
Online learning with binary feedback for multi-class
problems

Evan Lucas, Steven Whitaker, Timothy C. Havens
Michigan Technological University

Houghton, MI 49930
eglucas, sjwhitak, thavens @mtu.edu

Abstract—Online learning methods often focus on data se-
lection, as human labeling is a noted bottleneck in resources
needed to train a model. This work chooses to focus on reducing
the human effort necessary for providing labels by attempting
to usefully utilize a binary feedback method where the human
indicates whether the prediction is correct or incorrect. More
specifically, this work investigates methods for using and labeling
training data in the absence of complete information. Various
methods to generate labels in response to human feedback are
proposed and then compared. These methods are tested on
a variety of common classification tasks and results showing
their usefulness are presented. Although the maximum accuracy
achieved is not as high, the methods presented allow a model to
learn faster, in terms of number of human interactions required.

Index Terms—binary feedback, online learning

I. INTRODUCTION

When a supervised learning model is applied to a new
domain or set of data, it is necessary to obtain new labeled
training data. The volume of data required can depend on
many factors, including similarities to other data sets, but
performance without task-specific data (often called the zero-
shot case) almost invariably lags behind a model trained on
the new domain. Labeling of data can be expensive and some
domains of data can require substantially more effort to label.
For example, in image classification it would typically take
more effort for a human to determine what object is in an
image than for the same individual to decide which of the
digits 0-9 are written in a box.

In addition to making feedback easier, there are other
applications, such as recommender systems, that only receive
binary feedback, either actively or passively. In the active case,
a user might give a suggestion a “thumbs-up” or “thumbs-
down”. Or in the passive case, a video streaming service may
only know whether or not a user chooses to watch a suggested
movie within a given timespan. [1]

The focus of this work is to make better use from the
limited human feedback on a partly pre-trained model for
online learning. We propose using binary feedback, where the
human tells the model if a prediction is correct or incorrect,
as a method for creating additional training data. After a
model makes a prediction on new unlabeled data, it queries
the human for feedback on whether this is a correct prediction
or not. It is obvious that for correct predictions, this example
can be directly considered as training data. However, when a

prediction is indicated as incorrect, the prediction cannot be
used directly. In this paper, we show how an online learning
algorithm can use both correct and incorrect indications from
human feedback.

Although this work focuses on the online learning problem,
where the incoming data is rate limited and used in entirety,
it is also helpful to consider some of the findings of studies
in active learning. Active learning generally assumes a suf-
ficiently large body of training data that can be searched to
find training examples that will most quickly teach the model.
Although the implementations are substantially different, the
usefulness of a given file will depend on the same things. In
[2], they classify samples with three criteria to determine if
they will be a good choice to train on: that the samples are
learnable, worth learning, and not yet learnt. These concepts
were applied to the work in this paper by trying to balance
the inclusion of correctly identified samples with a strategy
for using incorrectly identified samples.

Other work, such as [3] and [4], identifies the human bottle-
neck imposed by requiring multi-class feedback and suggests
that binary human feedback can be used on a multi-class
problem. The procedure proposed by Joshi et al. to exploit
binary feedback starts as expected: by asking the user if the
predicted class is correct. If a prediction is correct, the sample
can be added to the training data. If a prediction is incorrect,
the model follows an active learning strategy to re-query the
user if the next-most-probable class is correct until a correct
answer is found or an early stopping criteria is triggered.
They propose using an expected value of information (VOI)
metric to determine whether additional user information is
likely to provide useful information to the model or will just
take up human interaction time without expected benefit. Joshi
et al. also use VOI as an input to an active-learning strategy
to select training samples for which labels will provide the
maximum amount of information to the model.

Another work in the area of binary feedback for multi-
class problems approach the problem in a way familiar to
those who have played the word game “20 Questions”, where
one player asks yes-or-no questions that become increasingly
specific. Hu [5] uses repeated binary questions regarding
partial labels to sort through multiple classes and narrow in on
a specific unique class label. In contrast to Hu’s method, the
method proposed in this paper only seeks feedback once per
sample. Furthermore, the proposed method only asks whether



the prediction is correct, which does not require building a
knowledge base of partial labels.

Human feedback has also been extensively used in NLP,
generally through the concept of reinforcement learning. [6]
Human feedback is often binary, in the form of a preference
between a pair of outputs, and is generally used to train a
reward model that is then optimizes the model. The method
of Proximal Policy Optimization (PPO) [7] has been applied
to the problems of improving summarization, text generation,
and following human language instructions [8–10].

The rest of this paper is organized as follows. An overview
of the methods are introduced in Section II. The initial efforts
to demonstrate this method and understand its limitations using
a data set consisting of two dimensional points belonging to
equally spaced clusters and a simple fully connected neural
network are presented in Section III-A. Model and data com-
plexity are increased and effects of the proposed method are
studied using a simple convolutional neural network (CNN)
with the MNIST and EMNIST data sets in Section III-B.
Finally, the method is applied to a pre-trained residual network
(ResNet) with the CIFAR10 data set in Section III-C. We
summarize in Section IV.

II. METHODS

We start with a model that is partly trained on some quantity
of labeled data. At each generation of training a batch of
new data is introduced to our model, which generates a set of
predictions. A human is queried as to whether the predictions
are correct or incorrect. Correct predictions can be used as
additional training samples with the correctly classified hard
label, but for incorrectly labeled predictions a new approach
is needed. We propose a variety of ways that utilize this
feedback. Our approach is predicated on the idea that a new
label can be created for the queried sample that represents
the uncertainty left by the user indicating that the inference is
incorrect. Then the algorithm trains with this new label.

The methods proposed are using a uniform soft label, a
predicted soft label from model outputs, a hard label sampled
from the model outputs, and, last, using the measured mis-
classification probabilities to produce a label. An example of
this work flow is shown in Figure 1.

The four feedback methods initially considered consist of
the following:

1) Uniform soft labels: The uniform soft label approach
creates a uniform probability distribution, where the
incorrect class is set to zero. This approach assumes
that there is no useful knowledge available or gained
outside of knowing one incorrect class. This is depicted
in Figure 2a. This approach could be adapted for imbal-
anced class problems by using the prior distribution of
the classes in the fully labeled initial training set.

2) Modified soft labels: This approach assumes that the
model has partly learned the classes and reuses the
model outputs as a training label, after removing the
incorrect class. This is done by setting the logit of
the incorrect output to be a large negative number and

Fig. 1: Binary feedback with soft-labeling in multi-class data

rebalancing the probabilities with a softmax function. An
example of what this would look like for the distribution
in Figure 1 is shown in Figure 2b.

3) Sampled hard labels: The idea behind this method is
to provide a hard label that is potentially correct, by
sampling from the soft labels predicted by the model.
Similar to the other methods, the incorrect class is
removed, the probabilities are rebalanced to sum to 1,
and a uniform random variable is generated to sample
from the resulting distribution. One possibility for a
sampled hard label is shown in Figure 2c.

4) Conditional prior: The final approach considered was
to use a held-out data set to estimate the conditional
probabilities for an incorrectly classified sample condi-
tioned on its incorrect class. Knowing that a sample was
incorrectly classified as a given class, the distribution of
true labels from other samples misclassified with the
same label are substituted for the soft labels used in
training. An example of this might look something like



(a) Uniform soft label (b) Modified inference soft label

(c) Sampled hard label (d) Conditional prior soft label

Fig. 2: Visualization of different training label substitutes that
can be created with negative feedback.

what is seen in Figure 2d.

These approaches allows immediate use of the incorrectly
labeled prediction without additional human feedback. Other
approaches to utilizing binary feedback rely on continually
asking for additional binary feedback until the correct label is
found or the expected value of information gained by asking
falls below a threshold [5]. Following this work, the number
of binary feedbacks required to get a correct hard label are
tracked for most of the experiments performed.

III. RESULTS

Results are shared first for the point cluster identification
problem, which is a toy example that runs quickly in order
to test many iterations of different strategies. The difficulty of
the problem, along with the complexity of the model used, are
increased for the other results subsections, which use MNIST
and CIFAR10 with more complex models.

A. Point cluster identification

To provide a very simple starting point to test this method,
a simple data set was generated by creating clusters of points
in two dimensions. Point cluster centers were located on a
unit circle, with equal spacing for most tests, and points
were generated in a uniform distribution around each center.
Some sample distributions can be seen in Figure 3. A surplus
of points were generated for each experiment and randomly
sampled as needed.

(a) Five points, evenly spaced
(b) Five points with random cen-
ters

(c) Ten points, evenly spaced (d) Fifteen points, evenly spaced

Fig. 3: Samples of point cloud data used for initial investiga-
tions.

The model used for these investigations was a fully con-
nected neural network with a single hidden layer consisting
of 16 nodes. The input layer takes in the two dimensional
coordinates of the point and the output layer is the same size as
the number of classes used in that test. To minimize influences
from more advanced optimizers, stochastic gradient descent
(SGD) was selected as the optimizer of choice. Hyperparam-
eters that allowed the model to learn were manually selected
for the base model. To provide an upper and lower limit to
gauge success of the method, two models were run in parallel
with the model using binary feedback; one with full labels
and another that only trained on samples that the model had
correctly classified.

For each point experiment, a batch size of 20 samples was
used for each generation as well as the fully labeled pre-
training batch. Thirty runs with random initializations were
performed to reduce the effects of randomness. For the base
model, the number of binary feedbacks to obtain a label using
exhaustive search was counted by finding the rank of the
correct output label in the model prediction. For example,
referencing Figure 2b, if Class 2 were the correct class, it
would take three interactions of yes or no questions with a
human labeler to determine the correct class.

Starting with the simplest case where binary feedback is
still partial feedback, three clusters of points were generated
and each model was trained on the samples. The resulting
average test accuracy from 30 runs is presented in Figure 4
as a function of total number of new training files evaluated
and used. It is clear that the uniform feedback performs best
out of all the feedback methods, followed by the sampled and
conditional prior methods. Interestingly, using only files that
received good feedback appears to have little to nothing to
offer the model. The authors hypothesize that this is due to
the simple nature of the data set, where little is learned once



Fig. 4: Average model performance for different feedback
strategies with the three points data

Fig. 5: Average model performance for different feedback
strategies using five point clusters with equal spacing

a class has been learned by the model and the good data only
reinforces the existing model decision boundaries. As will be
seen in the other results sections, the good data offers more
when the data space is more complex.

To gradually extend these methods to harder problems, the
same 30-run experiment was repeated with data sets containing
five, ten, and fifteen evenly spaced points. These are shared in
Figures 5, 7, and 8 respectively. The five point experiment was
repeated with randomly spaced points that allowed overlap,
which is included as Figure 6. It can be observed that as the
base model performance degrades, so does the partial feedback
models. As before, the uniform partial feedback performs best
out of all of the different feedback methods considered. Again,
the use of only correctly labeled files is found to not be helpful.

To understand the level of human interaction required to
train such a model with full labels, the number of interactions
was estimated using the method previously described and
averaged over the 30 runs. An example of this for the points
data using ten clusters is included in Figure 9, where it can

Fig. 6: Average model performance for different feedback
strategies using five point clusters with random spacing

Fig. 7: Average model performance for different feedback
strategies using ten point clusters

Fig. 8: Average model performance for different feedback
strategies using fifteen point clusters



Fig. 9: Average model performance for different feedback
strategies using ten point clusters, plotted against binary feed-
backs

be seen that the model requiring full labels requires nearly
five times as many interactions to train. Although it achieves
a higher accuracy ultimately, the uniform feedback achieves a
higher accuracy faster in terms of feedbacks.

1) Ablation study: A small ablation study was performed
using the point data to understand the influence of different
aspects of the proposed method. As with the other tests using
the points data, 30 runs were performed and averaged. A held-
out test set was used to compute all accuracies to prevent
memorization. Because random data selection was used, the
model using only positive feedback and the full label model
was run alongside the online binary feedback model and
reported in the ablation results. For purposes of this test, the
soft label learning rate was given priority for determining
learning rates in the binary feedback model: so the full label
model ran with this learning rate as did the model that trained
on good labels (from the positie feedback) and soft labels
(from the negative feedback) together. The base model is
considered to be the model described in the previous section,
which separates files with positive and negative feedback so
that it can use a higher learning rate for soft labels than
hard labels (8e-4 and 8e-5 respectively), and uses SGD with
momentum of 0.95.

Going through the ablation study, some of the findings
appear obvious, while others require deeper thought. It has
been demonstrated analytically that reducing the learning rate
is necessary for convergence on a solution [11], so it is
not a surprising finding that removing momentum causes
performance degradation. Interestingly, changing the learning
rates between the good data and the soft or estimated label data
doesn’t appear to hurt the binary feedback method. However,
it does appear to be necessary to separate the good data from
the soft label data so that separate optimizers can be used.
Additionally, using the good label data and the soft label data
together was found to be optimal for this simple data and
model. Finally, as one would expect, as the data becomes

TABLE I: Ablation study: Highest average accuracy achieved
with various model configurations using ten cluster point data

Model
Description

Only-
Good
Data

Binary
Feedback

Full La-
bels

Feedback
Type

Base model 0.117 0.364 0.924 U
-Momentum 0.095 0.174 0.255 U
-Momentum,
LRgood >
LRsoft

0.102 0.265 0.883 U

LRgood >
LRsoft

0.109 0.364 0.984 U

Class
separated
training

0.109 0.224 0.942 Samp.

-Training
with negative
feedback only

0.117 0.254 0.928 Samp.

Combined
good and bad
training

0.112 0.237 0.955 U

Overlap
allowed

0.110 0.285 0.525 U

harder (or impossible) to linearly separate, performance of the
binary feedback method degrades along with that of the base
model.

B. MNIST

The MNIST data set [12] was selected due to its use as
a benchmarking dataset. [13] A convolutional neural network
(CNN) was used as a model. The model consisted of two
convolutional layers, a flattening operation, and two fully
connected layers. Each convolutional layer contained eight
five-by-five filters with a ReLU activation and two-by-two
maximum value pooling before the next layer. The first fully
connected layer used a ReLU activation and contained 100
nodes, which was followed by the output layer which used
linear activations. A softmax was applied to the model outputs
to determine the class, as having the soft label outputs was
useful for generating some types of training labels. SGD was
used as the optimizer and batch sizes of 40 files were found to
be a good number to demonstrate the impact of the proposed
method. Learning rates of 5e-2 and 2.5e-2 were used for the
negative feedback and positive feedback respectively. The base
model was tested with both learning rates, but ultimately used
the higher learning rate. Momentum of 0.95 was used for all
runs. The larger batch size was chosen to help prevent an initial
generation that would have zero correct files, which would give
a strong disadvantage to any test that was unfortunate enough
to have an unlucky random initialization included in its runs.

Following the method set in the previous section, 30 runs
of the model with each type of feedback were performed and
averaged. Due to computational constraints, the base model
and model using correctly identified files were not rerun with
each binary feedback method. The results of this are shared
in Figure 10. Interestingly, all of the feedback strategies and
the model using only the correctly identified files all learn
faster than the base model. The conditional prior method,



Fig. 10: Average model performance for different feedback
strategies using MNIST

Fig. 11: Average model performance for different feedback
strategies using MNIST, plotted against binary feedbacks

although initially successful, appears to stop working rather
quickly. The models using the negative feedback appear to be
limited in terms of maximum accuracy capable; this is similar
to the the results found using the simple point cluster data
where they appeared to reach a maximum accuracy below
that of the full label model. The advantages of working with
partial feedback are made clear by considering the number
of feedbacks required, as shown in Figure 11. Every single
method considered achieves it’s maximum in far fewer simu-
lated human interactions than the full feedback model would
require, assuming binary feedback given until a full label was
reached.

The hypothesis put forward by the authors for the improved
performance of the model using only the correctly identified
files is that the feature space is complex enough that it
hasn’t already learned all of the features necessary to correctly
classify that class. Because the model architecture is a CNN
that shares filters between classes, improving the filters for a
given class will generally help improve other classes as well.

Fig. 12: Average model performance for different feedback
strategies using CIFAR10

C. CIFAR10

A final experiment was conducted using CIFAR10 [14] with
a pre-trained ResNet18 model [15]. Similarly to the previous
experiments, 30 runs were performed with randomly sampled
files and averaged. Due to its success in previous trials, only
the uniform feedback method was considered. The results of
this trial are shared in Figure 12. For this investigation, 400
samples were used to fine-tune a ResNet18 model pre-trained
on ImageNet [16] and 400 samples were used for each update
generation. Much like the MNIST case, it appears that training
on only files that have received good feedback provides the
most useful information to the model. The large drop in
performance seen by the uniform model was investigated and
appears to be related to learning rate. The authors were unable
to eliminate this dip without hurting maximum accuracy later
on and suspect that an optimizer specifically developed for
this type of feedback may be necessary to optimally use this
type of training label on a model of this type. Plotting the
accuracy curves against number of feedbacks again, Figure 13
shows that the use of only correctly labeled files allows a high
accuracy to be achieved with fewer human feedbacks.

IV. CONCLUSIONS

In this work, we proposed a method for utilizing negative
binary feedback in an online learning scenario. It is shown
that in some cases, using the samples receiving negative
feedback in conjunction with the ones that receive positive
feedback outperform models utilizing only positive feedback.
Interestingly, in more complicated cases, using only the files
with positive feedback gives the best outcome.

Future work could include testing this on more complicated
models and data sets, as well as extending the binary feedback
concept to problems that would require several bits of data
to fully respond in a binary fashion; for example an object
detection problem would require a bit for the accuracy of
the object classification, a bit each for center coordinates, and
another bit each for bounding box dimensions.



Fig. 13: Average model performance for different feedback
strategies using CIFAR10, plotted against binary feedbacks
given

REFERENCES

[1] M. Volkovs and G. W. Yu, “Effective latent models for
binary feedback in recommender systems,” in Proceed-
ings of the 38th international ACM SIGIR conference on
research and development in information retrieval, 2015,
pp. 313–322.

[2] S. Mindermann, J. Brauner, M. Razzak, M. Sharma,
A. Kirsch, W. Xu, B. Höltgen, A. N. Gomez, A. Morisot,
S. Farquhar et al., “Prioritized training on points that
are learnable, worth learning, and not yet learnt,” arXiv
preprint arXiv:2206.07137, 2022.

[3] A. J. Joshi, F. Porikli, and N. Papanikolopoulos, “Break-
ing the interactive bottleneck in multi-class classification
with active selection and binary feedback,” in 2010 IEEE
Computer Society Conference on Computer Vision and
Pattern Recognition. IEEE, 2010, pp. 2995–3002.

[4] A. J. Joshi, F. Porikli, and N. P. Papanikolopoulos,
“Scalable active learning for multiclass image classifica-
tion,” IEEE transactions on pattern analysis and machine
intelligence, vol. 34, no. 11, pp. 2259–2273, 2012.

[5] P. Hu, Z. C. Lipton, A. Anandkumar, and D. Ramanan,
“Active learning with partial feedback,” in International
Conference on Learning Representations, 2018.

[6] V. Uc-Cetina, N. Navarro-Guerrero, A. Martin-Gonzalez,
C. Weber, and S. Wermter, “Survey on reinforce-
ment learning for language processing,” arXiv preprint
arXiv:2104.05565, 2021.

[7] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and
O. Klimov, “Proximal policy optimization algorithms,”
arXiv preprint arXiv:1707.06347, 2017.

[8] D. M. Ziegler, N. Stiennon, J. Wu, T. B. Brown, A. Rad-
ford, D. Amodei, P. Christiano, and G. Irving, “Fine-
tuning language models from human preferences,” arXiv
preprint arXiv:1909.08593, 2019.

[9] N. Stiennon, L. Ouyang, J. Wu, D. Ziegler, R. Lowe,
C. Voss, A. Radford, D. Amodei, and P. F. Chris-

tiano, “Learning to summarize with human feedback,”
Advances in Neural Information Processing Systems,
vol. 33, pp. 3008–3021, 2020.

[10] L. Ouyang, J. Wu, X. Jiang, D. Almeida, C. L. Wain-
wright, P. Mishkin, C. Zhang, S. Agarwal, K. Slama,
A. Ray et al., “Training language models to follow
instructions with human feedback,” Preprint, 2022.

[11] H. Robbins and S. Monro, “A stochastic approximation
method,” The annals of mathematical statistics, pp. 400–
407, 1951.

[12] Y. LeCun, “The mnist database of handwritten digits,”
http://yann. lecun. com/exdb/mnist/, 1998.

[13] L. Deng, “The mnist database of handwritten digit im-
ages for machine learning research [best of the web],”
IEEE signal processing magazine, vol. 29, no. 6, pp.
141–142, 2012.

[14] A. Krizhevsky, G. Hinton et al., “Learning multiple
layers of features from tiny images,” 2009.

[15] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual
learning for image recognition,” in Proceedings of the
IEEE conference on computer vision and pattern recog-
nition, 2016, pp. 770–778.

[16] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and
L. Fei-Fei, “Imagenet: A large-scale hierarchical image
database,” in 2009 IEEE conference on computer vision
and pattern recognition. Ieee, 2009, pp. 248–255.


