
Under review as a conference paper at ICLR 2023

SPENCNN: ORCHESTRATING ENCODING AND
SPARSITY FOR FAST HOMOMORPHICALLY ENCRYPTED
NEURAL NETWORK INFERENCE

Anonymous authors
Paper under double-blind review

ABSTRACT

Homomorphic Encryption (HE) is a promising technology for protecting user’s data
privacy for Machine Learning as a Service (MLaaS) on public clouds. However, the
computation overheads associated with the HE operations, which can be orders of
magnitude slower than their counterparts for plaintexts, can lead to extremely high
latency in neural network inference, seriously hindering its application in practice.
While extensive neural network optimization techniques have been proposed, such
as sparsification and pruning for plaintext domain, they cannot address this problem
effectively. In this paper, we propose an HE-based CNN inference framework, i.e.,
SpENCNN, that can effectively exploit the single-instruction-multiple-data (SIMD)
feature of the HE scheme to improve the CNN inference latency. In particular, we
first develop a HE-group convolution technique that can partition channels among
different groups based on the data size and ciphertext size, and then encode them
into the same ciphertext in an interleaved manner, so as to dramatically reduce
the bottlenecked operations in HE convolution. We further develop a sub-block
weight pruning technique that can reduce more costly HE-operations for CNN
convolutions. Our experiment results show that the SpENCNN-optimized CNN
models can achieve overall speedups of 8.37x, 12.11x, and 19.26x for LeNet,
VGG-5, and HEFNet, respectively, with negligible accuracy loss.

1 INTRODUCTION

For the past decade, we have witnessed the tremendous progress of the machine-learning technology
and the great success achieved in practical applications. Convolution Neural Network (CNN) models,
for example, have been widely used for many cognitive tasks such as face recognition, medical
imaging, and human action recognition. Meanwhile, there is a growing interest to deploy machine
learning models on the cloud as a service (MLaaS). While cloud computing has been well recognized
as an attractive solution, especially for computation intensive applications such as the MLaaS,
outsourcing sensitive data and data processing on cloud can pose a severe threat to user’s privacy.

Homomorphic Encryption (HE) is a promising technology for protecting user’s privacy when deploy-
ing MLaaS on cloud. HE allows computations be performed on encrypted inputs and the decrypted
output matches the corresponding results computed from the original inputs. Thus, a client can
encrypt the sensitive data locally and send the encrypted ciphertexts to the cloud. All intermediate
results will maintain encrypted, and the encrypted results sent from cloud can be correctly decrypted
using the secret key hold by the client. Whlie HE can help to maintain the confidentiality for compu-
tation process on cloud effectively, one major problem has to deal with is the excessive computational
cost associated with the operations over the encrypted data: HE operations (e.g. HE multiplication,
additions on encrypted data) can be several (i.e., three to seven) orders of magnitude slower than
the corresponding operations on plaintexts. The tremendous computational cost of HE has been the
largest bottleneck that hinders its applications on cloud.

One of the most effective approaches (e.g. (Gilad-Bachrach et al., 2016; Brutzkus et al., 2019;
Dathathri et al., 2019; Kim et al., 2022)) to reduce the HE computational cost is to take advantage of
the single-instruction-multiple-data (SIMD) capability, supported by HE schemes, e.g. CKKS and
BFV. Smart & Vercauteren (2010) initially proposed to pack multiple data elements in the plaintext

1



Under review as a conference paper at ICLR 2023

Ch1 Ch2

1.35

75%

0%Original 

Non-Structural
Pruning

Sparsity 

(c) Different Pruning Methods for Plaintext domain

50%

50%
Structural 
Pruning 
(Filter) 

Structural 
Pruning 

(Channel) 

A

B

D

Type

C

Latency(ms)

HE-Pmult

B C D

La
te

nc
y 

(m
s)

HE-rotation
HE-Pmult & Add 

(b)

48591

A

Baseline

Latency(ms)

HE-rotation

HE-Add

63
1.5

(a)

- - - -

- - -

- -

-

-

- -

- - -

- - - -

0 0 0

0 0 0 0 0

0 0 0

0 0 0

0 0 0 0 0

0 0 0

0 0 0 0 0

0 0 0 0 0
 

Inner-rotations

Ch1 Ch2

Ch2 Ch1

Out1 Out2=

+
Outer-rotations

(d) Convolution in HE domain

Ch2 Ch1

Out1 Out2

Figure 1: (a) Comparison of different HE-operations’ latency (b) Comparison of the HE convolution
latency under different pruning methods. (c) Illustration for different pruning methods for plaintext
domain. (d) Multi-channel convolution process in HE domain. Notation definitions refer to section
3.1. pt(ki) indicate the weight plaintext. The convolution layer used here has 64 input- and 64
output-channel, with a 3× 3 kernel. The input feature map size of the convolution layer is 32× 32.

domain to different “slots” in the same ciphertext and thus computations for data elements at the
same slot of two encoded messages can be performed in parallel. The challenge is how to pack data
based on the characteristics of the applications so that computation can be conducted effectively
in a SIMD scheme manner. In particular, the problem rises when the computation needs to be
performed on data elements at different slots of the messages. To re-arrange the location of each
individual data element in an encrypted message is out of question due to its large overhead. A more
reasonable solution is to employ the HE-rotation1operation that can move the data element cyclically
in the same message. However, HE-rotation has a high latency cost due to required permutation
and key-switching operation, compared with other HE-operations such as the HE multiplication of a
ciphertext with a plaintext (HE-PMult) and HE addition of two ciphertexts (HE-Add), as shown in
Figure 1 (a). Therefore, how to judiciously encode the inputs and perform the SIMD operations plays
the key role in reducing the HE computation complexity.

In this paper, we study the problem on how to improve the HE-based inference latency when
deploying a privacy-preserving machine learning (PPML) platform based on CNN models on cloud.
It is well-known that the major computation workload for CNN inference comes from the convolution
layers. Assuming the user inputs (e.g. images) are encrypted as the ciphertexts and associated CNN
models are encoded as plaintext messages, the major HE computations are therefore HE-PMult,
HE-Add, and HE-rotation operations. Traditional neural network optimization techniques such as
sparsification and pruning (Han et al., 2015b; Wen et al., 2016) help to reduce the computation
demand for CNN inference for plaintext domain. However, they may not be effective here as reducing
the computation demand does not necessarily imply the reduction of SIMD computations. In addition,
note that, as shown in Figure 1(a), the computation cost for an HE-rotation can be over 43× of that
for an HE-Pmult or an HE-Add operation. Simply reducing the HE operations without optimizing
the HE-rotations may not be effective at all in reducing the computational cost.

To this end, we develop an HE-based CNN inference framework, i.e., SpENCNN, with the goal
to effectively exploit the SIMD feature of the HE scheme to improve the CNN inference latency.
In particular, we develop two techniques to reduce the HE computational cost. First, we develop
HE-group convolution and associated group-interleaved encoding to optimize channel locations
on ciphertexts based on the number of convolutional groups and ciphertext size, thus significantly
reducing the number of costly HE-rotations. Second, we further optimize the model architecture by
pruning and training the weights in the sub-blocks iteratively with the goal to minimize HE-rotations
and accuracy loss. We have conducted extensive experiments based on three CNN models on MNIST
dataset and CIFAR-10 dataset and results show that the optimized CNN models can achieve overall
speedups of 8.37x, 12.11x, and 19.26x for LeNet, VGG-5, and HEFNet, respectively, with negligible
accuracy loss. To our best knowledge, this is the first work to that builds optimizing framework for
CNN model architecture from the aspect of structural sparsity and data packing in HE to benefit
HE-based PPML inference.

1For instance, Rot(ct, k) transforms an encryption of (v0, ..., vN/2−1) into an encryption of
(vk, ..., vN/2−1, v0, ..., vk−1)

2



Under review as a conference paper at ICLR 2023

2 PRELIMINARIES

2.1 CKKS HOMOMORPHIC ENCRYPTION

Homomorphic Encryption (HE) allows computations to be performed on encrypted data without
decryption. Among various HE schemes, the levelled HE– Cheon-Kim-Kim-Song (CKKS) (Cheon
et al., 2017) is widely adopted in the encrypted neural network inference because of supporting the
fixed-point real number arithmetic and potentially avoiding the prohibitively expensive bootstrapping.
The CKKS-based HE operations mainly consist of ciphertext addition HE-Add (ct1+ ct2), ciphertext
multiplication HE-Cmult (ct1 × ct2), scalar multiplication HE-Pmult (pt1 × ct2), ciphertext roation
HE-rotation Rot(ct, k), etc. For MLaaS that only encrypts clients’ data, HE-Add, HE-Pmult and HE-
rotation often dominate the computations of an encrypted inference. Among these three operations,
HE-rotation costs much longer latency than the other two, e.g. ∼ 43× as our profiling result in Figure
1 (a) shows, due to the complex automorphism operation and a key-switching operation. The detailed
calculation process of HE-rotation can be described as:

Rot(ct, k) = (c(Xik), 0) + P−1(a(Xik) · evkkrot) (1)

where the evaluation key (evkkrot) is a public key with a larger modulus PQ, and P is greater than Q.
Assume ct = (c(Xi), a(Xi)) represents a ciphertext before rotation, then the automorphism (c(Xik)
and a(Xik)) maps each polynomial coefficient index i to output polynomial coefficient index ik mod
N , where N is the polynomial degree. The second term on the right side of Equation 1 represents the
key-switching operation to ensure the final ciphertext can be still decrypted by the same secret key. It
is very expensive and could take over 90% of all operations in practice (Samardzic et al., 2022)

2.2 THREAT MODEL

We assume the cloud-based machine learning service, of which a trained convolutional neural network
(CNN) model with plaintext weights, is hosted in a cloud server. A client could upload his/her private
and sensitive data to the public cloud for obtaining an online inference service. The cloud server
is semi-honest (e.g. honest but curious). To ensue the confidentiality of clients’ data against such
a cloud server, the client utilizes HE to encrypt the data and then send it to cloud for performing
encrypted inference without decrypting the data or accessing the private key. Finally the client can
decrypt the returned encrypted inference results from cloud using a private key. In this work, we
focus on encrypting the client’s data and others like model parameters, are assumed as plaintext.

2.3 MOTIVATION EXAMPLE

To identify the computation bottleneck in HE inference, we analyze the computation pattern of the
convolutional layer, which often dominates CNN inference’s memory and computational overheads, in
the encryption process. Here the input and output activation feature maps are encrypted as ciphertext,
while the convolutional kernels are assumed as plaintext. We also assume the state-of-the-art
ciphertext encoding–row-major (Dathathri et al., 2019; Kim et al., 2022) is adopted here. This allows
efficient multi-channel ciphertext packing to take advantage of CPU’s single-instruction-multiple-data
(SIMD) architecture for fast HE inference. Figure 1 (d) shows the typical HE convolution process
of a convolution layer which consists of 2-input/output channels with 3× 3 kernels. To compute a
ciphertext output feature map, two types of cipertext rotations need to be performed sequentially.
First, inner-rotation rotates each input channel’s ciphertext feature map 8 times (or K2 − 1, here
kernel size K = 3). Each rotated version will need to be multiplied with its corresponding weight
plaintext, and then such results will be summed up to obtain an intermediate ciphertext from each
input channel, which will further be concatenated as a whole ciphertext (e.g. Ch1 and Ch2 as ct1).
Second, outer-rotation rotates the concatenated ciphertext multiple times (in this simple example,
1 time because of packing 2 output channels as a ciphertext). Finally all ciphertext output feature
maps can be obtained in parallel by the summation of these rotated copies. Apparently, compared
to non-encrypted convolution, HE convolution significantly escalates the memory and computation
overheads. Moreover, since the latency of HE-rotation can be much higher than other operations due
to complex automorphism and key switching operations (see our profiling result in Figure 1(a) 63ms
for HE-Rot v.s. 1.5ms for HE-Pmult, detailed setting in Sec. 4.1), and the multi-channel convolutions
in deep CNNs would involve a huge volume of HE-rotation 2. As a result, the long-latency HE-rotation
quickly becomes a bottleneck of the encrypted inference.

2The matrix-vector multiplications in fully-connected layers also require a substantial amount of HE-rotation.

3



Under review as a conference paper at ICLR 2023

Initial CNN
model

Group
Convolution 
Substitution 

Identify all sub-
blocks 

in the model

Prune the sub-
block with least
weights in rest

Retrain the
model to recover

the accuracy

Sub-block PruningHE-group Convolution

Tailored
CNN model

Repeat

Update rest valid
sub-blocks

Figure 2: The overall flow of SpENCNN framework for optimizing HE-based CNN inference, mainly
consists of two orthogonal techniques to generate a tailored CNN model: (1) HE-group Convolution
(outer-rotation optimization), and (2) the Sub-block Pruning (inner-rotation optimization).

One straightforward solution to accelerating HE inference is to reduce the number of rotations through
zeroing out (or pruning) the plaintext weights. As Figure 1(c) shows, if any weight plaintext–pt(ki)
contains all zero values, then the corresponding ciphertext rotation–Rot(ct1, k) and its associated
multiplication and summation can be safely eliminated. Since existing pruning techniques have
been proved to be effective in reducing the computation and memory overhead to speedup the
nonencrypted inference without accuracy drop, we apply two representative pruning methods–non-
structured pruning(Han et al., 2015a) (zeros appear randomly in a kernel, see Fig. 1 (c)–B, 75%
sparsity) and structured pruning(Wen et al., 2016) (structured zeros in a kernel, see filter pruning and
channel pruning in Fig. 1 (c)–C and D, 50% sparsity). For HE operations in an example convolutional
layer with 64 input/output channels, feature map size 32 × 32 and kernel size 3 × 3, as Fig. 1
(d) shows, the existing pruning achieves very marginal or even no reduction of the HE-rotation
latency which dominates the convolution computation. In the worst case, it even cannot remove
any HE-rotation despite the high model sparsity, e.g. the non-structured pruning with 75% sparsity
ratio. The underlying reason is two-fold: 1) pruning is unable to address the outer-rotation since
computing an output ciphertext by convolution needs to sum all channels’ feature maps belonging
to the same ciphertext if using the state-of-the-art ciphertext encoding (see Fig. 3 (a)); 2) existing
pruning techniques are designed for non-encryted inference, and the special channel-wise ciphertext
operations involved in HE convolution are ignored. This prompts the need of jointly optimizing
ciphertext encoding and encryption-aware model sparsity to accelerate HE inference.

3 THE SPENCNN FRAMEWORK

In this section, we present the technical details of our proposed SpENCNN framework. Figure 2
depicts its overall flow. The SpENCNN framework takes an initial CNN model as input and outputs a
tailored CNN model after two processing stages–(1) HE-group Convolution is designed to reduce the
outer-rotations caused by multi-channel convolution. In particular, we design an adjustable method
and determine a theoretically optimal group number Gbase based on the size of the ciphertext and data
packed in the CKKS HE scheme, to ensure that all outer-rotations can be eliminated while keeping
model accuracy. (2) Sub-block Pruning is further proposed to reduce the number of inner-rotations.
However, this is not trivial. We observe that to reduce as many inner-rotations as possible, we must
precisely identify and completely prune selected sub-blocks. This, unfortunately, would result in
an considerable accuracy drop. To address this issue, we develop a set of sub-steps which include
identifying subblocks, pruning the subblocks, updating the remaining subblocks, and retraining the
model for accuracy recovery.

3.1 HE-GROUP CONVOLUTION

Two intuitions. Our proposed HE-group convolution is based on two intuitions. We observe that
the number of required outer-rotations for a ciphertext is Rotouter = N/2×(h×w)pad − 1, where
N is the polynomial degree defined in the cryptographic parameters, h and w are the height and
width of the input feature map, and pad rounds a number to the next power of two. Each ciphertext
generated by the outer-rotation further requires a set of inner-rotations. The number of inner-rotations
is Rotinner = K2 − 1, where k is the convolutional kernel size. Apparently, increasing the number
of outer-rotation–Rotouter by just 1 can bring an extra Rotinner = K2 − 1 inner-rotations. This
gives us the first intuition–reducing the number of outer-rotations will fundamentally reduce the
computational overhead.

4



Under review as a conference paper at ICLR 2023

Ch2 Ch1

out1 out2 out3 out4

out1 out3

out2 out4

Ch1 Ch2

Ch3 Ch4

Ch2 Ch1

Ch4 Ch3

HE-rotation Ch1 Ch3

Ch2 Ch4

Ch1 Ch2

Ch3 Ch4

Group 1 Group 2

HE-group ConvolutionGeneral HE Convolution

Ch2 Ch4

Ch1 Ch3

Ch4 Ch3

Ch

Ch

Ch

Ch 

Ch

Ch

Ch

Ch

Ch

Group 1 Group GGroup 2

G G

M

G

Group-Interleaved Format

(a) (b)

HE-rotation

Figure 3: (a) an example of HE convolution which generates 4 output channels from the 4 input
channels with 3×3 kernels. By HE-group convolution, we only need 2 group-interleaved encoded cts
multiply with corresponding pts and sum up to get the output channels data. (b) proposed HE-group
convolution by a group-interleaved format.

The reason behind the outer-rotation is that multiple channels on the same ciphertext are involved
in the same multichannel convolution. In our study, we find that convolution (e.g., depthwise
convolution (Howard et al., 2017)) can be also performed individually within each single channel. We
also find that the group convolution technique (Krizhevsky et al., 2012; Zhang et al., 2018; Ioannou
et al., 2017) can reduce the number of channels involved in each group. This gives us the second
intuition–reducing the number of channels in the same group can eliminate the outer-rotation.

Based on these intuitions, we design the HE-group convolution. Given the group number G, we have
the upper bound of the number of channels in the same group as ⌈(N/2·(h·w)pad)× 1/G⌉. Then the
relationship between Rotouter and G can be expressed as:

Rotouter = ⌈(N/2·(h·w)pad)× 1/G⌉ − 1 (2)
Accordingly, we can use an appropriate G value to cancel the first term, i.e., the Gbase = N/2·(h·w)pad

in our design. Theoretically, this optimized value indicates zero outer-rotations.

Group-interleaved encoding. However, we find that the traditional ciphertext encoding format is not
compatible when we implement our grouping idea. This is because the row-major format is mainly
designed to perform convolution in the SIMD manner without considering the channel positions on
the ciphertext. To address this issue, we propose a group-interleaved encoding format–the channel
data from different groups are placed on the same ciphertext in an interleaved manner. This new
encoding facilitates fast HE-group convolution without involving any outer-rotation.

Figure 3 shows an example of proposed HE-group convolution and group-interleaved encoding.
We assume that two ciphertexts contain 4 channels of data, and each ciphertext cti contains 2
channels. As shown in Figure 3 (a)–left, in general HE convolution, each cti has to do 1 outer-rotation
to cover the 2 different channels, i.e., {ch1, ch2} and {ch2, ch1} for ct1. Convolution will be
performed individually on each outer-rotated case for all ciphertexts. The encrypted output channels
{out1, out2}, {out3, out4} can be generated after a summation.

For our HE group convolution, as Figure 3 (a)–right shows, sibling channels {ch1, ch2} and
{ch3, ch4} from the same cti are in different convolution groups, which are encoded by our group-
interleaved format, i.e., {ch1, ch3} in ct1 and {ch2, ch4} in ct2. Now, the outer rotation is eliminated
because each cti can perform 2 groups of convolution individually without rotating the channels.
The encrypted output channels after summation, i.e., {out1, out3}, {out2, out4}, are naturally group-
interleaved and can immediately send to the next HE-group convolution. Figure 3 (b) further shows
the generalized group-interleaved encoding, in which a ciphertext can encrypt M channels using the
adjustable convolution group number G, with constraints G ≤ M and M%G = 0.

3.2 SUB-BLOCK PRUNING

We design the sub-block pruning to further remove the remaining inner-rotations after the HE-group
convolution. Our idea is to prune (zero out) a whole set of weights corresponding to specific inner-
rotations, so that the computational overhead of these inner-rotations can be eliminated. This reminds
us of the weight sparsity in CNN models. In HE-convolution, an inner-rotated ciphertext will be

5



Under review as a conference paper at ICLR 2023

- - - -

- - - -

sub-block

sub-block

(a) Weight sparsity in convolutional layers (b) Weight sparsity in FC layers

Figure 4: (a) The weight sparse pattern in convolutional layers. For the same ct, their weight sparse
patterns must be same. For different ct, the weight sparse pattern may change. (b) The weight sparse
pattern in FC layers is in a diagonal-wise shape.

multiplied with the weights at the same position, namely “sub-block”, from all relevant kernels.
Therefore, our design tends to cut out the same sparse pattern on these sub-blocks for all relevant
kernels of the same ciphertext.

As the example in Figure 4 (a) shows, the 4 kernels of ct1 shares the same sparse pattern, thus
eliminating 6 inner-rotations. This pruning scheme can be also extended to the FC layer. As shown
in Figure 4 (b), the multiplication of ciphertext on FC layer is equivalent to the convolution using
a diagonal-wise encoding method (Halevi & Shoup, 2014). Multiplying with the weights in one
diagonal line requires one HE-rotated copy of ciphertext. (see Appendix A.3 for more details.)

To obtain the desired sparse pattern, we propose the sub-block pruning. The more sub-blocks pi being
pruned, the less inner-rotations needed. This is actually an optimization problem, in which, we need
to minimize the total number of sub-blocks while maintaining the prediction accuracy concurrently:

min{P =
∑
i

pi · Ii} s.t. Acc(f(x; (W,P ))) ≥ Acc(f(x;W )) where Ii =

{
0 pi is pruned
1 other

(3)

We would like to find the sub-block with the minimum weight importance to the model at each
iteration and prune, then, retrain the model for a few epochs to recover the accuracy. However, the
sizes of sub-blocks are different. To measure the weight importance of each sub-block in a fair way.
we define the weight importance metric as an average L2 norm ||wpi

||
dim(wpi

) . As described in algorithm 1,
at each iteration, we would like to prune the sub-block with the least weight importance. The iterative
algorithm would stop when the model accuracy is lower than the initial accuracy.

4 EVALUATION

4.1 EXPERIMENT SETUP

Setup. We conduct our experiments on a workstation equipped with an AMD Ryzen Threadripper
3975WX CPU, an NVIDIA RTX 3090 GPU, and 256GB of RAM. To evaluate our proposed
SpENCNN, we select three baseline CNN models that are often adopted in HE inference performance
evaluation, and implement them using PyTorch on GPU. This includes LeNet-like for MNIST

Model # Layers Groups Accuracy
Conv FC Act (Gbase) (%)

LeNet-like 2 2 3 4 98.95
VGG-5 3 3 5 8 84.06
HEFNet 4 1 4 8 83.67

Model Encryption Parameters Mult Security
N P Q Level Level

LeNet-like 8192 264 24 10 >128 bit
VGG-5 16384 529 31 16 > 80 bit
HEFNet 16384 436 31 13 >128 bit

Table 1: Three baseline Convolutional Neural Net-
works models and corresponding Encryption Pa-
rameters. LeNet-like is for the MNIST dataset.
VGG-5 and HEFNet are for CIFAR-10 dataset.

Algorithm 1 Sub-blocks Iterative Pruning

1: Input: CNN model:f(x; (W,P )),
2: Remark: x-Data, W-Weights, P-HE blocks
3: Output: HE-friendly model:f(x; (W ′, P ′))
4: P ′ = P =

∑
i pi · Ii

5: While Accuracy loss ≤ 0 :

6: i← argmin
i

||wpi
||

dim(wpi
)

7: Ii = 0
8: prune weights in pi from current P
9: update P ′

10: retrain model with P ′ and update W ′

11: end While
12: Return f(x; (W ′, P ′))

6



Under review as a conference paper at ICLR 2023

dataset (2016), VGG-5 (Rathi et al., 2020) and the HE-friendly Net (HEFNet) for CIFAR10 dataset
(Details of layer size is in Appendix A.2). Since the non-linear activation function like ReLU
cannot be evaluated in HE, we replace ReLU with the adaptive quadratic polynomial function
f(x) = ax2 + bx+ c following the related works (Dathathri et al., 2019; Kim et al., 2022), where
a, b, c are trainable parameters to maintain the model accuracy. Table 1 lists the specifications of these
three models and the corresponding accuracy. In particular, the test accuracy for LeNet-like-MINST,
VGG-5-CIFAR10, HEFNET-CIFAR10, is 98.95%, 84.06%. and 83.67%, respectively, which are
consistent with their original versions.

We use Microsoft SEAL library v3.4.5 (SEAL) to implement the RNS-CKKS HE computation on
these networks. Table 1 also lists the key parameters used in our RNS-CKKS encryption, including
the polynomial degree N , the total modulus in bit-length Q, the scale factor in bit-length P to
maintain the HE evaluation accuracy, and total multiplication level. These parameters can guarantee
a security level of 80 bit for VGG-5, 128 bit for LeNet-like and HEFNet.

Methodology. We first perform an ablation study to evaluate each individual technique’s effectiveness,
and then compare the whole SpENCNN framework with the state-of-the-art method. y We adopt the
average inference latency (in seconds) as the main measurement. An image set containing 20 different
samples is used to measure and report the latency for these models. A lower latency indicates better
performance. In addition, we measure the left holomorphic operation count (HOC, in %), sparsity (in
%), and accuracy (in %) on the tailored models. The lower HOC and lower sparsity while offering
higher accuracy are desired on all models.

4.2 RESULTS

4.2.1 EVALUATON ON HE-GROUP CONVOLUTION

Table 2 lists our evaluation results for the HE-group convolution. We apply the HE group convolution
alone (in ablation) to each baseline model and evaluate its effectiveness and scalability. In particular,
we adjust the number of groups from its default (i.e., 1-baseline) until it exceed its Gbase according
to our design (i.e., the highlighted 4, 8, and 8 for LeNet-like, VGG-5, and HEFNet, respectively).
For detailed analysis, we breakdown HOC into “Rot” (HE-rotation) and “Others” (other operations
including HE-Pmult and HE-add).

Our HE-group convolution can be scaled to any convolutional model. As the number of groups
increases, it can effectively reduce the number of HOC and maintain the accuracy, thus reducing
the latency of HE inference and improving the performance. As listed in Table 2, the number of
HE-rotation is reduced from 100% to 27.27%, 85.45%, and 11.95% on LeNet-like, VGG-5, and
HEFNet, respectively. Once the Gbase is reached, the number of HE-rotation does not decrease
further in spite of increasing the number of groups. This is because the outer-rotation is completely
eliminated in HE-group convolution after the group number reaches Gbase. We also find that HE
group convolution can reduce other HOC such as HE-Pmult and HE-add even after exceeding Gbase.
This also contributes to the performance improvement.

For example, the HE-group convolution is particularly effective on our HEFNet (i.e., ∼ 88% and
∼ 86% reduction for HE-rotation and others, respectively). This is because it has the largest volume
of convolution layers among the three models. Such a dramatic reduction in HOC further shortens the

Model Groups HOC Left (%) Accuracy (%) Latency (s) Speedup (×)Rot Others

LeNet-like

1-baseline - - 98.95 1.2658 -
2 51.52 52.91 98.95 0.6806 1.86
4 27.27 28.24 98.95 0.3807 3.32
8 27.27 16.47 98.67 0.3044 4.16

VGG-5

1-baseline - - 85.16 53.909 -
4 87.53 84.08 84.53 46.539 1.16
8 85.45 81.42 84.06 45.311 1.19

16 85.45 80.10 82.23 45.053 1.20

HEFNet

1-baseline - - 84.91 24.113 -
4 24.53 25.74 84.35 6.2491 3.86
8 11.95 13.36 83.67 3.2718 7.37

16 11.95 7.18 80.06 2.3627 10.21

Table 2: Ablation study of HE-group convolution with different number of convolution groups.

7



Under review as a conference paper at ICLR 2023

inference latency from 24.11s to 3.27s, which represents a 7.37× speedup. In contrast, the HE group
convolution is the least effective in VGG-5, as it contains three large FC layers (size of 8192×4096),
which cannot be substantially optimized using HE group convolution alone. There are more than 85%
of HE-rotations and 80% of other operations that cannot be eliminated. And this number saturates as
a lower bound after reaching the Gbase, resulting in a limited speedup of 1.19×.

We also observe that the model accuracy slightly decreases as the number of groups increases. This
is due to the fact that fewer channels are involved in the HE-group convolution compared to the
general convolution (see Figure 3). Fortunately, as long as the number of groups does not exceed our
suggested Gbase, the loss of accuracy is marginal (i.e., 0%, 1.1%, and 1.2% on LeNet-like, VGG-5,
and HEFNet, respectively). Also, our design is adjustable, allowing a trade-off between the accuracy
and the optimized number of convolution groups.

4.2.2 EVALUATION ON SUB-BLOCK PRUNING

Here, we apply the sub-block pruning alone (in ablation) and compare it with other pruning methods
such as Non-structural prune (Han et al., 2015a), and Structural-prune (Wen et al., 2016). Table 3 lists
our evaluation results. We do not include accuracy in this evaluation since we prune each baseline
model using each pruning method under the constraint of maintaining the original model accuracy.
Instead, we include the sparsity (i.e., the percentage of pruned weights) for comparison.

Our sub-block pruning can effectively improve the HE inference performance on all baseline models
(i.e., the speedup of 2.62×, 6.15×, and 2.57× on LeNet-like, VGG-5, and HEFNet, respectively),
which significantly outperforms other traditional pruning methods (i.e., marginal ∼ 1.1× speedup on
most cases). The reason is obvious but significant. Our design is more HE-oriented and effective
in the ciphertext domain while traditional pruning is more sparsity-oriented and for the plaintext
computation efficiency only. For example, although NS-prune can prune ∼ 92% of the weights on
VGG-5, it cannot eliminate the HE overhead (i.e., ∼ 96% HOC) caused by the remaining ∼ 8% of
the weights.

Our sub-block pruning method performs the best (i.e., ∼ 16% HOC) on VGG-5 because it effectively
eliminates the inner-rotations caused by the large number of redundant weights in the FC layers.
Together with the previous results (see Table 2), sub-block pruning can be a good complement to
the HE-group convolution that performs weakly on the FC layers. We also note that our sub-block
pruning method on LeNet-like (i.e., 35.21% Rot left) slightly outperforms HEFNet (i.e., 41.88% Rot
left). This is because the larger convolutional kernel (i.e., 5 × 5) in LeNet-like gives our pruning
method more space to optimize the inner-rotations.

4.2.3 COMPARE WITH THE STATE-OF-THE-ART

We compare our method with the state-of-the-art HE-prune method–Hunter (Cai et al., 2022). The
comparison results are presented in Table 4. In this evaluation, our method combines the HE-group
convolution and the sub-block pruning, and uses the proposed Gbase as the group number (i.e.,
highlighted data). For a fair comparison, pruning is well controlled to ensure that our method and
Hunter have the same level of accuracy (i.e., error≤ ±0.04%) on all baseline models. We can see
from Table 4, our method outperforms the state-of-the-art significantly in terms of HOC, sparsity, and

Network Groups HOC Left (%) Sparsity (%) Latency (s) Speedup (×)Rot Others

LeNet-like

Dense-Baseline - - 0.00 1.2658 -
NS-prune 96.12 96.23 91.00 1.2190 1.04

S-prune (channel) 88.03 92.82 53.77 1.1202 1.13
Sub-block prune 35.21 34.07 63.83 0.4644 2.62

VGG-5

Dense-Baseline - - 0.00 53.909 -
NS-prune 97.59 97.14 91.88 52.5280 1.03

S-prune (channel) 98.47 98.08 90.48 50.7178 1.06
Sub-block prune 15.89 16.11 89.87 8.7659 6.15

HEFNet

Dense-Baseline - - 0.00 24.113 -
NS-prune 85.60 88.97 72.95 21.1660 1.14

S-prune (channel) 94.69 95.24 51.91 22.9240 1.05
Sub-block prune 41.88 36.11 63.90 9.3709 2.57

Table 3: Ablation study of sub-block prune and comparison with other pruning methods.

8



Under review as a conference paper at ICLR 2023

Network Method HOC Left (%) Sparsity Accuracy Latency Speedup
Rot Others (%) (%) (s) (×)

LeNet-like
Baseline - - 0 98.95 1.2658 -
Hunter 40.95 39.91 59.99 98.95 0.5353 2.36
Ours-4 8.54 9.88 62.62 98.95 0.1535 8.37

VGG-5
Baseline - - 0 85.16 53.909 -
Hunter 17.86 18.93 89.81 84.03 9.9916 5.40
Ours-8 7.86 7.72 91.97 84.07 4.3830 12.11

HEFNet
Baseline - - 0 84.91 24.113 -
Hunter 48.27 42.20 57.82 83.63 10.855 2.22
Ours-8 3.99 4.61 65.62 83.67 1.2520 19.26

Table 4: Comparison with Hunter on model HOC left, sparsity, accuracy,latency ,and speedup.

latency, on all baseline models. For example, our method eliminates 96% HE-rotations on HEFNet,
achieving a 19.26× speedup. In contrast, the Hunter-optimized model still has 51% HE-rotations
left behind and achieves only 2.22× speedup compared to the un-pruned baseline. This is because
our method is designed to eliminate both outer and inner HE-rotations by synthetically applying the
HE-group convolution and sub-block pruning, while the state-of-the-art is solely built upon the fixed
structure pruning. We also print out the sparse pattern in a convolutional layer of LeNet-like, included
in Appendix A.1.

5 RELATED WORK

CryptoNets (Gilad-Bachrach et al., 2016) is an initial attempt to realize HE-inference. After that,
many subsequent works are proposed to improve the HE-inference latency from different aspects.
Faster-CryptoNets (Chou et al., 2018) combines weight pruning and quantization to obtain a sparse
polynomial representation to speed up the PMult operation, which achieves 6.38× latency reduction.
LoLa (Brutzkus et al., 2019) successfully demonstrates the HE inference on a simple 3-layer model (1
convolutional layer and 2 FC layers) and achieves a 2.2s inference latency on the MNIST sample by
leveraging HE schemes, data encoding format, and rotation techniques. CHET and HEAR (Dathathri
et al., 2019; Kim et al., 2022) further refine the row-major coding format to achieve the same level of
inference latency, but on a larger network (3 convolutional layers and minimum 64 channels).

Lou & Jiang (2021) propose a neural architecture search (NAS) based method to reduce the encryption
parameters and speed up the HE-inference. Further, Ghodsi et al. (2020); Jha et al. (2021); Mishra
et al. (2020); Lou et al. (2020) propose to reduce the cost of non-linear operations in NAS based
HE-inference since operations like ReLU dominate the latency in the multi-party computation (MPC)
setting. HE-PEx (Aharoni et al., 2022) and Hunter (Cai et al., 2022) attempt to structurally prune
the weights to accelerate the HE-inference. In Hunter, a structural pruning method is proposed to
facilitate HE in the MPC setting. HE-PEx adpots Hunter’s method to prune the weights in the FC
layer only. It can reduce memory requirement and latency by 60% on the tested autoencoder models.
Our work–SpENCNN is the first to orchestrate the ciphertext encoding and model sparsity design for
HE inference acceleration, significantly outperforming these works.

6 CONCLUSION

In this paper, we propose a fast LHE-based encrypted inference framework-SpENCNN built upon
two novel techniques–HE-group convolution and sub-block weight pruning. Experimental results
show that our solution can speed up the privacy-preserving inference by 8.37×, 12.11×, and 19.26×
on LeNet-like, VGG-5, and HEFNet, respectively, greatly outperforming the state-of-the-art solutions.
In the future, we would like to extend our work to deeper models and complex classification tasks in
a no-client-interaction setting by leveraging bootstrapping. We hope to apply our framework to these
deep models. There shall exist potential optimizations for the trade-off between model sparsification,
data encoding, bootstrapping, and cryptographic parameters.

9



Under review as a conference paper at ICLR 2023

REFERENCES

TensorFlow 2016. Lenet-like for convolutional mnist model example. https:
//github.com/tensorflow/models/blob/v1.9.0/tutorials/image/
mnist/convolutional.py.

Ehud Aharoni, Moran Baruch, Pradip Bose, Alper Buyuktosunoglu, Nir Drucker, Subhankar Pal,
Tomer Pelleg, Kanthi Sarpatwar, Hayim Shaul, Omri Soceanu, et al. He-pex: Efficient machine
learning under homomorphic encryption using pruning, permutation and expansion. arXiv preprint
arXiv:2207.03384, 2022.

Alon Brutzkus, Ran Gilad-Bachrach, and Oren Elisha. Low latency privacy preserving inference. In
International Conference on Machine Learning, pp. 812–821. PMLR, 2019.

Yifei Cai, Qiao Zhang, Rui Ning, Chunsheng Xin, and Hongyi Wu. Hunter: He-friendly structured
pruning for efficient privacy-preserving deep learning. In Proceedings of the 2022 ACM on Asia
Conference on Computer and Communications Security, pp. 931–945, 2022.

Jung Hee Cheon, Andrey Kim, Miran Kim, and Yongsoo Song. Homomorphic encryption for
arithmetic of approximate numbers. In International conference on the theory and application of
cryptology and information security, pp. 409–437. Springer, 2017.

Edward Chou, Josh Beal, Daniel Levy, Serena Yeung, Albert Haque, and Li Fei-Fei. Faster cryptonets:
Leveraging sparsity for real-world encrypted inference. arXiv preprint arXiv:1811.09953, 2018.

Roshan Dathathri, Olli Saarikivi, Hao Chen, Kim Laine, Kristin Lauter, Saeed Maleki, Madanlal
Musuvathi, and Todd Mytkowicz. Chet: an optimizing compiler for fully-homomorphic neural-
network inferencing. In Proceedings of the 40th ACM SIGPLAN Conference on Programming
Language Design and Implementation, pp. 142–156, 2019.

Zahra Ghodsi, Akshaj Kumar Veldanda, Brandon Reagen, and Siddharth Garg. Cryptonas: Private
inference on a relu budget. Advances in Neural Information Processing Systems, 33:16961–16971,
2020.

Ran Gilad-Bachrach, Nathan Dowlin, Kim Laine, Kristin Lauter, Michael Naehrig, and John Wernsing.
Cryptonets: Applying neural networks to encrypted data with high throughput and accuracy. In
International conference on machine learning, pp. 201–210. PMLR, 2016.

Shai Halevi and Victor Shoup. Algorithms in helib. In Annual Cryptology Conference, pp. 554–571.
Springer, 2014.

Song Han, Huizi Mao, and William J Dally. Deep compression: Compressing deep neural networks
with pruning, trained quantization and huffman coding. arXiv preprint arXiv:1510.00149, 2015a.

Song Han, Jeff Pool, John Tran, and William Dally. Learning both weights and connections for
efficient neural network. Advances in neural information processing systems, 28, 2015b.

Andrew G Howard, Menglong Zhu, Bo Chen, Dmitry Kalenichenko, Weijun Wang, Tobias Weyand,
Marco Andreetto, and Hartwig Adam. Mobilenets: Efficient convolutional neural networks for
mobile vision applications. arXiv preprint arXiv:1704.04861, 2017.

Yani Ioannou, Duncan Robertson, Roberto Cipolla, and Antonio Criminisi. Deep roots: Improving
cnn efficiency with hierarchical filter groups. In Proceedings of the IEEE conference on computer
vision and pattern recognition, pp. 1231–1240, 2017.

Nandan Kumar Jha, Zahra Ghodsi, Siddharth Garg, and Brandon Reagen. Deepreduce: Relu reduction
for fast private inference. In International Conference on Machine Learning, pp. 4839–4849.
PMLR, 2021.

Miran Kim, Xiaoqian Jiang, Kristin Lauter, Elkhan Ismayilzada, and Shayan Shams. Secure human
action recognition by encrypted neural network inference. Nature communications, 13(1):1–13,
2022.

10

https://github.com/tensorflow/models/blob/v1.9.0/tutorials/image/mnist/convolutional.py
https://github.com/tensorflow/models/blob/v1.9.0/tutorials/image/mnist/convolutional.py
https://github.com/tensorflow/models/blob/v1.9.0/tutorials/image/mnist/convolutional.py


Under review as a conference paper at ICLR 2023

A Krizhevsky, I Sutskever, and GE Hinton. Imagenet classification with deep convolutional neural
networks. 2012 advances in neural information processing systems (nips). Neural Information
Processing Systems Foundation, La Jolla, CA, 2012.

Qian Lou and Lei Jiang. Hemet: A homomorphic-encryption-friendly privacy-preserving mobile
neural network architecture. In International conference on machine learning, pp. 7102–7110.
PMLR, 2021.

Qian Lou, Song Bian, and Lei Jiang. Autoprivacy: Automated layer-wise parameter selection
for secure neural network inference. Advances in Neural Information Processing Systems, 33:
8638–8647, 2020.

Pratyush Mishra, Ryan Lehmkuhl, Akshayaram Srinivasan, Wenting Zheng, and Raluca Ada Popa.
Delphi: A cryptographic inference service for neural networks. In 29th USENIX Security Sympo-
sium (USENIX Security 20), pp. 2505–2522, 2020.

Nitin Rathi, Gopalakrishnan Srinivasan, Priyadarshini Panda, and Kaushik Roy. Enabling deep
spiking neural networks with hybrid conversion and spike timing dependent backpropagation. In
International Conference on Learning Representations, 2020. URL https://openreview.
net/forum?id=B1xSperKvH.

Nikola Samardzic, Axel Feldmann, Aleksandar Krastev, Nathan Manohar, Nicholas Genise, Srinivas
Devadas, Karim Eldefrawy, Chris Peikert, and Daniel Sanchez. Craterlake: a hardware accelerator
for efficient unbounded computation on encrypted data. In ISCA, pp. 173–187, 2022.

SEAL. Microsoft SEAL (release 3.4). https://github.com/Microsoft/SEAL, October
2019. Microsoft Research, Redmond, WA.

Nigel P Smart and Frederik Vercauteren. Fully homomorphic encryption with relatively small key and
ciphertext sizes. In International Workshop on Public Key Cryptography, pp. 420–443. Springer,
2010.

Wei Wen, Chunpeng Wu, Yandan Wang, Yiran Chen, and Hai Li. Learning structured sparsity in
deep neural networks. Advances in neural information processing systems, 29, 2016.

Xiangyu Zhang, Xinyu Zhou, Mengxiao Lin, and Jian Sun. Shufflenet: An extremely efficient
convolutional neural network for mobile devices. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pp. 6848–6856, 2018.

11

https://openreview.net/forum?id=B1xSperKvH
https://openreview.net/forum?id=B1xSperKvH
https://github.com/Microsoft/SEAL


Under review as a conference paper at ICLR 2023

A APPENDIX

A.1 SPARSE PATTERNS

We present the weights after optimized in binary representation. In each group, it contains 64 weight
kernels with size 5 × 5. Kernels in same group indicate that they are associated with the same
ciphertext. Within the same group, across different ciphertexts, the sparse patterns are different.

Group 1 Group 2

Figure 5: The sparse patterns for weight kernels in LeNet-like 2nd Convolutional layer.

A.2 BASELINE MODEL ARCHITECTURE IN DETAIL

The following Table 5 contain the detailed convolutional kernels size, weight matrix size and number
of channels. These three baseline models has different property. The LeNet-like model is a tiny
model designed for simple classification task so that the channel number and weight matrix size is
small, and has the least number of layers. The VGG-5 model has much more weights in FC layers
and the max number of layers. The HEFNet contain the most convolutional layers and the widest
channel size.

Network Layer # Input channel # Output channel Kernel size (Matrix size in FC)

LeNet-like

Conv1 1 32 5×5
Conv2 32 64 5×5
FC1 64 32 64×32
FC2 32 10 32×10

VGG-5

Conv1 3 64 3×3
Conv2 64 128 3×3
Conv3 128 128 3×3
FC1 8192 4096 8192×4096
FC2 4096 4096 4096×4096
FC3 4096 10 4096×10

HEFNet

Conv1 3 64 3×3
Conv2 64 128 3×3
Conv3 128 256 3×3
Conv4 256 256 3×3
FC1 1024 10 1024×10

Table 5: Convolutional layer and Fully-connected layer size in three baseline models.

A.3 MATRIX MULTIPLICATION IN FC LAYER

Halevi & Shoup (2014) proposed a diagonal-wise multiplication of ciphertexts on FC layers. Given
a N-element ciphertext ct = {x1..N}, the weights of FC layer can be reshaped into a M ×N ×N

tensor {W⃗} (will pad with zero if needed). For each N × N matrix W , we can multiply the
diagonal N elements (as plaintext) with the rotated copies of ciphertext. As the example shown
in Figure 6, we have ct = {x1..4} and a 4 × 4 matrix W . We have pt = {a11, a22, a33, a44},

12



Under review as a conference paper at ICLR 2023

pt1 = {a41, a12, a23, a34}, pt2 = {a31, a42, a13, a24}, and pt3 = {a21, a32, a43, a14}. They will be
multiplied by ct = {x1, x2, x3, x4}, Rot(ct, 1) = {x2, x3, x4, x1}, Rot(ct, 2) = {x3, x4, x1, x2},
and Rot(ct, 3) = {x4, x1, x2, x3}, respectively and then summed.

Matrix W

ct copies

Figure 6: Ciphertext multiply with a matrix.

13


	Introduction
	Preliminaries
	CKKS Homomorphic Encryption
	Threat Model
	Motivation Example

	The SpENCNN Framework
	HE-Group Convolution
	Sub-block Pruning

	Evaluation
	Experiment Setup
	Results
	Evaluaton on HE-Group Convolution
	Evaluation on Sub-block Pruning
	Compare with the State-of-the-art


	Related Work
	Conclusion
	Appendix
	Sparse Patterns
	Baseline model architecture in detail
	Matrix Multiplication in FC layer


