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ABSTRACT

In the recent literature of Graph Neural Networks (GNN), the expressive power of
models has been studied through their capability to distinguish if two given graphs
are isomorphic or not. Since the graph isomorphism problem is NP-intermediate,
and Weisfeiler-Lehman (WL) test can give sufficient but not enough evidence in
polynomial time, the theoretical power of GNNs is usually evaluated by the equiv-
alence of WL-test order, followed by an empirical analysis of the models on some
reference inductive and transductive datasets. However, such analysis does not
account the signal processing pipeline, whose capability is generally evaluated in
the spectral domain. In this paper, we argue that a spectral analysis of GNNs
behavior can provide a complementary point of view to go one step further in
the understanding of GNNs. By bridging the gap between the spectral and spa-
tial design of graph convolutions, we theoretically demonstrate some equivalence
of the graph convolution process regardless it is designed in the spatial or the
spectral domain. Using this connection, we managed to re-formulate most of the
state-of-the-art graph neural networks into one common framework. This general
framework allows to lead a spectral analysis of the most popular GNNs, explain-
ing their performance and showing their limits according to spectral point of view.
Our theoretical spectral analysis is confirmed by experiments on various graph
databases. Furthermore, we demonstrate the necessity of high and/or band-pass
filters on a graph dataset, while the majority of GNN is limited to only low-pass
and inevitably it fails.
Code available at https://github.com/balcilar/gnn-spectral-expressive-power.

1 INTRODUCTION

Over the last five years, many Graph Neural Networks (GNNs) have been proposed in the literature
of geometric deep learning (Veličković et al., 2018; Gilmer et al., 2017; Bronstein et al., 2017;
Battaglia et al., 2018), in order to generalize the very efficient deep learning paradigm into the world
of graphs. This large number of contributions explains a new challenge recently tackled by the
community, which consists in assessing the expressive power of GNNs.

In this area of research, there is a consensus to evaluate the theoretic expressive power of GNNs
according to equivalence of Weisfeiler-Lehman (WL) test order (Morris et al., 2019; Xu et al., 2019;
Maron et al., 2019b;a). Hence, GNNs models are frequently classified as ”as powerful as 1-WL”, ”as
powerful as 2-WL”, . . . , ”as powerful as k-WL”. However, this perspective cannot make differences
between two methods if they are as powerful as the same WL test order. Moreover, it does not always
explain success or failure of any GNN on common benchmark datasets.

In this paper, we claim that analyzing theoretically and experimentally GNNs with a spectral point
of view can bring a new perspective on their expressive power.

So far, GNNs have been generally studied separately as spectral based or as spatial based (Wu
et al., 2019b; Chami et al., 2020). To the best of our knowledge, Message Passing Neural Networks
(MPNNs) (Gilmer et al., 2017) and GraphNets (Battaglia et al., 2018) are the only attempts to merge
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both approaches in the same framework. However, these models are not able to generalize custom
designed spectral filters, as well as the effect of each convolution support in a multi convolution
case. The spatial-spectral connection is also mentioned indirectly in several cornerstone studies by
Defferrard et al. (2016); Kipf & Welling (2017); Levie et al. (2019). Since the spectral-spatial inter-
changeability is missing, they did not propose to show spectral behavior of any graph convolution.
Recent studies have also attempted to show, for a limited number of spatial GNNs, that they act as
low-pass filters (NT & Maehara, 2019; Wu et al., 2019a). NT & Maehara (2019) concluded that
using adjacency induces low-pass effects, while Wu et al. (2019a) studied a single spatial GNN’s
spectral behavior by assuming adding self-connection changes the given topology of the graph.

In this paper, we bridge the gap between spectral and spatial domains for GNNs. Our first con-
tribution consists in demonstrating the equivalence of convolution processes regardless if they are
defined as spatial or as spectral GNN. Using this connection, we propose a new general framework
and taxonomy for GNNs as the second contribution. Taking advantage of this equivalence, our third
contribution is to provide a spectral analysis of any GNN model. This spectral analysis is another
perspective for the analysis of expressive power of GNNs. Our theoretical spectral analysis is con-
firmed by experiments on various well-known graph datasets. Furthermore, we show the necessity
of high and/or band-pass filters in our experiments, while the majority of GNNs are limited to only
low-pass filters and thus inevitably fail when dealing with these problems. The code used in this
paper is available at https://github.com/balcilar/gnn-spectral-expressive-power.

The remainder of this paper is organized as follows. Section 2 introduces convolutional GNNs and
presents existing approaches. In Section 3 and Section 4, we describe the main contributions men-
tioned above. Section 5 presents a series of experiments and results which validate our propositions.
Finally, Section 6 concludes this paper.

2 PROBLEM STATEMENT AND STATE OF THE ART

Let G be a graph with n nodes and an arbitrary number of edges. Connectivity is given by the
adjacency matrix A ∈ {0, 1}n×n and features are defined on nodes by X ∈ Rn×f0 , with f0 the
length of feature vectors. For any matrix X , we used Xi, X:j and Xi,j to refer its i-th column
vector, j-th row vector and scalar value on (i, j) location, respectively. A graph Laplacian is L =
D − A (or L = I −D−1/2AD−1/2 ) where D ∈ Rn×n is the diagonal degree matrix and I is the
identity. Through eigendecomposition, L can be written by L = Udiag(λ)UT where each column
of U ∈ Rn×n is an eigenvector of L, λ ∈ Rn gathers the eigenvalues of L and diag(.) function
creates a diagonal matrix whose diagonal elements are from a given vector. We use superscript to
refer same kind variable as base. For instance, H(l) ∈ Rn×fl refers node representation on layer
l whose feature dimension is fl. A Graph Convolution layer takes the node representation of the
previous layer H(l−1) as input and produces a new representation H(l), with H(0) = X .

2.1 SPECTRAL APPROACHES

Spectral GNNs rely on the spectral graph theory (Chung, 1997). In this framework, signals on
graphs are filtered using the eigendecomposition of graph Laplacian (Shuman et al., 2013). By
transposing the convolution theorem to graphs, the spectral filtering in the frequency domain can be
defined by xflt = Udiag(Φ(λ))U>x, where Φ(.) is the desired filter function. As a consequence,
a graph convolution layer in spectral domain can be written by a sum of filtered signals followed by
an activation function as in (Bruna et al., 2013), namely

H
(l+1)
j = σ

(
fl∑
i=1

Udiag(F
(l,j)
i )U>H

(l)
i

)
, for j ∈ {1, . . . , fl+1}. (1)

Here, σ is the activation function, F (l,j) ∈ Rn×fl is the corresponding weight vector to be tuned as
used in (Henaff et al., 2015) for the single-graph problem known as non-parametric spectral GNN.

A first drawback is the necessity of Fourier and inverse Fourier transform by matrix multiplication of
U and UT . Another drawback occurs when generalizing the approach to multi-graph learning prob-
lems. Indeed, the k-th element of the vector F (l,j)

i weights the contribution of the k-th eigenvector
to the output. Those weights are not shareable between graphs of different sizes, which means a
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different length of F (l,j)
i is needed. Moreover, even though the graphs have the same number of

nodes, their eigenvalues will be different if their structures differ.

To overcome these issues, a few spatially-localized filters have been defined such as cubic B-spline
(Bruna et al., 2013), polynomial and Chebyshev polynomial (Defferrard et al., 2016) and Cayley
polynomial parameterization (Levie et al., 2019). With such approaches, trainable parameters are
defined by F (l,j)

i = B
[
W

(l,1)
i,j , . . . ,W

(l,se)
i,j

]>
, where each column in B ∈ Rn×se is designed as a

function of eigenvalues, namely Bk,s = Φs(λk), where k = 1, . . . , n denotes eigenvalue index, s =

1, . . . , se denotes index of filters and se is the number of desired filters. Here, W (l,s) ∈ Rfl×fl+1 is
the trainable matrix for the l-th layer’s s-th filter’s.

2.2 SPATIAL APPROACHES

Spatial GNNs consider an agg operator, which aggregates the neighborhood nodes, and an upd
operator, which updates the concerned node as follows:

H(l+1)
:v = upd

(
g0(H(l)

:v ), agg
(
g1(H(l)

:u ) : u ∈ N (v)
))
, (2)

whereN (v) is the set of neighborhood nodes and g0, g1 : Rn×fl → Rn×fl+1 trainable models. The
choice of agg, upd, g0, g1, and even N (v), determines the capability of model.

The vanilla GNN (known by GIN-0 in (Xu et al., 2019)) uses the same weights in g0 and g1. N (v) is
the set of connected nodes to v, agg is the sum of all connected node values and upd(x, y) := σ(x+
y) where σ is an elementwise nonlinearity. GCN has the same selection but normalizes features as
in (Kipf & Welling, 2017). Hamilton et al. (2017) used separated weights in g0 and g1, which means
that two sets of trainable weights are applied on self feature and neighbor nodes. Other approaches
defined multi neighborhood and used different gi for different kind of neighborhood. For instance,
Duvenaud et al. (2015) defined the neighborhood according to node label and/or degree, Niepert
et al. (2016) reordered the neighbor nodes and used the same model gi to neighbors according to
their order.

These spatial GNNs use sum or normalized sum over gi in equation 2. Other methods weighted this
summation by another trainable parameter, where the weights can be written by the function of node
and/or edge features in order to make the convolutions more productive, such as graph attention
networks (Veličković et al., 2018), MoNet (Monti et al., 2017), GatedGCN (Bresson & Laurent,
2018) and SplineCNN (Fey et al., 2018).

3 BRIDGING SPATIAL AND SPECTRAL GNNS

In this section, we define a general framework which includes most of the well-know GNN mod-
els, including euclidean convolution and models which use anisotropic update schema such as in
Veličković et al. (2018); Bresson & Laurent (2018).

When upd(x, y) = σ(x + y), agg is a sum (or weighted sum) of the defined neighborhood nodes
contributions and gi applies linear transformation, one can trivially show that mentioned spatial
GNNs can be generalized as propagation of the node features to the neighboring nodes followed by
feature transformation and activation function of the form

H(l+1) = σ
(∑

s

C(s)H(l)W (l,s)
)
, (3)

where C(s) ∈ Rn×n is the s-th convolution support that defines how the node features are prop-
agated to the neighboring nodes. Within this generalization, GNNs differ from each other by the
choice of convolution supports C(s). This formulation generalizes many different kinds of Graph
Convolutions, as well as Euclidean domain convolutions, which can be seen in Appendix A with the
detailed schema.

Definition 1. A Trainable-support is a Graph Convolution Support C(s) with at least one trainable
parameter that can be tuned during training. If C(s) has no trainable parameters, i.e. when the
supports are pre-designed, it is called a fixed-support graph convolution.
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In the trainable support case, supports can be different in each layer, which can be shown by C(l,s)

for the s-th support in layer l. Formally, we can define a trainable support by:(
C(l,s)

)
v,u

= hs,l

(
H(l)

:v , H
(l)
:u , E

(l)
v,u, A

)
, (4)

where E(l)
v,u shows edge features on layer l from node v to node u if it is available and h(.) is any

trainable model parametrized by (s, l).
Theorem 1. Spectral GNN parameterized with B of entries Bi,j = Φj(λi), defined as

H
(l+1)
j =σ

( fl∑
i=1

U diag
(
B
[
W

(l,1)
i,j , . . . ,W

(l,se)
i,j

]>)
U>H

(l)
i

)
, (5)

is a particular case of framework in equation 3 with the convolution kernel set to

C(s) = U diag(Φs(λ))U>. (6)

The proof can be found in Appendix B. This theorem is general and it covers many well-known
spectral GNNs, such as non-parametric spectral graph convolution (Henaff et al., 2015), polynomial
parameterization (Defferrard et al., 2016), cubic B-spline parameterization (Bruna et al., 2013), Cay-
leyNet (Levie et al., 2019) and also any custom designed graph convolution. From Theorem 1, one
can see that the spatial and spectral GNNs work all the same way. Therefore, Fourier calculations
are not necessary when convolutions are parameterized by B. As a consequence of Theorem 1, one
can see that the separation of spectral and spatial GNNs is just an interpretation. The only difference
is the way convolution supports are designed: either in the spectral domain or in the spatial one.
Definition 2. A Spectral-designed graph convolution refers to a convolution where supports are
written as a function of eigenvalues (Φs(λ)) and eigenvectors (U ) of the corresponding graph Lapla-
cian (equation 6). Thus, each convolution supportC(s) has the same frequency response Φs(λ) over
different graphs. Graph convolution out of this definition is called spatial-designed graph convolu-
tion.
Corollary 1.1. The frequency profile of any given graph convolution support C(s) can be defined
in spectral domain by

Φs(λ) = diag−1(U>C(s)U). (7)

where diag−1(.) returns the vector made of the diagonal elements from the given matrix.

The proof of this corollary is given in Appendix C. This corollary leads to the spectral analysis of
any given graph convolution support, including spatial-designed convolutions. Since the spatial-
designed convolutions do not fit into equation 6, U>C(s)U is not a diagonal matrix. Therefore,
we also compute the full frequency profile by Φs = U>C(s)U , which includes all eigenvectors
pairwise contributions for spatial-designed convolutions.

4 THEORETICAL FREQUENCY RESPONSE OF GRAPH CONVOLUTIONS

This section aims at providing a theoretical understanding of the graph convolution process through
an analysis in the spectral domain of existing GNNs. To the best of our knowledge, no one has
led such an analysis concerning graph convolutions in the literature. This analysis is based on a
reformulation of existing graph convolutions in our general framework (equation 3), and based on
deriving analytical expressions of Φs(λ) (equation 7 in Corollary 1.1) for each convolution support
of concerned graph convolution process. All proofs are provided in Appendices.

The theoretical frequency response of ChebNet (Defferrard et al., 2016) convolutions is given by the
following theorem.
Theorem 2. The theoretical frequency response of each support of ChebNet can be defined as

Φ1(λ) = 1, Φ2(λ) =
2λ

λmax
− 1, Φk(λ) = 2Φ2(λ)Φk−1(λ)− Φk−2(λ), (8)

where 1 is the vector of ones and λmax is the maximum eigenvalue.
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The proof of Theorem 2 is given in Appendix D. Since it has no trainable parameter in the sup-
ports and all support frequency responses do not depend on the graph, we can classify ChebNet as
spectral-designed fixed-support graph convolution.

The theoretical frequency response of CayleyNet (Levie et al., 2019) convolution is given in the
following theorem, and its proof is given in Appendix E.
Theorem 3. The theoretical frequency response of each support of CayleyNet can be defined as

Φs(λ) =

 1 if s = 1
cos( s2θ(hλ)) if s ∈ {2, 4, . . . , 2r}
− sin( s−1

2 θ(hλ)) if s ∈ {3, 5, . . . , 2r + 1}
(9)

where h is a trainable scalar and θ(x) = atan2(−1, x)− atan2(1, x).

Since it has a trainable parameter h in the supports and all support frequency responses do not depend
on the graph, we can classify CayleyNet as spectral-designed trainable-support graph convolution.

GCN (Kipf & Welling, 2017) uses a single convolution support and its theoretical frequency re-
sponse is defined approximately in the following theorem, and its proof is given in Appendix F.
Theorem 4. The theoretical frequency response of GCN support can be approximated as

Φ(λ) ≈ 1− λp/(p+ 1), (10)

where p is the average node degree in the graph.

Since its support has no trainable parameter but the frequency response is not independent of the
graph, we can classify GCN as spatial-designed fixed-support graph convolution.

Graph Isomorphism Network (GIN) defined in Xu et al. (2019) has attracted a lot of interests from
the community, mostly because of its simple convolution mechanism. It has a single convolution
support and its theoretical frequency response is given in the following theorem:
Theorem 5. The theoretical frequency response of GIN support can be approximated as

Φ(λ) ≈ p
(

1 + ε

p
+ 1− λ

)
(11)

where ε is a trainable scalar.

The proof of this theorem is in Appendix G. Since its support has trainable parameters but the
frequency response depends on the graph structure, we classify GIN as spatial-designed trainable-
support graph convolution.

Graph attention networks (GATs) in (Veličković et al., 2018) proposes an application for graph world
of the attention mechanism from Vaswani et al. (2017). Due to the fact that graphs are invariant to
the node order, GAT cannot use positional encoding. In addition, instead of considering that all
nodes are connected to each other, GAT just assigns attention weights to the node itself and the
connected ones according to adjacency (sparse attention). Thus, we can see its convolution support
as weighted, self loop added adjacency. GAT can be represented in our framework in equation 3 by
defining trainable convolution supports as follows:(

C(l,s)
)
v,u

=
ev,u∑

k∈Ñ (v) ev,k
, (12)

where ev,u = exp
(
σ(a(l,s)[H

(l)
:v W (l,s)||H(l)

:u W (l,s)])
)
, and a(l,s) is another trainable weight. Con-

volution support will be calculated from node v to each element of Ñ (v), which shows the self-
connection added neighborhood. Thus, we classify GAT as spatial-designed trainable-support
graph neural network in our framework. Since convolution supports are function of connected node
features, a theoretical frequency response is not possible to formulate.All studied models are sum-
marised in Table 1.

5 EXPERIMENTAL RESULTS

This section is dedicated to empirical spectral analysis of existing GNNs on some certain graphs to
validate the theoretical results and also performance analysis of these GNNs on a benchmark graph
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Table 1: Summary of the studied GNN models.
Design Support Type Convolution Matrix Frequency Response

MLP Spectral Fixed C = I Φ(λ) = 1

GCN Spatial Fixed C = D̃−0.5ÃD̃−0.5 Φ(λ) ≈ 1− λp/(p+ 1)

GIN Spatial Trainable C = A+ (1 + ε)I Φ(λ) ≈ p
(

1+ε
p + 1− λ

)
GAT Spatial Trainable C(s)

v,u = ev,u/
∑
k∈Ñ(v) ev,k NA

CayleyNeta Spectral Trainable
C(1) = I

C(2r) = Re(ρ(hL)r)

C(2r+1) = Re(iρ(hL)r)

Φ1(λ) = 1
Φ2r(λ) = cos(rθ(hλ))
Φ2r+1(λ) = − sin(rθ(hλ))

ChebNet Spectral Fixed
C(1) = I

C(2) = 2L/λmax − I
C(s) = 2C(2)C(s−1) − C(s−2)

Φ1(λ) = 1
Φ2(λ) = 2λ/λmax − 1
Φs(λ) = 2Φ2(λ)Φs−1(λ)− Φs−2(λ)

a ρ(x) = (x− iI)/(x+ iI)

dataset to demonstrate the necessity of having various frequency responses convolution supports.
The implementation and the introduced datasets are publicly available1.

5.1 SPECTRAL ANALYSIS RESULTS

All empirical analyses are based on obtaining convolution supports matrix for certain GNN model,
followed by equation 7 to obtain the frequency response. In our analysis, we used three graphs
independently: the first is a 1D signal encoded as a regular circular line graph with 1001 nodes; the
others are the well-known Cora and CiteSeer graphs with 2708 and 3327 nodes respectively (Yang
et al., 2016). Besides, we used 2 different collections of graph datasets, ENZYMES and PROTEIN,
which have 600 and 1113 graph respectively (Kersting et al., 2016). The details of the graphs can
be found in Appendix L.

(a) First 5 ChebNet supports (b) First 7 CayleyNet supports

Figure 1: Frequency profiles (Φs(λ))

Since ChebNet and CayleyNet are spectral-designed, their frequency responses do not change for
different graphs. They are presented in Figure 1 for first 5 and 7 supports respectively. The results in
Figure 1 confirm the theoretical analyses in Theorem 2 and Theorem 3. The full frequency profiles
are not illustrated because they consist of zeros outside the diagonal. Analyzing the frequency profile
of ChebNet, one can argue that the convolutions mostly cover the spectrum. However, none of the
kernels focuses on some certain parts of the spectrum. As an example, the second kernel is mostly a
low-pass and high-pass filter and stops the middle band, while the third one passes very high, very
low and middle bands, but stops almost first and third quarter of the spectrum. Therefore, if the
relation between input-output pairs can be figured out by just a low-pass, high-pass or some specific

1https://github.com/balcilar/gnn-spectral-expressive-power
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band-pass filter, a high number of convolution kernels is needed. However, in the literature, only 2
or 3 kernels are generally used in experiments (Defferrard et al., 2016; Kipf & Welling, 2017).

The scale parameter h in CayleyNet affects the x-axis scaling, but does not change the global shape.
When h = 1, frequency profiles can be defined within the range [0, 2] (because λmax = 2 in all
three test graphs). If h = 1.5, the frequency profile can be defined till 1.5λmax = 3 in Figure 1
and rescale axis label from [0, 3] to [0, 2] in original range. Learning the scaling of eigenvalues
may seem advantageous. However, it induces extra computational cost in order to calculate the new
convolution supports in every learning epoch. In addition, similarly to ChebNet, CayleyNet does
not have any band specific convolutions, even when considering different scaling factors.

(a) GCN frequency profiles (b) GIN on 1D (c) GIN on CiteSeer

Figure 2: Frequency profiles of GCN on 1D, Cora, CiteSeer graph and GIN on 1D and CiteSeer
graph with ε = 1, 0,−1,−2

When the given graph is a regular graph where each node degree is the same (2 for 1D graph case),
theoretical frequency responses become certain as seen in Figure 2a in blue for GCN and Figure 2b
for GIN. When ε = 2, 1D graph’s (p = 2) frequency responses of GCN and GIN are the same
except scaling factor as seen in blue Figure 2a yellow in Figure 2b. However in realistic graphs,
both GIN and GCN are not spectral-designed, their frequency responses differ for different graphs.
As Theorem 4 and Theorem 5 demonstrate, GCN’s and GIN’s frequency responses depend on the
average node degree. GCN’s cut-off frequency decrease by increasing the p while p acts as scaling
factor on GIN’s frequency response. This analysis leads us to understand that GCN works as low-
pass filter and does not cover the whole spectrum. This approach is not able to learn relations that
can be represented by high-pass or band-pass filtering. Hence, even though it gives very good results
on a single graph node classification problem in Kipf & Welling (2017), it may fail for problems
where discriminant information lies in particular frequency bands. Therefore, such an approach can
be considered as problem specific.

In order to create some variations between low-pass to high-pass, having trainable parameter in
GIN’s convolution support seems advantageous. But, since it is not spectral-designed, there is no
guarantee that it has exactly the same spectral profiles for different graphs. Besides, its low-pass
shape (where ε is high) is a linearly decreasing function, thus it is not a strong low-pass that gen-
erally natural graph problems need. Using more stacked layer may be a solution. In addition, this
convolution cannot focus on some certain bands if the problem needs.

Since the GAT’s convolution supports are function of connected nodes feature, frequency profiles
cannot be directly computed similarly to previous ones. Thus, we proposed to obtain frequency
response by two ways, one is the expected frequency responses among simulations, the other is the
frequency responses of trained model for any specific graph learning problem.

We calculated the expected frequency responses of GAT convolution supports on Cora graph by
simulation of randomly created 240 possible attention weights. The expected value of simulated
support’s frequency response and its standard deviation are shown in Figure 3a. This result gives an
idea about the capability of the model on spectral domain, without being the true learned convolution
support. In addition, the simulation is just for the first layer, because the first layer’s input is known
without learning. Besides, we also provide in Figure 3b-c the frequency responses of all learned GAT
attention head’s in all layers for all the graphs of ENZYMES and PROTEINS datasets respectively
(in our model, there are two GNN layer consisting of 25 attention head). Since there is no significant
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(a) Expected frequency response
from Simulation on Cora
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(b) Heat density map of learned fre-
quency response on ENZYMES
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(c) Heat density map of learned fre-
quency response on PROTEINS

Figure 3: Frequency profiles of GAT

differences between frequency responses in different layer or different attention head, we stacked all
together in the same heat map.

As one can see, the mean standard frequency profile has a similar shape than those of GCN and GIN-
0 which are methods that use self-looped added (normalized or not) adjacency matrix as convolution
support. Variations on the frequency profile induce more variations on output signal when compared
to GCN and GIN-0. However, the variation on frequency profile might not be sufficient in problems
that need some specific band-pass filters.

5.2 PERFORMANCE ANALYSIS OF GNNS

First, our goal was to assess empirically the ability of GNN models to produce the desired frequency
effects on given graph signals. With the conducted experiments detailed in Appendix I, we can out-
line the empirical results as follows. GCN and GAT can produce low-pass effects but not band-pass
or high-pass, while GAT has better variation on frequency profile; these empirical results corrobo-
rate the theoretical analysis of this paper, namely Theorem 4 and Section 5.1. Thanks to its trainable
parameter ε, GIN can do better on producing low-pass and high-pass effects, but not band-pass, as
demonstrated by Theorem 5. However, the spectral-designed ChebNet always outperformed the rest
with a huge margin, which is not surprising.

Secondly, we measured the generalization capability of the GNN model for graph classification task
as a toy example where the graph classes depend on the frequency of the signal on the graph. The
conducted experiments are described in Appendix J. Again, we seen that GCN and GAT performed
worse than GIN, because of their inability to catch necessary frequency components. Besides, thanks
to the spectral-designed convolutions, ChebNet can catch the underlying patterns on the graphs and
finally achieves better results.

Some graph problems naturally just need low-pass filtering, as we argued in Appendix K. Having
spectral ability may increase the complexity of the model, which may result in a negative effect.
However, some other problems might need various kind of filters, like image understanding prob-
lems. In our last experiment, we use the superpixel version of MNIST dataset (MNIST-75) 2 to show
an example of graph problems that need various filtering. In MNIST-75, images are segmented into
around 75 regions by the SLIC superpixel segmentation algorithm (Achanta et al., 2012). Regions
constitute the nodes of the graph and edges correspond to connection between regions in the image.
The average pixel value of this region was assign to node, giving one continuous value. The dataset
also includes the center position of each region, but we excluded that information to make the prob-
lem more realistic and harder in terms of graph research. The dataset consists of 55K graphs for
training, 5K graphs for validation and 10K for testing. Details and some illustrations of the dataset
can be found in Appendix L.

We use 3 hidden graph convolution layers that have 64, 128, and 128 features respectively, followed
by a global mean operator as graph readout layer, and ended by a fully connected layer with 10
outputs corresponding to the number of classes. To understand the effect of graph convolution, we
apply the tests on 3 different inputs: the first one uses node degree as feature, the second one uses

2https://graphics.cs.tu-dortmund.de/fileadmin/ls7-www/misc/cvpr/mnist-superpixels.tar.gz

8



Published as a conference paper at ICLR 2021

Table 2: Test set accuracies on MNIST superpixel dataset
Node feature MLP GCN GIN GAT CayleyNet ChebNet
Node degree 11.29±0.5 15.81±0.8 32.45±1.2 31.72±1.5 45.61±1.7 46.23±1.8
Pixel value 12.11±0.5 11.35±1.1 64.96±3.9 62.61±2.9 88.41±2.1 91.10±1.9
Both 25.10±1.2 52.98±3.1 75.23±4.1 82.73±2.1 90.31±2.3 92.08±2.2

pixel values and the last one uses both information. Implementation details and hyperparameter
tuning can be found in Appendix L.

Table 2 gives the mean and standard deviation of the accuracy obtained over 10 runs on the test
set, with different seed numbers. It is well known that the image version of the MNIST dataset can
be processed by any ordinary CNN architecture, which is able to apply various filtering operations.
Hence, we argue that superpixel graph of MNIST is a good candidate to show if the graph data
needs various kind of filtering. As seen in Table 2, MLP and GCN cannot do significantly better
than a random classifier when using only node degree or pixel value as input. That means that the
distribution of node degrees or pixel values has no significant meaning for classification. When
both node degree and pixel values are given, the accuracy of GCN is increased, but remains behind
the best results. GIN and GAT outperform GCN in each case, but their performances remain behind
those of ChebNet and CayleyNet, which are spectral-designed with supports that cover the spectrum.

6 FINAL REMARKS

In this paper, we have shown that most influential graph convolutions such as (Kipf & Welling, 2017;
Veličković et al., 2018) operate as low-pass filters and some have a very limited ability on producing
high-pass in addition to low-pass filtering effect such as (Xu et al., 2019).

Interestingly, while being restricted to low-pass filters, they obtain state-of-the-art performance on
reference node classification problems such as Cora, CiteSeer and Pubmed (Yang et al., 2016). These
good results on these particular problems are induced by the nature of the graphs to be processed.
Indeed, citation network problems, which are heavily assortative, are inherently low-pass filtering
problems.

It is worth noting that, if we use enough convolution kernels, the frequency response of ChebNet
kernels (Defferrard et al., 2016; Levie et al., 2019) covers nearly all frequency profiles. However,
these frequency responses are not specific to special bands of frequency. It means that they can act
as high-pass filters, but not as Gabor-like special band-pass filters,if a low number of convolution
supports are used (e.g. 3). Getting any arbitrary band-pass effect requires a large number of convo-
lution kernels, which makes the convolution not spatially-localized and increases the computational
complexity.

As a conclusion, we claim that graph convolutions are problem specific and not problem agnostic. To
have problem agnostic solutions, graph convolutions need to be able to produce necessary or at least
plenty of different frequencies in output signal profile. The frequency profile of graph convolutions
is not the single issue to be taken into account. But it is definitely one of the important perspectives
that we need to pay attention. We point out that using only low-pass GNNs may not be a good
choice for many graph problems. Finally, the convolution design can be considered as the tuning of
hyperparameters or it can be automatically designed by another secondary unsupervised task with
respect to the problem domain. Our future work will investigate this track. Experiments conducted
in Section 5 provided empirical results to validate the theoretical analysis conducted in this paper.
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A GENERALISATION OF FRAMEWORK

Figure 4: a) Schematic of the graph convolution layer defined in equation 3. The graph has 12 nodes
and 12 edges. In the l-th layer, each node has a 2-length feature vector H(l)

1 and H(l)
2 represented

by colors. The l + 1-th layer, it has a 3-length feature vector, denoted H(l+1)
1 , H(l+1)

2 and H(l+1)
3 .

Two convolution supports C(1) and C(2) are used. This architecture has 12 trainable parameters,
omitting biases if the convolution supports C(1) and C(2) are fixed. b) Graph convolution supports
for 2D Euclidean domain signal to perform convolution process by 3× 3 mask.

Our selection of GNN generalization in equation 3 can be shown in Figure 4a with a detailed
schematic of graph convolution layer on a sample graph signal. This framework can also gener-
alize the Euclidean domain convolution layer. For 2D signal convolution by W̃ (l) ∈ R3×3 mask, we
can define 9 different convolution supports denoted by C(1) . . . C(9) ∈ {0, 1}16×16 in Figure 4 for
sample signal (e.g. image) shown by H̃(l) ∈ R4×4. When we stack all node values (e.g. pixels) into
column vector H(l) ∈ R16×1, and W (l,s) shows s-th scalar weight in stacked W̃ (l), we can write
equivalence of Euclidean convolution by:

H̃(l) ~ W̃ (l) =

9∑
s=1

C(s)H(l)W (l,s), (13)

One can see that in Euclidean domain, the supports can be designed by relative position of the nodes
which is not the case in graph world.

B PROOF OF THEOREM 1

Proof. First, let us expand the B matrix by introducing its columns denoted Φ1(λ), . . . ,ΦS(λ) ∈
Rn:

H
(l+1)
j = σ

(
fl∑
i=1

Udiag
( S∑
s=1

W
(l,s)
i,j Φs(λ)

)
U>H

(l)
i

)
. (14)

Now, we distribute U and U> over the inner summation:

H
(l+1)
j = σ

(
S∑
s=1

fl∑
i=1

Udiag
(
W

(l,s)
i,j Φs(λ)

)
U>H

(l)
i

)
. (15)

Then, we take out the scalars W (l,s)
i,j of the diag operator:

H
(l+1)
j = σ

(
S∑
s=1

fl∑
i=1

W
(l,s)
i,j Udiag(Φs(λ))U>H

(l)
i

)
. (16)
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Let us define a convolution operator C(s) ∈ Rn×n as:

C(s) = Udiag(Φs(λ))U>. (17)

Using equation 16 and equation 17, we have thus:

H
(l+1)
j = σ

(
fl∑
i=1

S∑
s=1

W
(l,s)
i,j C(s)H

(l)
i

)
. (18)

Then, each term of the sum over s corresponds to a matrix H(l+1) ∈ Rn×fl+1 with

H(l+1) = σ
(
C(1)H(l)W (l,1) + · · ·+ C(S)H(l)W (l,S)

)
, (19)

with H(l) = [H
(l)
1 , . . . ,H

(l)
fl

]. We get by grouping the terms:

H(l+1) = σ

(
S∑
s=1

C(s)H(l)W (l,s)

)
, (20)

which corresponds to equation 3. Therefore, equation 5 corresponds to equation 3 with C(s) defined
as equation 6.

C PROOF OF COROLLARY 1.1

Proof. By using equation 6 from Theorem 1, we can obtain a spatial convolution kernel C(s) whose
frequency profile is Φs(λ). Since the eigenvector matrix is orthonormal (i.e., U−1 = U>), we can
extract Φs(λ), which yields equation 7.

D PROOF OF THEOREM 2

ChebNet relies on the approximation of a spectral graph analysis proposed in (Hammond et al.,
2011), based on the Chebyshev polynomial expansion of the scaled graph Laplacian. Even though
its multi supports frequency responses are known, to the sake of simplicity, it was represented in
form of equation 3 in (Defferrard et al., 2016) as follows;

C(1) = I, C(2) = 2L/λmax − I, C(k) = 2C(2)C(k−1) − C(k−2). (21)

Proof. When the identity matrix is used as convolution kernel, it just directly transmits the inputs to
the outputs without any modification. This process is called all-pass filter. Mathematically, we can
calculate the full frequency profile for kernel I by using Corollary 1.1, namely

Φ1 = U>IU = U>U = I, (22)

since the eigenvectors are orthonormal. Therefore, we can parametrize the diagonal of the full
frequency profile by λ and reach the standard frequency profile for the first ChebNet support as
follows:

Φ1(λ) = diag(I) = 1. (23)

We can compute the C(2) kernel full frequency profile using Corollary 1.1:

Φ2 = U>
(

2

λmax
L− I

)
U. (24)

Since U>IU = I , equation 24 can be rearranged as

Φ2 =
2

λmax
U>LU − I. (25)
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Since λ = [λ1, . . . , λn] are the eigenvalues of the graph Laplacian L, those must conform to the
following condition:

LU = Udiag(λ); (26)

U>LU = diag(λ). (27)

Replacing equation 27 into equation 25, we get

Φ2 =
2

λmax
diag(λ)− I. (28)

This full frequency profile consists of two parts, a diagonal matrix and the negative identity matrix.
Therefore, we can parametrize the full frequency matrix diagonal to show the standard frequency
profile as follows:

Φ2(λ) = diag(Φ2) =
2λ

λmax
− 1. (29)

Given the third and following ChebNet supports, when we use Corollary 1.1, the corresponding
frequency profile is

Φk = U>
(

2C(2)C(k−1) − C(k−2)
)
U. (30)

By expanding equation 30, we get

Φk = 2U>C(2)C(k−1)U − U>C(k−2)U. (31)

Since UU> = I , we can insert the product UU> into equation 31. Thus, we have

Φk = 2U>C(2)UU>C(k−1)U − U>C(k−2)U (32)

Φk = 2
(
U>C(2)U

)(
U>C(k−1)U

)
− U>C(k−2)U. (33)

Since Φk′ = U>C(k′)U for any k′, it yields:

Φk = 2Φ2Φk−1 − Φk−2, (34)

Hence Φ1 and Φ2 are diagonal matrices, and the rest of the kernels frequency profiles become
diagonal matrices in equation 34. Therefore, we can write the corresponding standard frequency
profiles of third and following ChebNet convolution supports as follows:

Φk(λ) = 2Φ2(λ)Φk−1(λ)− Φk−2(λ). (35)

E PROOF OF THEOREM 3

Proof. CayleyNet was originally defined as it uses the weight vector parametrization of F (l,j)
i =

[gi,j,l(λ1, h), ..., gi,j,l(λn, h)]> in equation 1, where the function g(·, ·) is defined in (Levie et al.,
2019) by

g(λ, h) = c0 + 2Re

(
r∑

k=1

ck

(
hλ− i
hλ+ i

)k)
, (36)

where i2 = −1, Re(·) is the function that returns the real part of a given complex number, c0 is
a trainable real coefficient, and c1, . . . , cr are complex trainable coefficients. We can write hλ − i
in Euler form by

√
h2λ2 + 1.eiatan2(−1,hλ) and for hλ + i by

√
h2λ2 + 1.eiatan2(1,hλ). By this

substitution, equation 36 becomes

g(λ, h) = c0 + 2Re

(
r∑

k=1

cke
ik(atan2(−1,hλ)−atan2(1,hλ))

)
. (37)
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where atan2(y, x) is the inverse tangent function, which finds the angle (in range of [−π, π]) of
a point given its y and x coordinates. For further simplification, let us introduce the θ(·) function
defined by

θ(x) = atan2(−1, x)− atan2(1, x). (38)

Since the cks are complex numbers, we can write them as a sum of real and imaginary parts, ck =
ak/2 + ibk/2 (the scale factor 2 is added for convenience). Thus, equation 37 can be rewritten as
follows:

g(λ, h) = c0 +Re

(
r∑

k=1

(ak + ibk)eikθ(hλ)

)
. (39)

We can replace eikθ(hλ) with its polar coordinate equivalence form cos(kθ(hλ)) + i sin(kθ(hλ)).
When we remove the imaginary components because of Re(·) function, equation 39 becomes

g(λ, h) = c0 +

r∑
k=1

ak cos(kθ(hλ))− bk sin(kθ(hλ)). (40)

In this definition, there is no complex coefficient, but only real coefficients (c0, ak and bk for k =
1, . . . , r) to be tuned by training. By using the form in equation 40, we can parametrize CayleyNet
by the parametrization matrix B ∈ Rn×2r+1 by

[g(λ0, h), . . . , g(λn, h)]> = B[c0, a1, b1, . . . , ar, br]
>. (41)

The s-th column vector of matrix B, denotes Bs, must fulfill the following conditions:

Bs = Φs(λ) =

 1 if s = 1
cos( s2θ(hλ)) if s ∈ {2, 4, . . . , 2r}
− sin( s−1

2 θ(hλ)) if s ∈ {3, 5, . . . , 2r + 1}
(42)

We can see CayleyNet as a spectral graph convolution that uses 2r+1 convolution kernels. The first
kernel is an all-pass filter, and the frequency profiles of remaining 2r kernels (Φs(λ)) are created
using sine and cosine functions, with a parameter h used to scale the eigenvalues in equation 42.
Considering equation 6 in Theorem 1, we can write CayleyNet’s convolutions (C(s)) in spatial
domain. CayleyNet includes the tuning of this scaling parameter in the training pipeline. Note
that because of the function definition in equation 38, θ(hλ) is not linear in λ. Therefore, Φs cannot
be a perfect sinusoidal in λs.

F PROOF OF THEOREM 4

One major simplification of the ChebNet is Graph Convolution Network (GCN) (Kipf & Welling,
2017), which has single convolution support and already presented in our framework in equation 3.
The first proposal of this paper uses the subtraction of the second ChebNet support from the first
one under the assumption of λmax = 2 and L is the normalized graph Laplacian, as it is defined by
CGCN∗ = C(1) − C(2) = 2I − L.

Proposition 1. CGCN∗ = 2I − L is a spectral-designed support and its frequency response is
ΦGCN∗(λ) = 2− λ.

Proof. If the assumption is true, it should meet:

2I − L = Udiag(2− λ)U> (43)

this can be written in the following way as well

2I − L = 2UIU> − Udiag(λ)U> (44)

since UIU> = I and Udiag(λ)U> = L, the proposition is true.
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One can see that the first proposal of GCN is spectral-designed and it is low-pass filter. That is why
GCN is misclassified as a spectral approach in the literature (Wu et al., 2019b; Chami et al., 2020).
However, instead of using this version, GCN used re-normalization trick and defined its final single
convolution support as:

CGCN = (D + I)−1/2(A+ I)(D + I)−1/2, (45)

where D is diagonal degree matrix and A is the adjacency matrix.

Proposition 2. CGCN = (D + I)−1/2(A + I)(D + I)−1/2 frequency response is ΦGCN (λ) =
1− p

p+1λ for regular graphs whose node degrees are p.

Proof. When all node degrees are p, we can write diagonal degree matrix by D = pI . It yields,
L = I − A/p or A = pI − pL. When we substitute new equations of A and D into GCN support,
we get

CGCN =
pI − pL+ I

p+ 1
= I − p

p+ 1
L. (46)

It should meet the following condition if the given frequency response is true:

I − p

p+ 1
L = Udiag(1− p

p+ 1
λ)U> (47)

Since Udiag(1)U> = I , and Udiag(λ)U> = L, the condition in equation 47 is satisfied.

This proposition shows that the GCN frequency profile acts as a low-pass filter. When the given
graph is a regular graph, all node degrees are equal for the case of p = 2, is leading to a frequency
profile defined by 1−2λ/3. Since the normalized graph Laplacian eigenvalues are in the range [0, 2],
the filter magnitude linearly decreases until the third quarter of the spectrum (cut-off frequency)
where it reaches zero. Then it linearly increases until the end of the spectrum. This explains the
shape of the frequency profile of GCN convolutions for 1D regular graph observed in Figure 2a in
blue one.

However, this conclusion cannot explain the perturbations on the GCN frequency profile. To analyse
this point, we relax the assumption D = pI and rewrite equation 45 as follows and start to proof.

CGCN = (D + I)−1 + (D + I)−1/2A(D + I)−1/2. (48)

Proof. We can see that the GCN kernel consists of two parts, CGCN = c1 + c2, where first part is
given by c1 = (D + I)−1 and the second one is c2 = (D + I)−1/2A(D + I)−1/2.

For the second part (c2), we can write it using the element-wise multiplication operator� (Hadamard
multiplication)

c2 = A�
√
1/(d+ 1) ·

√
1/(d+ 1)

>
, (49)

where d is the column degree vector d = diag(D) and the division and square root are also element-
wise (Hadamard) operations. With the same notation, we can rewrite the Chebyshev second kernel,
assuming that λmax = 2,

C(2) = −A�
√

1/d ·
√

1/d
>
. (50)

The two expressions equation 49 and equation 50 show that negative c2 is an approximation of
the second Chebyshev kernel if vector d consists of same values, as it was assumed in Proposi-
tion 2. When the vector d is composed of different values, the two matrices

√
1/d.

√
1/d

>
and√

1/(d+ 1).
√
1/(d+ 1)

>
are not proportional for each coordinate (i.e., entry). To obtain c2 from

C(2), we need to use different coefficients for each coordinate of the kernel. If the difference be-
tween node degrees is important, these coefficients have the strong influence, and c2 may be very
different from C(2). Conversely, if the node degrees are quite uniform, these coefficients may be
neglected. This phenomenon is the first cause of perturbation on GCN frequency profile.

The first part (c1) of the GCN kernel in equation 48 is more interesting. Actually, it is a diagonal
matrix that shows the contribution of each node in the convolution process. Instead of looking for
some approximations of known frequency profiles such as those of Chebyshev kernels, we can write
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its frequency profile directly. Using Corollary 1.1, we can express the frequency profile of c1 in
matrix form by

Φc1 = (U>c1 U), (51)
where U is the eigenvectors matrix. By taking advantage of having a diagonal kernel c1, we can
express each component of full frequency profile as

(Φc1)i,j =

n∑
k=1

(
1

1 + dk
Ui,kUj,k

)
, (52)

where n is the number of nodes in the graph, dk is degree of the k-th node, Ui,k is the k-th element
of i-th eigenvector. As eigenvectors Ui and Uj are orthogonal for i 6= j, their scalar product is null.
However, in equation 52, the weighting coefficient 1

1+dk
is not constant over all the dimensions of

the eigenvectors. Therefore, there is no guarantee that Φc1(i, j) is null. This is another reason that
explains that the GCN frequency profile has many non-zero elements outside of the diagonal.

In addition, it is also clear that the standard frequency profile of c1 (diagonal of Φc1 , i.e., (Φc1)i,i in
equation 52) is not smooth. Indeed, the diagonal elements of Φc1 can be written as a weighted sum
of squared eigenvalues elements, which again is weighted by 1/(1 + dk). If the latter is constant
for all k, the sum of squared eigenvectors elements has to be 1 since the eigenvectors have unit L2-
norm. But in the general case where 1/(1 + dk) are not necessarily constant over all the dimensions
of eigenvectors, the diagonal of the matrix may have some perturbations. This point constitutes
another explanation on the fact that the GCN standard frequency profile is not smooth.

On the other hand, under the assumption that the node degrees distribution is uniform, we can derive
the following approximation:

p ≈ p =
1

n

n∑
k=1

dk. (53)

We can then write an approximation of the GCN frequency profile as a function of the average node
degree by replacing p with p and obtain the final approximation:

ΦGCN (λ) ≈ 1− p

p+ 1
λ. (54)

Therefore, we can theoretically show the cut-off frequency, namely where GCN kernel frequency
profile reaches 0, by

λcut ≈
p+ 1

p
. (55)

G PROOF OF THEOREM 5

Graph Isomorphism Network (GIN) defined in (Xu et al., 2019) has a single convolution support
defined as follows:

CGIN = A+ (1 + ε)I, (56)
where ε is a trainable parameter that makes the support trainable (GIN-ε) and classified as spatial-
designed trainable-support graph convolution. Another version named GIN-0 is also defined in the
same paper where ε = 0, which makes CGIN = A+I; thus, the convolution becomes fixed-support
and identical with Vanilla GNN defined in Section 2.2.

The proof of Theorem 5 relies on the following proposition.

Proposition 3. For CGIN = A+(1+ε)I , the frequency response is ΦGIN (λ) = p
(

1+ε
p + 1− λ

)
for regular graphs, where p is the node degrees.

Proof. When all node degrees are p, it yields D = pI , L = I − A/p or A = pI − pL. When we
substitute the expressions of A and D into CGIN , we get

CGIN = (p+ 1 + ε)I − pL. (57)

17



Published as a conference paper at ICLR 2021

It should meet the following condition if the given frequency response is true:

(p+ 1 + ε)I − pL = Udiag(p+ ε+ 1− pλ)U>. (58)

We can obtain the following equation by p+ ε+ 1 = (p+ 1 + ε)I substitution:

(p+ 1 + ε)I − pL = (p+ 1 + ε)UIU> − pUdiag(λ)U>. (59)

Since UIU> = I and Udiag(λ)U> = L, the condition in equation 58 is satisfied.

By relying on Proposition 58, we establish Theorem 5 as follows.

Proof. Even in regular graph, the theoretical frequency response of GIN is not identical and it de-
pends on the node degree, thus it is not spectral-designed. In addition, we can see the GIN con-
volution support as the sum of two matrices where the second one (1 + ε)I is diagonalizable by
eigenvectors U of graph Laplacian by Φ = 1 + ε. Thus, the second part of GIN support is spectral.
However, the first part, which is adjacency A, cannot be diagonalizable by U . Since the convolution
support is not diagonalizable, we cannot write exact frequency response of GIN convolution but just
an approximation of Proposition 3, assuming by the average node degree of the graph is p in

ΦGIN (λ) ≈ p
(

1 + ε

p
+ 1− λ

)
. (60)

H ADDITIONAL RESULTS ON SPECTRAL ANALYSIS

H.1 CHEBNET

To get empirical frequency responses of ChebNet supports, we used regular 1D graph, Cora, Cite-
Seer. As confirmed in theoretical analysis, in all cases the frequency responses do not depend
on graph. The magnitude (in absolute value) of the frequency responses are shown in Figure 1a.
As stated by Theorem 2, the first two kernel frequency profiles of ChebNet are Φ1(λ) = 1 and
Φ2(λ) = 2λ/λmax − 1, where 1 is the vector of ones. Since λmax = 2 for all graphs that we used
in the analysis, we get Φ2(λ) = λ − 1. The third one and following kernel frequency profiles can
also be computed using Φk(λ) = 2Φ2(λ)Φk−1(λ)−Φk−2(λ), leading to Φ3(λ) = 2λ2 − 4λ + 1
for example for the third kernel. One can easily confirm the functions in range of [0...2] by relevant
plot in Figure 1a.

Thanks to Chebyshev polynomial expansion, we do not need to calculate supports by eigendecom-
position which makes the method computationally efficient. Besides, as it is spectral designed,
ChebNet covers all the spectrum. Theoretically it can create all necessary filters if we use many ker-
nels and stack the layers back to back. However higher order supports frequency responses are less
smooth than lower order ones. This does not guarantee that the graph convolution transferability is
maintained. For this reason, in literature, generally a few (up to first 3) supports are used (Defferrard
et al., 2016; Kipf & Welling, 2017).

H.2 CAYLEYNET

Since CayleyNet is spectral, its supports frequency response is consistent and does not change ac-
cording to graph structure. It leads to get the same empirical results for all our attempts on 1D graph,
Cora, CiteSeer graphs. Theorem 3 result can be compared to relevant support result in Figure 1b.
For instance, the first support frequency response is Φ1(λ) = 1 as it is all-pass filter in Figure 1b
(blue plot). If we assume zoom parameter is h = 1, the second support frequency response be-
comes Φ2(λ) = cos(θ(λ)). To confirm that result, we can first check the case where λ = 0. Since
θ(0) = −π, Φ2(0) = −1 where its magnitude (absolute value) in the diagram is 1. Later, we can
check the case where λ = 1. Since θ(1) = −π/2, thus Φ2(1) = 0 as seen in the orange plot in
Figure 1b, λ = 1 is the cut-off frequency for the second support of CayleyNet.

Having multi-support with different frequency responses makes the convolution productive in terms
of output signal profile. Moreover, by learning zoom parameter, theoretically, we can shrink (higher
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h value) or expand (smaller h value) the frequency responses which is needed according to the
problem. However, it makes the supports non-static. The supports need to be calculated in each
learning epoch. Although, to limit the induced computational cost, an approximation is computed
using a fixed number of Jacobi iterations (Levie et al., 2019). But still, it seems not efficient in
benchmark problem. Instead, a fixed value for the h parameter might be used and h can be treated as
an hyperparameter to be tuned according to validation set. Besides, it has no band specific supports,
but band-pass might be obtained by using multi supports and stacked layers.

H.3 GCN

By a clear margin, the most popular method is GCN (Kipf & Welling, 2017) in GNN literature,
thanks to its simplicity and relatively good results on some benchmark dataset. However, as we
prove in Theorem F, it is a low-pass filter. Since it has a single support, one kind of filter which is
low-pass, stacking that layer in deep architecture will not work. Because it continuously smooths
the signal on the graph and on the final layer, there will only be a smoothed signal.

Figure 5: Full frequency response of GCN on 1D, Cora and CiteSeer graphs

The three standard frequency responses in Figure 2a have almost the same low-pass filter shape. It
corresponds to a function composed of a decreasing part on the three first quarters of the eigenvalues
range, followed by an increasing part on the remaining range. This observation is coherent with the
theoretical analysis. Hence, kernels used in GCN are transferable across the three graphs at hand.
In Figure 2a, the cut-off frequency of the 1-D linear circular graph is exactly 1.5, while it is about
1.35 for CiteSeer. This observation can be explained by the fact that when considering a 1-D linear
circular graph, all nodes have a degree (p = 2), hence λcut = 1.5. Since the average node degree in
CiteSeer is 2.77, therefore λcut ≈ 1.36.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 6: Heat map of GCN’s frequency profiles on ENZYMES and PROTEIN dataset graphs.

Concerning the full frequency responses, there is no contribution outside the diagonal for the reg-
ular line graph (Figure 5 a). Conversely, some off-diagonal values are not null for CiteSeer and
Cora (Figure 5 b-c). Again, this observation confirms the theoretical analysis in Appendix F. We
also provided heat map of frequency responses of GCN convolution on more realistic biological
graph dataset named ENZYMES and PROTEIN in Figure 6. The majority of the graph frequency
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responses have almost the same shape. However, some graph frequency responses are far away from
the expected frequency response as illustrated with lighter color in heatmap.

H.4 GIN

GIN model defined in Xu et al. (2019) is not just a layer but a mini multi-layer model. The first
layer is the main graph convolution layer which we analyzed, followed by at least one but preferably
two MLP layers. According to Theorem 5, the frequency response of the main GIN convolution
has 1 − ε + p of magnitude at zero eigenvalue and it decreases with respect to the eigenvalue. The
outer node degree is a scaling factor of the frequency response that does not have any effect of
the character of filter. While ε increases, the cut-off frequency of the convolution increases, thus
it makes more low-pass effect. On the other hand, when ε decreases, the cut-off decreases, thus it
makes more high-pass effect while inner p can be seen as multiplicand of the effect. Theoretically,
we can say that GIN’s cut-off frequency is λcut ≈ 1 + (1 + ε)/p, which is the same with GCN, if
ε = 0.

Figure 7: Full frequency profiles of GIN-0 and frequency responses of different ε values for Cora
graph.

One can easily calculate the frequency response of adjacency as a convolution support whereC = A.
It can be seen as a special GIN support where ε = −1. Thus ΦA(λ) ≈ p(1 − λ). The formulation
is almost the same as the one given by (NT & Maehara, 2019). It differs by the scaling factor and
an approximation of the regular graph case. Since the eigenvalues of the normalized Laplacian lie
on the interval [0, 2], it works as a notch-like band-stop filter for intermediate frequency (λ = 1).
But, in most of applications, the eigenvalues greater than 1 is less likely. In this case, there are less
component to pass. It results that using adjacency has more likely a low-pass effect as concluded in
(NT & Maehara, 2019).

The experimental analysis of the spectral behavior of GIN (Xu et al., 2019) first implies to com-
pute the convolution kernel as given in equation 56 for ε = {−2,−1, 0, 1}. Then, the spectral
representation of the obtained convolution matrix can be calculated using Corollary 1.1. This result
leads to the frequency profiles illustrated in Figure 2b-c (1D and CiteSeer graph) and Figure 7 (Cora
graph). For regular 1D circular graph where p = 2, the frequency responses are absolutely what
Proposition 3 indicates. As shown in Figure 2b, the cut-off frequencies are 2, 1.5, 1.0, and 0.5 for
ε = {1, 0,−1,−2} respectively. But for realistic graphs such as CiteSeer, since its average degree
is p ≈ 2.77, the cut-off frequencies are 1,72, 1.36, 1.0 and 0.63 for ε = {1, 0,−1,−2} respectively
as shown in Figure 2c. The results for Cora graph are slightly different than CiteSeer in Figure 7b
because of the fact that average node degree is different. Since GIN does not have spectral designed
support, in its full frequency profile, there are some non-zero components out of the diagonal as
shown in Figure 7a for GIN-0 model on Cora. Figure 8 and 9 show the heat map of frequency
responses of the GIN model under ε = {1, 0,−1,−2} on ENZYMES and PROTEIN collection of
graphs.
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Figure 8: Heat map of different ε valued GIN frequency profiles on ENZYMES
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Figure 9: Heat map of different ε valued GIN frequency profiles on PROTEIN

H.5 GAT

One can see that, each support is a function of trainable weights (W (l,s),a(l,s)) in GAT, frequency
profiles cannot be directly computed similarly to previous ones. We did bunch of simulations for
Cora graph. As the proposed method used for Cora problem, we have generated 8 different con-
volution supports corresponding to 8 pairs of W (l,s) ∈ R1433×8 (1433 features for each node) and
a(l,s) ∈ R16×1 trainable weights for the first layer (Veličković et al., 2018). We produce 240 (30
for each support) random pairs of W (l,s) and a(l,s) where activation function is LeakyReLU has
0.2 negative slope as in (Veličković et al., 2018). Later, we calculated frequency response of gener-
ated supports by Corollary 1.1. The mean and standard deviation of the frequency profiles for these
simulated GAT supports are shown in Figure 3 a and its expected and standard deviation of the full
frequency response shown in Figure 10.

Figure 10: Full frequency profile of GAT and its standard deviation.

The full frequency profile is not symmetric as seen in Figure 10a. According to Figure 10b, varia-
tions are mostly on the right side of the diagonal in the full frequency profile. This is related to the
fact that these convolution kernels are not symmetric. However, the variation on frequency profile
might not be sufficient in problems that need some specific band-pass filters.

In order to get trained attention head frequency responses in ENZYMES and PROTEIN datasets, we
randomly divided the dataset into 4 folds. We trained the 2-layer GAT model which has 25 attention
heads each by using 3 folds. We calculated attention heads (50 C matrices given in equation 12,
25 each layer) for each graph in test fold. The density heat map in Figure 3b-c are the frequency
responses of these attention heads for ENZYMES and PROTEINS dataset respectively.
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Table 3: Sum of squared errors. All models have roughly 30k trainable parameters.

Prediction Target GCN GIN GAT ChebNet
Low-pass filter (Φ1) 15.55 11.01 10.50 3.44
Band-pass filter (Φ2) 79.72 63.24 79.68 17.30
High-pass filter (Φ3) 29.51 14.27 29.10 2.04

I WHICH FILTERS CAN THE GNN MODELS LEARN?

In this section, we seek to measure of the ability of GNN models to learn some specific filtering
process. This study is very important in order to understand the learning capability of existing GNN
models. Since the problem may need various types of filtering, the best GNN model has to be able
to learn any kind of filtering.

For this purpose, we conduct an empirical analysis on a real image with resolution of 100×100
and its corresponding 2D regular 4-neighborhood grid graph. The input of the GNN is the adja-
cency matrix of size 10000×10000 and the pixel intensities given in a 10000-length vector. We
create three different spectral filters that correspond to low-pass, band-pass and high-pass effects
and apply these filters to the given input image. Our selection of spectral filters are defined by
Φ1(ρ) = exp(−100ρ2), Φ2(ρ) = exp(−1000(ρ − 0.5)2) and Φ3(ρ) = 1 − exp(−10ρ2) for low-
pass, band-pass and high-pass filters respectively, where ρ2 = u2 + v2 and u and v are the normal-
ized frequencies on each direction for a given image resolution. Used input image and its filtering
results can be found in Figure 11.

Since we do not use pixel positions, neither as node feature nor as edge feature, we create these
spectral filters to be learned in a directional agnostic way. Therefore, the problem can be viewed
as a single graph node regression problem, where we train the GNN models to minimize the square
error between its output and targeted filtered image.

Figure 11: Input image, and its filtering results by Φ1, Φ2 and Φ3 respectively

In order to assess ChebNet, GCN, GIN and GAT, we use a 3-layer GNN architecture whose input is a
one-length feature (intensity of the pixel) and the number of neurons in hidden layers is respectively
32, 64 and 64; the output layer is an MLP that projects the final node representation onto the single
output for each node. We used roughly 30k trainable parameter in ChebNet with 5 supports. For
the other methods, we tuned the hidden neuron numbers in order to be sure that they have a similar
number of trainable parameters. Since the aim is not assessing the generalization performance, we
do not use any regularization or dropout to address overfitting, but simply force the GNN to learn
the input-output relation. We keep the iterations till there is no improvement for consecutive 100
iterations or maximum 3000 iterations.

Table 3 gives the sum of squared errors between target and the output of the trained model. One can
see that ChebNet constantly outperformed GCN, GIN and GAT for all tasks. For learning low-pass
filtering, the rest of the models did better compared to the high-pass and band-pass tasks. That is
the fact that GCN, GIN and GAT have the ability to act as low-pass filters. In addition to do better
on the low-pass task, GIN also did relatively better on the high-pass task as well. It is obvious that
GIN can work as high pass if the ε parameter is selected negative (see Theorem 5). It turns out that
the trained values of ε in GIN for each layer are −5.27, −2.21 and −0.47 for the high-pass task.
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Figure 12: The output of GNNs trained with band-pass task. Images are taken from ChebNet, GIN,
GAT and GCN respectively.

Table 4: ChebNet’s sum of squared errors on band-pass tasks with respect to S kernels and L stacked
layers. All models have roughly 30k trainable parameters.

S=2 S=3 S=5 S=7 S=10
L=1 65.06 56.25 47.12 39.59 28.15
L=2 55.85 45.96 26.81 18.92 13.33
L=3 50.13 36.60 17.30 9.84 7.32
L=4 44.88 24.89 11.90 8.91 6.96

Thanks to the spectral-designed convolution supports in ChebNet, it could learn high-pass and low-
pass tasks very well. However for band-pass tasks, even though it is the best in this category too,
it still has large errors compared to the high-pass and low-pass tasks. This is due to the fact that
the selected band-pass filter is very narrow, because the coefficient −1000 in the formulation of Φ2

makes the used ChebNet (with 5 convolution supports and 3 layers) unable to adapt this stiff (not
smooth) filter function. Moreover, since ChebNet has no band specific convolutions, band specific
output can be produced if the number of kernels increases (going wider) and/or the model goes
deeper. To clarify this point, we conducted another test for band-pass task on ChebNet to show
the effect of going deeper in the model and going wider (increase the convolution support) while
keeping the trainable parameters fixed. These results are given in Table 4.

According to Table 4, the ability of ChebNet to learn the given frequency response becomes better
with respect to the number of convolution supports and number of layers. However, this result is not
surprising where it is proved that any frequency response can be written by a weighed sum of enough
number of Chebyshev polynomials (Hammond et al. (2011)). When we train the ChebNet, it just
finds these coefficients to create the target frequency response by minimizing the error. However,
the interesting point is the incapability of GCN, GIN and GAT methods to even create reasonable
approximations of these targeted filter effects. For instance, it can be seen in Figure 12 that ChebNet
performed well to produce the desired band-pass output. However, GAT and GCN produce just a
different kind of low-pass filtering result instead of band-pass, while GIN at least can find edges
(high-pass component) thank to its trainable parameter ε. We also tested the deeper network for
GCN, GAT and GIN as well and have not seen any significant improvement when we use deeper
network.

J CAN GNN CLASSIFY GRAPHS ACCORDING TO FREQUENCY OF ITS
SIGNAL?

In this section, we measure the generalization ability of GNN for graph classification problem where
graph classes depend on the signal that the graphs carry. We generate 5000 images of 100×100
pixels composed of random generated frequency patterns obtained by a sinusoidal function with a
frequency in the range [1-5]. We labelled the image as negative if the pattern’s frequency is in the
ranges [2-2.5] or [4-4.5]. The rest of the frequency patterns are labeled as belonging to the positive
class. Then, we randomly rotate and translate the image pattern, add white noise (with std=0.2)
and normalize each image independently. From each image, we randomly sample 200 points in the
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Table 5: Test set accuracy and binary cross entropy loss.

MLP GCN GIN GAT ChebNet
Accuracy 50 77.90 87.60 85.30 98.2
Loss 0.69 0.454 0.273 0.324 0.062

100×100 image plane and we divide the image into 200 regions by watershed algorithm (Meyer,
1994), where each sampled point is the marker. From this preprocessing, we generate 5000 graphs,
each graph having 200 nodes. Each node corresponds to a watershed region in the image, and if the
two regions have intersection on the image plane, we assume these two nodes are connected by an
edge in the graph. We set the average intensity value in each region as a 1-length node feature. Even
though we know the region center position, we do not use it in order to make the problem harder.
Sampled generated image, randomly selected points and their watershed regions, and the graph can
be found in Figure 13 for a 30-node illustration.

Figure 13: Sample graph in Band-Pass graph dataset. Random rotated and translated image pattern
with frequency of 1, random sampled points and their watershed regions, and graph represent the
connected region and average region intensity value respectively.

We divided the dataset into train/valid/test subsets, with respectively 3000, 1000 and 1000 graphs.
We resampled the same number of positive and negative examples, such that the dataset is balanced.
We used 3 layers of GNN followed by a mean readout layer and finally two fully connected layers
which have 10 and 1 neuron respectively. Since the problem is a binary graph classification problem,
we used binary cross entropy loss and no regularization. We roughly use 30K parameters in each
model. The dropout ratio has been applied to all GNN layer’s inputs and optimized with respect to
the validation set performance.

The results are found on Table 5. Since the node distributions are all the same in the graphs (because
the graph nodes were independently normalized), MLP cannot do better than a random classifier.
GCN does not perform well, probably because of its low-pass nature. Since GAT and GIN are better
than GCN according to the spectral ability, they got a better accuracy than GCN. Finally, ChebNet
with 5 convolution supports clearly outperforms the rest of them with a huge margin. These results
show that models able to catch a particular band of frequencies obtain the best results, whereas
only low-pass based methods like GCN perform only slightly better than MLP. Therefore, this toy
example confirms our theoretical analysis.

To conclude, we have shown that if the model is able to perform different filtering operation, it can
classify the graphs according to frequency of its signal.

K WHY LOW-PASS GNNS GIVE REASONABLE RESULTS ON SEMI
SUPERVISED TASKS?

In the recent literature, GNNs are generally evaluated on semi-supervised node classification prob-
lems. The most well-known datasets are Cora, CiteSeer and PubMed paper citation graphs (Yang
et al., 2016). In these graphs, each node corresponds to a paper. If one paper cites another one,

24



Published as a conference paper at ICLR 2021

Table 6: Comparison of methods on the transductive learning problems using publicly defined train,
validation and test sets. Results are on accuracy

Method Cora CiteSeer PubMed
MLP 0.551 0.465 0.714
ChebNet 0.812 0.698 0.744
CayleyNet 0.819 0.701 0.751
GCN 0.819 0.707 0.789
GAT 0.830 0.725 0.790
LowPassConv 0.827 ± 0.006 0.717 ± 0.005 0.794 ± 0.005

there is an unlabeled and undirected edge between the corresponding nodes. Binary features on the
nodes indicate the presence of specific keywords in the corresponding paper. The learning task is to
attribute a class to each node (i.e., paper) of the graph using for training the graph itself and a very
limited number of labeled nodes. Labeled data ratios are 5.1%, 3.6% and 0.3% for Cora, CiteSeer
and PubMed respectively. Since the connected node’s probability of being in the same class is high
(0.83, 0.71, 0.79 for Cora, CiteSeer and PubMed respectively in Liu et al. (2020)), these graphs are
classified as assortative graphs. When the connected nodes are highly likely to be in the same class,
label propagation based low-pass effected algorithms can give reasonable results.

To show empirical evidence that any ordinary low-pass filter can give comparable results by low-
pass GNNs, we created a fixed, spectral-designed, single convolution support GNN whose frequency
response is manually designed in the spectral domain by Φ(λ) = (1−λ/λmax)5. This GNN model
is denoted as LowPassConv in Table 6 and its average accuracy and standard deviation over 20
random runs reported. We use predefined train, validation and test sets as defined by Yang et al.
(2016) and follow the test procedure of Kipf & Welling (2017) and Veličković et al. (2018) for a
fair comparison. According to Table 6, spectral-designed GNN’s such as CayleyNet and ChebNet
are slightly outperformed by other methods, including our simple low-pass convolution GNN. On
the other hand, GCN and GAT do not give significantly better results than ordinary low-pass graph
convolution.

These results seem conflicting with the idea of having spectral well-designed graph convolutions.
However, if the problem just needs low-pass filtering effect and if the model produces some unnec-
essary spectral component in the output, it may have a negative effect on the accuracy. Instead of
just one single low-pass convolution support, if we have many convolution supports with different
spectral properties, it increases the trainable parameters for a vain. Regularization may help to over-
come this issue. This problem may be solved by learning the convolution support in the frequency
domain by another secondary unsupervised task which is in our priority list to do.

L DATASETS AND IMPLEMENTATION DETAILS

Figure 14: Two sample graphs in MNIST-75 dataset (from 0 and from 1 class), the location of the
nodes is just for illustration. Models do not use the node positions.

In our experiments, we used 3 citation graph datasets, named Cora CiteSeer and PubMed, an ar-
tificial regular graph where each node degree is 2, named 1D, 2 biological graph datasets named
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Table 7: Summary of the datasets used in our experiments.
Cora CiteSeer PubMed 1D Band-Pass PROTEINS ENZYMES MNIST-75

# Graphs 1 1 1 1 5K 1113 600 70K
# Nodes 2708 3327 19717 1001 200 each 39.06 each 32.63 each 75 each
# Edges 5429 4732 44338 1001 1072.6 each 72.82 each 62.14 each 694.7 each
# Features 1433 3703 500 NA 1 3 21 1
# Classes 7 6 3 NA 2 2 6 10
# Training 140 Nodes 120 Nodes 60 Nodes NA 3K 9-fold 9-fold 55K
# Validation 500 Nodes 500 Nodes 500 Nodes NA 1K 1-fold 1-fold 5K
# Test 1000 Nodes 1000 Nodes 1000 Nodes NA 1K NA NA 10K

PROTEINS and ENZYMES, Band-Pass graph dataset which was created by us in order to evaluate
the models, and a large scale MNIST-75 graph dataset. The details of these datasets can be found in
Table 7. Two samples in MNIST-75 dataset are shown in Figure 14.

In our tests on MNIST-75, all hyperparameters are tuned by a grid as follows: `-2 norm reg-
ularization applied on trainable weights in {0, 10−1, 10−2, 10−3, 10−4, 10−5} and dropout in
{0, 0.2, 0.4, 0.6} for all models. In CayleyNet, we treated the zoom parameter as an hyperparameter
and tuned it within the candidate values {0.5, 1, 1.5, 2} and also r ∈ {1, 2, 3} which leads {3, 5, 7}
numbers of supports. ChebNet support number is also another hyperparameter, we tuned it in set of
{3, 5, 7}. For GAT, we tuned the number of heads and the number of output features by concate-
nating or not which can give the predefined layer feature. For a 64-feature output, two architectures
were studied: 8 heads each has 8 outputs with concatenating, and 8 heads each has 64 output with-
out concatenating. The same for 128-feature output layer as well, using the same number of heads.
For each layer of GIN model, there is one main GIN convolution layer followed by the same size of
MLP. We tested the fixed ε and trainable as well; finally we concluded to use trainable one according
to a validation set result. All activation are ReLU, but Elu (exponential linear unit) in GAT. In the
output layer, the linear activation is used in all models and the loss function is the cross entropy. We
used Adam optimization with a 0.01 learning rate without decay. We fixed the number of iterations
to 100 under 64 batch size. The test results were selected on the iteration where the validation set
accuracy is maximum.
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