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Abstract

We propose a novel generative adversarial network (GAN) for the

task of unsupervised learning of 3D representations from natural

images. Most generative models rely on 2D kernels to generate

images and make few assumptions about the 3D world. These

models therefore tend to create blurry images or artefacts in tasks

that require a strong 3D understanding, such as novel-view synthe-

sis. HoloGAN instead learns a 3D representation of the world, and

to render this representation in a realistic manner. Unlike other

GANs, HoloGAN provides explicit control over the pose of gener-

ated objects through rigid-body transformations of the learnt 3D

features. Our experiments show that using explicit 3D features en-

ables HoloGAN to disentangle 3D pose and identity, which is fur-

ther decomposed into shape and appearance, while still being able

to generate images with similar or higher visual quality than other

generative models. HoloGAN can be trained end-to-end from unla-

belled 2D images only. Particularly, we do not require pose labels,

3D shapes, or multiple views of the same objects. This shows that

HoloGAN is the first generative model that learns 3D represen-

tations from natural images in an entirely unsupervised manner.

1. Introduction

Learning to understand the relationship between 3D objects and

2D images is an important topic in computer vision and computer

graphics. In computer vision, it has applications in fields such as

robotics, autonomous vehicles or security. In computer graphics, it

benefits applications in both content generation and manipulation.

This ranges from photorealistic rendering of 3D scenes or

sketch-based 3D modelling, to novel-view synthesis or relighting.

Recent generative image models, in particular, generative

adversarial networks (GANs), have achieved impressive results in

generating images of high resolution and visual quality [3, 11, 12]

while their conditional versions have achieved great progress

in image-to-image translation [9, 22] or image editing [5, 26].

However, GANs are still fairly limited in their applications, since

they do not allow explicit control over attributes in the generated

images, while conditional GANs need labels during training

(Figure 1 left), which are not always available.

We propose HoloGAN, an unsupervised generative image

model that learns representations of 3D objects that are not only

explicit in 3D but also semantically expressive. In this work, we
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Figure 1. Comparison of generative image models. Data given to the

discriminator are coloured purple. Left: In conditional GANs, the pose

is observed and the discriminator is given access to this information.

Right: HoloGAN does not require pose labels and the discriminator

is not given access to pose information.

focus on designing a novel architecture that allows unsupervised

learning of 3D representations from images, enabling direct manip-

ulation of view, shape, and appearance in generative image models.

Such representations can be learnt directly from unlabelled natural

images, without any supervision of poses, 3D shapes, multiple

views of objects, or geometry priors such as symmetry and smooth-

ness over the 3D representation that are common in this line of

work [1, 10]. Unlike other GAN models, HoloGAN employs both

3D and 2D features for generating images. HoloGAN first learns

a 3D representation, which is then transformed to a target pose,

projected to 2D features, and rendered to generate the final images

(Figure 1 right). Different from recent work that employs hand-

crafted differentiable renderers [13, 15, 17], HoloGAN learns

perspective projection and rendering of 3D features from scratch

using a projection unit [20]. This novel architecture enables Holo-

GAN to learn 3D representations directly from natural images

for which there are no good hand-crafted differentiable renderers.

To generate new views of the same scene, we directly apply 3D

rigid-body transformations to the learnt 3D features, and visualise

the results using the neural renderer that is jointly trained. This

has been shown to produce sharper results than performing 3D

transformations in high-dimensional latent vector space [20]. In

summary, our main technical contributions are: 1) A novel archi-

tecture that combines a strong inductive bias about the 3D world

with deep generative models to learn disentangled representations

(pose, shape, and appearance) of 3D objects from images. The

representation is explicit in 3D and expressive in semantics. 2) An

unconditional GAN that, for the first time, allows native support

for view manipulation 3) An unsupervised training approach that

enables disentangled representation learning without using labels.



2. Method

To learn 3D representations from 2D images without labels,

HoloGAN extends traditional unconditional GANs by introducing

a strong inductive bias about the 3D world into the generator

network. Specifically, HoloGAN generates images by learning

a 3D representation of the world and to render it realistically

such that it fools discriminator. View manipulation therefore can

be achieved by directly applying 3D rigid-body transformations

to the learnt 3D features. In other words, the images created

by the generator are a view-dependent mapping from a learnt

3D representation to the 2D image space. This is different from

other GANs which learn to map a noise vector z directly to 2D

features to generate images.

Figure 2 illustrates the generator architecture of HoloGAN:

HoloGAN first learns a 3D representation (assumed to be in a

canonical pose) using 3D convolutions (Section 2.1), transforms

this representation to a certain pose, projects and computes visibil-

ity using the projection unit (Section 2.2), and computes shaded

colour values for each pixel in the final images with 2D convolu-

tions. HoloGAN shares many rendering insights with RenderNet

[20], but works with natural images, and needs neither pre-training

of the neural renderer nor paired 3D shape–2D image training data.

2.1. Learning 3D representations

HoloGAN generates 3D representations from a learnt constant

tensor (see Figure 2). The random noise vector z instead is treated

as a “style” controller, and mapped to affine parameters for adap-

tive instance normalization (AdaIN) [8] after each convolution

using a multilayer perceptron (MLP) f :z→γ(z), σ(z).
Given some features Φl at layer l of an image x and the noise

“style” vector z, AdaIN is defined as:

AdaIN(Φl(x), z)=σ(z)

(
Φl(x)−µ(Φl(x))

σ(Φl(x))

)
+γ(z). (1)

This can be viewed as generating images by transforming a

template (the learnt constant tensor) using AdaIN to match the

mean and standard deviation of the features at different levels

l (which are believed to describe the image “style”) of the

training images. Empirically, we find this network architecture

can disentangle pose and identity much better than those that

feed the noise vector z directly to the first layer of the generator.

HoloGAN inherits this style-based strategy from StyleGAN

[12] but is different in two important aspects. Firstly, Holo-

GAN learns 3D features from a learnt 4D constant tensor (size

4×4×4×512, where the last dimension is the feature channel)

before projecting them to 2D features to generate images, while

StyleGAN only learns 2D features. Secondly, HoloGAN learns a

disentangled representation by combining 3D features with rigid-

body transformations during training, while StyleGAN injects

independent random noise into each convolution. StyleGAN, as a

result, learns to separate 2D features into different levels of detail,

depending on the feature resolution, from coarse (e.g., pose, iden-

tity) to more fine-grained details (e.g., hair, freckles). We observe a

similar separation in HoloGAN. However, HoloGAN further sepa-

rates pose (controlled by the 3D transformation), shape (controlled

by 3D features), and appearance (controlled by 2D features).

2.2. Learning with view-dependent mappings

In addition to adopting 3D convolutions to learn 3D features,

during training, we introduce more bias about the 3D world

by transforming these learnt features to random poses before

projecting them to 2D images. This random pose transformation

is crucial to guarantee that HoloGAN learns a 3D representation

that is disentangled and can be rendered from all possible views

as also observed by Tran et al. [23] in DR-GAN.

Rigid-body transformation We assume a virtual pin-hole

camera that is in the canonical pose (axis-aligned and placed along

the negative z-axis) relative to the 3D features being rendered. We

parameterise the rigid-body transformation by 3D rotation, scaling

followed by trilinear resampling. Assuming the up-vector of the

object coordinate system is the global y-axis, rotation comprises

rotation around the y-axis (azimuth) and the x-axis (elevation).

Projection unit In order to learn meaningful 3D representa-

tions from just 2D images, HoloGAN learns a differentiable pro-

jection unit [20] that reasons over occlusion. The projection unit

is composed of a reshaping layer that concatenates the channel di-

mension with the depth dimension, thus reducing the tensor dimen-

sion from 4D (W×H×D×C) to 3D (W×H×(D·C)), and

an MLP with a non-linear activation function to learn occlusion.

2.3. Loss functions

Identity regulariser To generate images at higher resolution

(128×128 pixels), we find it beneficial to add an identity regu-

lariserLidentity that ensures a vector reconstructed from a generated

image matches the latent vector z used in the generator G. We find

that this encourages HoloGAN to only use z for the identity to

maintain the object’s identity when poses are varied, helping the

model learn the full variation of poses in the dataset. We introduce

an encoder network F that shares the majority of the convolution

layers of the discriminator, but uses an additional fully-connected

layer to predict the reconstructed latent vector. The identity loss is:

Lidentity(G)=Ez‖z−F(G(z))‖
2
. (2)

Style discriminator Our generator is designed to match the

“style” of the training images at different levels, which effectively

controls image attributes at different scales. Therefore, in addition

to the image discriminator that classifies images as real or fake, we

propose multi-scale style discriminators that perform the same task

but at the feature level. In particular, the style discriminator tries to

classify the mean µ(Φl) and standard deviation σ(Φl), which de-

scribe the image “style” [8]. Empirically, the multi-scale style dis-

criminator helps prevent mode collapse and enables longer train-

ing. Given a style discriminator Dl(x)=D̃l(µ(Φl(x)),σ(Φl(x))
for layer l, the style loss is defined as:

Ll

style(G)=Ez[−logDl(G(z))]. (3)

The total loss can be written as:

Ltotal(G)=LGAN(G)+λi ·Lidentity(G)+λs ·
∑

l

Ll

style(G). (4)

We use λi=λs=1.0 for all experiments. We use the GAN loss

from DC-GAN [21] for LGAN.
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Figure 2. HoloGAN’s generator network: we employ 3D convolutions, 3D rigid-body transformations, the projection unit and 2D convolutions. We

also remove the traditional input layer from z, and start from a learnt constant 4D tensor. The latent vector z is instead fed through MLPs to map

to the affine transformation parameters for adaptive instance normalisation (AdaIN). Inputs are coloured gray. Best viewed in colour.

3. Results

Data We train HoloGAN using a variety of datasets: CelebA

[16], Cats [27], Chairs [4], Cars [24], and LSUN bedroom [25].

We train HoloGAN on resolutions of 64×64 pixels for Cats and

Chairs, and 128×128 pixels for CelebA, Cars and Bedroom.

Implementation details We use adaptive instance normal-

ization [8] for the generator, and spectral normalization [19] for

the discriminator. We train HoloGAN from scratch using the

Adam solver [14]. During training, we sample z∼U(−1,1), and

also sample random poses from a uniform distribution We use

|z|=200 for Cars at 128×128, and |z|=200 for the rest.

Qualitative evaluation Figures 3 and 4 show that HoloGAN

can smoothly vary the pose along azimuth and elevation while

keeping the same identities for multiple different datasets. Note

that the LSUN dataset contains a variety of complex layouts of

multiple objects. This makes it a very challenging dataset for

learning to disentangle pose from object identity.

Quantitative results To evaluate the visual fidelity of gen-

erated images, we use the Kernel Inception Distance (KID) by

Bińkowski et al. [2]. The lower the KID score, the better the visual

quality of generated images. We compare HoloGAN with other

recent GAN models: DCGAN [21], LSGAN [18], and WGAN-

GP [6], on 3 datasets in Table 1. Note that KID does not take

into account feature disentanglement, which is one of the main

contributions of HoloGAN. We use a publicly available implemen-

tation1 and use the same hyper-parameters (that were tuned for

CelebA) provided with this implementation for all three datasets.

Similarly, for HoloGAN, we use the same network architecture

and hyper-parameters 2 for all three datasets. We sample 20,000

images from each model to calculate the KID scores shown below.

Table 1 shows that HoloGAN can generate images with compet-

itive (for CelebA) or even better KID scores on more challenging

datasets: Chairs, which has high intra-class variability, and Cars,

which has complex backgrounds and lighting conditions. This

also shows that HoloGAN architecture is more robust and can con-

sistently produce images with high visual fidelity across different

datasets with the same set of hyper-parameters (except for az-

imuth ranges). More importantly, HoloGAN learns a disentangled

representation that allows manipulations of the generated images.

1https://github.com/LynnHo/DCGAN-LSGAN-WGAN-WGAN-GP-
Tensorflow

2Except for ranges for sampling the azimuth: 100° for CelebA since face
images are only taken from frontal views, and 360° for Chairs and Cars

Method CelebA 64×64 Chairs 64×64 Cars 64×64

DCGAN [21] 1.81 ± 0.09 6.36 ± 0.16 4.78 ± 0.11

LSGAN [18] 1.77 ± 0.06 6.72 ± 0.19 4.99 ± 0.13

WGAN-GP [6] 1.63 ± 0.09 9.43 ± 0.24 15.57 ± 0.29

HoloGAN (ours) 2.87 ± 0.09 1.54 ± 0.07 2.16 ± 0.09

Table 1. KID [7] between real images and images generated by

HoloGAN and other 2D-based GANs (lower is better). We report KID

mean×100 ± std.×100.

Disentangling shape and appearance We show that apart

from pose, HoloGAN also learns to further divide identity into

shape and appearance. We sample two latent codes, z1 and z2, and

feed them through HoloGAN. While z1 controls the 3D features

(before perspective morphing and projection), z2 controls the 2D

features (after projection). Figure 5 shows the generated images

with the same pose, same z1, but with a different z2 at each row.

As can be seen, while the 3D features control objects’ shapes, the

2D features control appearance (colour and lighting). This shows

HoloGAN learns to separate shape from appearance directly from

unlabelled images, allowing manipulation of these factors.

4. Discussion

HoloGAN’s ability to separate pose from identity depends on

the variety and distribution of poses included in the training

dataset. Currently, during training, we sample random poses

from a uniform distribution. Future work therefore can explore

learning the distribution of poses from the training data in an

unsupervised manner to account for uneven pose distributions.

Finally, it will be interesting to explore further disentanglement

of objects’ appearances, such as texture and illumination.
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Figure 3. HoloGAN supports changes in both azimuth (range: 100°) and elevation (range: 35°). However, the available range depends on the dataset.

For CelebA, for example, few photos in the dataset were taken from above or below.

Figure 4. For the car dataset, HoloGAN fully captures the full 360° azimuth and elevation (range: 35°).
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