
Published as a conference paper at ICLR 2023

SEAFORMER: SQUEEZE-ENHANCED AXIAL TRANS-
FORMER FOR MOBILE SEMANTIC SEGMENTATION

Qiang Wan1∗, Zilong Huang2, Jiachen Lu1, Gang Yu2, Li Zhang1†
1School of Data Science, Fudan University 2Tencent PCG

ABSTRACT

Since the introduction of Vision Transformers, the landscape of many computer
vision tasks (e.g., semantic segmentation), which has been overwhelmingly dom-
inated by CNNs, recently has significantly revolutionized. However, the com-
putational cost and memory requirement render these methods unsuitable on the
mobile device, especially for the high-resolution per-pixel semantic segmentation
task. In this paper, we introduce a new method squeeze-enhanced Axial Trans-
former (SeaFormer) for mobile semantic segmentation. Specifically, we design
a generic attention block characterized by the formulation of squeeze Axial and
detail enhancement. It can be further used to create a family of backbone archi-
tectures with superior cost-effectiveness. Coupled with a light segmentation head,
we achieve the best trade-off between segmentation accuracy and latency on the
ARM-based mobile devices on the ADE20K and Cityscapes datasets. Critically,
we beat both the mobile-friendly rivals and Transformer-based counterparts with
better performance and lower latency without bells and whistles. Beyond seman-
tic segmentation, we further apply the proposed SeaFormer architecture to im-
age classification problem, demonstrating the potentials of serving as a versatile
mobile-friendly backbone. Our code and models are made publicly available at
https://github.com/fudan-zvg/SeaFormer.

1 INTRODUCTION

As a fundamental problem in computer vision, semantic segmentation aims to assign a semantic
class label to each pixel in an image. Conventional methods rely on stacking local convolution
kernel Long et al. (2015) to perceive the long-range structure information of the image.

Since the introduction of Vision Transformers Dosovitskiy et al. (2021), the landscape of semantic
segmentation has significantly revolutionized. Transformer-based approaches Zheng et al. (2021);
Xie et al. (2021) have remarkably demonstrated the capability of global context modeling. However,
the computational cost and memory requirement of Transformer render these methods unsuitable on
mobile devices, especially for high-resolution imagery inputs.

Following conventional wisdom of efficient operation, local/window-based attention Luong et al.
(2015); Liu et al. (2021); Huang et al. (2021a); Yuan et al. (2021), Axial attention Huang et al.
(2019b); Ho et al. (2019); Wang et al. (2020a), dynamic graph message passing Zhang et al. (2020;
2022b) and some lightweight attention mechanisms Hou et al. (2020); Li et al. (2021b;c; 2020); Liu
et al. (2018); Shen et al. (2021); Xu et al. (2021); Cao et al. (2019); Woo et al. (2018); Wang et al.
(2020b); Choromanski et al. (2021); Chen et al. (2017); Mehta & Rastegari (2022a) are introduced.

However, these advances are still insufficient to satisfy the design requirements and constraints for
mobile devices due to the high latency on the high-resolution inputs (see Figure 1). Recently there
is a surge of interest in building a Transformer-based semantic segmentation. In order to reduce the
computation cost at high resolution, TopFormer Zhang et al. (2022c) dedicates to applying the global
attention at a 1/64 scale of the original input, which definitely harms the segmentation performance.

To solve the dilemma of high-resolution computation for pixel-wise segmentation task and low
latency requirement on the mobile device in a performance harmless way, we propose a family
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Figure 1: Left: Latency comparison with Transformer Vaswani et al. (2017), MixFormer Chen
et al. (2022a), ACmix Pan et al. (2022b), Axial attention Ho et al. (2019) and local attention Luong
et al. (2015). It is measured with a single module of channel dimension 64 on a Qualcomm Snap-
dragon 865 processor. Right: The mIoU versus latency on the ADE20K val set. MV2 means Mo-
bileNetV2 Sandler et al. (2018). MV3-L means MobileNetV3-Large Howard et al. (2019). MV3-Lr
denotes MobileNetV3-Large-reduce Howard et al. (2019). The latency is measured on a single
Qualcomm Snapdragon 865, and only an ARM CPU core is used for speed testing. No other means
of acceleration, e.g., GPU or quantification, is used. For figure Right, the input size is 512×512.
SeaFormer achieves superior trade-off between mIoU and latency.

of mobile-friendly Transformer-based semantic segmentation model, dubbed as squeeze-enhanced
Axial Transformer (SeaFormer), which reduces the computational complexity of axial attention from
O((H +W )HW ) to O(HW ), to achieve superior accuracy-efficiency trade-off on mobile devices
and fill the vacancy of mobile-friendly efficient Transformer.

The core building block squeeze-enhanced Axial attention (SEA attention) seeks to squeeze (pool)
the input feature maps along the horizontal/vertical axis into a compact column/row and computes
self-attention. We concatenate query, keys and values to compensate the detail information sacrificed
during squeeze and then feed it into a depth-wise convolution layer to enhance local details.

Coupled with a light segmentation head, our design (see Figure 2) with the proposed SeaFormer
layer in the small-scale feature is capable of conducting high-resolution image semantic segmenta-
tion with low latency on the mobile device. As shown in Figure 1, the proposed SeaFormer out-
performs other efficient neural networks on the ADE20K dataset with lower latency. In particular,
SeaFormer-Base is superior to the lightweight CNN counterpart MobileNetV3 (41.0 vs.33.1 mIoU)
with lower latency (106ms vs.126ms) on an ARM-based mobile device.

We make the following contributions: (i) We introduce a novel squeeze-enhanced Axial Trans-
former (SeaFormer) framework for mobile semantic segmentation; (ii) Critically, we design a
generic attention block characterized by the formulation of squeeze Axial and detail enhancement;
It can be used to create a family of backbone architectures with superior cost-effectiveness; (iii) We
show top performance on the ADE20K and Cityscapes datasets, beating both the mobile-friendly
rival and Transformer-based segmentation model with clear margins; (iv) Beyond semantic segmen-
tation, we further apply the proposed SeaFormer architecture to the image classification problem,
demonstrating the potential of serving as a versatile mobile-friendly backbone.

2 RELATED WORK

Combination of Transformers and convolution Convolution is relatively efficient but not suit-
able to capture long-range dependencies and vision Transformer has the powerful capability with a
global receptive field but lacks efficiency due to the computation of self-attention. In order to make
full use of both of their advantages, MobileViT Mehta & Rastegari (2022a), TopFormer Zhang et al.
(2022c), LVT Yang et al. (2022), Mobile-Former Chen et al. (2022b), EdgeViTs Pan et al. (2022a),
MobileViTv2 Mehta & Rastegari (2022b), EdgeFormer Zhang et al. (2022a) and EfficientFormer Li
et al. (2022) are constructed as efficient ViTs by combining convolution with Transformers. Mobile-
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ViT, Mobile-Former, TopFormer and EfficientFormer are restricted by Transformer blocks and have
to trade off between efficiency and performance in model design. LVT, MobileViTv2 and EdgeViTs
keep the model size small at the cost of relatively high computation, which also means high latency.

Axial attention and variants Axial attention Huang et al. (2019b); Ho et al. (2019); Wang et al.
(2020a) is designed to reduce the computational complexity of original global self-attention Vaswani
et al. (2017). It computes self-attention over a single axis at a time and stacks a horizontal and a
vertical axial attention module to obtain the global receptive field. Strip pooling Hou et al. (2020)
and Coordinate attention Hou et al. (2021) uses a band shape pooling window to pool along either
the horizontal or the vertical dimension to gather long-range context. Kronecker Attention Net-
works Gao et al. (2020) uses the juxtaposition of horizontal and lateral average matrices to average
the input matrices and performs attention operation. These methods and other similar implementa-
tions provide performance gains partly at considerably low computational cost compared with Axial
attention. However, they ignore the lack of local details brought by the pooling/average operation.

Mobile semantic segmentation The mainstream of efficient segmentation methods are based on
lightweight CNNs. DFANet Li et al. (2019) adopts a lightweight backbone to reduce computation
cost and adds a feature aggregation module to refine high-level and low-level features. ICNet Zhao
et al. (2018) designs an image cascade network to speed up the algorithm, while BiSeNet Yu et al.
(2018; 2021) proposes two-stream paths for low-level details and high-level context information,
separately. Fast-SCNN Poudel et al. (2019) shares the computational cost of the multi-branch net-
work to yield a run-time fast segmentation CNN. TopFormer Zhang et al. (2022c) presents a new
architecture with a combination of CNNs and ViT and achieves a good trade-off between accuracy
and computational cost for mobile semantic segmentation. However, it is still restricted by the heavy
computation load of global self-attention.

3 METHOD

3.1 OVERALL ARCHITECTURE

Inspired by the two-branch architectures Yu et al. (2021); Poudel et al. (2019); Hong et al. (2021);
Huang et al. (2021b); Chen et al. (2022b), we design a squeeze-enhanced Axial Transformer
(SeaFormer) framework. As is shown in Figure 2, SeaFormer consists of these parts: shared STEM,
context branch, spatial branch, fusion block and light segmentation head. For a fair comparison, we
follow TopFormer Zhang et al. (2022c) to design the STEM. It consists of one regular convolution
with stride of 2 followed by four MobileNet blocks where stride of the first and third block is 2. The
context branch and the spatial branch share the produced feature map, which allows us to build a
fast semantic segmentation model.

Context branch The context branch is designed to capture context-rich information from the fea-
ture map xs. As illustrated in the red branch of Figure 2, the context branch is divided into three
stages. To obtain larger receptive field, we stack SeaFormer layers after applying a MobileNet block
to down-sampling and expanding feature dimension. Compared with the standard convolution as the
down-sampling module, MobileNet block increases the representation capacity of the model while
maintaining a lower amount of computation and latency. For variants except SeaFormer-Large,
SeaFormer layers are applied in the last two stages for superior trade-off between accuracy and ef-
ficiency. For SeaFormer-Large, we insert SeaFormer layers in each stage of context branch. To
achieve a good trade-off between segmentation accuracy and inference speed, we design a squeeze-
enhanced Axial attention block (SEA attention) illustrated in the next subsection.

Spatial branch The spatial branch is designed to obtain spatial information in high resolution.
Identical to the context branch, the spatial branch reuses feature maps xs. However, the feature from
the early convolution layers contains rich spatial details but lacks high-level semantic information.
Consequently, we design a fusion block to fuse the features in the context branch into the spatial
branch, bringing high-level semantic information into the low-level spatial information.

Fusion block As depicted in Figure 2, high resolution feature maps in the spatial branch are fol-
lowed by a 1 × 1 convolution and a batch normalization layer to produce a feature to fuse. Low
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Figure 2: The overall architecture of SeaFormer. It contains shared STEM, context branch (red),
spatial branch (blue), fusion block and light segmentation head. MV2 block means MobileNetV2
block and MV2 ↓2 means MobileNetV2 block with downsampling. SeaFormer layers and fusion
block with dash box only exist in SeaFormer-L. The symbol

⊗
denotes element-wise multiplication.

resolution feature maps in the context branch are fed into a 1× 1 convolution layer, a batch normal-
ization layer, a sigmoid layer and up-sampled to high resolution to produce semantics weights by
bilinear interpolation. Then, the semantics weights from context branch are element-wisely multi-
plied to the high resolution feature from spatial branch. The fusion block enables low-level spatial
features to obtain high-level semantic information.

Light segmentation head The feature after the last fusion block is fed into the proposed segmen-
tation head directly, as demonstrated in Figure 2. For fast inference purpose, our light segmentation
head consists of two convolution layers, which are followed by a batch normalization layer sepa-
rately and the feature from the first batch normalization layer is fed into an activation layer.

3.2 SQUEEZE-ENHANCED AXIAL ATTENTION

The global attention can be expressed as

yo =
∑

p∈G(o)

softmaxp

(
q⊤
o kp

)
vp (1)

where x ∈ RH×W×C . q,k,v are linear projection of x, i.e.q = Wqx,k = Wkx,v = Wvx,
where Wq,Wk ∈ RCqk×C ,Wv ∈ RCv×C are learnable weights. G(o) means all positions on the
feature map of location o = (i, j). When traditional attention module is applied on a feature map of
H ×W ×C, the time complexity can be O(H2W 2(Cqk +Cv)), leading to low efficiency and high
latency.

yo =
∑

p∈Nm×m(o)

softmaxp
(
q⊤
o kp

)
vp (2)

yo =
∑

p∈N1×W (o)

softmaxp
(
q⊤
o kp

)
vp +

∑
p∈NH×1(o)

softmaxp

(
q⊤
o kp

)
vp (3)

To improve the efficiency, there are some works Liu et al. (2021); Huang et al. (2019b); Ho et al.
(2019) computing self-attention within the local region. We show two most representative efficient
Transformer in Equation 2, 3. Equation 2 is represented by window-based attention Luong et al.
(2015) successfully reducing the time complexity to O(m2HW (Cqk + Cv)) = O(HW ), where
Nm×m(o) means the neighbour m×m positions of o, but loosing global receptiveness. The Equa-
tion 3 is represented by Axial attention Ho et al. (2019), which only reduces the time complexity
to O((H +W )HW (Cqk + Cv)) = O((HW )1.5), where NH×1(o) means all the positions of the
column of o; N1×W (o) means all the positions of the row of o.

According to their drawbacks, we propose the mobile-friendly squeeze-enhanced Axial attention,
with a succinct squeeze Axial attention for global semantics extraction and an efficient convolution-
based detail enhancement kernel for local details supplement.

q(h) =
1

W

(
q→(Cqk,H,W )1W

)→(H,Cqk)

, q(v) =
1

H

(
q→(Cqk,W,H)1H

)→(W,Cqk)

(4)
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Figure 3: Right: the schematic illustration of the proposed squeeze-enhanced Axial Transformer
layer including a squeeze-enhanced Axial attention and a Feed-Forward Network (FFN). Left is the
squeeze-enhanced Axial Transformer layer, including detail enhancement kernel and squeeze Axial
attention. The symbol

⊕
indicates an element-wise addition operation. Mul means multiplication.

Squeeze Axial attention To achieve a more efficient computation and aggregate global informa-
tion at the same time, we resort to a more radical strategy. In the same way, q,k,v are first get
from x with W

(s)
q ,W

(s)
k ∈ RCqk×C ,W

(s)
v ∈ RCv×C . According to Equation 4, we first imple-

ment horizontal squeeze by taking average of query feature map on the horizontal direction. In the
same way, the right shows the vertical squeeze on the vertical direction. z→(·) means permuting
the dimension of tensor z as given, and 1m ∈ Rm is a vector with all the elements equal to 1.
The squeeze operation on q also repeats on k and v, so we finally get q(h),k(h),v(h) ∈ RH×Cqk ,
q(v),k(v),v(v) ∈ RW×Cqk . The squeeze operation reserves the global information to a single axis,
thus greatly alleviating the following global semantic extraction showing by Equation 5.

y(i,j) =

H∑
p=1

softmaxp
(
q⊤
(h)ik(h)p

)
v(h)p +

W∑
p=1

softmaxp
(
q⊤
(v)jk(v)p

)
v(v)p (5)

Each position of feature map propagates information only on two squeezed axial features. Although
it shows no distinct computation reduction comparing to Equation 3, repeat of Equation 5 can be
simply implemented by the most efficient broadcast operation. The detail is shown in Figure 3.
Time complexity for squeezing q,k,v is O((H + W )(2Cqk + Cv)) and the attention operation
takes O((H2 +W 2)(Cqk +Cv)) time. Thus, our squeeze Axial attention successfully reduces time
complexity to O(HW ).

Squeeze Axial position embedding Equation 4 are, however, not positional-aware, including no
positional information of feature map. Hence, we propose squeeze Axial position embedding to
squeeze Axial attention. For squeeze Axial attention, we render both q(h) and k(h) to be aware of
their position in squeezed axial feature by introducing positional embedding rq(h), r

k
(h) ∈ RH×Cqk ,

which are linearly interpolated from learnable parameters Bq
(h),B

k
(h) ∈ RL×Cqk . L is a constant.

In the same way, rq(v), r
k
(v) ∈ RW×Cqk are applied to q(v),k(v). Thus, the positional-aware squeeze

Axial attention can be expressed as Equation 6.

y(i,j) =

H∑
p=1

softmaxp
(
(q(h)i + rq(h)i)

⊤(k(h)p + rk(h)p)
)
v(h)p

+

W∑
p=1

softmaxp
(
(q(v)j + rq(v)j)

⊤(k(v)p + rk(v)p)
)
v(v)p

(6)

Detail enhancement kernel The squeeze operation, though extracting global semantic informa-
tion efficiently, sacrifices the local details. Hence an auxiliary convolution-based kernel is applied
to enhance the spatial details. As is shown in the upper path of Figure 3, q,k,v are first get from x

with another W(e)
q ,W

(e)
k ∈ RCqk×C ,W

(e)
v ∈ RCv×C and are concatenated on the channel dimen-

sion and then passed to a block made up of 3×3 depth-wise convolution and batch normalization.
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Backbone Decoder Params FLOPs mIoU Latency
MobileNetV2 LR-ASPP 2.2M 2.8G 32.0 177ms
MobileNetV3-Large-reduce LR-ASPP 1.6M 1.3G 32.3 81ms
MobileNetV3-Large LR-ASPP 3.2M 2.0G 33.1 126ms
HRNet-W18-Small HRNet-W18-Small 4.0M 10.2G 33.4 639ms
TopFormer-T Simple Head 1.4M 0.6G 33.6 43ms
TopFormer-T* Simple Head 1.4M 0.6G 34.6 43ms
SeaFormer-T Light Head 1.7M 0.6G 35.0 40ms
SeaFormer-T* Light Head 1.7M 0.6G 35.8±0.35 40ms
ConvMLP-S Semantic FPN 12.8M 33.8G 35.8 777ms
EfficientNet DeepLabV3+ 17.1M 26.9G 36.2 970ms
MobileNetV2 Lite-ASPP 2.9M 4.4G 36.6 235ms
TopFormer-S Simple Head 3.1M 1.2G 36.5 74ms
TopFormer-S* Simple Head 3.1M 1.2G 37.0 74ms
SeaFormer-S Light Head 4.0M 1.1G 38.1 67ms
SeaFormer-S* Light Head 4.0M 1.1G 39.4±0.25 67ms
MiT-B0 SegFormer 3.8M 8.4G 37.4 770ms
ResNet18 Lite-ASPP 12.5M 19.2G 37.5 648ms
ShuffleNetV2-1.5x DeepLabV3+ 16.9M 15.3G 37.6 960ms
MobileNetV2 DeepLabV3+ 15.4M 25.8G 38.1 1035ms
TopFormer-B Simple Head 5.1M 1.8G 38.3 110ms
TopFormer-B* Simple Head 5.1M 1.8G 39.2 110ms
SeaFormer-B Light Head 8.6M 1.8G 40.2 106ms
SeaFormer-B* Light Head 8.6M 1.8G 41.0±0.45 106ms
MiT-B1 SegFormer 13.7M 15.9G 41.6 1300ms
SeaFormer-L Light Head 14.0M 6.5G 42.7 367ms
SeaFormer-L* Light Head 14.0M 6.5G 43.7±0.36 367ms

Table 1: Results of semantic segmentation on ADE20K val set, * indicates training batch size is
32. The latency is measured on a single Qualcomm Snapdragon 865 with input size 512×512, and
only an ARM CPU core is used for speed testing. References: MobileNetV2 Sandler et al. (2018),
MobileNetV3 Howard et al. (2019), HRNet Yuan et al. (2020), TopFormer Zhang et al. (2022c),
ConvMLP Li et al. (2021a), Semantic FPN Kirillov et al. (2019), EfficientNet Tan & Le (2019),
DeepLabV3+ and Lite-ASPP Chen et al. (2018a), SegFormer Xie et al. (2021), ResNet He et al.
(2016), ShuffleNetV2-1.5x Ma et al. (2018).

By using a 3×3 convolution, auxiliary local details can be aggregated from q,k,v. And then a
linear projection with activation function and batch normalization are used to squeeze (2Cqk + Cv)
dimension to C and generate detail enhancement weights. Finally, the enhancement feature will
be fused with the feature given by squeeze Axial attention. Different enhancement mode including
element-wise addition and multiplication will be compared in experiment section. Time complexity
for the 3×3 depth-wise convolution is O(32HW (2Cqk +Cv)) and the time complexity for the 1×1
convolution is O(HWC(2Cqk +Cv)). Time for the other operations like activation can be omitted.

Architecture and Variants We introduce four variants, SeaFormer-Tiny, Small, Base and Large
(T, S, B and L). More configuration details are listed in the supplementary material.

4 EXPERIMENTS

We evaluate our method on semantic segmentation and image classification tasks. First, we de-
scribe implementation details and compare results with state of the art. We then conduct a series
of ablation studies to validate the design of SeaFormer. Each proposed component and important
hyper-parameters are examined thoroughly.

4.1 EXPERIMENTAL SETUP

4.1.1 DATASET

We perform segmentation experiments over ADE20K Zhou et al. (2017), CityScapes Cordts et al.
(2016). The mean of intersection over union (mIoU) is set as the evaluation metric. We convert
full-precision models to TNN Contributors (2019) and measure latency on an ARM-based device
with a single Qualcomm Snapdragon 865 processor.
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Method Backbone FLOPs mIoU(val) mIoU(test) Latency
FCN MobileNetV2 317G 61.5 - 24190ms
PSPNet MobileNetV2 423G 70.2 - 31440ms
SegFormer(h) MiT-B0 17.7G 71.9 - 1586ms
SegFormer(f) MiT-B0 125.5G 76.2 - 11030ms
L-ASPP MobileNetV2 12.6G 72.7 - 887ms
LR-ASPP MobileNetV3-L 9.7G 72.4 72.6 660ms
LR-ASPP MobileNetV3-S 2.9G 68.4 69.4 211ms
Simple Head(h) TopFormer-B 2.7G 70.7 - 173ms
Simple Head(f) TopFormer-B 11.2G 75.0 75.0 749ms
Light Head(h) SeaFormer-S 2.0G 70.7 71.0 129ms
Light Head(f) SeaFormer-S 8.0G 76.1 75.9 518ms
Light Head(h) SeaFormer-B 3.4G 72.2 72.5 205ms
Light Head(f) SeaFormer-B 13.7G 77.7 77.5 821ms

Table 2: Results on Cityscapes val set. The results on test set of some methods are not presented
due to the fact that they are not reported in their original papers.

ADE20K dataset covers 150 categories, containing 25K images that are split into 20K/2K/3K for
Train, val and test. CityScapes is a driving dataset for semantic segmentation. It consists of 5000
fine annotated high-resolution images with 19 categories.

4.1.2 IMPLEMENTATION DETAILS

We set ImageNet-1K Deng et al. (2009) pretrained network as the backbone, and training details of
ImageNet-1K are illustrated in the last subsection. For semantic segmentation, the standard Batch-
Norm Ioffe & Szegedy (2015) layer is replaced by synchronized BatchNorm.

Training Our implementation is based on public codebase mmsegmentation Contributors
(2020). We follow the batch size, training iteration scheduler and data augmentation strategy of
TopFormer Zhang et al. (2022c) for a fair comparison. The initial learning rate is 0.0005 and the
weight decay is 0.01. A “poly” learning rate scheduled with factor 1.0 is adopted. During inference,
we set the same resize and crop rules as TopFormer to ensure fairness. The comparison of Cityscapes
contains full-resolution and half-resolution. For the full-resolution version, the training images are
randomly scaled and then cropped to the fixed size of 1024 × 1024. For the half-resolution version,
the training images are resized to 1024 × 512 and randomly scaling, the crop size is 1024 × 512.

4.2 COMPARISON WITH STATE OF THE ART

ADE20K Table 1 shows the results of SeaFormer and previous efficient backbones on ADE20K
val set. The comparison covers Params, FLOPs, Latency and mIoU. As shown in Table 1, SeaFormer
outperforms these approaches with comparable or less FLOPs and lower latency. Compared with
specially designed mobile backbone, TopFormer, which sets global attention as its semantics extrac-
tor, SeaFormer achieves higher segmentation accuracy with lower latency. And the performance of
SeaFormer-B surpasses MobileNetV3 by a large margin of +7.9% mIoU with lower latency (-16%).
The results demonstrate our SeaFormer layers improve the representation capability significantly.

Cityscapes From the table 2, it can be seen that SeaFormer-S achieves comparable or better results
than TopFormer-B with less computation cost and latency, which proves that SeaFormer could also
achieve a good trade-off between performance and latency in high-resolution scenario.

4.3 ABLATION STUDIES

In this section, we ablate different self-attention implementations and some important design ele-
ments in the proposed model, including our squeeze-enhanced Axial attention module (SEA atten-
tion) and fusion block on ADE20K dataset.

The influence of components in SEA attention We conduct experiments with several configura-
tions, including detail enhancement kernel only, squeeze Axial attention only, and the fusion of both.
As is shown in Table 3, only detail enhancement or squeeze Axial attention achieves a relatively poor
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Enhance Attn Enhance Enhance Params FLOPs Latency Top1 mIoUkernel branch input mode
✔ - - 1.3M 0.58G 38ms 65.9 32.5

✔ - - 1.4M 0.57G 38ms 66.3 33.5
✔ ✔ conv(x) Mul 1.6M 0.60G 40ms 67.2 34.9
✔ ✔ upconv(x) Mul 1.8M 0.62G 41ms 68.1 35.9
✔ ✔ concat[qkv] Mul 1.7M 0.60G 40ms 67.9 35.8
✔ ✔ concat[qkv] Add 1.7M 0.60G 40ms 67.3 35.4

Table 3: Ablation studies on components in SEA attention on ImageNet-1K and ADE20K datasets.
Enhancement input means the input of detail enhancement kernel. conv(x) means x followed by a
point-wise conv. upconv(x) is the same as conv(x) except different channels as upconv(x) is from
Cin to Cq + Ck + Cv and conv(x) is from Cin to Cin. concat[qkv] indicates concat of Q,K, V.

performance, and enhancing squeeze Axial attention with detail enhancement kernel brings a per-
formance boost with a gain of 2.3% mIoU on ADE20K. The results indicate that enhancing global
semantic features from squeeze Axial attention with local details from convolution optimizes the
feature extraction capability of Transformer block. For enhancement input, there is an apparent per-
formance gap between upconv(x) and conv(x). And we conclude that increasing the channels will
boost performance significantly. Comparing concat[qkv] and upconv(x), which also correspond to
w/ or w/o convolution weight sharing between detail enhancement kernel and squeeze Axial atten-
tion, we can find that sharing weights makes our model improve inference efficiency with minimal
performance loss (35.8 vs.35.9). As for enhancement modes, multiplying features from squeeze
Axial attention and detail enhancement kernel outperforms add enhancement by +0.4% mIoU.

Model Params(B) FLOPs(B) mIoU Latency
Swin 27.5M 25.6G 44.5 3182ms
CCNet 41.6M 37.4G 43.1 3460ms
ISSA 31.8M 33.3G 37.4 2991ms
A2-Nets 37.2M 31.1G 28.9 2502ms
Axial 36.2M 32.5G 45.3 3121ms
Local 27.5M 25.1G 34.2 3059ms
MixFormer 27.5M 24.9G 45.5 2817ms
ACmix 27.9M 26.6G 45.3 3712ms
Global 27.5M 0.144T OOM 14642ms
SeaFormer 34.0M 24.9G 46.5 2278ms

Table 4: Results on ADE20K val set based on Swin Trans-
former architecture. (B) denotes backbone. OOM means
CUDA out of memory. References: ISSA Huang et al.
(2019a), A2-Nets Chen et al. (2018b)

Comparison with different self-
attention modules In order to
eliminate the impact of our architecture
and demonstrate the effectiveness and
generalization ability of SEA attention,
we ran experiments on Swin Trans-
former Liu et al. (2021) by replacing
window attention in Swin Transformer
with different attention blocks. We
set the same training protocol, hyper-
parameters, and model architecture
configurations as Swin for a fair
comparison. When replacing window
attention with CCAttention (CCNet) or
DoubleAttention (A2-Nets), they have
much lower FLOPs than SeaFormer
and other attention blocks. Considering that we may not be able to draw conclusions rigorously,
we doubled the number of their Transformer blocks (including MLP). As ACmix has the same
architecture configuration as Swin, we borrow the results from the original paper. From Table 4, it
can be seen that SeaFormer outperforms other attention mechanisms with lower FLOPs and latency.

The influence of the width in fusion block To study the influence of the width in fusion block,
we perform experiments with different embedding dimensions in fusion blocks on SeaFormer-Base,
M denotes the channels that spatial branch and context branch features mapping to in two fusion
blocks. Results are shown in Table 5.

4.4 IMAGE CLASSIFICATION

We conduct experiments on ImageNet-1K Deng et al. (2009), which contains 1.28M training

images and 50K validation images from 1,000 classes. We employ an AdamW Kingma & Ba (2014)
optimizer for 600 epochs using a cosine decay learning rate scheduler. A batch size of 1024, an initial
learning rate of 0.064, and a weight decay of 2e-5 are used. The results are illustrated in Table 6.
Compared with other efficient approaches, SeaFormer achieves a relatively better trade-off between
latency and accuracy.
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M Params FLOPs Latency mIoU
64,96 8.5M 1.7G 102ms 40.3

128,160 8.6M 1.8G 106ms 41.0
192,256 8.7M 2.0G 121ms 41.2

Posbias Params FLOPs Latency mIoU
✘ 1.65M 0.60G 40ms 35.6
✔ 1.67M 0.60G 40ms 35.8

Table 5: Ablation studies on embedding dimen-
sions and position bias.M = [128, 160] is an op-
timal embedding dimension in fusion blocks.

Figure 4: The inference latency of components.

4.5 LATENCY STATISTICS

Method P(M) F(G) Top1 L
MobileNetV3-Small 2.9 0.1 67.4 5ms
SeaFormer-T 1.8 0.1 67.9 7ms
MobileViT-XXS 1.3 0.4 69.0 24ms
MobileViTv2-0.50 1.4 0.5 70.2 32ms
MobileOne-S0* 2.1 0.3 71.4 14ms
MobileNetV2 3.4 0.3 72.0 17ms
Mobile-Former96 4.8 0.1 72.8 31ms
SeaFormer-S 4.1 0.2 73.3 12ms
EdgeViT-XXS 4.1 0.6 74.4 71ms
LVT 5.5 0.9 74.8 97ms
MobileViT-XS 2.3 0.9 74.8 54ms
MobileNetV3-Large 5.4 0.2 75.2 16ms
Mobile-Former151 7.7 0.2 75.2 42ms
MobileViTv2-0.75 2.9 1.0 75.6 68ms
MobileOne-S1* 4.8 0.8 75.9 40ms
SeaFormer-B 8.7 0.3 76.0 20ms
MobileOne-S2* 7.8 1.3 77.4 63ms
EdgeViT-XS 6.8 1.1 77.5 124ms
MobileViTv2-1.00 4.9 1.8 78.1 115ms
MobileOne-S3* 10.1 1.9 78.1 91ms
MobileViT-S 5.6 1.8 78.4 88ms
EfficientNet-B1 7.8 0.7 79.1 61ms
EfficientFormer-L1 12.3 1.3 79.2 94ms
Mobile-Former508 14.8 0.5 79.3 102ms
MobileOne-S4* 14.8 3.0 79.4 143ms
SeaFormer-L 14.0 1.2 79.9 61ms

Table 6: Image classification results on ImageNet-
1K val set. The FLOPs and latency are mea-
sured with input size 224×224, except for Mo-
bileViT and MobileViTv2 that are measured with
256×256 according to their original implementa-
tions. P, F and L mean Parameters, FLOPs
and latency. * indicates re-parameterized vari-
ants Vasu et al. (2022). The latency is measured
on a single Qualcomm Snapdragon 865, and only
an ARM CPU core is used for speed testing. No
other means of acceleration, e.g., GPU or quan-
tification, is used.

We make the statistics of the latency of the pro-
posed SeaFormer-Tiny, as shown in Figure 4,
the shared STEM takes up about half of the la-
tency of the whole network (49%). The latency
of the context branch is about a third of the to-
tal latency (34%), whilst the actual latency of
the spatial branch is relatively low (8%) due to
sharing early convolution layers with the context branch. Our light segmentation head (8%) also
contributes to the success of building a light model.

5 CONCLUSION

In this paper, we have proposed squeeze-enhanced Axial Transformer (SeaFormer) for mobile se-
mantic segmentation, filling the vacancy of mobile-friendly efficient Transformer. Moreover, we
create a family of backbone architectures of SeaFormer and achieve cost-effectiveness. The superior
performance on the ADE20K and Cityscapes, and the lowest latency demonstrate its effectiveness
on the ARM-based mobile device. Beyond semantic segmentation, we further apply the proposed
SeaFormer architecture to image classification problem, demonstrating the potential of serving as a
versatile mobile-friendly backbone.
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Appendix

A ARCHITECTURE DETAILS AND VARIANTS

SeaFormer backbone contains 6 stages, corresponding to the shared STEM and context branch in
Figure 2 in the main paper. When conducting the image classification experiments, a pooling layer
and a linear layer are added at the end of the context branch.

Table 7 details the family of our SeaFormer configurations with varying capacities. We construct
SeaFormer-Tiny, SeaFormer-Small, SeaFormer-Base and SeaFormer-Large models with different
scales via varying the number of SeaFormer layers and the feature dimensions. We use input image
size of 512 × 512 by default. For variants except SeaFormer-Large, SeaFormer layers are applied
in the last two stages for superior trade-off between accuracy and efficiency. For SeaFormer-Large,
we apply the proposed SeaFormer layers in each stage of the context branch.

B COMPLEXITY ANALYSIS

we analyze the complexity of our proposed SEA attention in subsection 3.2 to demonstrate its ef-
ficiency theoretically. In our application, we set Cqk = 0.5Cv to further reduce computation cost.
The total time complexity of squeeze-enhanced Axial attention is

O((H2 +W 2)(Cqk + Cv) +O((H +W )(2Cqk + Cv)) +O((HWC + 9HW )(2Cqk + Cv))

= O((1.5H2 + 1.5W 2 + 2HWC + 18HW + 2H + 2W )Cv) = O(HW ), (7)

if we assume H = W and take channel as constant. SEA attention is linear to the feature map size
theoretically. Moreover, SEA attention only includes mobile-friendly operation like convolution,
pooling, matrix multiplication and so on.

C PASCAL CONTEXT PERFORMANCE

We evaluate performance on Pascal Context val set over 59 categories and 60 categories. PAS-
CAL Context dataset has 4998/5105 images for train and test, covering 59 semantic labels and 1
background.

Following TopFormer Zhang et al. (2022c), we train the models for 80,000 iterations on PASCAL
Context dataset. The same data augmentation strategy and batch size are adopted for a fair compari-
son. The initial learning rate is 0.0002 and the weight decay is 0.01. A poly learning rare scheduled
with factor 1.0 is used.

Table 8 demonstrates that SeaFormer-S is +1.4% mIoU higher (45.08% vs.43.68%) than TopFormer-
S with lower latency.

D COCO-STUFF PERFORMANCE

We compare SeaFormer with the previous approaches on COCO-Stuff val set. COCO-Stuff dataset
augments COCO dataset with pixel-level stuff annotations. 10K complex images are selected from
COCO. The train and test set contain 9K/1K images.

Following TopFormer Zhang et al. (2022c), we train the models for 80,000 iterations on COCO-
Stuff dataset. The same data augmentation strategy and batch size are adopted for a fair comparison.
The initial learning rate is 0.0002 and the weight decay is 0.01. A poly learning rare scheduled with
factor 1.0 is used.

Table 9 reveals that SeaFormer-S is +2.0% mIoU higher (32.82% vs.30.83%) than TopFormer-S
with less computation cost and lower latency.
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Resolution SeaFormer-Tiny SeaFormer-Small SeaFormer-Base SeaFormer-Large

Stage1 H/2 × W/2 [Conv, 3, 16, 2] [Conv, 3, 16, 2] [Conv, 3, 16, 2] [Conv, 3, 32, 2]
[MB, 3, 1, 16, 1] [MB, 3, 1, 16, 1] [MB, 3, 1, 16, 1] [MB, 3, 3, 32, 1]

Stage2 H/4 × W/4 [MB, 3, 4, 16, 2] [MB, 3, 4, 24, 2] [MB, 3, 4, 32, 2] [MB, 3, 4, 64, 2]
[MB, 3, 3, 16, 1] [MB, 3, 3, 24, 1] [MB, 3, 3, 32, 1] [MB, 3, 4, 64, 1]

Stage3 H/8 × W/8 [MB, 5, 3, 32, 2] [MB, 5, 3, 48, 2] [MB, 5, 3, 64, 2] [MB, 5, 4, 128, 2]
[MB, 5, 3, 32, 1] [MB, 5, 3, 48, 1] [MB, 5, 3, 64, 1] [MB, 5, 4, 128, 1]

Stage4 H/16 × W/16
[MB, 3, 3, 64, 2] [MB, 3, 3, 96, 2] [MB, 3, 3, 128, 2] [MB, 3, 4, 192, 2]
[MB, 3, 3, 64, 1] [MB, 3, 3, 96, 1] [MB, 3, 3, 128, 1] [MB, 3, 4, 192, 1]

[Sea, 3, 8]

Stage5 H/32 × W/32 [MB, 5, 3, 128, 2] [MB, 5, 4, 160, 2] [MB, 5, 4, 192, 2] [MB, 5, 4, 256, 2]
[Sea, 2, 4] [Sea, 3, 6] [Sea, 4, 8] [Sea, 3, 8]

Stage6 H/64 × W/64 [MB, 3, 6, 160, 2] [MB, 3, 6, 192, 2] [MB, 3, 6, 256, 2] [MB, 3, 6, 320, 2]
[Sea, 2, 4] [Sea, 3, 6] [Sea, 4, 8] [Sea, 3, 8]

Table 7: Architectures for semantic segmentation. [Conv, 3 ,16, 2] denotes regular convolution layer
with kernel of 3, output channel of 16 and stride of 2. [MB, 3, 4, 16, 2] means MobileNetV2 Sandler
et al. (2018) block with kernel of 3, expansion ratio of 4, output channel of 16 and stride of 2. [Sea,
2, 4] refers to SeaFormer layers with number of layers of 2 and heads of 4.

Backbone Decoder F(G) mIoU(60/59)
MBV2-s16 DeepLabV3+ 22.24 38.59/42.34
ENet-s16 DeepLabV3+ 23.00 39.19/43.07
MBV3-s16 LR-ASPP 2.04 35.05/38.02
TopFormer-T Simple Head 0.53 36.41/40.39
SeaFormer-T Light Head 0.51 37.27/41.49
TopFormer-S Simple Head 0.98 39.06/43.68
SeaFormer-S Light Head 0.98 40.20/45.08
TopFormer-B Simple Head 1.54 41.01/45.28
SeaFormer-B Light Head 1.57 41.77/45.92

Table 8: Results on Pascal Context val set. F means FLOPs. We omit the latency as the input
resolution is almost the same as that in table 1.

Backbone Decoder F(G) mIoU
MBV2-s8 PSPNet 52.94 30.14
ENet-s16 DeepLabV3+ 27.10 31.45
MBV3-s16 LR-ASPP 2.37 25.16
TopFormer-T Simple Head 0.64 28.34
SeaFormer-T Light Head 0.62 29.24
TopFormer-S Simple Head 1.18 30.83
SeaFormer-S Light Head 1.15 32.82
TopFormer-B Simple Head 1.83 33.43
SeaFormer-B Light Head 1.81 34.07

Table 9: Results on COCO-Stuff test set. F means FLOPs. We omit the latency in this table as the
input resolution is the same as that in table 1.
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Backbone AP FLOPs Params
ShuffleNetv2 Ma et al. (2018) 25.9 161G 10.4M
SeaFormer-T 31.5 160G 10.9M
MF151 34.2 161G 14.4M
MV3 27.2 162G 12.3M
SeaFormer-S 34.6 161G 13.3M
MF214 35.8 162G 15.2M
MF294 36.6 164G 16.1M
SeaFormer-B 36.7 164G 18.1M
ResNet50 He et al. (2016) 36.5 239G 37.7M
PVT-Tiny Wang et al. (2021) 36.7 221G 23.0M
ConT-M Yan et al. (2021) 37.9 217G 27.0M
SeaFormer-L 39.8 185G 24.0M

Table 10: Results on COCO object detecion. MF denotes Mobile-Former Chen et al. (2022b). MV3
denotes MobileNetV3 Howard et al. (2019).

Fusion method mIoU
Add directly 35.2
Multiply directly 35.2
Sigmoid add 34.8
Sigmoid multiply 35.8

Table 11: Ablation study on fusion method on ADE20K val set.

E OBJECT DETECTION PERFORMANCE

To further demonstrate the generalization ability of our proposed SeaFormer backbone on other
downstream tasks, we conduct object detection task on COCO dataset.

Setup We use RetinaNet Lin et al. (2017) (one-stage) as the detection framework and follow the
standard settings to use SeaFormer as backbone to generate e feature pyramid at multiple scales. All
models are trained on train2017 split for 12 epochs (1×) from ImageNet pretrained weights.

Results From the table 10 We can observe that our SeaFormer achieves superior results on detec-
tion task which further demonstrates the strong generalization ability of our method.

F ADDITIONAL ABLATION STUDY

In addition to the ablation study in the submission paper, we investigate the effect of fusion method
in fusion block in Figure 2.

F.1 THE INFLUENCE OF FUSION BLOCK DESIGN

We set four fusion methods, including ”Add directly”, ”Multiply directly”, ”Sigmoid add” and ”Sig-
moid multiply”. X directly means features from context branch and spatial branch X directly. Sig-
moid X means feature from context branch goes through a sigmoid layer and X feature from spatial
branch.

From the Table 11 we can see that replacing sigmoid multiply with other fusion methods hurts
performance. Sigmoid multiply is our optimal fusion block choice.

F.2 EFFECTIVE AND EFFICIENCY OF SEA ATTENTION

To verify the effectiveness and efficiency of SEA attention based on our designed pipeline, we ex-
periment with convolution, Global attention, Local attention, Axial attention and three convolution
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Method Params FLOPs Latency Top1 mIoU
Conv 1.6M 0.59G 38ms 66.3 32.8
Local 1.3M 0.60G 48ms 65.9 32.8
Axial 1.6M 0.63G 44ms 66.9 33.7
Global 1.3M 0.61G 43ms 66.7 34.2
ACmix 1.3M 0.60G 54ms 66.0 33.1
MixFormer 1.3M 0.60G 50ms 66.8 33.8
SeaFormer 1.7M 0.60G 40ms 67.9 35.8

Table 12: Performance of different self-attention modules on our designed pipeline on ImageNet-1K
and ADE20K datasets.

Model mIoU FP32 FP16
TopFormer-T 34.6 43ms 23ms
SeaFormer-T 35.8 40ms 22ms
TopFormer-S 37.0 74ms 41ms
SeaFormer-S 39.4 67ms 36ms
TopFormer-B 39.2 110ms 60ms
SeaFormer-B 41.0 106ms 56ms
SeaFormer-L 43.7 367ms 186ms

Table 13: Performance comparison on ADE20K val set under different precision.

enhanced attention methods including our SEA attention, ACmix and MixFormer. The ablation
experiments are organized in seven groups. Since the resolution of computing attention is rela-
tively small, the window size in Local attention, ACmix, and MixFormer is set to 4. We adjust the
channels when applying different attention modules to keep the FLOPs aligned and compare their
performance and latency. The results are illustrated in Table 12.

As demonstrated in the table, SEA attention outperforms the counterpart built on other efficient
attentions. Compared with global attention, SEA attention outperforms it by +1.2% Top1 accuracy
on ImageNet-1K and +1.6 mIoU on ADE20K with less FLOPs and lower latency. Compared with
similar convolution enhanced attention works, ACmix and MixFormer, our SEA attention obtains
better results on ImageNet-1K and ADE20K with similar FLOPs but lower latency. The results
indicate the effectiveness and efficiency of SEA attention module.

G PERFORMANCE UNDER DIFFERENT PRECISION OF THE MODELS

Following TopFormer, we measure the latency in the submission paper on a single Qualcomm Snap-
dragon 865, and only an ARM CPU core is used for speed testing. No other means of acceleration,
e.g., GPU or quantification, is used. We provide a more comprehensive comparison to demonstrate
the necessity of our proposed method. We test the latency under different precision of the models.
From the table 13, it can be seen that whether it is full precision or half precision the performance
of SeaFormer is better than that of TopFormer.

H VISUALIZATION

H.1 ATTENTION HEATMAP

To demonstrate the effectiveness of detail enhancement in our squeeze-enhanced Axial attention
(SEA attention), we ablate our model by removing the detail enhancement. We visualize the atten-
tion heatmaps of the two models in Figure 5. Without detail enhancement, attention heatmaps from
solely SA attention appears to be axial strips while our proposed SEA attention is able to activate
the semantic local region accurately, which is particularly significant in the dense prediction task.
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(a) Squeeze Axial attention heatmaps

(b) Squeeze-enhanced Axial attention heatmaps

Figure 5: The visualization of attention heatmaps from the model consisting of squeeze Axial atten-
tion without detail enhancement (first row) and SeaFormer (second row). Heatmaps are produced
by averaging channels of the features from the last attention block, normalizing to [0, 255] and up-
sampling to the image size.

H.2 PREDICTION RESULTS

We show the qualitative results and compare with the alternatives on the ADE20K validation set from
two different perspectives. First we compare with a mobile-friendly rival TopFormer Zhang et al.
(2022c) with similar FLOPs and latency in Figure 6. Besides, we compare with the Transformer-
based counterpart SegFormer-B1 Xie et al. (2021) in Figure 7. In particular, our SeaFormer-L has
lower computation cost than the SegFormer-B1. As shown in both figures, we demonstrate better
segmentation results than both the mobile counterpart and Transformer-based approach.

I LIMITATIONS AND SOCIETAL IMPACT

The mobile-friendly segmentation is deeply related to the industrial application on edge computation
platforms, while few academic attempts are made to meet the requirement of the industry. We
test our method on a Qualcomm Snapdragon 865 processor (Fig.1 main paper) and shows superior
results to the alternatives. We believe our work can lead to expected and unexpected innovations in
both academia and industry.

However, our system is not perfect yet and hence not fully trustworthy in real-world deployment.
Also, the current system is not exhaustively evaluated and tested due to limited resources. We focus
on mobile semantic segmentation and image classification tasks. New mobile-friendly method for
more downstream tasks and extended to GPU systems will be studied in the future.
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(a) Ground Truth

(b) TopFormer-B Zhang et al. (2022c)

(c) SeaFormer-B (Ours)

Figure 6: Visualization of prediction results on ADE20K val set.
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(a) Ground Truth

(b) SegFormer-B1 Xie et al. (2021)

(c) SeaFormer-L (Ours)

Figure 7: Visualization of prediction results on ADE20K val set.
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