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ABSTRACT

In spoken question answering, QA systems are designed to answer questions from
contiguous text spans within the related speech transcripts. However, the most
natural way that human seek or test their knowledge is via human conversations.
Therefore, we propose a new Spoken Conversational Question Answering task
(SCQA), aiming at enabling QA systems to model complex dialogues flow given
the speech utterances and text corpora. In this task, our main objective is to build
a QA system to deal with conversational questions both in spoken and text forms,
and to explore the plausibility of providing more cues in spoken documents with
systems in information gathering. To this end, instead of adopting automatically
generated speech transcripts with highly noisy data, we propose a novel unified
data distillation approach, DDNet, which directly fuse audio-text features to re-
duce the misalignment between automatic speech recognition hypotheses and the
reference transcriptions. In addition, to evaluate the capacity of QA systems
in a dialogue-style interaction, we assemble a Spoken Conversational Question
Answering (Spoken-CoQA) dataset with more than 120k question-answer pairs.
Experiments demonstrate that our proposed method achieves superior perfor-
mance in spoken conversational question answering.

1 INTRODUCTION

Conversational Machine Reading Comprehension (CMRC) has been studied extensively over the
past few years within the natural language processing (NLP) communities (Zhu et al., 2018; Liu
et al., 2019; Yang et al., 2019). Different from traditional MRC tasks, CMRC aims to enable models
to learn the representation of the context paragraph and multi-turn dialogues. Existing methods
to the conversational question answering (QA) tasks (Huang et al., 2018a; Devlin et al., 2018; Xu
et al., 2019; Gong et al., 2020) have achieved superior performances on several benchmark datasets,
such as QuAC (Choi et al., 2018) and CoQA (Elgohary et al., 2018). However, few studies have
investigated CMRC in both spoken content and text documents.

To incorporate spoken content into machine comprehension, there are few public datasets that evalu-
ate the effectiveness of the model in spoken question answering (SQA) scenarios. TOEFL listening
comprehension (Tseng et al., 2016) is one of the related corpus for this task, an English test de-
signed to evaluate the English language proficiency of non-native speakers. But the multi-choice
question answering setting and its scale is limited to train for robust SCQA models. The rest two
spoken question answering datasets are Spoken-SQuAD (Li et al., 2018) and ODSQA (Lee et al.,
2018), respectively. However, there is usually no connection between a series of questions and an-
swers within the same spoken passage among these datasets. More importantly, the most common
way people seek or test their knowledge is via human conversations, which capture and maintain
the common ground in spoken and text context from the dialogue flow. There are many real-world
applications related to SCQA tasks, such as voice assistant and chat robot.

In recent years, neural network based methods have achieved promising progress in speech process-
ing domain. Most existing works first select a feature extractor (Gao et al., 2019), and then enroll
the feature embedding into the state-of-the-art learning framework, as used in single-turn spoken
language processing tasks such as speech retrieval (Lee et al., 2015; Fan-Jiang et al., 2020; Karakos
et al., 2020), translation (Bérard et al., 2016; Serdyuk et al., 2018; Di Gangi et al., 2020; Tu et al.,
2020) and recognition (Zhang et al., 2017; Zhou et al., 2018; Bruguier et al., 2019; Siriwardhana

1



Under review as a conference paper at ICLR 2021

𝑆 = { 𝑠! , 𝑠" , ⋯ , 𝑠# }

…

…

…
… … …

Viterbi Decoding

Ac
ou

sti
c 
mo

de
l

A
SR

 S
ys

te
m

Spoken Documents

ASR Context:

Once upon a time in a bar near farm house, 
there lived a little like captain named cotton. 
How to live tied up in a nice warm place 
above  the bar and we're all of the farmers 
horses slapped…

Conversational MRC models

𝑨𝟑 :  white

𝐀𝐒𝐑 − 𝐐𝟑:What color was caught in?

Dialogue History

𝐀𝐒𝐑 − 𝐐𝟏 : What color was caught in?

Machine Reasoning

𝐀𝟏 : white

𝐀𝟐 : in a barn

𝐀𝐒𝐑 − 𝐐𝟐:  What did she live? …

…

…
… … …

Viterbi Decoding

Ac
ou

sti
c 
mo

de
l A

SR
 System

Spoken Questions

𝑄 = { 𝑞! , 𝑞" , ⋯ , 𝑞# }

Figure 1: An illustration of flow diagram for spoken conversational question answering tasks with
an example from our proposed Spoken-CoQA dataset.

Table 1: Comparison of Spoken-CoQA with existing spoken question answering datasets.

Dataset Conversational Spoken Answer Type
TOEFL (Tseng et al., 2016) ×

√
Multi-choice

Spoken-SQuAD (Li et al., 2018) ×
√

Spans
ODSQA (Lee et al., 2018) ×

√
Spans

Spoken-CoQA
√ √

Free-form text, Unanswerable

et al., 2020). However, simply adopting existing methods to the SCQA tasks will cause several chal-
lenges. First, transforming speech signals into ASR transcriptions is inevitably associated with ASR
errors (See Table 2). Previous work (Lee et al., 2019) shows that directly feed the ASR output as the
input for the following down-stream modules usually cause significant performance loss, especially
in SQA tasks. Second, speech corresponds to a multi-turn conversation (e.g. lectures, interview,
meetings), thus the discourse structure will have more complex correlations between questions and
answers than that of a monologue. Third, additional information, such as audio recordings, contains
potentially valuable information in spoken form. Many QA systems may leverage kind of orality to
generate better representations. Fourth, existing QA models are tailored for a specific (text) domain.
For our SCQA tasks, it is crucial to guide the system to learn kind of orality in documents.

In this work, we propose a new spoken conversational question answering task - SCQA, and intro-
duce Spoken-CoQA, a spoken conversational question answering dataset to evaluate a QA system
whether necessary to tackle the task of question answering on noisy speech transcripts and text
document. We compare Spoken-CoQA with existing SQA datasets (See Table 1). Unlike existing
SQA datasets, Spoken-CoQA is a multi-turn conversational SQA dataset, which is more challenging
than single-turn benchmarks. First, every question is dependent on the conversation history in the
Spoken-CoQA dataset. It is thus difficult for the machine to parse. Second, errors in ASR mod-
ules also degrade the performance of machines in tackling contextual understanding with context
paragraph. To mitigate the effects of speech recognition errors, we then present a novel knowledge
distillation (KD) method for spoken conversational question answering tasks. Our first intuition is
speech utterances and text contents share the dual nature property, and we can take advantage of this
property to learn these two forms of the correspondences. We enroll this knowledge into the student
model, and then guide the student to unveil the bottleneck in noisy ASR outputs to boost perfor-
mance. Empirical results show that our proposed DDNet achieves remarkable performance gains in
SCQA tasks. To the best of our knowledge, we are the first work in spoken conversational machine
reading comprehension tasks.
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Figure 2: An illustration of the architecture of DDNet.

In summary, the main contributions of this work are as follows:

• We propose a new task for machine comprehension of spoken question-answering style
conversation to improve the network performance. To the best of our knowledge, our
Spoken-CoQA is the first spoken conversational machine reading comprehension dataset.

• We develop a novel end-to-end method based on data distillation to learn both from speech
and text domain. Specifically, we use the model trained on clear syntax and close-distance
recording to guide the model trained on noisy ASR transcriptions to achieve substantial
performance gains in prediction accuracy.

• We demonstrate the robustness of our DDNet on Spoken-CoQA, and demonstrates that the
model can effectively alleviate ASR errors in noisy conditions.

2 RELATED WORK

Conversational Machine Reading Comprehension In recent years, the natural language process-
ing research community has devoted substantial efforts to conversational machine reading compre-
hension tasks (Huang et al., 2018a; Zhu et al., 2018; Xu et al., 2019; Zhang et al., 2020; Gong et al.,
2020). Within the growing body of work on conversational machine reading comprehension, two
signature attributes have emerged: the availability of large benchmark datasets (Choi et al., 2018;
Elgohary et al., 2018; Reddy et al., 2019) and pre-trained language models (Devlin et al., 2018; Liu
et al., 2019; Lan et al., 2020). However, these existing works typically focus on modeling the com-
plicated context dependency in text form. In contrast, we focus on enabling the machine to build the
capability of language recognition and dialogue modeling in both speech and text domains.

Spoken Question Answering In parallel to the recent works in natural language processing, these
trends have also been pronounced in the speech processing (SP) field, where spoken question an-
swering, an extended form of Question Answering, have explored the prospect of machine compre-
hension in spoken form. Previous work on SQA typically includes two separate modules: automatic
speech recognition and text question answering. It entails transferring spoken content to ASR tran-
scriptions, and then employs natural language processing techniques to handle the speech language
processing tasks. Prior to this point, the existing methods (Tseng et al., 2016; Serdyuk et al., 2018;
Su & Fung, 2020) focus on optimizing each module in a two-stage manner, where errors in the ASR
module would suffer from severe performance loss. Concurrent with our research, Serdyuk et al.
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(2018) proposes an end-to-end approach for natural language understanding (NLU) tasks. Speech-
BERT (Chuang et al., 2019) cascades the BERT-based models as a unified model and then trains it in
an audio-and-text jointly learned manner. However, the existing SQA methods aim at solving a sin-
gle question given the related passage without building and maintaining the connections of different
questions within the human conversations.

Knowledge Distillation Hinton et al. (2015) introduces the idea of Knowledge Distillation (KD) in
a teacher-student scenario. In other words, we can distill the knowledge from one model (massive
or teacher model) to another (small or student model). Previous work has shown that KD can
significantly boost prediction accuracy in natural language processing and speech processing (Kim
& Rush, 2016; Hu et al., 2018; Huang et al., 2018b; Hahn & Choi, 2019), while adopting KD-based
methods for SCQA tasks has been less explored. Although we share the same research topic and
application, our research direction and methods differ. Previous methods design a unified model to
model the single-turn speech-language task. In contrast, our model explores the prospect of handling
SQA tasks. More importantly, we focus the question of nature property in speech and text: do
spoken conversational dialogues can further assist the model to boost the performance. Finally, we
incorporate the knowledge distillation framework to distill reliable dialogue flow from the spoken
contexts, and utilize the learned predictions to guide the student model to train well on the noisy
input data.

3 TASK DEFINITION

3.1 DATA FORMAT

We introduce Spoken-CoQA, a new spoken conversational machine reading comprehension dataset
where the documents are in the spoken and text form. Given the spoken multi-turn dialogues
and spoken documents, the task is to answer questions in multi-party conversations. Each ex-
ample in this dataset is defined as follows: {Di, Qi, Ai}N1 , where Qi={qi1, qi2, ..., qiL} and Ai=
{ai1, ai2, ..., aiL} represent a passage with L-turn queries and corresponding answers, respectively.
Given a passage Di, multi-turn history questions {qi1, qi2, ..., qiL−1} and the reference answers
{ai1, ai2, ..., aiL−1}, our goal is to generate aiL for the given current question qiL. In this study, we
use the spoken form of questions and documents as the network input for training. Note that ques-
tions and documents (passages) in Spoken-CoQA are in both text and spoken forms, and answers
are in the text form.

3.2 DATA COLLECTION

We detail the procedures to build Spoken-CoQA as follows. First, we select the conversational
question-answering dataset CoQA (Reddy et al., 2019) since it is one of the largest public CMRC
datasets. CoQA contains around 8k stories (documents) and over 120k questions with answers.
The average dialogue length of CoQA is about 15 turns, and the answer is in free-form text. In
CoQA, the training set and the development set contain 7,199 and 500 conversations over the given
stories, respectively. Therefore, we use the CoQA training set as our reference text of the training
set and the CoQA development set as the test set in Spoken-CoQA. Then we employ the Google
text-to-speech system to transform questions and documents in CoQA into the spoken form. Next,
we adopt CMU Sphinx to transcribe the processed spoken content into ASR transcriptions. As such,
we collect more than 40G audio data, and the data duration is around 300 hours. It is worth to
note that since the constructed dataset does not update the answer spans based on the noisy ASR
text and continues to assume answer-spans as per the actual text, we perform data filtering in our
investigation by eliminating question-answer pairs from the corpus if answer spans to questions do
not exist in the referenced ASR transcriptions.

For clarity, we provide an example of our Spoken-CoQA dataset in Table 2. Figure 4 compares
spectrograms of samples from ASR modules. In this example, we observe that given the text docu-
ment (ASR-document), the conversation starts with the question Q1 (ASR-Q1), and then the system
requires to answer Q1 (ASR-Q1) with A1 based on a contiguous text span R1. Compared to the
existing benchmark datasets, ASR transcripts (both the document and questions) are much more
difficult for the machine to comprehend questions, reason among the passage, and even predict the
correct answer.

4



Under review as a conference paper at ICLR 2021

Table 2: An example from Spoken-CoQA. We can observe large misalignment between the manual
transcripts and the corresponding ASR transcripts. Note that the misalignment is in bold font.

Manual Transcript ASR Transcript
Once upon a time, in a barn near a farm
house, there lived a little white kitten named
Cotton. Cotton lived high up in a nice warm
place above the barn where all of the farmer’s
horses slept. But Cotton wasn’t alone in her
little home above the barn, oh no. She shared
her hay bed with her mommy and 5 other sis-
ters. . .

Once upon a time in a bar near farm house,
there lived a little like captain named cot-
ton. How to live tied up in a nice warm place
above the bar and we’re all of the farmers
horses slapped. But cotton was not alone in
her little home above the bar in now. She
shared her hey bed with her mommy and 5
other sisters. . .

Q1: Did Cotton live alone?
A1: no
R1: Cotton wasn’t alone.

ASR-Q1: Did caught in live alone?
A1: no
R1: Cotton wasn’t alone.

Q2: Who did she live with?
A2: with her mommy and 5 sisters
R2: with her mommy and 5 other sisters

ASR-Q2: Who did she live with?
A2: with her mommy and 5 sisters
R2: with her mommy and 5 other sisters

Q3:What color were her sisters?
A3:orange and white
R3: her sisters were all orange with beautiful
white tiger stripes

ASR-Q3: What color were her sisters?
A3: orange and white
R3: her sisters were all orange with beautiful
white tiger stripes

4 DDNET

In this section, we detail our data distillation approach by leveraging the dual nature of speech and
text domains to boost the prediction accuracy in a spoken dialogue system. An overview pipeline
of this task is shown in Figure 1. We first introduce the multi-modality fusion mechanism. Then
we present the major components of the CRMC module. Finally, we describe a simple yet effective
distillation strategy in the proposed DDNet to learn feature representation in the speech-text domain
comprehensively.

Given spoken words S = {s1, s2, ..., sn} and corresponding text words X = {x1, x2, ..., xn}, we uti-
lize Speech-BERT and Text-BERT to generate speech feature embedding Es={Es1, Es2, ...,Esn}
and context word embedding Ex={Ex1, Ex2, ...,Exn}, respectively. Concretely, we first use vq-
wav2vec (Baevski et al., 2019) to transfer speech signals into a series of tokens, which is the standard
tokenization procedure in natural language processing tasks, and then use Speech-BERT (Chuang
et al., 2019), a variant of BERT-based models, to process the speech sequences for training. We re-
train Speech-BERT (Chuang et al., 2019) on our Spoken-CoQA dataset. The scale of Speech-BERT
is similar with BERT-base (Devlin et al., 2018) model that contains 12 transformer layers with the
residual structure and the embedding dimension is with 768. In parallel, we embed the text context
into a sequence of vectors via our text encoder - Text-BERT. We adopt the same architecture of
BERT-base (Devlin et al., 2018) in our Text-BERT due to its superior performance.

Cross Attention Inspired by ViLBERT (Lu et al., 2019), we apply the co-attention transformer
layer(Lu et al., 2019), a variant of Self-Attention (Vaswani et al., 2017), as the Cross Attention
module for speech and text embedding fusion. We pass query, key, and value matrices (Q, K, V)
as input to the Cross Attention module. We then compute the cross attention-pooled features by
querying one modality with Q vector from another modality.

Êcross
s = CrossAttention(Es,Ex,Ex) (1)

Êcross
x = CrossAttention(Ex,Es,Es) (2)

Finally, we obtain the aligned cross attention embedding Ecross by concatenating Êcross
s and

Êcross
x .
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4.1 KEY COMPONENTS

We build our CMRC module, based on recent works (Zhu et al., 2018; Huang et al., 2017). We
divide our CMRC module into three key components: Encoding Layer, Attention Layer and Output
Layer.

Encoding Layer We encode documents and conversations (questions and answers) into the cor-
responding feature embedding (e.g.,character embedding, word embedding, and contextual embed-
ding), and then concatenate the output contextual embedding and the aligned cross attention embed-
ding Ecross, and pass it as input.

Êenc = [Eenc;Ecross] (3)

Attention Layer We compute the attention on the context representations of the documents and
questions, and extensively exploit correlations between them. Note that we adopt the default atten-
tion layers in four baseline models.

Output Layer After obtaining attention-pooled representations, the Output Layer computes the
probability distribution of the start and end index within the entire documents and predicts an answer
to the current question.

4.2 KNOWLEDGE DISTILLATION

For prior speech-language models, the only guidance is the standard training objective to measure
the difference between the prediction and the reference answer. However, such criteria makes no
sense for noisy ASR transcriptions. To tackle this issue, we distill the knowledge from our teacher
model, and use them to guide the student model to learn contextual features in our spoken CMRC
task. Concretely, we set the model trained on the speech document and text corpus as the teacher
model and trained on the ASR transcripts as the student model, respectively. Thus, the student
trained on low-quality data learn to imbibe the knowledge that the teacher has discovered.

Concretely, given the zS and zT are the prediction vectors by the student and teacher models, the
objective is define as:

L =
∑
x∈X

(ατ2KL(pτ (zS), pτ (zT )) + (1− α)XE(zT , y)), (4)

where KL(·) and XE(·) denote the Kullback-Leibler divergence and cross entropy, respectively. y
represents the ground truth labels in the text training dataset X . pτ (·) refers the softmax function
with temperature τ , and α is a balancing factor.

5 EXPERIMENTS AND RESULTS

In this section, we first introduce several state-of-the-art language models as our baselines, and then
evaluate the robustness of these models on our proposed Spoken-CoQA dataset. Finally, we provide
a thorough analysis of different components of our method. Note that we use the default setting in
all the evaluated methods.

5.1 BASELINES

In principle, DDNet can utilize any backbone network for SCQA tasks. We choose several state-of-
the-art language models (FlowQA (Huang et al., 2018a), SDNet (Zhu et al., 2018), BERT-base (De-
vlin et al., 2018), ALBERT (Lan et al., 2020)) as our backbone network due to its superior perfor-
mance. We also compare our proposed DDNet with several state-of-the-art SQA methods (Lee et al.,
2018; Serdyuk et al., 2018; Lee et al., 2019; Kuo et al., 2020). To train the teacher-student pairs
simultaneously, we first train baselines on the CoQA training set and then compare the performances
of testing baselines on CoQA dev set and Spoken-CoQA dev set. Finally, we train the baselines on
the Spoken-CoQA training set and evaluate the baselines on the CoQA dev set and Spoken-CoQA
test set. We provide quantitative results in Table 3.
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Table 3: Comparison of four baselines (FlowQA, SDNet, BERT, ALBERT). Note that we denote
Spoken-CoQA test set as S-CoQA test for brevity.

CoQA S-CoQA
CoQA dev S-CoQA test CoQA dev S-CoQA test

Methods EM F1 EM F1 EM F1 EM F1
FlowQA (Huang et al., 2018a) 66.8 75.1 44.1 56.8 40.9 51.6 22.1 34.7
SDNet (Zhu et al., 2018) 68.1 76.9 39.5 51.2 40.1 52.5 41.5 53.1
BERT-base (Devlin et al., 2018) 67.7 77.7 41.8 54.7 42.3 55.8 40.6 54.1
ALBERT-base (Lan et al., 2020) 71.4 80.6 42.6 54.8 42.7 56.0 41.4 55.2
Average 68.5 77.6 42 54.4 41.5 54.0 36.4 49.3

5.2 EXPERIMENT SETTINGS

We use the official BERT (Devlin et al., 2018) and ALBERT (Lan et al., 2020) as our starting point
for training. We use BERT-base (Devlin et al., 2018) and ALBERT-base (Lan et al., 2020), which
both include 12 transformer encoders, and the hidden size of each word vector is 768. BERT and
ALBERT utilize BPE as the tokenizer, but FlowQA and SDNet use SpaCy (Honnibal & Montani,
2017) for tokenization. Specifically, in the case of tokens in spaCy (Honnibal & Montani, 2017)
correspond to more than one BPE sub-tokens, we average the BERT embeddings of these BPE
sub-tokens as the embedding for each token. To maintain the integrity of all evaluated model perfor-
mance, we use standard implementations and hyper-parameters of four baselines for training. The
balancing factor α is set to 0.9, and the temperature τ is set to 2. For evaluation, we use Exact
Match (EM) and F1 score to compare the model performance on the test set. Note that in this work,
each baseline is trained in the local computing environment, which may results in different results
compared with the ones on the CoQA leader board.

5.3 RESULTS

We compare several teacher-student pairs on CoQA and Spoken-CoQA dataset. Quantitative results
are shown in Table 3. We can observe that the average F1 scores are 77.6% when training on CoQA
(text document) and testing on the CoQA dev set. However, when training the models on Spoken-
CoQA (ASR transcriptions) and testing on the Spoken-CoQA test set, average F1 scores are dropped
to 49.3%. For FlowQA, the performance even dropped by 40.4% on F1 score. This confirms the
importance of mitigating ASR errors which severely degrade the model performance in our tasks.

As shown in Table 4, it demonstrates that our proposed Cross Attention block and knowledge dis-
tillation strategy consistently boost the remarkable performance on all baselines, respectively. More
importantly, our distillation strategy works particularly well. For FlowQA, our method achieves
53.7% (vs.51.6%) and 39.2% (vs.34.7%) in terms of F1 score over text document and ASR tran-
scriptions, respectively. For SDNet, our method outperforms the baseline without distillation strat-
egy, achieving 55.6% (vs.52.5%) and 56.7% (vs.53.1%) in terms of F1 score. For two BERT-like
models (BERT-base and ALBERT-base), our methods also improve F1 scores to 58.8% (vs.55.8%)
and 57.7% (vs.54.1%); 59.6% (vs.56.0%) and 58.7% (vs.55.2%), respectively. We also compare the
combination of our distillation strategy and the cross attention mechanism. Our results suggest that
such network notably improve prediction performance for spoken conversational question answering
tasks. Such significant improvements demonstrate the effectiveness of DDNet.

6 QUANTITATIVE ANALYSIS

Speech Feature in ASR System To perform qualitative analysis of speech features, we visualize
the log-mel spectrogram features and the mel-frequency cepstral coefficients (MFCC) feature em-
bedding learned by DDNet in Figure 4. We can observe how the spectrogram features respond to
different sentence examples.

Temperature τ To study the effect of temperature τ (See Section 4.2), we conduct the additional
experiments of four baselines with the standard choice of the temperature τ ∈ {1, 2, 4, 6, 8, 10}. All
models are trained on Spoken-CoQA dataset, and validated on the CoQA dev and Spoken-CoQA
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Table 4: Comparison of key components in DDNet. We set the model on speech document and text
corpus as the teacher model, and the one on the ASR transcripts as the student model.

CoQA dev S-CoQA test
Methods EM F1 EM F1
FlowQA (Huang et al., 2018a) 40.9 51.6 22.1 34.7
FlowQA + sub-word unit (Li et al., 2018) 41.9 53.2 23.3 36.4
FlowQA+ SLU (Serdyuk et al., 2018) 41.2 52.0 22.4 35.0
FlowQA + back-translation (Lee et al., 2018) 40.5 52.1 22.9 35.8
FlowQA + domain adaptation (Lee et al., 2019) 41.7 53.0 23.4 36.1
FlowQA + Cross Attention 41.1 52.2 22.5 35.5
FlowQA + Knowledge Distillation 42.5 53.7 23.9 39.2
FlowQA + Cross Attention+Knowledge Distillation 42.9 54.7 24.9 41.0
SDNet (Zhu et al., 2018) 40.1 52.5 41.5 53.1
SDNet + sub-word unit (Li et al., 2018) 41.2 53.7 41.9 54.7
SDNet+ SLU (Serdyuk et al., 2018) 40.2 52.9 41.7 53.2
SDNet + back-translation (Lee et al., 2018) 40.5 53.1 42.4 54.0
SDNet + domain adaptation (Lee et al., 2019) 41.0 53.9 41.7 54.6
SDNet + Cross Attention 40.4 52.9 41.6 53.4
SDNet + Knowledge Distillation 41.7 55.6 43.6 56.7
SDNet + Cross Attention+Knowledge Distillation 42.1 56.6 44.0 57.7
BERT-base (Devlin et al., 2018) 42.3 55.8 40.6 54.1
BERT-base + sub-word unit (Li et al., 2018) 43.2 56.8 41.6 55.4
BERT-base+ SLU (Serdyuk et al., 2018) 42.5 56.1 41.0 54.6
BERT-base + back-translation (Lee et al., 2018) 42.9 56.5 41.5 55.2
BERT-base + domain adaptation (Lee et al., 2019) 43.1 57.0 41.7 55.7
aeBERT (Kuo et al., 2020) 43.0 56.9 41.8 55.6
BERT-base + Cross Attention 42.4 56.3 40.9 54.5
BERT-base + Knowledge Distillation 44.1 58.8 42.8 57.7
BERT-base + Cross Attention+Knowledge Distillation 44.2 59.8 43.5 58.4
ALBERT-base (Lan et al., 2020) 42.7 56.0 41.4 55.2
ALBERT-base + sub-word unit (Li et al., 2018) 43.7 57.2 42.6 56.8
ALBERT-base + SLU (Serdyuk et al., 2018) 42.8 56.3 41.7 55.7
ALBERT-base + back-translation (Lee et al., 2018) 43.5 57.1 42.4 56.4
ALBERT-base + domain adaptation (Lee et al., 2019) 43.5 57.0 42.7 56.7
ALBERT-base + Cross Attention 42.9 56.4 41.6 55.9
ALBERT-base + Knowledge Distillation 44.8 59.6 43.9 58.7
ALBERT-base + Cross Attention+ Knowledge Distillation 45.2 60.2 44.4 60.1

test set, respectively. In Figure 3, when T is set to 2, four baselines all achieve their best performance
in term of F1 and EM metrics.

Multi-Modality Fusion Mechanism To study the effect of different modality fusion mechanisms,
we introduce a novel fusion mechanism Con Fusion: first, we directly concatenate two output em-
bedding from speech-BERT and text-BERT models, and then pass it to the encoding layer in the
following CMRC module. In Table 5, we observe that Cross Attention fusion mechanism outper-
form four baselines with Con Fusion in terms of EM and F1 scores. We further investigate the effect
of uni-model input. Table 5 shows that text-only performs better than speech-only. One possible
reason for this performance is that only using speech features can bring additional noise. Note that
speech-only (text-only) represents that we only feed the speech (text) embedding for speech-BERT
(text-BERT) to the encoding layer in the CMRC module.

7 CONCLUSION

In this paper, we have presented a new spoken conversational question answering task - Spoken-
CoQA, for enabling human-machine communication. Unlike the existing Spoken conversational
machine reading comprehension datasets, Spoken-CoQA includes multi-turn conversations and pas-
sages in both text and speech form. Furthermore, we propose a data distillation method, which

8
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Table 5: Comparison of different fusion mechanisms in DDNet. We set the model trained on speech
document and text corpus as the teacher model, and the one trained on the ASR transcripts as
the student model.

CoQA dev S-CoQA test
Models EM F1 EM F1
FlowQA (Huang et al., 2018a) 40.9 51.6 22.1 34.7
FlowQA (Huang et al., 2018a)+ speech-only 40.8 51.2 21.8 34.0
FlowQA (Huang et al., 2018a)+ text-only 41.1 51.7 22.4 35.3
FlowQA (Huang et al., 2018a)+ Con Fusion 41.0 52.0 22.1 35.2
FlowQA (Huang et al., 2018a)+ Cross Attention 41.1 52.2 22.5 35.5
SDNet (Zhu et al., 2018) 40.1 52.5 41.5 53.1
SDNet (Zhu et al., 2018)+ speech-only 39.3 51.6 40.9 52.28
SDNet (Zhu et al., 2018)+ text-only 40.2 52.7 41.5 53.3
SDNet (Zhu et al., 2018)+ Con Fusion 40.3 52.6 41.5 53.2
SDNet (Zhu et al., 2018)+ Cross Attention 40.4 52.9 41.6 53.4
BERT-base (Devlin et al., 2018) 42.3 55.8 40.6 54.1
BERT-base (Devlin et al., 2018)+ speech-only 41.9 55.8 40.2 54.1
BERT-base (Devlin et al., 2018)+ text-only 42.4 56.0 40.9 54.3
BERT-base (Devlin et al., 2018)+ Con Fusion 42.3 56.0 40.8 54.1
BERT-base (Devlin et al., 2018)+ Cross Attention 42.4 56.3 40.9 54.5
ALBERT-base (Lan et al., 2020) 42.7 56.0 41.4 55.2
ALBERT-base (Lan et al., 2020)+ speech-only 41.8 55.9 41.1 54.8
ALBERT-base (Lan et al., 2020)+ text-only 42.9 56.3 41.4 55.7
ALBERT-base (Lan et al., 2020)+ Con Fusion 42.7 56.1 41.3 55.4
ALBERT-base (Lan et al., 2020)+ Cross Attention 42.9 56.4 41.6 55.9

Figure 3: Ablation studies of temperature τ on DDNet performance (FlowQA, SDNet, BERT, AL-
BERT). Red and blue denote the results on CoQA dev and Spoken-CoQA test set, respectively.

leverages audio-text features to reduce the misalignment between ASR hypotheses and the reference
transcriptions. Experimental results show that DDNet achieves superior performance in prediction
accuracy. For future work, we will further investigate different mechanism of integrating speech and
text content, and propose novel machine learning based networks to migrate ASR recognition errors
to boost the performance of QA systems.
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A APPENDIX

A.1 SPEECH FEATURES IN ASR SYSTEM

Due to the page limit, we present some examples of speech features here.

Once upon a time, in a barn near a farm house, there lived a little white kitten named Cotton.

Cotton lived high up in a nice warm place above the barn where all of the farmer's horses slept.

But Cotton wasn't alone in her little home above the barn, oh no.

She shared her hay bed with her mommy and 5 other sisters.

Figure 4: Examples of the log-mel spectrograms and the corresponding MFCC feature embedding. It
can see that the log-mel spectrograms corresponds to different example sentences from the Spoken-
CoQA dataset.
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