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Abstract

Despite the remarkable progress in natural lan-
guage understanding with pretrained Trans-
formers, neural language models often do
not have commonsense knowledge. Toward
commonsense-aware models, there have been
attempts to obtain knowledge, ranging from
automatic acquisition to crowdsourcing. How-
ever, it is difficult to obtain a high-quality
knowledge base at a low cost, especially from
scratch. In this paper, we propose PHALM, a
method of building a knowledge graph from
scratch, by prompting both crowdworkers and
a large language model. We used this method
to build a Japanese event knowledge graph and
trained Japanese neural commonsense models.
Experimental results revealed the acceptabil-
ity of the built graph and inferences generated
by the trained models. We also report the dif-
ference in prompting humans and a language
model.

1 Introduction

Since pretrained models (Radford and Narasimhan,
2018; Devlin et al., 2019; Yang et al., 2019) based
on Transformer (Vaswani et al., 2017) appeared,
natural language understanding has made remark-
able progress. In some benchmarks, the perfor-
mance of natural language understanding models
has already exceeded that of humans. These mod-
els are applied to various downstream tasks ranging
from translation and question answering to narra-
tive understanding and dialogue response genera-
tion. In recent years, the number of parameters in
such models has continued to increase (Radford
et al., 2019; Brown et al., 2020), and so has their
performance.

When we understand or reason, we usually rely
on commonsense knowledge. Computers also need
such knowledge to answer open-domain questions
and to understand narratives and dialogues, for ex-
ample. However, pretrained models often do not
have commonsense knowledge.
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Figure 1: An overview of our method. We build a knowl-
edge graph step by step from scratch, by prompting both
humans and a language model.

There are many knowledge bases for common-
sense inference. Some are built by crowdsourcing
(Speer et al., 2017; Sap et al., 2019; Hwang et al.,
2021), but acquiring a large-scale knowledge base
is high-cost. Others are built by automatic acquisi-
tion (Zhang et al., 2019, 2020), but it is difficult to
acquire high-quality commonsense knowledge. Re-
cently, there have been some methods using large
language models (LLMs) for building knowledge
bases (Yuan et al., 2021; West et al., 2022; Liu
et al., 2022). They often extend existing datasets,
but do not build new datasets from scratch.

In this paper, we propose PHALM!, a method
to build a knowledge graph from scratch with both
crowdsourcing and an LLM. Asking humans to de-
scribe knowledge using crowdsourcing and gener-
ating knowledge using a language model are essen-
tially the same (as it were, the latter is an analogy
of the former), and both can be considered to be
prompting. Therefore, we consider prompting for

'"PHALM stands for Prompting Humans And a Language
Model.



both humans and a language model and gradually
acquire a knowledge graph from a small scale to a
large scale. Specifically, we acquire a small-scale
knowledge graph by asking crowdworkers to de-
scribe knowledge and use them as a few shots for
an LLM to generate a large-scale knowledge graph.
At each phase, we guarantee the quality of graphs
by applying appropriate filtering.

We built a Japanese knowledge graph on events,
considering prompts for both humans and a lan-
guage model. With Yahoo! Crowdsourcing® and
HyperCLOVA JP, a Japanese variant of the LLMs
built by Kim et al. (2021), we obtained a knowl-
edge graph that is not a simple translation, but
unique to the culture. Then, we compared infer-
ences collected by crowdsourcing and generated
by the LLM. In addition to acquisition, we trained
a Japanese neural commonsense model based on
the built knowledge graph. With the model, we
verified the acceptability of output inferences for
unseen events. The resulting knowledge graph and
the commonsense model created in this paper will
be released to the public.?

2 Related Work

2.1 Commonsense Knowledge Datasets

There are several knowledge bases about common-
sense, from what appears in the text to what is tacit
but not written in the text. ConceptNet (Speer et al.,
2017), for example, is a knowledge graph that con-
nects words and phrases by relations. GenericsKB
(Bhakthavatsalam et al., 2020) is a corpus describ-
ing knowledge of entities in natural language rather
than in graph.

In some datasets, commonsense knowledge is
collected in the form of question answering. Roem-
mele et al. (2011) acquire plausible causes and ef-
fects for premises as two-choice questions. Zellers
et al. (2018) provide SWAG, acquiring inferences
about a situation from video captions as four-choice
questions. KUCI (Omura et al., 2020) is a dataset
for commonsense inference in Japanese, which is
obtained by combining automatic extraction and
crowdsourcing. Talmor et al. (2019) build Com-
monsenseQA, which treats commonsense on Con-
ceptNet’s entities as question answering.

2https ://crowdsourcing.yahoo.co. jp/
3if accepted

2.2 Knowledge Graphs on Events

Regarding commonsense knowledge bases, there
are several graphs that focus on events. ATOMIC
(Sap et al., 2019) describes the relationship be-
tween events, mental states (Rashkin et al., 2018),
and personas. Hwang et al. (2021) merge ATOMIC
and ConceptNet, proposing ATOMIC-2020.

There are also studies for leveraging con-
text. GLUCOSE (Mostafazadeh et al., 2020)
is a commonsense inference knowledge graph
for short stories, built by annotating ROCStories
(Mostafazadeh et al., 2016). CIDER (Ghosal et al.,
2021) and CICERO (Ghosal et al., 2022) are the
graphs for dialogues, where DailyDialog (Li et al.,
2017) and other dialogue corpora are annotated
with inferences.

ASER (Zhang et al., 2019) is an event knowledge
graph, automatically extracted from text corpora by
focusing on discourse. With ASER, TransOMCS
(Zhang et al., 2020) aims at bootstrapped knowl-
edge graph acquisition by pattern matching and
ranking.

While ConceptNet and ATOMIC are acquired
by crowdsourcing, ASER and TransOMCS are au-
tomatically built. On one hand, a large-scale graph
can be built easily in an automatic way, but it is
difficult to obtain knowledge not appearing in the
text. On the other hand, crowdsourcing can gather
high-quality data, but it is expensive in terms of
both money and time.

There is a method that uses crowdsourcing and
neural language models together to build an event
knowledge graph (West et al., 2022). Although it
is possible to acquire a large-scale and high-quality
graph, they assume that an initial graph, ATOMIC
in this case, has already been available.

2.3 Neural Commonsense Models

There have been studies on storing knowledge in
a neural form rather than a symbolic form. In par-
ticular, methods of considering neural language
models as knowledge bases (Petroni et al., 2019;
AlKhamissi et al., 2022) have been developed.
Bosselut et al. (2019) train COMET by finetuning
pretrained Transformers on ATOMIC and Concept-
Net, aiming at inference on unseen events and con-
cepts. Gabriel et al. (2021) point out that COMET
ignores discourse, introducing recurrent memory
for paragraph-level information.

West et al. (2022) propose symbolic knowledge
distillation where specific knowledge in a general
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(b) For inferences (xEffect)

Figure 2: Examples of crowdsourcing interfaces. Crowdworkers are asked to describe events and inferences.

language model is distilled into a specific language
model via a symbolic form. They expand ATOMIC
using GPT-3 (Brown et al., 2020), filter the outputs
using RoBERTa (Liu et al., 2019), and finetune
GPT-2 (Radford et al., 2019) on the filtered ones.

3 Prompting Humans and a Language
Model

We propose a method to build a knowledge graph
for commonsense inference from scratch, with
both crowdsourcing and a language model. In our
method, we first construct a small-scale knowledge
graph by crowdsourcing. Using the small-scale
graph for prompts, we then extract commonsense
knowledge from a language model. The flow of
our method is shown in Figure 1. Building a knowl-
edge graph from scratch only by crowdsourcing is
expensive in terms of both money and time. Hence,
the combination of crowdsourcing and a language
model is expected to reduce the cost, especially in
terms of time.

In other words, our method consists of the fol-
lowing two phases: (1) collecting a small-scale
graph by crowdsourcing and (2) generating a large-
scale graph by a language model. While crowd-
sourcing elicits commonsense from people, shots
are used to extract knowledge from a language
model. At this point, these phases are intrinsically
the same, being considered as prompting. In the
two phases, namely, we prompt people and a lan-
guage model, respectively.

We build a commonsense inference knowledge
graph in Japanese, with the concept of Section 3.

We focus on an event knowledge graph such as
ATOMIC (Sap et al., 2019) and ASER (Zhang
et al., 2019). Handling commonsense on events
and mental states would facilitate understanding of
narratives and dialogues. We use Yahoo! Crowd-
sourcing in the first phase and HyperCLOVA JP
(Kim et al., 2021), an LLM in Japanese, in the
second phase.

3.1 Acquisition by Crowdsourcing

We first acquire a small-scale high-quality knowl-
edge graph by crowdsourcing. With Yahoo!
Crowdsourcing, specifically, we ask crowdworkers
to write events and inferences. In a task, we provide
them with 10 shots as a prompt for each event and
inference. Note that for inferences, the prompts
differ for each relation as mentioned later. We ob-
tain a graph by filtering the collected inferences
syntactically and semantically.

Events We ask crowdworkers to write daily
events related to at least one person (PersonX).
An example of the crowdsourcing task interface
is shown in Figure 2a. The task provides instruc-
tions and 10 examples, and each crowdworker is
asked to write at least one event. After all tasks are
completed, we remove duplicate events. As a result,
257 events were acquired from 200 crowdworkers.
We manually verified that all of the acquired events
have a sufficient quality.

Inferences For the events collected above, we
ask crowdworkers to write inferences about what
happens and how a person feels before and after
the events. In this paper, the relations for inference



Inst# | Val# Val % IAA
Event 257 - - -
xNeed 504 402  79.76 39.85
xEffect 621 554  89.21 25.00
xIntent 603 519 86.07 36.11
xReact 639 550 86.07 31.82

Table 1: The statistics on events and inferences acquired
by crowdsourcing.

are based on ATOMIC.* The following four are
adopted as our target relations.

* What would have happened before (xNeed)
* What would happen after (xEffect)

e What PersonX would have felt before (xIn-
tent)

¢ What PersonX would feel after (xReact)

While xNeed and xEffect are inferences about
events, xIntent and xReact are inferences about
mental states.

Three crowdworkers are hired per event. Given
an instruction and 10 examples, each crowdworker
is asked to write one inference. An example of the
crowdsourcing task interface is shown in Figure 2b.
We remove duplicate inferences as in the case of
events, and then apply syntactic filtering® using the
Japanese syntactic parser KNP®,

The statistics of the acquired events and infer-
ences are shown in the Inst # column of Table 1.
The whole process costed 16,844 JPY (approxi-
mately 123 USD) by hiring 547 crowdworkers. Ex-
amples of acquired inferences are shown in Table
2.

3.2 Evaluation and Filtering

To examine the qualities of the inferences acquired
by crowdsourcing, we crowdsource their evalua-
tion. We ask three crowdworkers whether the in-
ferences are acceptable or not and judge their ac-
ceptability by majority voting. The evaluation is

“The relations are not exactly the same as those of
ATOMIC. xIntent in this paper covers xIntent and xWant in
ATOMIC, and tails for our xIntent and xReact may contain not
mental states but events. The reason for the difference is that
English and Japanese have different linguistic characteristics,
i.e., it is difficult to collect knowledge in the same structure as
the original.

SKNP determines if the subject is PersonX, if the tense is
present, and if the event is a single sentence.

*https://nlp.ist.i.kyoto-u.ac.jp/?KNP

1. XPNRATHRTH — LT B (X plays a game on X’ s phone)
2. XHTEIZIKE XSS (X waters flowers)
3. XMYEBRAEIZED Kinvites Yto a drinking party)

11. XHYIZE#S (X apologizes to Y)

(a) For events

1L XDITHODRIZH S BRELT XAFHETREYT %,
(X gets caught in a shower. As a result, X takes shelter from
the rain under the eaves.)

2 XDRYRTIREE S, #ERELT XD EYE ZITED,
(X buys clothes on the Internet. As a result, X receives a
package.)

B XDINEEZEMNE D, FERELTXDNEFERND,
(X gets hungry. As a result, X eats a snack.)

M. XDERETND, BRELT XN REEEYS,
(X forgets to bring X' s pencil case. As a result, X borrows a
pencil.)

(b) For inferences (xEffect)

Figure 3: Prompts for generating events and inferences
from an LLM. The underlined parts are generated.

crowdsourced independently for each relation. The
inferences judged to be unacceptable by majority
voting are filtered out.

The inferences collected in Section 3.1 are eval-
uated and filtered as above. The statistics are listed
in the middle two columns of Table 1. As a result,
we employed 465 crowdworkers and spent 8,679
JPY (approximately 63 USD). We also calculated
Fleiss’s x as an inner-annotator agreement in the
evaluation, which is shown in the rightmost column
of Table 1.

There are several tendencies in the inferences fil-
tered out, i.e., judged to be unacceptable. In some
inferences, the order is reversed, as in the triple
(PersonX sleeps twice, xEffect, PersonX thinks
that they are off work today). Others are not plau-
sible, as in (PersonX surfs the Internet, xNeed,
PersonX gets to the ocean).

3.3 Generation from an LLM

From a small-scale high-quality knowledge graph
acquired in Sections 3.1 and 3.2, we generate a
large-scale knowledge graph with an LLM. We
use the Koya 39B model of HyperCLOVA JP as
a language model. Both events and inferences are
generated by providing 10 shots. The shots are
randomly chosen from the small-scale graph for
each generation.

Events New events are generated by Hyper-
CLOVA JP, using the events acquired in Section 3.2
as shots. An example prompt for event generation
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Head Rel Tail

Eval

Xh % Pt (X washes xNeed
X’s face)

XHKiE TR % 9 (X runs water from the tap) v

X1 k% B < (X brushes X’s teeth)

xEffect Xh*¥ L = Efii g % (X prepares a towel)

XhHRICH: 5 =B DB 2 D7\ e % Jo1F 5 (X finds an unrec-
ognizable scar on X’s face in the mirror)

Xh % X % 9% (X brushes his teeth)

22 % ) L 7=\ (Want to feel refreshed)

ARV TL % & 5 & L 72\ (Sleepy and Want to feel refreshed)

xIntent

N NN

xReact & 51N L THRRAK £ LIC7% % (Feel refreshed and shake off X’s sleepi- v
ness)
I NWICZ 7% S (Be clean) v
3 51E Y L 7= (Felt refreshed) v

Table 2: Examples of inferences acquired through crowdsourcing. Triples with v in the eval column were judged to

be acceptable by the evaluation in Section 3.2.

Rel Template
xNeed |[h7=HIC1T. tWEHH S,
tot.)

xEffect | h, FiE & LT, t.

(To h, need

(h. As aresult, t.)

xIntent | AD1X. tEE 5 7=h%,  (h because felt
t.)
xReact |h& . t&FE D, (hthen feel t.)

Table 3: The templates of shots for an LLM. h and ¢
stand for head and tail, respectively. When generating,
t is extracted.

Inst# | Val % TAA
Event 1,471 - -
xNeed 9,403 | 80.81 36.07
xEffect | 8,792 | 85.45 34.03
xIntent | 10,155 | 86.06 43.42
xReact | 10,941 | 90.30 21.51

Table 4: The statistics of events and inferences gener-
ated from an LLM. % Val and TAA are the evaluation
results of 500 randomly selected inferences.

is shown in Figure 3a. We generate 10,000 events,
remove duplicates, and apply the same syntactic
filtering as in Section 3.1.

Inferences As in event generation, the inferences
acquired in Sections 3.1 and 3.2 are used as shots.
We generate 10 inferences for each event and re-
move duplicate triples. While we simply list the
shots as a prompt in event generation, different
prompts are used for each relation in inference gen-
eration. An example prompt for xEffect generation
is shown in Figure 3b. Shots are given in natural
language, and tails are extracted by pattern match-
ing. Shot templates for each relation are shown in
Table 3. Finally, the syntactic filtering is applied to
obtain the graph.

The statistics of events and inferences generated
by HyperCLOVA JP are shown in Table 4, and
the results of the evaluation and the inter-annotator
agreement are also shown in Table 4. For this
evaluation, we sampled 500 inferences per relation.
We hired 409 crowdworkers for a fee of 7,260 JPY
(approximately 53 USD) in total. A comparison
with Table 1 indicates that the quality is as good
as those written by crowdworkers. Examples of
generated inferences are shown in Table 5.

The generated knowledge graph in Japanese re-
flects the culture of Japan, such as (PersonX goes to
the office, xNeed, PersonX takes a train). This fact
indicates the importance of building from scratch
for a specific language, rather than translating a
similar dataset in a different language, which em-
phasizes the value of our method proposed in this

paper.
4 Analysis on the Built Knowledge Graph

4.1 Effect of Filtering

In this paper, a small-scale knowledge graph is
collected as in Sections 3.1 and 3.2, and a large-
scale knowledge graph is generated as in Section
3.3. Here, we examine how effective the filtering
in Section 3.2 is. As an experiment, we use filtered
and unfiltered small-scale graphs as prompts to gen-
erate a large-scale graph. Then, we randomly select
500 generated triples for each relation and evaluate
them by crowdsourcing as in Section 3.2. Note
that the results for the filtered triples are the same
as Section 3.3. For the triples without filtering,
we crowdsourced again, paying 393 croweworkers
7,260 JPY (approximately 53 USD).

The ratios of appropriate inferences with and
without filtering are shown in Table 6. For all rela-



Head Rel Tail

Xht3d 2 v =~1T £ xNeed
(X goes to a convenience
store)

Xh I fi%F > T\ % (X has X's wallet), X393 % (X goes out), Xh*
MBI EICHE T 2 5 (X changes into going-out clothes), X s i %2 15 5 T
i h T B (X goes out with X’s wallet), X h3¥h~\H! 3 (X goes outside)

xEffect XH*E W% 3 % (X goes shopping), X1 Mtz 7 HicA T 5 (X
browses through magazines), XH/*ATM CTH £ % 5 5 § (X withdraws
money from ATM), X/*# 4 % & 5 (X buys lunch), XH*7 1 A% H

9 (X buys ice cream)
I EVL WY D hd S (Want to buy something), Mt % E 5 (Buy a

xIntent

magazine), il 4% E + 9 (Going to buy a drink), fK AV Y% B
V1 /=4y (Want to buy a drink or food), 7 A T3 & % (There is everything X

wants)
xReact

il PE2W D h3d S (Want to buy something), 1] h>E 5 (Buy some-

thing), fi] 7, E 5 5 (Going to buy something), {if h>E\ 7= £ 7% % (Come to
buy something), 2\ TICfl nH - T L ¥ 9 (Buy something incidentally)

Table 5: Examples of inferences generated from an LLM. For each relation, five examples are displayed.

xNeed xEffect | xIntent xReact
81.62 82.42| 83.84 89.29
80.81 85.45| 86.06 90.30

w/o Fltr
w/ Fltr

Table 6: The ratios of appropriate inferences with re-
spect to filtering. Note that the w/ Fltr row is the same
as the Val % column in Table 4.

tions except xNeed, filtering improves the quality
of triples.

4.2 Comparison between humans and a
Language Model

In Section 3.1, on one hand, we asked crowdwork-
ers to describe events and inferences. In Section
3.3, on the other hand, we had an LLM generate
them. Here, we compare a small-scale knowledge
graph by crowdsourcing and a large-scale one from
a language model, i.e., inferences generated by hu-
mans and a computer. Because the relationships
between events can be largely divided into con-
tingent and temporal relationships (Bethard et al.,
2008), we adopt contingency and time interval as
metrics for comparison.

Of the four relations, we focus on xEffect as a
representative, which is a typical causal relation.
For each head of the triples acquired by crowd-
sourcing in Sections 3.1 and 3.2, we generate three
tails using the language model in Section 3.3 and
compare them with the original tails. From the
554 heads for xEffect in the small-scale graph, we
obtained 586 unique inferences.

Contingency One measure is how likely a given
event is to be followed by a subsequent event.
Crowdworkers are given a pair of events in an xEf-
fect relation and asked to judge how likely the fol-
lowing event is to happen on a three-point scale:
“must happen,” “likely to happen,” and “does not

happen.” We ask three crowdworkers per inference
and calculate the median of them.

Time Interval The other measure is the time in-
terval between the occurrence of an event and that
of a subsequent event. As in the evaluation of
contingency, crowdworkers are given a triple on
xEffect. We ask them to judge the time interval
between the two events in five levels: almost simul-
taneous, seconds to minutes, hours, days to months,
and longer. Finally, the median is calculated from
the results of three crowdworkers.

The comparison between humans and a language
model for each measure is shown in Figure 4. Fig-
ure 4a shows that the subsequent events by crowd-
sourcing, or humans, are slightly more probable.
In Figure 4b, the inferences generated by an LLM
have a longer time interval. This result indicates a
difference in the results of prompting humans and
a language model; for xEffect, humans infer events
that happen relatively soon, while a language model
infers events that happen a bit later.

5 Japanese Neural Commonsense Models

We train Japanese neural commonsense models us-
ing the knowledge graph constructed in Section 4.
Japanese versions of GPT-2 (Radford et al., 2019)
and TS5 (Raffel et al., 2020) are finetuned to gen-
erate inferences on unseen events. We conduct
automatic and manual evaluations and compare
their performances.

5.1 Training

Base models and data Using the constructed
knowledge graph, we finetune pretrained models
to construct Japanese neural commonsense models.
To evaluate inferences on unseen events, triples in
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Figure 4: A comparison between crowdsourcing and language model generation.

the knowledge graph are randomly partitioned into
training and test sets at a ratio of 9:1. For pretrained
models, we adopt Japanese T5” and GPT-28 of the
Hugging Face implementation (Wolf et al., 2020).

Input format to models The input for each
model differs. See Appendix C for the full input
formats for each model. Since TS5 is a seq2seq
model, the head and the relation are given in the
form of “r : h” as an input, and the tail is given as
the correct output. The relation for T5 is changed to
a natural language sentence. For example, “xNeed”
is rewritten to “What event occurs before this state-
ment?” The inputs for all relations are shown in
Appendix C. For GPT-2, since it predicts the next
word, the head and the relation are given as an input,
and the model is trained to output the tail. Since the
relations are not included in the vocabulary of the
pretrained models, they are added as special tokens.
In the constructed knowledge graph, the subject
of an event is generalized as “X.” but it would be
better to change it into a natural expression as the
input to the pretrained models. We randomly re-
place the subject with a personal pronoun during
training and inference. To confirm this effect, in
section 5.2, we also train GPT-2 with the subject
represented as “X.” We denote this as GPT-2x.

5.2 Evaluation

We generate inferences for the head events in the
test set using the trained Japanese neural common-
sense models and evaluate the inferences automat-
ically and manually. We also show correlation

7https://huggingface.co/megagonlabs/
t5-base-japanese-web

$https://huggingface.co/nlp-waseda/
gpt2-small-japanese

Model AR MP BS BLEU
T5 875 1.64 9026 18.57
GPT-2 |91.0 1.73 9231 18.26
GPT-2x | 91.0 1.68 92.03 18.99

Table 7: Total evaluation scores. AR, MP, and BS indi-
cate the accept rate, the mean point, and BERTScore,
respectively.

Rel AR MP BS BLEU
xNeed | 88.9 1.58 92.73 2222
xEffect | 92.4 1.72 9398 22.24
xIntent | 88.9 1.66 90.12 9.91
xReact | 93.8 198 93.00 11.83

Table 8: Evaluation scores of GPT-2 for each relation.

between the automatic and manual evaluations. Ex-
amples of the inference results are shown in Ap-
pendix C. The average output length and the num-
ber of unique words are also reported in Appendix
C. In summary, the number of unique words in
GPT-2 is larger than that in TS (392 unique words),
with a difference of 35 to 59 words.

Automatic evaluation We calculate BLEU (Pap-
ineni et al., 2002) and BERTScore (Zhang* et al.,
2020) as automatic metrics. Table 7 shows these
results. GPT-2x and GPT-2 performed the best in
BLEU and BERTScore, respectively.

Manual evaluation Using crowdsourcing, we
evaluate how likely the generated inferences are.
Following the previous study (West et al., 2022),
we show crowdworkers two events (a head and a
tail) and a relation. Then, we ask them to evalu-
ate the appropriateness of the inference by choos-
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Figure 5: The number of inferences for each MP.

ing from the following options: “always,” “of-
ten,” “sometimes,”’ and “never.” The choices are
displayed with an appropriate verb for each rela-
tion (e.g., “always happens” for xEffect). Five
crowdworkers are asked to judge per inference. For
each inference, the numbers of crowdworkers who
choose “never” and other than “never” (i.e., at least
“sometimes”) are used to determine the majority
vote. The acceptance rate (AR), the proportion of
inferences in which more crowdworkers choose
other than “never.” By assigning 0 to 3 points each
to “never,” “sometimes,” “often,” and “always,” we
also calculate the mean point (MP) as the average
score of all the inferences. Table 7 shows these
results. AR is higher than 85% for all models, in-
dicating that the inferences for unseen events are
almost correct. GPT-2 obtained the highest scores
for both AR and MP. Furthermore, as shown in
Table 8, ARs of xNeed and xIntent are lower than
xEffect and xReact, respectively, for all models.
This can be attributed to the fact that we used an
autoregressive model, which makes it difficult to
infer in reverse order of time.

Although the replacement of subjects did not
make a difference in AR, there is a difference in
the distributions of MP as shown in Figure 5. The
number of crowdworkers who chose “never” for
the inference of GPT-2 is less than half of that for
GPT-2x. This result indicates that it is better for
the model to replace subjects “X” with personal
pronouns.

Correlation between the evaluation metrics Ta-
ble 9 shows the correlation coefficients between
the manual and automatic evaluation metrics. The
correlation coefficients between the manual met-
rics (AR and MP) and BERTScore are positive,
while those between the manual metrics and BLEU

AR MP BS BLEU
AR 1.00 0.75 0.59 -0.11
MP - 1.00 043 -0.46
BS - - 1.00  0.30
BLEU - - - 1.00

Table 9: Correlation coefficients between automatic and
manual evaluation metrics.

are negative or no correlation. It seems that
BERTScore, which uses vector representations, can
evaluate equivalent sentences with different expres-
sions, but BLEU, which is based on n-gram agree-
ment, cannot correctly judge the equivalence. One
of the reasons for the negative correlation in BLEU
is that many inferences of the mental state consist
of a single word in Japanese, such as “tired” and
“bored,” for both the gold answer and the generated
result. In this case, BLEU tends to be low because
the words are rarely matched, but the shorter the
sentences are, the easier it is for the model to gen-
erate appropriate results.

6 Conclusion

We proposed a method for building a knowledge
graph from scratch with both crowdsourcing and
a language model. Based on our method, we built
a knowledge graph on events and mental states in
Japanese using Yahoo! Crowdsourcing and Hy-
perCLOVA JP. Since designing tasks for having
humans describe commonsense and engineering
prompts for having a language model generate
knowledge are similar to each other, we compared
the characteristics of them. We evaluated the graph
generated by HyperCLOVA JP and found that it
was similar in quality to the graph written by hu-
mans.

Furthermore, we trained a neural commonsense
model for event inference based on the built knowl-
edge graph. We attempted inference generation
for unseen events by finetuning GPT-2 and T5 in
Japanese on the built graph. The experimental re-
sults showed that these models are able to generate
acceptable inferences for events and mental states.

We hope that our method for building a knowl-
edge graph from scratch and the acquired knowl-
edge graph lead to further studies on commonsense
inference, especially in low-resource languages.

Ethical Considerations

For acquiring a small-scale event knowledge graph
and analyzing the built graph, we crowdsource com-



monsense knowledge, using Yahoo! Crowdsourc-
ing. Specifically, we collect the descriptions of
commonsense, filter them, and explore the charac-
teristics of the graph by crowdsourcing. Fees and
the numbers of crowdworkers per process are in
the text. In total, we employed 1,814 crowdwoek-
ers paying 40,043 JPY (apploximately 288 USD).
We obtained a consent from crowdworkers on the
platform of Yahoo! Crowdsourcing.

The event knowledge graph and the neural com-
monsense models built in this paper help computers
understand commonsense. A commonsense-aware
computer, for example, can answer open-domain
questions by humans, interpret human statements
in detail, and converse with humans naturally. How-
ever, such graphs and models may contain incorrect
knowledge even with filtering, which leads the ap-
plications to harmful behavior.
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A An Example of Crowdsourced
Evaluation

We evaluate and filter the inferences obtained in
Sections 3.1 and 3.3 by crowdsourcing. An ex-
ample of the interface for evaluating an xEffect
inference is shown in Figure 6.

B Hyperparameter Details

We generate a large-scale knowledge graph using
HyperCLOVA JP in Section 3.3. The hyperparam-
eters for the generation is shown in Table 10.

With the built knowledge graph, we finetune
Japanese TS5 and GPT-2 on the task of common-
sense inference in Section 5. The hyperparameters
for TS5 and GPT-2 are shown in Table 11.
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Determine whether two daily events for PersonX
are natural as cause and effect or not.

AIXICEET 3= D0HBENRESN, RRACEROBRELTEENEDHE
HELUTLIEZL,

X —A%ZT D > XDBSHR(CIRD

X plays a game X gets absorbed

&t Valid

BT Invalid

ni&L)

ROLUNEESZD. ZOBRNEENTRNSZD T 3EE.
W] EBRUTLZEL),
Select "valid" if the second event is a possible effect of the first,
or if the first is the cause of the second.
If the sequence of cause and effect is reversed
or the relation is not general, select "not appropriate.

Figure 6: An example of evaluation regarding xEffect
relations. We ask three crowdworkers whether a given
inference is acceptable or not.

Max tokens 32
Temperature 0.5
Top-P 0.8
Top-K 0
Repeat penalty | 5.0

Table 10: Hyperparameters for event and inference gen-
eration with HyperCLOVA JP.

C Details of Neural Commonsense
Models

Table 12 shows the average output length and the
number of unique words for each model. The av-
erage output length of TS5 is longer than those of
GPT-2s, but GPT-2s have the greater numbers of
unique words than T5.

Table 13 shows the input formats to the models.
The prompts to T5 may not be the best; prompt-
engineering could improve the results.

Examples of outputs are shown in Table 14. We
can see that the obtained outputs are acceptable to
humans. The outputs vary for each model.
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T5 GPT-2
Batch size 64 64
Learning rate Se-5 Se-5
Weight decay 0.0 0.0
Adam betas (0.9, 0.999) (0.9, 0.999)
Adam epsilon le-8 le-8
Max grad norm 1.0 1.0
Num epochs 30 3
LR scheduler type Linear Linear
Warmup steps 0 0

Table 11: Hyperparameters for finetuning T5 and GPT-2
on the knowledge graph.

Model | Avg Out Len Uniq Word #
T5 5.29 392
GPT-2 5.03 451
GPT-2x 5.03 436

Table 12: Average output length and the number of
unique words.



Model Rel Encoder Input Decoder Input
T5 xNeed | CONDFHICKEZ B A X2 MIMTTH?: h t
(What event occurs before this statement?: h)
xEffect| 2D 4 X2 hORICHEAET LFEZIIMTT N2 h t
(What is the next event to occur after this event?: h)
xIntent | (ROLOFAE L F=HIHIIM TTH2: b t
(What is the reason for the occurrence of the following statement?: h)
xReact | /RO DEKICKL 22 E1IMTTH» 2 h t
(What will be felt after the following statement?: h)
GPT-2 xNeed |- h xNeed ¢
xEffect | - h xEffect ¢
xIntent | - h xIntent ¢
xReact | - h xReact t
Table 13: The input formats for training. Note that ~ and ¢ denote a head and a tail.
Model | Input Output
T5 COXDRISHKEZ B AR NEIRTT 2 h L RKARS ERIT | b EZiE T 5
IZ i H>1F % (What event occurs before this statement?: You go on a trip with | (You drive a car)
your friends)
COARY NORICFHETLZBRIIMNTI e 2:bulRAELE | SR LWREZ
fitAT1C b1 B (What is the next event to occur after this event?: You go | i =9 (You have a good
on a trip with your friends) time)
ROLDOFEEL I T 2:ha =K AS EhfATICH e | 2 L vy (Have fun)
|7 % (What is the reason for the occurrence of the following statement?: You
go on a trip with your friends)
KDOLDERICIEL B 2 £ TTH 2=k A5 EhfATICH | 3 L vy (Have fun)
h1F % (What will be felt after the following statement?: You go on a trip
with your friends)
GPT2 | WK AT=5 &k TIC B 7219 B xNeed (I go on a trip with your friends | f£73/ ¥ 25K — h ZI&E

xNeed)

FEhYIR NT= 5 L FikATIC i 21 % xEffect (I go on a trip with your friends
xEffect)

BEhTIR ANT=5 L HikATIC H h>1F B xIntent (I go on a trip with your friends
xIntent)

BEns R A= 5 EHRAITIC H 13 B xReact (I go on a trip with your friends
xReact)

9 % (I get my passport)
BENHE L WIRFR 2 =
9 (I have a good time)
LW el mwn
(Want to have fun)

B L\ (Feel fun)

Table 14: Examples of the inferences generated by TS and GPT-2.
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