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Compressive geoacoustic inversion using ambient noise
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Surface generated ambient noise can be used to infer sediment properties. Here, a passive geoacoustic

inversion method that uses noise recorded by a drifting vertical array is adopted. The array is steered

using beamforming to compute the noise arriving at the array from various directions. This information

is used in two different ways: Coherently (cross-correlation of upward/downward propagating noise

using a minimum variance distortionless response fathometer), and incoherently (bottom loss vs

frequency and angle using a conventional beamformer) to obtain the bottom properties. Compressive

sensing is used to invert for the number of sediment layer interfaces and their depths using coherent

passive fathometry. Then the incoherent bottom loss estimate is used to refine the sediment thickness,

sound speed, density, and attenuation values. Compressive sensing fathometry enables automatic

determination of the number of interfaces. It also tightens the sediment thickness priors for the incoher-

ent bottom loss inversion which reduces the search space. The method is demonstrated on drifting array

data collected during the Boundary 2003 experiment. VC 2014 Acoustical Society of America
[http://dx.doi.org/10.1121/1.4864792]

PACS number(s): 43.60.Pt, 43.30.Pc, 43.60.Fg [SED] Pages: 1245–1255

I. INTRODUCTION

Geoacoustic inversion estimates ocean environment pa-

rameters such as the water column sound speed profile (SSP)

and seafloor parameters such as the sediment layer thick-

nesses, SSPs, density, and attenuation values. This paper

introduces a passive geoacoustic inversion algorithm for use

with drifting vertical line array (VLA) data. The sea-surface

generated ambient noise observed by the VLA is used to

invert for the sediment parameters. This inversion algorithm

has two important features.

First, passive fathometry1 and bottom loss measurements2

are used together. Passive fathometry is a coherent technique

that depends on the cross-correlation of upward and downward

pointing beams and the bottom loss method is an incoherent

technique that depends on the ratio of noise levels coming

from different matched pairs of vertical arrival angles.

Inversion methods that use either one of these have different

properties and performance characteristics. Thus, using both of

them together is an attractive combination. Here, the fathome-

ter is used to estimate the water depth, the number of layers,

and sediment thicknesses. This is followed by an inversion that

uses incoherent bottom loss measurements, estimating the

sound speed, attenuation, and density profiles in addition to

refining the previously obtained sediment thickness values.

Second, compressive sensing (CS) is incorporated in the

fathometer inversion. Here we take advantage of the sparse

nature of sediment formations where there are a finite num-

ber of layer interfaces that create strong reflections. CS pro-

vides a theoretical framework that enables expressing the

problem as a convex optimization problem which then can

be solved efficiently.3,4

In recent years, CS has been used in diverse fields.5–8 In

addition to some early applications,9 recent underwater

acoustic work includes sensor network representations,10

compressive channel sensing for underwater communica-

tion,11,12 beamforming,13 and matched-field processing.14

Sparsely distributed reflector depths can be recovered using

CS as long as a spatially sparse representation that can repre-

sent the fathometer output using linear functions exists.15,16

CS achieves this by minimizing not only the error between

the observation and the forward model but also the number

of reflections.

Ocean acoustic passive fathometry is a coherent method

that computes the cross-correlation between the upward and

downward propagating noise.1,17,18 A geoacoustic inversion

algorithm based on passive fathometry then can be used to

infer the sediment properties. This approach to fathometry is a

passive method since it only uses the surface-generated noise

field. It requires the decomposition of the ambient noise wave

field into its upward and downward propagating components.

A common way of achieving this is using beamforming to

steer the VLA. Adaptive fathometry based on the minimum

variance distortionless response (MVDR)18–20 and the white

noise constrained (WNC) beamformers19 has been shown to

outperform fathometry that uses conventional beamforming.

This is due to the fact that the adaptive beamformers are able

to suppress much better noise coming from unwanted angles.

A multiple model particle filter is used in Ref. 21 to track the

range-dependent sediment thicknesses in an environment

where the number of interfaces changes. Here MVDR fathom-

etry is used together with CS to estimate the water depth and

sediment thicknesses.

Bottom loss estimation is another passive inversion

method that uses ocean ambient noise.2 This method is based

on the ratio of the bottom-reflected upward propagating

noise power to the downward propagating surface-generated

noise power.22,23 Since the method is based on the ratio of

noise powers, it is an incoherent method. The sensitivity of

this method to parameters such as array tilt, water absorp-

tion, and non-surface generated noise sources is studied in
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Ref. 24. Genetic algorithms (GA),23 Bayesian,25 and trans-

dimensional26 algorithms have been applied to invert for the

bottom properties.

Compressive sensing, coherent passive fathometer, and

incoherent bottom loss calculations are summarized in Secs.

II, III A, and III B, respectively. A geoacoustic inversion

algorithm that utilizes all three is provided along with the

application to drifting array data from the Boundary 2003

Experiment in Sec. IV.

II. COMPRESSIVE SENSING

Assume b is the data vector of N measurements (e.g.,

the passive fathometer output at various depths), and x is the

vector of M unknown parameters (e.g., reflection coefficients

of acoustic reflectors located at a dense vertical grid of M
depths in the sediment), where N<M. As a linear system,

the forward model can be represented by an N�M matrix S:

b ¼ Sx; (1)

where the columns of S represents the reflection response

wavelet for each reflector. Unfortunately, this is an underde-

termined problem with infinite solutions. Regularization of-

ten is used with this type of problem by adding a second

term to the cost function that penalizes undesirable solutions.

This gives

bx¼ argmin
x
kxkp subject to b ¼ Sx; (2)

where the desired optimal solution bx is restricted to the x

with minimum ‘p-norm. The most commonly used choice

with p¼ 2 seeks a solution with minimum vector length

jjxjj2 in the parameter space.7 The attractive feature of the

‘2-norm is that the inversion becomes convex with a unique

solution. This can be calculated by recasting the problem

using a Lagrange multiplier k:

bx¼ argmin
x
kb� Sxk2 þ kkxk2: (3)

The optimal k can be found by taking the derivative of

the cost function relative to x. This results in the pseude-

inverse solution:7

bx ¼ SH SSHð Þ�1
b: (4)

There are many problems such as the geoacoustic inver-

sion problem where x is sparse. For example, there are only

a small number (K) of acoustic reflectors. Hence if x is the

acoustic reflection strength at each depth, most of the entries

of x are zero with only K non-zero entries with K� N<M.
In this case, x is K-sparse.

Compressive sensing3 is a technique that solves sparse

inversion problems by taking advantage of the sparseness of

the solution. When x is known to be sparse, the problem

defined in Eq. (2) can be replaced with

bx ¼ argmin
x
kxk0 subject tokb� Sxk2 � e: (5)

The ‘0-norm jjxjj0 gives the number of non-zero entries

in x so the optimal bx is the sparsest of the possible solutions.

This is a non-convex problem difficult to solve. Moreover

the solution becomes unstable under noisy conditions.27

Therefore, sparse recovery was not widely used until it was

shown3,15 that as long as a certain condition called the re-

stricted isometry property (RIP) is met, the ‘0-norm can be

replaced with the ‘1-norm:

bx ¼ argmin
x
kxk1 subject tokb� Sxk2 � e: (6)

Initially, matrices that are demonstrated to have RIP had

random entries.3 It later was demonstrated that ‘1-norm sub-

stitution also worked for numerous deterministic matrices,28

as used here; see Eq. (16). Introducing the Lagrange multi-

plier k one more time, the problem becomes

bx ¼ argmin
x
kb� Sxk2 þ kkxk1: (7)

Unlike Eq. (5), Eq. (7) is a convex problem that can be

solved efficiently with interior point solvers.29 Selection of a

good k is critical for the CS inversion quality. k enforces

sparseness so the larger the value of k, the more sparse the

solution becomes and the convex optimization algorithm

will give less weight to the ‘2 error norm.

III. AMBIENT NOISE PROCESSING

Ocean ambient noise is assumed to be generated at the sea

surface by wave breaking and is modeled as a surface sheet of

noise.30 The surface generated noise can be measured by steer-

ing a VLA in the water column upwards toward the surface. At

the same time, the noise travels down, interacts with the sea-

floor environment, and reflects back. The bottom- reflected

noise can be measured by steering the VLA downwards. There

are two basic ways of extracting information from noise obser-

vations about the geoacoustic environment, coherently (passive

fathometry), and incoherently (bottom loss). Both methods

incorporate the direct and bottom-reflected arrivals.

Noise-based inversion algorithms are strongly affected

by the wind speed. If the ocean surface is too calm, there is

not enough wave breaking that generates noise. If the noise

level is too low, the inversion quality degrades. To a degree,

low surface-generated noise levels are mitigated in both the

coherent and incoherent methods by array gain during beam-

forming. An example of this is given for North of Elba

Island, Italy2 where the bottom loss cannot be extracted in

calm conditions. Too much wind also is detrimental, espe-

cially when large ocean waves above the VLA alter the

shape, tilt, and effective depth of the array and water col-

umn. Due to its coherent nature, the quality of passive fath-

ometry results degrades faster than those of the bottom loss

method with increasing sea state.31

A. Coherent processing: Passive fathometer

Passive fathometer data processing1,17–19 is a coherent

ambient noise processing technique that enables passive

ocean bottom profiling. The fathometer output is the cross-

correlation of downward traveling sea surface noise gener-

ated just above the VLA with the upward traveling reflection

1246 J. Acoust. Soc. Am., Vol. 135, No. 3, March 2014 Yardim et al.: Compressive geoacoustic inversion



of itself from the seabed, see Fig. 1(a). To achieve this, con-

ventional or adaptive beamforming is used on the VLA data.

Beamforming allows the array to look up and down while

rejecting arrivals from other angles, particularly the higher

level arrivals coming from around the horizontal direction

(e.g., due to regional shipping activity). Adaptive beamform-

ing such as MVDR and WNC beamforming19 were used to

improve the fathometer results.

Assume an equally-spaced VLA with L-elements where

l¼ 0 for the deepest hydrophone.20 At each frequency, the

acoustic pressure p across the array and the steering vector

w are used to estimate the upward and downward propagat-

ing noise. This gives

wh ¼
1

L
1 eikd sinhe2ikd sinh � � � ei L�1ð Þkd sinh
� �T

; (8)

where d is the array element separation distance, k¼ 2pf/ca is

the wavenumber, ca is the sound speed at the array location, h
is the steering angle with h¼ 0� corresponding to broadside

or horizontal propagation, and T represents the transpose.

Using snapshots pi, i¼ 1,…,Np, the data cross spectral

density matrix C is estimated by averaging outer products of

Np snapshots, bC ¼PNp

i¼1pip
H
i .

Typically, noise coming from broadside angles is much

stronger than that from the endfire directions.18,19 Hence,

horizontal noise can leak through the side lobes even when

the array is steered up or down. Adaptive beamforming

improves the fathometer results by suppressing the noise

from unwanted directions. The MVDR fathometer output

[Fig. 1(a)] is the cross-correlation between the upward and

downward adaptively beamformed noise terms giving

~w�90 ¼
bC�1

w�90

wH
�90
bC�1

w�90

; (9)

~w90 ¼
bC�1

w90

wH
90
bC�1

w90

; with ~w90 6¼ ~w��90; (10)

B fð Þ ¼ ~wH
�90
bC ~w90; (11)

b fð Þ ¼ F�1 B fð Þ
� �

; (12)

where ~w represents the MVDR weights. The time domain fa-

thometer response is given by computing Eq. (11) for the fre-

quencies inside the desired bandwidth and then calculating an

inverse Fourier transform, see Eq. (12). If the layer sound speed

values are known, the time delay information can be converted

to reflector depths, b(t)! b(z). The time domain amplitudes of

the peaks also relate to geoacoustic parameters.17

Assuming a step function transition at a layer interface, a

simple frequency-independent reflection coefficient, and flat

spectra for upward and downward propagating noise, and

ignoring the multiple reflections between reflectors, each inter-

face results in a sinc(�)¼ sin(�)/(�) function wavelet at the fa-

thometer output corresponding to its two-way travel time

(TWT).18 Assuming a bandwidth W and effective sound speed

c, the time-domain fathometer response at t caused by a reflec-

tor at a depth zi (corresponding to TWT ti¼ 2zi/c) is given by

b t;zi;Aið Þ ¼ Ai sinc 2W t� 2zi

c

� �� �
; (13)

where Ai is the time-domain amplitude of the fathometer out-

put. The fathometer output is available at sampling times

corresponding to the acoustic data sampling frequency fs. A

bandwidth W of 3950 Hz is assumed throughout the paper.

Assuming K reflectors, the unknown parameter vector

becomes xGA¼ [z0 A0 z1 A1� � � zK�1 AK�1]T and the forward

model for a fathometer inversion algorithm is given by

b t;xGAð Þ ¼
XK�1

i¼0

Ai sinc 2W t� 2zi

c

� �� �
: (14)

Note that the forward model is a nonlinear function of the geo-

acoustic parameter vector xGA. This model can be used with

GA (Ref. 23) or Bayesian type inversion algorithms.21,25,26

An alternative linear forward model can be constructed

by defining an M-dimensional parameter vector x along a

dense grid of depth values. Assume we discretize the depth

with Dz spacing where each grid point is the depth of a

potential reflector. A potential reflector at any of the M
depths z¼ [z0 z1 � � � zM�1]T will generate a fathometer reflec-

tion amplitude Ai, i¼ 0,…,M�1. Defining the parameter

vector as x¼ [A0 A1� � � AM�1]T, Eq. (14) can be rewritten as

b xð Þ ¼ Sx (15)

¼

sinc 2W t0 �
2z0

c

� �� �
sinc 2W t0 �

2z1

c

� �� �
� � � sinc 2W t0 �

2zM�1

c

� �� �

sinc 2W t1 �
2z0

c

� �� �
sinc 2W t1 �

2z1

c

� �� �
� � � sinc 2W t1 �

2zM�1

c

� �� �

� � . .
.

�

sinc 2W tN�1 �
2z0

c

� �� �
sinc 2W tN�1 �

2z1

c

� �� �
� � � sinc 2W tN�1 �

2zM�1

c

� �� �

2
6666666666664

3
7777777777775

A0

A1

�

AM�1

2
666664

3
777775; (16)
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where N is the number of measurements and b(x) is the for-

ward model data vector corresponding to the fathometer out-

put at t¼ t0,…,tN�1. This selection of x allows for the

representation of the fathometer output as a linear function

of x with a matrix of sinc functions S.

Sediment layer transitions occur only at a few depths. Most

of the entries of x are zero with only K non-zero entries with K
� N<M. In this case, x is K-sparse and the passive fathometer

inversion can be cast as a sparse recovery problem and be solved

using CS techniques.3 Here, the convex optimization package

CVX (Ref. 32) is used for CS fathometer inversions.

Unlike conventional CS problems where the matrix S is

composed of random entries,3 S here is a deterministic ma-

trix composed of sinc functions with correlated entries. It

has been shown that many deterministic matrices also work

in CS, especially with highly spare parameter vectors.28

With a sparsity K/M< 5%, the CS fathometry works well

with its deterministic sinc matrix.

B. Incoherent processing: Bottom loss calculation

Information about the ocean environment can be

extracted incoherently using ambient noise.2,22,33 Unlike the

passive fathometer, the array is steered from broadside to

end-fire estimating the plane wave power reflection coeffi-

cient R at each angle. The beamformer outputs are used inco-

herently by dividing the upward propagating noise level by

the corresponding downward propagating noise level to esti-

mate the plane wave power reflection coefficient R as a func-

tion of frequency and angle.2

MVDR beamforming has been shown34 to result in

errors for bottom loss calculations. Hence, a conventional

beamformer is used here. The noise power level coming

from h is estimated as

Nh fð Þ ¼ wH
h
bCwh: (17)

The power reflection coefficient and bottom loss can be cal-

culated as

bRobs
h; fð Þ ¼ N�h fð Þ

Nh fð Þ ¼
wH
�h
bCw�h

wH
h
bCwh

; (18)

cBL
obs

h; fð Þ ¼ �10logbR 0o < h < 90o : (19)

Note that Eq. (18) is an approximation to the true reflection

coefficient. Since conventional beamforming is used to

FIG. 1. (Color online) Description of the method: (a) Coherent fathometer processing by cross-correlating the upward and downward propagating surface-

generated noise. The number of interfaces and their locations are estimated using compressive sensing. (b) Incoherent bottom loss estimation using beamform-

ing. The bottom loss is obtained by dividing the bottom-reflected upward propagating noise by the downward propagating noise. This estimates bottom loss as

a function of frequency and angle. Coupled with the layering information obtained from the fathometer results, a final geoacoustic inversion is performed.

1248 J. Acoust. Soc. Am., Vol. 135, No. 3, March 2014 Yardim et al.: Compressive geoacoustic inversion



obtain the upward and downward-propagating noise levels,

Eq. (17) introduces some artifacts that result in the

“smearing” of R.

The ideal BL(h, f) for a simple two-layer seafloor and

isovelocity water column SSP is plotted as a function of fre-

quency and angle in Fig. 2(a). For the same environment, the

bottom loss cBL
obs

(h, f) estimated using beamforming under

different “signal” to “noise” ratio (SNR) conditions is shown

in Figs. 2(b)–2(d).

Low frequencies and/or a short array aperture lead to a

broadening of the beam pattern, which in turn results in poor

angle resolution. When the array is steered broadside at

small h, both bottom-reflected and surface-generated noise

enters through the wide main lobe resulting in bR ¼ 1. HencecBL
obs

(h, f) at low frequencies and angles in Fig. 2(b) is

closer to 0 dB than the true BL(h, f) given in Fig. 2(a).

If the inter-element spacing d is larger than half the

wavelength at frequency f, grating lobes becomes an issue,

resulting in a loss of the true value of BL(h, f); see the high

frequency and angle region in Figs. 2(b)–2(d).

Surface generated noise constitutes the signal being

processed. Bottom loss estimation depends on the ratio of

noise coming from two different directions. Hence, all other

noise sources including the receiver electronic self-noise set

a noise-floor for the upward and downward propagating

noise estimates.25 This noise-floor effect is particularly pro-

nounced when the surface-generated noise strength is low

(calm sea) and at frequency-angle combinations where the

bottom loss is high. At angles and frequencies with very

high bottom loss, the bottom-reflected noise propagating

upwards drops below the noise floor level. Figures 2(b)–2(d)

corresponding to infinite, high, and low SNR show this effect

with decreasing surface generated noise strength. Note that

the high bottom loss regions in Fig. 2(b) are affected the

worst in Fig. 2(d).

The first forward model candidate is OASN (Ref. 35) that

simulates a range-independent surface sheet of noise and

produces the noise CSDM C(xBL) for a given environment

xBL. Then, conventional beamforming is used to estimate

upward and downward propagating noise power vs h andcBL(xBL,h, f) is computed at each frequency and angle. The

OASN method can be computationally demanding so an ap-

proximate method that is based on the ideal power reflection

coefficient R obtained via OASR has been developed.25,36

The noise-floor effects mentioned earlier have been

modeled25 by incorporating a SNR. The SNR is defined as

the ratio of the surface generated noise to the electronic self-

noise power. Assuming a spatially white self-noise with var-

iance r2(f) across the array at frequency f and taking into

account the array gain L, the bottom loss forward model

becomes

cBL xBL; h; fð Þ ¼ �10 log
wH
�hC xBLð Þw�h þ r2=L

wH
h C xBLð Þwh þ r2=L

: (20)

This forward model can estimate the observed bottom loss if

the self-noise level r2(f) is known at each frequency that is

used in the inversion.25 One solution involves incorporating

the noise at each frequency as an unknown parameter in xBL.

This gives the ability to characterize accurately the

noise-floor effects but also results in an increased dimension

of xBL. In order to prevent the number of unknown parame-

ters from growing too large, only a small number of frequen-

cies can be used in the inversion. This corresponds to using

only a handful of horizontal slices of the information avail-

able in Fig. 2(b).

Here we adopt a method that estimates the beamformer

output SNR from the observed data. The main assumption is

that for most of the frequencies used in the inversion, there

is an angle at which the bottom loss is large enough that the

beamformer output in the numerator of Eq. (20) is domi-

nated by the self-noise term. This allows us to define the

minimum beamformer output across all negative angles (bot-

tom-reflected, upward propagating) for each frequency as

the self-noise level at that frequency. The average surface-

generated noise (signal in this case) level at the beamformer

output is estimated by averaging the beam- former output at

positive angles (surface-generated, downward propagating).

This gives a beamformer output dSNR:

dSNR fð Þ ¼

1

nh

X90o

h¼h0

wH
h Cwh

min
h0�h�90o

wH
�hCw�h

; (21)

where nh is the number of beam angles used to estimate the

surface-generated noise and angles less than h0 are not used

in the inversion.

An advantage of using dSNR values estimated from data

is that the unknown parameter space is kept small. In addi-

tion, since the number of interfaces and layer depths are

passed to the bottom loss inversion algorithm from the CS

fathometer inversion, the inversion dimension can be kept

significantly smaller than comparable methods and provides

a fast inversion. As a result, OASN can be used here without

having to resort to any approximate methods. Another

FIG. 2. (Color online) Bottom loss calculations for a simple two-layer sea-

floor and isovelocity water column SSP: (a) Ideal reflection loss obtained

from OASR. Bottom loss obtained by OASN and beamforming with (b) infi-

nite SNR, (c) high SNR (20 dB), and (d) low SNR (2 dB).
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advantage is the ability to include a large number of frequen-

cies in the inversion without changing the size of xBL.

The downside of this approach is that the true self-noise

level is less than the minimum of the beamformer output at

each frequency (except when the bottom loss is very large),

resulting in a dSNR less than its true value. As the dSNR esti-

mated using Eq. (21) decreases, the error in the self-noise

power estimation increases. A possible remedy for this prob-

lem is using only the frequencies that have high dSNR.

Finally, a simple ‘2-norm cost function is defined to

optimize over the desired range of angles h 2 H and fre-

quencies f 2 F:

U xBLð Þ ¼
X
h2H

X
f2F

jjcBL
obs

h; fð Þ � cBL xBL; h; fð Þjj2;

(22)

where cBL is calculated at xBL using Eq. (20) by adding a

self-noise term r2 so that the SNR will match the dSNR

obtained in Eq. (21). Since the BL estimate uses h less than

90�, a larger region around the vertical array will affect the

results than with the passive fathometer.

C. Ambient noise inversion algorithm

The coherent fathometer inversion in Sec. III A and

incoherent bottom loss inversion in Sec. III B are used to-

gether here in a two-step approach. First the number of bot-

tom layers and depths are estimated. Then these are used to

constrain a more complete seafloor geoacoustic inversion.

The flow of calculations are as follows:

(1) A compressive passive fathometer inversion is performed

by constructing Eq. (16). This algorithm assumes a K-

sparse amplitude vector at M-depths with N measurements

corresponding to the fathometer time series. A sparse esti-

mate bx is obtained using CVX for the desired level of k
(larger k means more compression, less interfaces).

(2) There are only K non-zero elements in bx whose depth

values correspond to the water depth and sediment layer

interface depths. Since the sinc basis function is an

approximation, there will be some residual error between

the true fathometer output and the sinc model at each

layer interface. The inversion algorithm will need one or

more closely-spaced apparent layers to fully represent

the measured waveform at the layer interface, see Sec.

III A. Thus, there are only Ke effective interfaces out of

K reflectors. As long as a sediment layer is not very thin,

it is straightforward to separate one closely-spaced set of

apparent reflectors from another and determine Ke.

(3) As a result of the CS inversion, the bottom loss inversion

starts with prior knowledge of the TWT estimatesbti ¼ 2bzi=c with i ¼ 0;…;Ke � 1, which enables estima-

tion of the water depth, the number of layer interfaces,

and sediment thicknesses. Sediment layer thicknesses hi

only can be calculated during the bottom loss inversion

since sediment layer sound speed ci is needed in addition

to the TWT ti. It is possible to use the CS estimates bti
and only invert for ci in the BL inversion; however, we

chose to incorporate the ti as unknown parameters with

tight priors around the CS estimates bti .

(4) The full geoacoustic parameter vector for the BL inver-

sion is given by (see Fig. 1)

xBL ¼ hTc1 q1 a1 � � � cKe
qKe

aKe

h iT

; (23)

h¼

wd

h1

h2

�

hKe�1

2
66664

3
77775 ¼

1

2
cwt0 þ zref

1

2
c1 t1 � t0ð Þ

1

2
c2 t2 � t1ð Þ

�
1

2
cKe�1

tKe�1 � tKe�2ð Þ

2
6666666666664

3
7777777777775
; (24)

where wd is the water depth, the Keth layer corresponds

to the sub-bottom layer, cw is the average water column

sound speed between the array and water-sediment inter-

face, and zref is the depth of the reference array element.

For each layer interface i¼ 0,…,Ke�1, the maximum

and minimum values obtained from the ith closely-

spaced set of CS layer reflector estimates are set as upper

and lower limits for ti: [min(bti), max(bti)].

(5) The bottom loss inversion here is performed using GA.

More advanced global inversion algorithms or Bayesian

methods also can be used to infer uncertainty. The ability to

use prior CS layering information reduces significantly the

search space, resulting in consistent sediment sound speeds,

attenuation, and density estimates. Here the CS inversion at

each time is treated independently as the array drifts.

However, since the bottom reflectors are continuous a se-

quential sparse sampling approach also could be applied.37

IV. BOUNDARY 2003 DRIFTING ARRAY DATA

The ambient noise data was collected by a drifting array

in the NURC Boundary 2003 experiment.1,17,19,20 The array

consisted of 32 hydrophones with 0.18 m spacing (5.58 m

total aperture) and a sampling rate of fs¼ 12 kHz. The array

drifted at 70 to 80 m depth with an average reference hydro-

phone depth of 73.5 m. The drifting array data was collected

from July 22, 2003, 14:21 UTC (36.429� N, 14.785� E) to

July 23, 2003, 03:28 UTC (36.414� N, 14.776� E). There

was only one conductivity temperature depth (CTD) and one

expendable bathythermograph (XBT) measurement recorded

during this time (Fig. 3). However, the water column SSP

during the experiment was fairly stable with the sound speed

at the surface, array depth, and bottom measured as 1543,

1512, and 1512 m/s, respectively. The array drifted mostly

parallel to the 130 m isobath so water depth along the path is

relatively constant with only a marginal increase in depth

over the data collection period.

A. Compressive fathometer inversion

MVDR passive fathometer processing was carried out

over the 50 to 4000 Hz band (W¼ 3950 Hz). Each
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covariance matrix bC was computed from 90 s data using

16 000 fast Fourier transform (FFT) bins with 50% overlap,

corresponding to 	120 snapshots. For the CS inversion, Eq.

(16) is formed using Dz¼ 2 cm from 125 to 165 m, giving

M¼ 2000. The fathometer output is obtained at N¼ 640

points (TWTs) at the acoustic data sampling rate fs.
Depending on the desired level of detail [controlled by k in

Eq. (7)], the number of non-zero entries, K, fluctuates

between 3 and 80. As an example, K¼ 20 results in a K-

sparse x where 99% of the entries are zero.

The drifting VLA track also was surveyed using a

Uniboom active seismic system. Since the MVDR fathome-

ter results have been shown to outperform significantly those

produced by the conventional fathometer,19 the MVDR fa-

thometer is used here. The MVDR fathometer output is first

compared with the Uniboom survey results in Fig. 4. To

compare various reflector depth inversion methods, the area

marked by the rectangle in Fig. 4(b) is explored in detail.

First, a GA inversion is performed using Eq. (14) to

describe a fixed six-interface (including sediment-water

interface) environment. The MVDR fathometer GA inver-

sions are given in Fig. 5(b) where the background image is

taken from the fathometer results in Fig. 5(a). Figures 5(c)

and 5(d) gives the results for compressive MVDR inversion

for two k values. The outputs in both follow the tracks with

minimal error. However, the number of interfaces are differ-

ent in the two cases. The first case with k¼ 0.3 enforces less

FIG. 3. (Color online) SSPs measured during the drifting portion of the

Boundary 2003 experiment (July 22–23, 2003).

FIG. 4. (Color online) (a) Uniboom active seismic survey result along

approximately the same track as the drifting VLA and (b) MVDR fathome-

ter outputs. Rectangle shows the area explored in detail in Fig. 5. TWT is

converted into depth using c¼ 1500 m/s.

FIG. 5. (Color online) Fathometer inversion results: (a) MVDR fathometer

output, (b) GA inversion results assuming a known number of interfaces

(K¼ 6), CS inversion results for (c) k¼ 0.3 and (d) k¼ 0.55. TWT is con-

verted into depth using c¼ 1500 m/s.

FIG. 6. (Color online) Four inversion results (� ) using the MVDR fathom-

eter output at 00:00 h with TWT converted into depth using c¼ 1500 m/s:

(a) ‘2-norm inversion with regularization, and CS inversions with (b)

k¼ 0.2, (c) k¼ 0.3, and (d) k¼ 0.55. The right column plots are zoomed

[rectangle in (a)] sections of the time-series where b(bx) (dashed line) is com-

pared to the observed fathometer output (solid line).
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compression. Hence more reflectors are allowed. In contrast,

with a high value of k (0.55), only the strongest reflectors are

detected. The reason for this is the heavy penalty in the cost

function as the number of reflectors increases. There is no

unique answer regarding which one is better. The small k
case gives a more detailed set of reflectors. A coarser repre-

sentation such as in Fig. 5(d) might be preferable for geoa-

coustic inversion purposes.

Sometimes more than one reflector is needed in Figs.

5(b)–5(d) to characterize a layer interface. This is due in part to

the mismatch between the fathometer output and the sinc wave-

let in Eq. (13) as discussed in Secs. III A–III C. Thus, both GA

and CS methods might require two or more closely-spaced sinc

wavelets to match the fathometer output at each interface.

Therefore a K-sparse CS inversion will have Ke� K interfaces.

The difference between K and Ke can be reduced by

increasing k; however, a large k runs the risk of missing

weaker reflectors altogether.

The CS inversion results also can be compared with

‘2-norm inversions with regularization using Eq. (4) at

00:00 h. The pseudo-inverse solution in Fig. 6(a) yields a

noisy reflection coefficient sequence with clusters of larger

amplitudes at 131 to 135 m (water-sediment interface and

the top sediment layer) and 153 and 157 m (a secondary se-

ries of interfaces). The synthetic fathometer output using the

pseudo-inverse estimated environment matches well the

measured fathometer response except for the small mismatch

around 132 m, see Fig. 6(a). Three CS inversion results with

increased sparseness are given in Figs. 6(b)–6(d). The results

with k¼ 0.2 show many reflectors with small but non-zero

amplitudes, k¼ 0.3 focuses well on the distinct interface

regions with no reflectors in between, and finally k¼ 0.55

mostly misses the reflectors at 150 to 160 m entirely and

only does a good job of estimating the reflectors around 130

to 135 m. The synthetic fathometer outputs for all three val-

ues of k give a better match to the fathometer response than

does the pseudo-inverse method, demonstrating the advan-

tages of using CS over classical ‘2-norm based inversions for

the fathometer inversion problem.

FIG. 7. (Color online) CS inversion analysis. (a) Relative contributions of

the error terms jjb� Sxjj2 and jjxjj1 to the total cost function as a function

of k at t¼ 00:00 h. (b) Number of reflectors, K vs k for t¼ 00:00, 03:00,

06:00 h.

FIG. 8. (Color online) Fathometer inversion results: (a) Number of interfa-

ces and (b) depths with non-zero entries (from TWT with c¼ 1500 m/s) for

k¼ 0.2. (c) and (d) are the results for k¼ 0.3. (e) CS inversion results at

three times (vertical cuts at 01:00, 04:00, and 13:00 h) that are used in the

bottom loss inversion (k¼ 0.3).

TABLE I. CS inversion results with k¼ 0.3: Upper (U) and lower (L) boun-

daries of TWTs and corresponding CS inversion geoacoustic parameter esti-

mates bx (bwd and layer interface depths) assuming c¼ 1500 m/s.

TWT/bx 01:00 h 04:00 h 13:00 h

bt0 bwcs
d

� 	
L 77.6 (131.7) 79.6 (133.2) 80.1 (133.6)

ms (m) U 78.0 (132.0) 80.4 (133.8) 80.4 (133.8)bt1ðbzcs
1 Þ L 78.9 (132.7) 81.9 (134.9) 81.7 (134.8)

ms (m) U 79.5 (133.1) 83.3 (136.0) 82.1 (135.1)bt2ðbzcs
2 Þ L — — 83.3 (136.0)

ms (m) U — — 84.4 (136.8)bt3ðbzcs
b Þ L 108.5 (154.9) 105.2 (152.4) 95.9 (145.4)

ms (m) U 108.9 (155.2) 105.7 (152.8) 96.3 (145.7)

TABLE II. Bottom loss inversion lower and upper bounds for the ith inter-

face and water depth (za is the array depth).

Lower Upper

wd (m) za þ cw
2

min bt0

� 	
za þ cw

2
max bt0

� 	
hi (m) ci

2
min bti � bti�1

� 	
ci

2
max bti � bti�1

� 	
c1 (m/s) 1450 1600

c2 (m/s) 1450 1750

c3 (m/s) 1450 1750

cb (m/s) 1600 1900

qi (g/cm3) 1 2.5

ai (dB/k) 0 2
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In order to explore the effect of k on the CS inversion,

the drifting array data have been inverted using CS with vary-

ing values of k. Figure 7(a) shows the relative contributions of

the terms forming the objective function in Eq. (7). For large

k, the objective function is heavily skewed toward sparseness.

For this case, k
 1 forces perfect sparseness jjbxjj1 ! 0, effec-

tively ignoring the data. For k � 0.01, jjbxjj1 � jjb� Sbxjj2
and the CS inversion becomes a standard ‘2-norm inversion.

The lowest value of the cost function in Eq. (7) is obtained at

around k¼ 0.3. The number of reflectors K needed as k
increases is provided in Fig. 7(b). Initially, K decreases rap-

idly as k increases, then stabilizes before it drops further as

k> 0.65. The middle region with k¼ 0.25–0.5 yields CS

results with a modest number of reflectors while at the same

time having a small cost function.

The CS results over the entire data are given in Fig. 8.

The data is inverted at 90 s intervals as the array drifts. The

evolving number of reflectors with time are given in Figs. 8(a)

and 8(c) for two k values. The k¼ 0.2 case gives K between

18 and 61, whereas K initially is around 20 for k¼ 0.3,

decreasing to 10 as the deeper reflections get weaker. Figures

8(b) and 8(d) mark the non-zero entries in the depth vector (1

if a reflector exists at that depth and 0 for no reflector, not

reflection amplitude). Most interfaces are represented by two

or more sinc wavelets, up to tens of centimeters apart. The

three times shown in Fig. 8(d) are displayed in Fig. 8(e). The

CS inversion results in K¼ 12, 16, and 9, respectively. Since

some reflectors have very small reflection amplitudes, fewer

reflectors are observed in Fig. 8(e) than in Fig. 8(d).

Assigning the closely spaced sincs to a single sediment layer

interface results in Ke¼ 3, 3, and 4, respectively. For the

entire track Ke ranges between 3 and 7. The lower and upper

TWT/depth values for each of these Ke interfaces will form

the prior for the bottom loss inversion, see Table I.

B. Incoherent bottom loss inversion

The upper and lower bounds for the geoacoustic parame-

ters estimated in the bottom loss inversion are given in Table

II. Due to the small array aperture, the beam was large at low

frequencies. The element spacing of 0.18 m corresponds to a

half-wavelength at f¼ 4167 Hz. The frequency band 300 to

4000 Hz is used in the bottom loss calculations with 100 Hz

spacing. Also, due to the large main lobe width, the power

reflection coefficient bR cannot accurately be estimated by Eq.

(18) at small h as described in Sec. III B. Hence, the bottom

loss is calculated for h¼ 25� to 90� with Dh¼ 1�.

TABLE III. Bottom loss inversion results: Means and standard deviations of the geoacoustic parameters.

wd h1 h2 h3 c1 c2 c3 cb

(m) (m/s)

1 h 133.4 6 0.1 1.0 6 0.2 — 25.2 6 0.5 1477 6 24 — 1705 6 27 1730 6 47

4 h 135.1 6 0.2 2.3 6 0.4 — 19.7 6 0.6 1467 6 18 — 1715 6 25 1742 6 41

13 h 134.8 6 0.1 1.3 6 0.1 1.2 6 0.3 10.7 6 0.4 1471 6 23 1515 6 45 1701 6 37 1761 6 39

q1 q2 q3 qb a1 a2 a3 ab

(g/cm3) (dB/k)

1 h 1.3 6 0.1 — 1.5 6 0.1 2.1 6 0.3 0.2 6 0.1 — 0.5 6 0.3 0.6 6 0.3

4 h 1.3 6 0.1 — 1.5 6 0.1 1.9 6 0.3 0.1 6 0.1 — 0.2 6 0.1 0.6 6 0.4

13 h 1.4 6 0.1 1.6 6 0.1 1.7 6 0.1 2.0 6 0.2 0.3 6 0.2 0.1 6 0.1 0.1 6 0.1 0.3 6 0.3

FIG. 9. (Color online) Bottom loss inversion results: Scatter plots for independent GA inversions at three times along the track.
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The region where the data was collected lies on the

Straits of Sicily (Malta Plateau), just to the west of the Ragusa

Ridge and is well-documented38,39 with a number of experi-

ments (see Fig. 9 in Ref. 17). Unlike the Ragusa Ridge where

the bottom has bare rock formations and no sediment, the ba-

sin is covered with high-porosity silty-clay sediment.40 The

closest area explored in previous studies is located just south

of the Boundary 2003 drifting array location, named Site 1

data in Ref. 40. A set of core measurements (Fig. A-3 of Ref.

41 and Fig. 4 in Ref. 40) for this site shows a low sediment

sound speed (1470 m/s) at the top of the first layer that

increases to around 1500 m/s at 1 m, and density starting at

1.3 to 1.4 g/cm3 at the water-sediment interface increasing

gradually to 	1750 m/s and 	2 g/cm3. A little north of the

drifting array lies Site 4 with a homogeneous soft silty-clay40

with a sound speed of 1500 m/s at the top of the sediment and

a density of 1.5 g/cm3. West of the drifting array location, the

sediment parameters42 given by Fig. 15 and Table VI in Ref.

43 show sound speed values greater than 1600 m/s at depths

more than 6 m with a bottom sound speed at 1800 m/s.

The results of the bottom loss inversion are given in

Table III. Following the CS inversion results in Fig. 8(e), the

first two times (01:00 and 04:00 h) are represented by a three-

layer sediment whereas the last time (13:00 h) has a fourth

interface. Statistics for the parameter estimates are obtained

by independently inverting data segments collected around

the three cases. Each data segment close to the desired time is

inverted by GA. The estimated environment obtained from

each data segment is plotted in scatter plot form in Fig. 9 for

all three cases. Along the track, the top 5 m can be represented

by 1 to 4 layers as shown in Fig. 5. The first layer has a low

sound speed around 1470 m/s supported by both core meas-

urements and prior inversion results.25,44–46 Similarly, the bot-

tom sound speed values of 	1740 m/s is in good agreement

with Site 1 results.40,44,45 The inversion results compare well

with the Site 1 data40 closest to the drifting array location.

The sediment density starts at 1.3 to 14 g/cm3 and the bottom

density is 	1.9 g/cm3, again in agreement with previous

work. The attenuation is poorly determined and has a large

standard deviation similar to previous studies.25,45 Some pa-

rameters such as c2 have multiple possible solutions as

expected from the typical nonlinear/non-Gaussian behavior of

geoacoustic inversion results. In addition, sediment properties

are harder to invert as depth increases.

The observed bottom loss in Fig. 10(a) compares well

with the synthetic data in Fig. 10(b) obtained by Eq. (20)

using the solution bx
BL

at 01:00 h, with the OASN forward

model dSNR. The importance of self-noise can be observed

by comparing Fig. 10(b) with the ideal bottom loss plot forbx
BL

without self-noise in Fig. 10(c). Even though Figs. 10(b)

and 10(c) belong to the same environment, Fig. 10(c) fits

poorly with the data in Fig. 10(a).

V. CONCLUSIONS

A geoacoustic parameter estimation algorithm has been

introduced that incorporates both coherent passive fathom-

etry and incoherent passive bottom loss estimation. The

sparse nature of some of the geoacoustic parameters such as

water depth and sediment thicknesses was exploited by

introducing a CS fathometer inversion algorithm as a first

step. The CS algorithm incorporated a ‘1-norm term in the

objective function in addition to the ‘2-norm error term. The

results of the CS inversion were then used as priors in a bot-

tom loss inversion.

The algorithm was demonstrated on the Boundary 2003

drifting array data. The number of layers were tracked by the

CS algorithm. The water depth and layer thicknesses were

inverted with small uncertainties and this facilitated the

inversion of other bottom parameters such as sound speed,

attenuation, and density.
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