERMI obj.) solves

min
θ

max
W∈W

F̂ (θ,W ) :=
1

N

∑
i∈[N ]

L̂(θ) + λΨ̂(θ,W )

 .

This enables us to establish the convergence of Algorithm 1 (which involves projection) to a stationary
point for the unconstrained min-max optimization problem Eq. (1) that we consider. The W t

projection step in Algorithm 1 is necessary to ensure that the iterates W t remain bounded, and hence
that the smoothness and bounded variance conditions of F̂ are satisfied at every iteration.

D.1 Proof of Theorem 2

Now we turn to the proof of Theorem 2. We first re-state and prove Proposition 2.
Proposition 4 (Restatement of Proposition 2). Let {zi}ni=1 = {xi, si, yi}ni=1 be
drawn i.i.d. from an unknown joint distribution D. Denote ψ̂

(n)
i (θ,W ) =

−Tr(WE[ŷ(xi,θ)ŷ(xi,θ)T |xi]WT ) + 2 Tr

(
WE[ŷ(xi;θ)sTi |xi, si]

(
P̂

(n)
s

)−1/2
)
− 1,

where P̂
(n)
s = 1

n

∑n
i=1 diag(1{si=1}, · · · ,1{si=k}). Denote Ψ(θ,W ) = −Tr(WPŷW

T ) +

2 Tr(WPŷ,sP
−1/2
s ) − 1, where Pŷ = diag(EF1(θ,x), · · · ,EFm(θ,x)), (Pŷ,s)j,r =

Exi,si [Fj(θ,xi)si,r] for j ∈ [m], r ∈ [k], and Ps = diag(PS(1), · · · , PS(k)). Assume
pS(r) > 0 for all r ∈ [k]. Then,

max
W

Ψ(θ,W ) = DR(Ŷ (θ);S)

and
lim
n→∞

E[ψ̂
(n)
i (θ,W )] = Ψ(θ,W ).

Proof. The first claim, that maxW Ψ(θ,W ) = DR(Ŷ (θ);S) is immediate from Proposition 1 and
its proof, by replacing the empirical probabilities with D-probabilities everywhere. For the second
claim, we clearly have

E[ψ̂
(n)
i (θ,W )] = E

[
−Tr(WE[ŷ(xi,θ)ŷ(xi,θ)T |xi]WT )

]
+ 2E

[
Tr

(
WE[ŷ(xi;θ)sTi |xi, si]

(
P̂ (n)
s

)−1/2
)]
− 1

(41)

= −Tr(WPŷW
T ) + 2E

[
Tr

(
WE[ŷ(xi;θ)sTi |xi, si]

(
P̂ (n)
s

)−1/2
)]
− 1,

for any n ≥ 1. Now, P̂ (n)
s (r) converges almost surely (and in probability) to pS(r) by the strong law

of large numbers, and E[P̂
(n)
s (r)] = pS(r). Thus, P̂ (n)

s (r) is a consistent estimator of pS(r). Then
by the continuous mapping theorem and the assumption that pS(r) ≥ C for some C > 0, we have

that
(
P̂

(n)
s (r)

)−1/2

converges almost surely (and in probability) to pS(r)−1/2. Moreover, we claim

that there exists N∗ ∈ N such that for any n ≥ N∗, Var

((
P̂

(n)
s (r)

)−1/2
)
≤ 2

C
< ∞. To see why
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this claim holds, note that the definition of almost sure convergence of P̂ (n)
s (r) to pS(r) implies that,

with probability 1, there exists N∗ such that for all n ≥ N∗,

min
r∈[k]

P̂ (n)
s (r) ≥ min

r∈[k]
pS(r)− C/2 ≥ C/2.

Thus, Var

((
P̂

(n)
s (r)

)−1/2
)
≤ E

[(
P̂

(n)
s (r)

)−1
]
≤ 2

C
. Therefore

(
P̂

(n)
s (r)

)−1/2

is a con-

sistent estimator with uniformly bounded variance, hence it is asymptotically unbiased:

limn→∞ E
[(
P̂

(n)
s (r)

)−1/2
]

= pS(r)−1/2. Furthermore,

∣∣∣∣∣
(
E[ŷ(xi;θ)sTi |xi, si]

(
P̂

(n)
s

)−1/2
)
j,r

∣∣∣∣∣ ≤
2
C

for all n ≥ N∗ and
(
E[ŷ(xi;θ)sTi |xi, si]

(
P̂

(n)
s

)−1/2
)
j,r

converges almost surely to(
E[ŷ(xi;θ)sTi |xi, si] (PS)

−1/2
)
j,r

as n → ∞ (for any j ∈ [m], r ∈ [k]). Thus, by Lebesgue’s

dominated convergence theorem, we have

lim
n→∞

(
E
[
E[ŷ(xi;θ)sTi |xi, si]

(
P̂ (n)
s

)−1/2
])

j,r

= E
[
E[ŷ(xi;θ)sTi |xi, si] lim

n→∞

(
P̂ (n)
s (r)

)−1/2
]

= E [si,rFj(θ,xi)] lim
n→∞

(
P̂ (n)
s (r)

)−1/2

= (Pŷ,s)j,rpS(r)−1/2

= (Pŷ,sP
−1/2
s )j,r, (42)

for all j ∈ [m], r ∈ [k]. Combining Eq. (41) with Eq. (42) (and using linearity of trace and matrix
multiplication) proves the second claim.

We are now ready to prove Theorem 2.

Proof of Theorem 2. Denote Φ(θ) := maxW F (θ,W ) for the population-level objective
F (θ,W ) := L(θ) + λΨ(θ,W ) (using the notation in Proposition 2). Let θ∗ denote the output
of the one-pass/sample-without-replacement version of Algorithm 1, run on the modified empir-

ical objective where
(
P̂

(n)
s

)−1/2

is replaced by the true sensitive attribute matrix P−1/2
S . That

is, θ∗ ∼ Unif(θ∗1 , . . . ,θ∗T ), where θ∗t denotes the t-th iterate of the modified FERMI algorithm
just described. Then, given i.i.d. samples, the stochastic gradients are unbiased (with respect to
the population distribution D) for any minibatch size, by Corollary 1 and its proof. Further, the
without-replacement sampling strategy ensures that the stochastic gradients are independent across

iterations. Additionally, the proof of Proposition 2 showed that
(
P̂

(n)
s

)−1/2

converges almost surely

to P−1/2
S . Thus, there exists N such that if n ≥ N ≥ T = Ω(ε−5), then minr∈[k] P̂

(n)
s (r) > 0 (by

almost sure convergence of P̂s, see proof of Proposition 2), and

E‖∇Φ(θ∗)‖2 ≤ ε

4
, (43)

by Theorem 1 and its proof. Let θ̂(n)
t denote the t-th iteration of the one-pass version of Algorithm 1

run on the empirical objective (with
(
P̂

(n)
s

)−1/2

). Now,

∇θψ̂i(θ,W ) = −∇θ vec(E[ŷ(xi,θ)ŷ(xi,θ)T |xi])T vec(WTW )

+ 2∇θ vec(E[siŷ(xi,θ)T |xi, si]) vec

(
WT

(
P̂ (n)
s

)−1/2
)
,

which shows that θ̂(n)
t is a continuous (indeed, linear) function of

(
P̂

(n)
s

)−1/2

for every t. Thus, the

continuous mapping theorem implies that θ̂(n)
t converges almost surely to θ∗t as n→∞ for every

t ∈ [T ]. Hence, if θ̂(n) ∼ Unif
(
θ̂

(n)
1 , . . . , θ̂

(n)
T

)
, then θ̂(n) converges almost surely to θ∗. Now,
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for any θ, let us denote W (θ) = arg maxW F (θ,W ). Recall that by Danskin’s theorem Danskin
[1966], we have ∇Φ(θ) = ∇θF (θ,W (θ)). Then,

‖∇Φ(θ̂(n))−∇Φ(θ∗)‖2 ≤ 2
∥∥∥∇θF (θ̂(n),W (θ̂(n)))−∇θF (θ∗,W (θ̂(n)))

∥∥∥2

+ 2
∥∥∥∇θF (θ∗,W (θ̂(n)))−∇θF (θ∗,W (θ∗))

∥∥∥2

≤ 2
[
β2‖θ̂(n) − θ∗‖2 + β2‖W (θ̂(n))−W (θ∗)‖2

]
≤ 2

[
β2‖θ̂(n) − θ∗‖2 +

2β2L2

µ2
‖θ̂(n) − θ∗‖2

]
,

where L denotes the Lipschitz parameter of F , β is the Lipschitz parameter of ∇F , and µ is
the strong concavity parameter of F (θ, ·): see Lemma 11 and its proof (in Appendix D) for the
explicit β, L, and µ. We used Danskin’s theorem and Young’s inequality in the first line, β-
Lipschitz continuity of∇F in the second line, and 2L

µ -Lipschitz continuity of the arg maxW F (θ,W )

function for µ-strongly concave and L-Lipschitz F (θ, ·) (see e.g. [Lowy and Razaviyayn, 2021,
Lemma B.2]). Letting n → ∞ makes ‖θ̂(n) − θ∗‖2 → 0 almost surely, and hence ‖∇Φ(θ̂(n)) −
∇Φ(θ∗)‖2 → 0 almost surely. Furthermore, Danskin’s theorem and Lipschitz continuity of ∇θF
implies that ‖∇Φ(θ̂(n))−∇Φ(θ∗)‖2 ≤ C almost surely for some absolute constant C > 0 and all
n sufficiently large. Therefore, we may apply Lebesgue’s dominated convergence theorem to get
limn→∞ E‖∇Φ(θ̂(n)) − ∇Φ(θ∗)‖2 = E

[
limn→∞ ‖∇Φ(θ̂(n))−∇Φ(θ∗)‖2

]
= 0. In particular,

there exists N such that n ≥ N =⇒ E‖∇Φ(θ̂(n))−∇Φ(θ∗)‖2 ≤ ε
4 . Combining this with Eq. (43)

and Young’s inequality completes the proof.
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E Experiment Details and Additional Results

E.1 Model description

For all the experiments, the model’s output is of the form O = softmax(Wx+ b). The model outputs
are treated as conditional probabilities p(ŷ = i|x) = Oi which are then used to estimate the ERMI
regularizer. We encode the true class label Y and sensitive attribute S using one-hot encoding. We
define `(·) as the cross-entropy measure between the one-hot encoded class label Y and the predicted
output vector O.

We use logistic regression as the base classification model for all experiments in Fig. 1. The choice
of logistic regression is due to the fact that all of the existing approaches demonstrated in Fig. 1, use
the same classification model. The model parameters are estimated using the algorithm described in
Algorithm 1. The trade-off curves for FERMI are generated by sweeping across different values for
λ ∈ [0, 10000]. The learning rates ηθ, ηw is constant during the optimization process and is chosen
from the interval [0.0005, 0.01] for all datasets. Moreover, the number of iterations T for experiments
in Fig. 1 is fixed to 2000. Since the training and test data for the Adult dataset are separated and
fixed, we do not consider confidence intervals for the test accuracy. We generate ten distinct train/test
sets for each one of the German and COMPAS datasets by randomly sampling 80% of data points as
the training data and the rest 20% as the test data. For a given method in Fig. 1, the corresponding
curve is generated by taking the average test accuracy on 10 training/test datasets. Furthermore,
the confidence intervals are estimated based on the test accuracy’s standard deviation on these 10
datasets.

To perform the experiments in Sec. 3.3 we use a a linear model with softmax activation. The
model parameters are estimated using the algorithm described in Sec. 3. The data set is cleaned
and processed as described in Kearns et al. [2018]. The trade-off curves for FERMI are generated
by sweeping across different values for λ in [0, 100] interval, learning rate η in [0.0005, 0.01], and
number of iterations T in [50, 200]. The data set is cleaned and processed as described in Kearns et al.
[2018].

For the experiments in Sec. 3.4, we create the synthetic color MNIST as described by Li and
Vasconcelos [2019]. We set the value σ = 0. In Fig. 6, we compare the performance of stochastic
solver (Algorithm 1) against the baselines. We use a mini-batch of size 512 when using the stochastic
solver. The color MNIST data has 60000 training samples, so using the stochastic solver gives a
speedup of around 100x for each iteration, and an overall speedup of around 40x. We present our
results on two neural network architectures; namely, LeNet-5 Lecun et al. [1998] and a Multi-layer
perceptron (MLP). We set the MLP with two hidden layers (with 300 and 100 nodes) and an output
layer with ten nodes. A ReLU activation follows each hidden layer, and a softmax activation follows
the output layer.

Some general advice for tuning λ: Larger value for λ generally translates to better fairness, but one
must be careful to not use a very large value for λ as it could lead to poor generalization performance
of the model. The optimal values for λ, η, and T largely depend on the data and intended application.
We recommend starting with λ ≈ 10. In Appendix E.4, we can observe the effect of changing λ on
the model accuracy and fairness for the COMPAS dataset.

E.2 More comparison to Mary et al. [2019]

The algorithm proposed by Mary et al. [2019] backpropagates the batch estimate of ERMI, which is
biased especially for small minibatches. Our work uses a correct and unbiased implementation of
a stochastic ERMI estimator. Furthermore, Mary et al. [2019] does not establish any convergence
guarantees, and in fact their algorithm does not converge. See Fig. 7 for the evolution of training
loss (i.e. value of the objective function) and test accuracy. For this experiment, we follow the same
setup used in [Mary et al., 2019, Table 1]; the minibatch size for this experiment is 128.

E.3 Performance in the presence of outliers & class-imbalance

We also performed an additional experiment on Adult (setup of Fig 1) with a random 10% of sensitive
attributes in training forced to 0. FERMI offers the most favorable tradeoffs on clean test data,
however, all methods reach a higher plateau (see Fig 8). The interplay between fairness, robustness,
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Figure 7: Mary et al. [2019] fails to converge to a stationary point whereas our stochastic algorithm easily
converges.

and generalization is an important future direction. With respect to imbalanced sensitive groups, the
experiments in Fig 5 are on a naturally imbalanced dataset, where maxs∈S p(s)/mins∈S p(s) > 100
for 3-18 sensitive attrib, and FERMI offers the favorable tradeoffs.

Figure 8: Comparing FERMI with other methods in the presence of outliers (random 10% of sensitive attributes
in training forced to 0. FERMI still achieves a better trade-off compared to all other baselines.

E.4 Effect of hyperparameter λ on the accuracy-fairness tradeoffs

We run ERMI algorithm for the binary case to COMPAS dataset to investigate the effect of hyper-
parameter tuning on the accuracy-fairness trade-off of the algorithm. As it can be observed in Fig. 9,
by increasing λ from 0 to 1000, test error (left axis, red curves) is slightly increased. On the other
hand, the fairness violation (right axis, green curves) is decreased as we increase λ to 1000. Moreover,
for both notions of fairness (demographic parity with the solid curves and equality of opportunity
with the dashed curves) the trade-off between test error and fairness follows the similar pattern. To
measure the fairness violation, we use demographic parity violation and equality of opportunity
violation defined in Section equation 3 for the solid and dashed curves respectively.

E.5 Complete version of Figure 1 (with pre-processing and post-processing baselines)

In Figure 1 we compared FERMI with several state-of-the-art in-processing approaches. In the
next three following figures we compare the in-processing approaches depicted in Figure 1 with
pre-processing and post-processing methods including Hardt et al. [2016], Kamiran et al. [2010],
Feldman et al. [2015].
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Figure 9: Tradeoff of fairness violation vs test error for FERMI algorithm on COMPAS and Adult datasets.
The solid and dashed curves correspond to FERMI algorithm under the demographic parity and equality of
opportunity notions accordingly. The left axis demonstrates the effect of changing λ on the test error (red curves),
while the right axis shows how the fairness of the model (measured by equality of opportunity or demographic
parity violations) depends on changing λ.

Figure 10: Tradeoff of demographic parity violation vs test error for FERMI algorithm on COMPAS, German,
and Adult datasets.

E.6 Description of datasets

All of the following datasets are publicly available at UCI repository.

German Credit Dataset.11 German Credit dataset consists of 20 features (13 categorical and 7
numerical) regarding to social, and economic status of 1000 customers. The assigned task is to
classify customers as good or bad credit risks. Without imposing fairness, the DP violation of the

11https://archive.ics.uci.edu/ml/datasets/statlog+(german+credit+data)
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Figure 11: Tradeoff of equalized odds violation vs test error for FERMI algorithm on COMPAS, German, and
Adult datasets.

trained model is larger than 20%. We choose 80% of customers as the train data and the remaining
20% customers as the test data. The sensitive attributes are gender, and marital-status.

Adult Dataset.12 Adult dataset contains the census information of individuals including education,
gender, and capital gain. The assigned classification task is to predict whether a person earns over
50k annually. The train and test sets are two separated files consisting of 32, 000 and 16, 000 samples
respectively. We consider gender and race as the sensitive attributes (For the experiments involving
one sensitive attribute, we have chosen gender). Learning a logistic regression model on the training
dataset (without imposing fairness) shows that only 3 features out of 14 have larger weights than
the gender attribute. Note that removing the sensitive attribute (gender), and retraining the model
does not eliminate the bias of the classifier. the optimal logistic regression classifier in this case is
still highly biased. For the clustering task, we have chosen 5 continuous features (Capital-gain, age,
fnlwgt, capital-loss, hours-per-week), and 10, 000 samples to cluster. The sensitive attribute of each
individual is gender.

Communities and Crime Dataset.13 The dataset is cleaned and processed as described in Kearns
et al. [2018]. Briefly, each record in this dataset summarizes aggregate socioeconomic information
about both the citizens and police force in a particular U.S. community, and the problem is to predict
whether the community has a high rate of violent crime.

COMPAS Dataset.14 Correctional Offender Management Profiling for Alternative Sanctions (COM-
PAS) is a famous algorithm which is widely used by judges for the estimation of likelihood of
reoffending crimes. It is observed that the algorithm is highly biased against the black defendants.

12https://archive.ics.uci.edu/ml/datasets/adult.
13http://archive.ics.uci.edu/ml/datasets/communities+and+crime
14https://www.kaggle.com/danofer/compass
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Figure 12: Tradeoff of equality of opportunity violation vs test error for FERMI algorithm on COMPAS,
German, and Adult datasets.

The dataset contains features used by COMPAS algorithm alongside with the assigned score by the
algorithm within two years of the decision.

Colored MNIST Dataset.15 We use the code by Li and Vasconcelos [2019] to create a Colored
MNIST dataset with σ = 0. We use the provided LeNet-5 model trained on the colored dataset for
all baseline models of Baharlouei et al. [2020], Mary et al. [2019], Cho et al. [2020a] and FERMI,
where we further apply the corresponding regularizer in the training process.

15https://github.com/JerryYLi/Dataset-REPAIR/
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F Code for Experiments

The code for all of the experiments in this paper is available on Dropbox:
https://www.dropbox.com/sh/516cm8olq0idpsd/AADD0LOcPWpx4AAhzsEkFTOca?dl=0
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