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Abstract

Despite the remarkable progress in natural lan-001
guage understanding with pretrained Trans-002
formers, neural language models often do003
not have commonsense knowledge. Toward004
commonsense-aware models, there have been005
attempts to obtain knowledge, ranging from006
automatic acquisition to crowdsourcing. How-007
ever, it is difficult to obtain a high-quality008
knowledge base at a low cost, especially from009
scratch. In this paper, we propose PHALM, a010
method of building a knowledge graph from011
scratch, by prompting both crowdworkers and012
a large language model. We used this method013
to build a Japanese event knowledge graph and014
trained Japanese neural commonsense models.015
Experimental results revealed the acceptabil-016
ity of the built graph and inferences generated017
by the trained models. We also report the dif-018
ference in prompting humans and a language019
model.020

1 Introduction021

Since pretrained models (Radford and Narasimhan,022

2018; Devlin et al., 2019; Yang et al., 2019) based023

on Transformer (Vaswani et al., 2017) appeared,024

natural language understanding has made remark-025

able progress. In some benchmarks, the perfor-026

mance of natural language understanding models027

has already exceeded that of humans. These mod-028

els are applied to various downstream tasks ranging029

from translation and question answering to narra-030

tive understanding and dialogue response genera-031

tion. In recent years, the number of parameters in032

such models has continued to increase (Radford033

et al., 2019; Brown et al., 2020), and so has their034

performance.035

When we understand or reason, we usually rely036

on commonsense knowledge. Computers also need037

such knowledge to answer open-domain questions038

and to understand narratives and dialogues, for ex-039

ample. However, pretrained models often do not040

have commonsense knowledge.041

Figure 1: An overview of our method. We build a knowl-
edge graph step by step from scratch, by prompting both
humans and a language model.

There are many knowledge bases for common- 042

sense inference. Some are built by crowdsourcing 043

(Speer et al., 2017; Sap et al., 2019; Hwang et al., 044

2021), but acquiring a large-scale knowledge base 045

is high-cost. Others are built by automatic acquisi- 046

tion (Zhang et al., 2019, 2020), but it is difficult to 047

acquire high-quality commonsense knowledge. Re- 048

cently, there have been some methods using large 049

language models (LLMs) for building knowledge 050

bases (Yuan et al., 2021; West et al., 2022; Liu 051

et al., 2022). They often extend existing datasets, 052

but do not build new datasets from scratch. 053

In this paper, we propose PHALM1, a method 054

to build a knowledge graph from scratch with both 055

crowdsourcing and an LLM. Asking humans to de- 056

scribe knowledge using crowdsourcing and gener- 057

ating knowledge using a language model are essen- 058

tially the same (as it were, the latter is an analogy 059

of the former), and both can be considered to be 060

prompting. Therefore, we consider prompting for 061

1PHALM stands for Prompting Humans And a Language
Model.
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both humans and a language model and gradually062

acquire a knowledge graph from a small scale to a063

large scale. Specifically, we acquire a small-scale064

knowledge graph by asking crowdworkers to de-065

scribe knowledge and use them as a few shots for066

an LLM to generate a large-scale knowledge graph.067

At each phase, we guarantee the quality of graphs068

by applying appropriate filtering.069

We built a Japanese knowledge graph on events,070

considering prompts for both humans and a lan-071

guage model. With Yahoo! Crowdsourcing2 and072

HyperCLOVA JP, a Japanese variant of the LLMs073

built by Kim et al. (2021), we obtained a knowl-074

edge graph that is not a simple translation, but075

unique to the culture. Then, we compared infer-076

ences collected by crowdsourcing and generated077

by the LLM. In addition to acquisition, we trained078

a Japanese neural commonsense model based on079

the built knowledge graph. With the model, we080

verified the acceptability of output inferences for081

unseen events. The resulting knowledge graph and082

the commonsense model created in this paper will083

be released to the public.3084

2 Related Work085

2.1 Commonsense Knowledge Datasets086

There are several knowledge bases about common-087

sense, from what appears in the text to what is tacit088

but not written in the text. ConceptNet (Speer et al.,089

2017), for example, is a knowledge graph that con-090

nects words and phrases by relations. GenericsKB091

(Bhakthavatsalam et al., 2020) is a corpus describ-092

ing knowledge of entities in natural language rather093

than in graph.094

In some datasets, commonsense knowledge is095

collected in the form of question answering. Roem-096

mele et al. (2011) acquire plausible causes and ef-097

fects for premises as two-choice questions. Zellers098

et al. (2018) provide SWAG, acquiring inferences099

about a situation from video captions as four-choice100

questions. KUCI (Omura et al., 2020) is a dataset101

for commonsense inference in Japanese, which is102

obtained by combining automatic extraction and103

crowdsourcing. Talmor et al. (2019) build Com-104

monsenseQA, which treats commonsense on Con-105

ceptNet’s entities as question answering.106

2https://crowdsourcing.yahoo.co.jp/
3if accepted

2.2 Knowledge Graphs on Events 107

Regarding commonsense knowledge bases, there 108

are several graphs that focus on events. ATOMIC 109

(Sap et al., 2019) describes the relationship be- 110

tween events, mental states (Rashkin et al., 2018), 111

and personas. Hwang et al. (2021) merge ATOMIC 112

and ConceptNet, proposing ATOMIC-2020. 113

There are also studies for leveraging con- 114

text. GLUCOSE (Mostafazadeh et al., 2020) 115

is a commonsense inference knowledge graph 116

for short stories, built by annotating ROCStories 117

(Mostafazadeh et al., 2016). CIDER (Ghosal et al., 118

2021) and CICERO (Ghosal et al., 2022) are the 119

graphs for dialogues, where DailyDialog (Li et al., 120

2017) and other dialogue corpora are annotated 121

with inferences. 122

ASER (Zhang et al., 2019) is an event knowledge 123

graph, automatically extracted from text corpora by 124

focusing on discourse. With ASER, TransOMCS 125

(Zhang et al., 2020) aims at bootstrapped knowl- 126

edge graph acquisition by pattern matching and 127

ranking. 128

While ConceptNet and ATOMIC are acquired 129

by crowdsourcing, ASER and TransOMCS are au- 130

tomatically built. On one hand, a large-scale graph 131

can be built easily in an automatic way, but it is 132

difficult to obtain knowledge not appearing in the 133

text. On the other hand, crowdsourcing can gather 134

high-quality data, but it is expensive in terms of 135

both money and time. 136

There is a method that uses crowdsourcing and 137

neural language models together to build an event 138

knowledge graph (West et al., 2022). Although it 139

is possible to acquire a large-scale and high-quality 140

graph, they assume that an initial graph, ATOMIC 141

in this case, has already been available. 142

2.3 Neural Commonsense Models 143

There have been studies on storing knowledge in 144

a neural form rather than a symbolic form. In par- 145

ticular, methods of considering neural language 146

models as knowledge bases (Petroni et al., 2019; 147

AlKhamissi et al., 2022) have been developed. 148

Bosselut et al. (2019) train COMET by finetuning 149

pretrained Transformers on ATOMIC and Concept- 150

Net, aiming at inference on unseen events and con- 151

cepts. Gabriel et al. (2021) point out that COMET 152

ignores discourse, introducing recurrent memory 153

for paragraph-level information. 154

West et al. (2022) propose symbolic knowledge 155

distillation where specific knowledge in a general 156

2

https://crowdsourcing.yahoo.co.jp/


(a) For events (b) For inferences (xEffect)

Figure 2: Examples of crowdsourcing interfaces. Crowdworkers are asked to describe events and inferences.

language model is distilled into a specific language157

model via a symbolic form. They expand ATOMIC158

using GPT-3 (Brown et al., 2020), filter the outputs159

using RoBERTa (Liu et al., 2019), and finetune160

GPT-2 (Radford et al., 2019) on the filtered ones.161

3 Prompting Humans and a Language162

Model163

We propose a method to build a knowledge graph164

for commonsense inference from scratch, with165

both crowdsourcing and a language model. In our166

method, we first construct a small-scale knowledge167

graph by crowdsourcing. Using the small-scale168

graph for prompts, we then extract commonsense169

knowledge from a language model. The flow of170

our method is shown in Figure 1. Building a knowl-171

edge graph from scratch only by crowdsourcing is172

expensive in terms of both money and time. Hence,173

the combination of crowdsourcing and a language174

model is expected to reduce the cost, especially in175

terms of time.176

In other words, our method consists of the fol-177

lowing two phases: (1) collecting a small-scale178

graph by crowdsourcing and (2) generating a large-179

scale graph by a language model. While crowd-180

sourcing elicits commonsense from people, shots181

are used to extract knowledge from a language182

model. At this point, these phases are intrinsically183

the same, being considered as prompting. In the184

two phases, namely, we prompt people and a lan-185

guage model, respectively.186

We build a commonsense inference knowledge187

graph in Japanese, with the concept of Section 3.188

We focus on an event knowledge graph such as 189

ATOMIC (Sap et al., 2019) and ASER (Zhang 190

et al., 2019). Handling commonsense on events 191

and mental states would facilitate understanding of 192

narratives and dialogues. We use Yahoo! Crowd- 193

sourcing in the first phase and HyperCLOVA JP 194

(Kim et al., 2021), an LLM in Japanese, in the 195

second phase. 196

3.1 Acquisition by Crowdsourcing 197

We first acquire a small-scale high-quality knowl- 198

edge graph by crowdsourcing. With Yahoo! 199

Crowdsourcing, specifically, we ask crowdworkers 200

to write events and inferences. In a task, we provide 201

them with 10 shots as a prompt for each event and 202

inference. Note that for inferences, the prompts 203

differ for each relation as mentioned later. We ob- 204

tain a graph by filtering the collected inferences 205

syntactically and semantically. 206

Events We ask crowdworkers to write daily 207

events related to at least one person (PersonX). 208

An example of the crowdsourcing task interface 209

is shown in Figure 2a. The task provides instruc- 210

tions and 10 examples, and each crowdworker is 211

asked to write at least one event. After all tasks are 212

completed, we remove duplicate events. As a result, 213

257 events were acquired from 200 crowdworkers. 214

We manually verified that all of the acquired events 215

have a sufficient quality. 216

Inferences For the events collected above, we 217

ask crowdworkers to write inferences about what 218

happens and how a person feels before and after 219

the events. In this paper, the relations for inference 220
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Inst # Val # Val % IAA
Event 257 - - -
xNeed 504 402 79.76 39.85
xEffect 621 554 89.21 25.00
xIntent 603 519 86.07 36.11
xReact 639 550 86.07 31.82

Table 1: The statistics on events and inferences acquired
by crowdsourcing.

are based on ATOMIC.4 The following four are221

adopted as our target relations.222

• What would have happened before (xNeed)223

• What would happen after (xEffect)224

• What PersonX would have felt before (xIn-225

tent)226

• What PersonX would feel after (xReact)227

While xNeed and xEffect are inferences about228

events, xIntent and xReact are inferences about229

mental states.230

Three crowdworkers are hired per event. Given231

an instruction and 10 examples, each crowdworker232

is asked to write one inference. An example of the233

crowdsourcing task interface is shown in Figure 2b.234

We remove duplicate inferences as in the case of235

events, and then apply syntactic filtering5 using the236

Japanese syntactic parser KNP6.237

The statistics of the acquired events and infer-238

ences are shown in the Inst # column of Table 1.239

The whole process costed 16,844 JPY (approxi-240

mately 123 USD) by hiring 547 crowdworkers. Ex-241

amples of acquired inferences are shown in Table242

2.243

3.2 Evaluation and Filtering244

To examine the qualities of the inferences acquired245

by crowdsourcing, we crowdsource their evalua-246

tion. We ask three crowdworkers whether the in-247

ferences are acceptable or not and judge their ac-248

ceptability by majority voting. The evaluation is249

4The relations are not exactly the same as those of
ATOMIC. xIntent in this paper covers xIntent and xWant in
ATOMIC, and tails for our xIntent and xReact may contain not
mental states but events. The reason for the difference is that
English and Japanese have different linguistic characteristics,
i.e., it is difficult to collect knowledge in the same structure as
the original.

5KNP determines if the subject is PersonX, if the tense is
present, and if the event is a single sentence.

6https://nlp.ist.i.kyoto-u.ac.jp/?KNP

(a) For events

(b) For inferences (xEffect)

Figure 3: Prompts for generating events and inferences
from an LLM. The underlined parts are generated.

crowdsourced independently for each relation. The 250

inferences judged to be unacceptable by majority 251

voting are filtered out. 252

The inferences collected in Section 3.1 are eval- 253

uated and filtered as above. The statistics are listed 254

in the middle two columns of Table 1. As a result, 255

we employed 465 crowdworkers and spent 8,679 256

JPY (approximately 63 USD). We also calculated 257

Fleiss’s κ as an inner-annotator agreement in the 258

evaluation, which is shown in the rightmost column 259

of Table 1. 260

There are several tendencies in the inferences fil- 261

tered out, i.e., judged to be unacceptable. In some 262

inferences, the order is reversed, as in the triple 263

⟨PersonX sleeps twice, xEffect, PersonX thinks 264

that they are off work today⟩. Others are not plau- 265

sible, as in ⟨PersonX surfs the Internet, xNeed, 266

PersonX gets to the ocean⟩. 267

3.3 Generation from an LLM 268

From a small-scale high-quality knowledge graph 269

acquired in Sections 3.1 and 3.2, we generate a 270

large-scale knowledge graph with an LLM. We 271

use the Koya 39B model of HyperCLOVA JP as 272

a language model. Both events and inferences are 273

generated by providing 10 shots. The shots are 274

randomly chosen from the small-scale graph for 275

each generation. 276

Events New events are generated by Hyper- 277

CLOVA JP, using the events acquired in Section 3.2 278

as shots. An example prompt for event generation 279

4
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Head Rel Tail Eval
Xが顔を洗う (X washes
X’s face)

xNeed Xが水道で水を出す (X runs water from the tap) ✓

Xが歯を磨く (X brushes X’s teeth)
xEffect Xがタオルを準備する (X prepares a towel) ✓

Xが鏡に映った自分の顔に覚えのない傷を見つける (X finds an unrec-
ognizable scar on X’s face in the mirror)

✓

Xが歯磨きをする (X brushes his teeth) ✓
xIntent スッキリしたい (Want to feel refreshed) ✓

眠いのでしゃきっとしたい (Sleepy and Want to feel refreshed) ✓
xReact さっぱりして眠気覚ましになる (Feel refreshed and shake off X’s sleepi-

ness)
✓

きれいになる (Be clean) ✓
さっぱりした (Felt refreshed) ✓

Table 2: Examples of inferences acquired through crowdsourcing. Triples with ✓ in the eval column were judged to
be acceptable by the evaluation in Section 3.2.

Rel Template
xNeed hためには、t必要がある。 (To h, need

to t.)
xEffect h。結果として、t。 (h. As a result, t.)
xIntent hのは、tと思ったから。 (h because felt

t.)
xReact hと、tと思う。 (h then feel t.)

Table 3: The templates of shots for an LLM. h and t
stand for head and tail, respectively. When generating,
t is extracted.

Inst # Val % IAA
Event 1,471 - -
xNeed 9,403 80.81 36.07
xEffect 8,792 85.45 34.03
xIntent 10,155 86.06 43.42
xReact 10,941 90.30 21.51

Table 4: The statistics of events and inferences gener-
ated from an LLM. % Val and IAA are the evaluation
results of 500 randomly selected inferences.

is shown in Figure 3a. We generate 10,000 events,280

remove duplicates, and apply the same syntactic281

filtering as in Section 3.1.282

Inferences As in event generation, the inferences283

acquired in Sections 3.1 and 3.2 are used as shots.284

We generate 10 inferences for each event and re-285

move duplicate triples. While we simply list the286

shots as a prompt in event generation, different287

prompts are used for each relation in inference gen-288

eration. An example prompt for xEffect generation289

is shown in Figure 3b. Shots are given in natural290

language, and tails are extracted by pattern match-291

ing. Shot templates for each relation are shown in292

Table 3. Finally, the syntactic filtering is applied to293

obtain the graph.294

The statistics of events and inferences generated 295

by HyperCLOVA JP are shown in Table 4, and 296

the results of the evaluation and the inter-annotator 297

agreement are also shown in Table 4. For this 298

evaluation, we sampled 500 inferences per relation. 299

We hired 409 crowdworkers for a fee of 7,260 JPY 300

(approximately 53 USD) in total. A comparison 301

with Table 1 indicates that the quality is as good 302

as those written by crowdworkers. Examples of 303

generated inferences are shown in Table 5. 304

The generated knowledge graph in Japanese re- 305

flects the culture of Japan, such as ⟨PersonX goes to 306

the office, xNeed, PersonX takes a train⟩. This fact 307

indicates the importance of building from scratch 308

for a specific language, rather than translating a 309

similar dataset in a different language, which em- 310

phasizes the value of our method proposed in this 311

paper. 312

4 Analysis on the Built Knowledge Graph 313

4.1 Effect of Filtering 314

In this paper, a small-scale knowledge graph is 315

collected as in Sections 3.1 and 3.2, and a large- 316

scale knowledge graph is generated as in Section 317

3.3. Here, we examine how effective the filtering 318

in Section 3.2 is. As an experiment, we use filtered 319

and unfiltered small-scale graphs as prompts to gen- 320

erate a large-scale graph. Then, we randomly select 321

500 generated triples for each relation and evaluate 322

them by crowdsourcing as in Section 3.2. Note 323

that the results for the filtered triples are the same 324

as Section 3.3. For the triples without filtering, 325

we crowdsourced again, paying 393 croweworkers 326

7,260 JPY (approximately 53 USD). 327

The ratios of appropriate inferences with and 328

without filtering are shown in Table 6. For all rela- 329
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Head Rel Tail
Xがコンビニへ行く
(X goes to a convenience
store)

xNeed Xが財布を持っている (X has X’s wallet), Xが外出する (X goes out), Xが
外出着に着替える (X changes into going-out clothes), Xが財布を持って
出かける (X goes out with X’s wallet), Xが外へ出る (X goes outside)

xEffect Xが買い物をする (X goes shopping), Xが雑誌を立ち読みする (X
browses through magazines), XがATMでお金をおろす (X withdraws
money from ATM), Xが弁当を買う (X buys lunch), Xがアイスを買
う (X buys ice cream)

xIntent 何か買いたいものがある (Want to buy something),雑誌を買う (Buy a
magazine),飲み物を買おう (Going to buy a drink),飲み物や食べ物を買
いたい (Want to buy a drink or food),なんでもある (There is everything X
wants)

xReact 何か買いたいものがある (Want to buy something),何か買う (Buy some-
thing),何か買おう (Going to buy something),何か買いたくなる (Come to
buy something),ついでに何か買ってしまう (Buy something incidentally)

Table 5: Examples of inferences generated from an LLM. For each relation, five examples are displayed.

xNeed xEffect xIntent xReact
w/o Fltr 81.62 82.42 83.84 89.29
w/ Fltr 80.81 85.45 86.06 90.30

Table 6: The ratios of appropriate inferences with re-
spect to filtering. Note that the w/ Fltr row is the same
as the Val % column in Table 4.

tions except xNeed, filtering improves the quality330

of triples.331

4.2 Comparison between humans and a332

Language Model333

In Section 3.1, on one hand, we asked crowdwork-334

ers to describe events and inferences. In Section335

3.3, on the other hand, we had an LLM generate336

them. Here, we compare a small-scale knowledge337

graph by crowdsourcing and a large-scale one from338

a language model, i.e., inferences generated by hu-339

mans and a computer. Because the relationships340

between events can be largely divided into con-341

tingent and temporal relationships (Bethard et al.,342

2008), we adopt contingency and time interval as343

metrics for comparison.344

Of the four relations, we focus on xEffect as a345

representative, which is a typical causal relation.346

For each head of the triples acquired by crowd-347

sourcing in Sections 3.1 and 3.2, we generate three348

tails using the language model in Section 3.3 and349

compare them with the original tails. From the350

554 heads for xEffect in the small-scale graph, we351

obtained 586 unique inferences.352

Contingency One measure is how likely a given353

event is to be followed by a subsequent event.354

Crowdworkers are given a pair of events in an xEf-355

fect relation and asked to judge how likely the fol-356

lowing event is to happen on a three-point scale:357

“must happen,” “likely to happen,” and “does not358

happen.” We ask three crowdworkers per inference 359

and calculate the median of them. 360

Time Interval The other measure is the time in- 361

terval between the occurrence of an event and that 362

of a subsequent event. As in the evaluation of 363

contingency, crowdworkers are given a triple on 364

xEffect. We ask them to judge the time interval 365

between the two events in five levels: almost simul- 366

taneous, seconds to minutes, hours, days to months, 367

and longer. Finally, the median is calculated from 368

the results of three crowdworkers. 369

The comparison between humans and a language 370

model for each measure is shown in Figure 4. Fig- 371

ure 4a shows that the subsequent events by crowd- 372

sourcing, or humans, are slightly more probable. 373

In Figure 4b, the inferences generated by an LLM 374

have a longer time interval. This result indicates a 375

difference in the results of prompting humans and 376

a language model; for xEffect, humans infer events 377

that happen relatively soon, while a language model 378

infers events that happen a bit later. 379

5 Japanese Neural Commonsense Models 380

We train Japanese neural commonsense models us- 381

ing the knowledge graph constructed in Section 4. 382

Japanese versions of GPT-2 (Radford et al., 2019) 383

and T5 (Raffel et al., 2020) are finetuned to gen- 384

erate inferences on unseen events. We conduct 385

automatic and manual evaluations and compare 386

their performances. 387

5.1 Training 388

Base models and data Using the constructed 389

knowledge graph, we finetune pretrained models 390

to construct Japanese neural commonsense models. 391

To evaluate inferences on unseen events, triples in 392

6



(a) Contingency (b) Time interval

Figure 4: A comparison between crowdsourcing and language model generation.

the knowledge graph are randomly partitioned into393

training and test sets at a ratio of 9:1. For pretrained394

models, we adopt Japanese T57 and GPT-28 of the395

Hugging Face implementation (Wolf et al., 2020).396

Input format to models The input for each397

model differs. See Appendix C for the full input398

formats for each model. Since T5 is a seq2seq399

model, the head and the relation are given in the400

form of “r : h” as an input, and the tail is given as401

the correct output. The relation for T5 is changed to402

a natural language sentence. For example, “xNeed”403

is rewritten to “What event occurs before this state-404

ment?” The inputs for all relations are shown in405

Appendix C. For GPT-2, since it predicts the next406

word, the head and the relation are given as an input,407

and the model is trained to output the tail. Since the408

relations are not included in the vocabulary of the409

pretrained models, they are added as special tokens.410

In the constructed knowledge graph, the subject411

of an event is generalized as “X,” but it would be412

better to change it into a natural expression as the413

input to the pretrained models. We randomly re-414

place the subject with a personal pronoun during415

training and inference. To confirm this effect, in416

section 5.2, we also train GPT-2 with the subject417

represented as “X.” We denote this as GPT-2X.418

5.2 Evaluation419

We generate inferences for the head events in the420

test set using the trained Japanese neural common-421

sense models and evaluate the inferences automat-422

ically and manually. We also show correlation423

7https://huggingface.co/megagonlabs/
t5-base-japanese-web

8https://huggingface.co/nlp-waseda/
gpt2-small-japanese

Model AR MP BS BLEU
T5 87.5 1.64 90.26 18.57
GPT-2 91.0 1.73 92.31 18.26
GPT-2X 91.0 1.68 92.03 18.99

Table 7: Total evaluation scores. AR, MP, and BS indi-
cate the accept rate, the mean point, and BERTScore,
respectively.

Rel AR MP BS BLEU
xNeed 88.9 1.58 92.73 22.22
xEffect 92.4 1.72 93.98 22.24
xIntent 88.9 1.66 90.12 9.91
xReact 93.8 1.98 93.00 11.83

Table 8: Evaluation scores of GPT-2 for each relation.

between the automatic and manual evaluations. Ex- 424

amples of the inference results are shown in Ap- 425

pendix C. The average output length and the num- 426

ber of unique words are also reported in Appendix 427

C. In summary, the number of unique words in 428

GPT-2 is larger than that in T5 (392 unique words), 429

with a difference of 35 to 59 words. 430

Automatic evaluation We calculate BLEU (Pap- 431

ineni et al., 2002) and BERTScore (Zhang* et al., 432

2020) as automatic metrics. Table 7 shows these 433

results. GPT-2X and GPT-2 performed the best in 434

BLEU and BERTScore, respectively. 435

Manual evaluation Using crowdsourcing, we 436

evaluate how likely the generated inferences are. 437

Following the previous study (West et al., 2022), 438

we show crowdworkers two events (a head and a 439

tail) and a relation. Then, we ask them to evalu- 440

ate the appropriateness of the inference by choos- 441

7
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Figure 5: The number of inferences for each MP.

ing from the following options: “always,” “of-442

ten,” “sometimes,” and “never.” The choices are443

displayed with an appropriate verb for each rela-444

tion (e.g., “always happens” for xEffect). Five445

crowdworkers are asked to judge per inference. For446

each inference, the numbers of crowdworkers who447

choose “never” and other than “never” (i.e., at least448

“sometimes”) are used to determine the majority449

vote. The acceptance rate (AR), the proportion of450

inferences in which more crowdworkers choose451

other than “never.” By assigning 0 to 3 points each452

to “never,” “sometimes,” “often,” and “always,” we453

also calculate the mean point (MP) as the average454

score of all the inferences. Table 7 shows these455

results. AR is higher than 85% for all models, in-456

dicating that the inferences for unseen events are457

almost correct. GPT-2 obtained the highest scores458

for both AR and MP. Furthermore, as shown in459

Table 8, ARs of xNeed and xIntent are lower than460

xEffect and xReact, respectively, for all models.461

This can be attributed to the fact that we used an462

autoregressive model, which makes it difficult to463

infer in reverse order of time.464

Although the replacement of subjects did not465

make a difference in AR, there is a difference in466

the distributions of MP as shown in Figure 5. The467

number of crowdworkers who chose “never” for468

the inference of GPT-2 is less than half of that for469

GPT-2X. This result indicates that it is better for470

the model to replace subjects “X” with personal471

pronouns.472

Correlation between the evaluation metrics Ta-473

ble 9 shows the correlation coefficients between474

the manual and automatic evaluation metrics. The475

correlation coefficients between the manual met-476

rics (AR and MP) and BERTScore are positive,477

while those between the manual metrics and BLEU478

AR MP BS BLEU
AR 1.00 0.75 0.59 -0.11
MP - 1.00 0.43 -0.46
BS - - 1.00 0.30
BLEU - - - 1.00

Table 9: Correlation coefficients between automatic and
manual evaluation metrics.

are negative or no correlation. It seems that 479

BERTScore, which uses vector representations, can 480

evaluate equivalent sentences with different expres- 481

sions, but BLEU, which is based on n-gram agree- 482

ment, cannot correctly judge the equivalence. One 483

of the reasons for the negative correlation in BLEU 484

is that many inferences of the mental state consist 485

of a single word in Japanese, such as “tired” and 486

“bored,” for both the gold answer and the generated 487

result. In this case, BLEU tends to be low because 488

the words are rarely matched, but the shorter the 489

sentences are, the easier it is for the model to gen- 490

erate appropriate results. 491

6 Conclusion 492

We proposed a method for building a knowledge 493

graph from scratch with both crowdsourcing and 494

a language model. Based on our method, we built 495

a knowledge graph on events and mental states in 496

Japanese using Yahoo! Crowdsourcing and Hy- 497

perCLOVA JP. Since designing tasks for having 498

humans describe commonsense and engineering 499

prompts for having a language model generate 500

knowledge are similar to each other, we compared 501

the characteristics of them. We evaluated the graph 502

generated by HyperCLOVA JP and found that it 503

was similar in quality to the graph written by hu- 504

mans. 505

Furthermore, we trained a neural commonsense 506

model for event inference based on the built knowl- 507

edge graph. We attempted inference generation 508

for unseen events by finetuning GPT-2 and T5 in 509

Japanese on the built graph. The experimental re- 510

sults showed that these models are able to generate 511

acceptable inferences for events and mental states. 512

We hope that our method for building a knowl- 513

edge graph from scratch and the acquired knowl- 514

edge graph lead to further studies on commonsense 515

inference, especially in low-resource languages. 516

Ethical Considerations 517

For acquiring a small-scale event knowledge graph 518

and analyzing the built graph, we crowdsource com- 519

8



monsense knowledge, using Yahoo! Crowdsourc-520

ing. Specifically, we collect the descriptions of521

commonsense, filter them, and explore the charac-522

teristics of the graph by crowdsourcing. Fees and523

the numbers of crowdworkers per process are in524

the text. In total, we employed 1,814 crowdwoek-525

ers paying 40,043 JPY (apploximately 288 USD).526

We obtained a consent from crowdworkers on the527

platform of Yahoo! Crowdsourcing.528

The event knowledge graph and the neural com-529

monsense models built in this paper help computers530

understand commonsense. A commonsense-aware531

computer, for example, can answer open-domain532

questions by humans, interpret human statements533

in detail, and converse with humans naturally. How-534

ever, such graphs and models may contain incorrect535

knowledge even with filtering, which leads the ap-536

plications to harmful behavior.537
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A An Example of Crowdsourced787

Evaluation788

We evaluate and filter the inferences obtained in789

Sections 3.1 and 3.3 by crowdsourcing. An ex-790

ample of the interface for evaluating an xEffect791

inference is shown in Figure 6.792

B Hyperparameter Details793

We generate a large-scale knowledge graph using794

HyperCLOVA JP in Section 3.3. The hyperparam-795

eters for the generation is shown in Table 10.796

With the built knowledge graph, we finetune797

Japanese T5 and GPT-2 on the task of common-798

sense inference in Section 5. The hyperparameters799

for T5 and GPT-2 are shown in Table 11.800

Figure 6: An example of evaluation regarding xEffect
relations. We ask three crowdworkers whether a given
inference is acceptable or not.

Max tokens 32
Temperature 0.5
Top-P 0.8
Top-K 0
Repeat penalty 5.0

Table 10: Hyperparameters for event and inference gen-
eration with HyperCLOVA JP.

C Details of Neural Commonsense 801

Models 802

Table 12 shows the average output length and the 803

number of unique words for each model. The av- 804

erage output length of T5 is longer than those of 805

GPT-2s, but GPT-2s have the greater numbers of 806

unique words than T5. 807

Table 13 shows the input formats to the models. 808

The prompts to T5 may not be the best; prompt- 809

engineering could improve the results. 810

Examples of outputs are shown in Table 14. We 811

can see that the obtained outputs are acceptable to 812

humans. The outputs vary for each model. 813
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T5 GPT-2
Batch size 64 64
Learning rate 5e-5 5e-5
Weight decay 0.0 0.0
Adam betas (0.9, 0.999) (0.9, 0.999)
Adam epsilon 1e-8 1e-8
Max grad norm 1.0 1.0
Num epochs 30 3
LR scheduler type Linear Linear
Warmup steps 0 0

Table 11: Hyperparameters for finetuning T5 and GPT-2
on the knowledge graph.

Model Avg Out Len Uniq Word #
T5 5.29 392
GPT-2 5.03 451
GPT-2X 5.03 436

Table 12: Average output length and the number of
unique words.
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Model Rel Encoder Input Decoder Input
T5 xNeed この文の前に起こるイベントは何ですか？: h t

(What event occurs before this statement?: h)
xEffect このイベントの次に発生する事象は何ですか？: h t

(What is the next event to occur after this event?: h)
xIntent 次の文の発生した理由は何ですか？: h t

(What is the reason for the occurrence of the following statement?: h)
xReact 次の文の後に感じることは何ですか？: h t

(What will be felt after the following statement?: h)
GPT-2 xNeed - h xNeed t

xEffect - h xEffect t
xIntent - h xIntent t
xReact - h xReact t

Table 13: The input formats for training. Note that h and t denote a head and a tail.

Model Input Output
T5 この文の前に起こるイベントは何ですか？:あなたが友人たちと旅行

に出かける (What event occurs before this statement?: You go on a trip with
your friends)

あなたが車を運転する
(You drive a car)

このイベントの次に発生する事象は何ですか？:あなたが友人たちと
旅行に出かける (What is the next event to occur after this event?: You go
on a trip with your friends)

あなたが楽しい時間を
過ごす (You have a good
time)

次の文の発生した理由は何ですか？:あなたが友人たちと旅行に出か
ける (What is the reason for the occurrence of the following statement?: You
go on a trip with your friends)

楽しい (Have fun)

次の文の後に感じることは何ですか？:あなたが友人たちと旅行に出
かける (What will be felt after the following statement?: You go on a trip
with your friends)

楽しい (Have fun)

GPT-2 僕が友人たちと旅行に出かけるxNeed (I go on a trip with your friends
xNeed)

僕がパスポートを取得
する (I get my passport)

僕が友人たちと旅行に出かけるxEffect (I go on a trip with your friends
xEffect)

僕が楽しい時間を過ご
す (I have a good time)

僕が友人たちと旅行に出かけるxIntent (I go on a trip with your friends
xIntent)

楽しいことがしたい
(Want to have fun)

僕が友人たちと旅行に出かけるxReact (I go on a trip with your friends
xReact)

楽しい (Feel fun)

Table 14: Examples of the inferences generated by T5 and GPT-2.
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