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Abstract
In Generative Social Science, modellers design
agents at the micro-level to generate at the macro-
level a target social phenomenon. In the Inverse
Generative Social Science (iGSS), from a target
phenomenon, the goal is to search for possible
explanatory model structures. This model discov-
ery process is a promising tool to improve the
explanatory capability and theory exploration of
computational social science. This paper presents
a framework for iGSS and applies Grammati-
cal Evolution to an empirically-calibrated agent-
based model of alcohol use. Results of the model
discovery process find many alternative rules for
agent behaviours with different trade-offs. Future
work should involve domain experts to evaluate
the discovered structures in terms of theoretical
credibility and knowledge contribution.

1. Introduction
1.1. Inverse generative social science

Agent-based modeling (ABM) is a bottom-up methodology
that models a complex system as a collection of hetero-
geneous agents and their interactions. ABM has become
an established tool for Generative Social Science (Epstein,
1999). If an agent-based model with a defined set of mecha-
nisms can produce the target social phenomenon, the model
is a candidate explanation for the phenomenon. However,
there can be other models that can generate the same tar-
get phenomenon. In the inverse problem, from a target
phenomenon, the aim is to find possible explanatory agent-
based models. The process is known as Inverse Generative
Social Science (iGSS) or model discovery. In the develop-
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ment of agent-based models, modellers usually manually
experiment with different sets of mechanisms, often de-
rived from subjective interpretations of theory. The iGSS
methodology allows modellers to explore the space of model
structures automatically with the aim of better explanatory
capability. iGSS usually utilizes techniques from Artificial
Intelligence and provides a powerful tool for social scientists
to explore combinations of social theories or even develop
new social theories.

1.2. Existing works on iGSS

The nascent field of iGSS has limited literatures. Smith
(2008) used a genetic algorithm to identify simplified rules
of behavior that could reproduce the observed social assor-
tativity of birds. Zhong et al. (2014) used gene expression
programming to identify a individual reward function to
reproduce observed human crowd dynamics. Gunaratne &
Garibay (2017; 2020) used genetic programming to revise
agents’ farm selection rules to reproduce the archeological
population demography. Vu et al. (2019) used Genetic Pro-
gramming to identify alternative situational mechanisms for
a social norms model of alcohol use. In these works, the
model discovery limits to a single rule in agent decision
making, usually manipulating a single equation. Recently,
Greig & Arranz (2021) extends that by working with a series
of equations, basic mathematical and conditional operations
in two examples of flocking and opinion dynamics.

Finally, instead of focusing on a single mechanism, Vu et al.
(2020) took a step further by manipulating multiple mecha-
nisms of agent drinking decision within a social roles model
of alcohol use. A limitation of this work is that it includes
only few constants in the model discovery process. This
means that, for every discovered alternative structure, there
is a limit to the ability of the model discovery process to
improve the fitness further. Ideally, for each discovered
structure, a parameter calibration should be carried out to
accurately evaluate its fitness. In this paper, we want to
propose a solution to this issue by including parameter dis-
tribution selection in the model discovery process.
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1.3. Aim and organisation of the paper

This paper aims to demonstrate a bi-level model discov-
ery process that explore both model structures and param-
eter distributions to explain a social phenomenon. As a
case study, the paper uses an established agent-based model
based on social norm theory.

Section 2 briefly introduces the existing model of social
norm theory for alcohol use. Section 3 provides background
on multi-objective Grammatical Evolution. In Section 4,
the model discovery methodology is explained. Results and
discussion of the process are provided in Section 5. Lastly,
Section 6 concludes the paper and suggests possible future
works.

2. A calibrated norm-theory agent-based
model of alcohol use

This paper uses an agent-based model of alcohol use de-
scribed in detail in Buckley et al. (2022). The individual
decision making was based on frequently used psycholog-
ical models of behaviour and uses social norm theory to
explain alcohol use. The agents in the model are individuals,
and are assumed to be representative of adults in the US.
Agent drinking behaviors are typologized using five schema
representing different daily drinking practices: abstaining,
light drinking, moderate drinking, heavy drinking and very
heavy drinking. The following explains the agent drinking
decision, including several important concepts that will be
used later on in the model discovery process.

The decision process begins with a probabilistic selection
process between two pathways: habitual or intentional path-
way. The trigger of a pathway is based individual automatic-
ity. Automaticity ranges from 0 (always intentional) to 1
(always habitual). If a sampled random number between 0
and 1 is lower than an individual’s automaticity, they will
behave according to their previous drinking patterns on that
day. Otherwise, the intention pathway is triggered, and in-
tentions will be calculated to determine the probability of
different drinking decisions.

In the intention pathway, social norm theory was imple-
mented. The drinking decision is affected by descriptive
norms, injunctive norms and autonomy. The injunctive
norm refers to the perceived acceptability of drinking in
society for an individual like them (based on membership
of socio-demographic subgroups). The descriptive norm is
an individual’s appraisal of actual drinking behavior for an
individual like them. Autonomy refers to the individual’s
desire to ignore the norms. An autonomy of 0.6 would indi-
cate that the agent only pays attention to norms 40% of the
time.

The model was calibrated to the US Behavioral Risk Factor

Surveillance System (BRFSS) survey data for New York,
adjusted to per-capita New York State alcohol sales data for
each year using a method described in Rehm et al. (2010).
Three alcohol use targets were defined for each year describ-
ing (1) prevalence — the overall proportion of individuals
consuming alcohol at least once during the previous year,
(2) quantity — the average grams of alcohol consumed per
day among drinkers, and (3) frequency — the average num-
ber of drinking days per month among drinkers. Targets
were calculated separately for each year and split by sex.
Models were calibrated using data for the years 1984-2010
and validated using reserved data from 2011-2015.

3. Multi-objective Grammatical Evolution
Genetic programming (GP) (Koza, 1992) is used to generate
computer programs1 automatically with the help of genetic
operators. It is usually applied to problems where there is
an underlying requirement for structural optimization, be-
sides the need (or not) to find the optimal parameters of the
problem. An example is the design of a digital filter where
besides having to find a set of optimal filter parameters, one
also needs to determine the order of the filter. Although tra-
ditional genetic algorithms (GAs) are well suited for finding
the optimal parameters of an optimization problem, they are
not able to represent the structural requirements of a solution
in chromosomes. A chromosome in GP besides support-
ing constants, it has provision for variables and functions
(including algebraic operators, such as + and −), which
can be combined in different ways to generate a syntax tree.
In a similar fashion as it is done for GAs, a GP algorithm
evolves a population of computer programs (or candidates)
over many generations where selection and variation oper-
ators (e.g. crossover and mutation) take turns to find the
fittest individuals. Traditionally in GP, Lisp prefix notation
was used to represent a syntax tree in a chromosome but
it has several shortcomings, such as the chromosome can
have variable length, and that it is very easy for crossover
and mutation operators to generate illegal offsprings. To
mitigate these shortcomings, this paper uses Grammatical
Evolution (GE) (O’Neill & Ryan, 2001; 2003) which re-
lies on the Backus–Naur form (BNF) syntax. This ensures
chromosomes with a fixed length, restricts the search space
in a way that it is possible to apply standard crossover and
mutation operators more freely, and prevents the generation
of illegal offsprings.

Multi-objective evolutionary algorithms (MOEAs) are very
popular nowadays for dealing with multi-objective optimiza-
tion problems. An MOEA evolves a set of solutions (also
known as a population) over several generations by apply-
ing operators based on the principles of natural evolution

1A computer program in this context could be an algorithm, a
machine or even a brain.
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such as selection, crossover, and mutation, until some ter-
mination criterion is satisfied (e.g. a maximum number of
generations has been exceeded). There are many MOEAs in
the literature and existing ones can be categorised as Pareto
based, decomposition based and indicator based. For a more
detailed discussion about the different types of MOEAs, in-
cluding their strengths and weaknesses, the reader is referred
to a recent tutorial by Emmerich & Deutz (2018). In this
study we employ a GP version of a popular Pareto based
MOEAs known as NSGA-II (Deb et al., 2002), and the im-
plementation can be found in the PonyGE2 toolkit (Fenton
et al., 2017). NSGA-II relies on a non-dominated sorting
algorithm to assign ranks to solutions, and on a diversity
preservation mechanism that ensures a good spread across
the Pareto frontier.

To evaluate the performance of a non-dominated solution
set obtained by a multi-objective optimization algorithm
there are several performance indicators in the literature
that could be used. The hypervolume indicator (Zitzler
& Thiele, 1998) is very popular in the evolutionary multi-
objective optimization community and will be used in this
study. This is also known as the Lebesgue measure and
it is determined by quantifying the region in the objective
space enclosed by the front of the non-dominated solutions
and an upper bounded reference point (assuming minimi-
sation). Improving the hypervolume means increasing the
area between the non-dominated solutions and the reference
point, and this could be achieved by either improving the
convergence (i.e. solutions with better performance with
respect to both objectives) or improving the spread across
the front (i.e. generating more evenly spread non-dominated
solutions). To determine the exact hypervolume value we
use a dimension-sweep algorithm (Fonseca et al., 2006).

4. Model discovery method
4.1. Overview of model discovery process

A schematic of the overall model discovery process is shown
in Figure 1. Step 0 represents a pre-condition for the model
discovery process. We defined a library of theory building
blocks implemented as model components and a grammar
to guide the search process. Step 1 to 6 is the Grammati-
cal Evolution process. In Step 1, a initialized population
of models is generated. In Step 2, variation operators, e.g.
crossover and mutation, are applied to produce new candi-
date models. In Step 3, the models in the current population
are evaluated for generative sufficiency. Step 4 selects the
models to retain in the population. If convergence is not
achieved, go back to Step 2. If the convergence is achieved,
the Pareto optimal model structures will be assessed for
their theoretical contribution. Afterward, if improvement is
needed, the whole process can be restarted by adjusting the
grammar or the library of components.

Libraries of model components: entities, 
attributes and mechanisms

Grammars defining permissible integrations 
of model components

Step 0. Generative social science ontologies

Step 1. Initialize a population of 
candidate models (random or pre-existing)

Step 2. Apply variation operators to  
population to produce new candidate models

Step 5.
Convergence
achieved?

yes

no

Step 7. 
New knowledge?

yes

no

Step 3. Evaluate new models for generative 
sufficiency

Step 4. Select models to retain in the 
population

Step 6. Assess Pareto optimal models for 
their theory contribution

Step 8. Refine ontologies: 
libraries and grammars

End

Figure 1. Model discovery process

To search for the combinations of social theories that offer
the best explanation to the macro-level phenomenon (drink-
ing behaviors in New York State), we make use of GE with
bi-level multi-objective optimization. The model structure
and the model parameters are separated in a bi-level formu-
lation, where for each model structure identified by the GE
algorithm at the upper-level, a separate calibration process is
conducted to identify the best parameters at the lower-level.
For clarification, all model parameters were calibrated in the
original model (Section 2), only some parameters relevant
to the alternative structure will be re-calibrated in the model
discovery process. This is known as a nested approach
in the bi-level optimization literature (Sinha et al., 2018),



Explore social theory integration in ABM using grammatical evolution

which is commonly used in conjunction with evolutionary
computation algorithms, such as genetic algorithms, differ-
ential evolution, and swarm intelligence. However, to our
knowledge, this is the first time that this approach is used in
conjunction with a GE algorithm.

4.2. Objectives

We use the following three objectives in this study:

First, we consider the overall goodness-of-fit between the
model output and the target data, accounting for sampling
uncertainty in both the output and target measurement. Here,
our objective function for model structure x is an implau-
sibility metric (Vernon et al., 2010) that measures the error
between the mth simulated output y⋆m, averaged over N
model replications, and equivalent empirical target data ym
over a sequence of temporal observations k defined by:

z1 =
1

KM

K∑
k=1

M∑
m=1

∣∣∣( 1
N

∑N
n=1 y

⋆
m[k]n

)
− ym[k]

∣∣∣√
(sm[k])2 + (dm)2

(1)

where M is the number of output measures, K is the num-
ber of observations, sm[k] is the observed standard error for
output m at time point k, and (dm)2 is the variance of the
model discrepancy for output m, which is taken as 10% of
the possible output range for each output. ‘Model discrep-
ancy’ is the error in a model output that arises because the
model is not a perfect representation of reality.

Since we are interested in whether the iGSS process might
work better to fit to targets based on male drinking pat-
terns than female drinking patterns, and vice versa, we also
decompose this first objective into two sub-objectives:
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1
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)
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⋆
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)
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(3)

where Mmale and Mfemale are the subset of targets relating to
men and women respectively.

The final objective we consider is a complexity measure,
which aims to promote model parsimony for the purposes
of interpretability and avoiding over-fitting. This type
of approach was introduced to genetic programming by
(Rodrı́guez-Vázquez et al., 2004) to combat the issue of

bloat—where the tree lengths in the genetic program tend
to drift upwards over time.

We calculate interpretability therefore as the number of
nodes in the grammar-based tree:

z2 = nodes(x), (4)

where nodes(.) calculates the number of nodes in the
tree encoding model structure x.

4.3. Bi-level optimization

In this study, our interest is to find model structures and
parameters that offer the best trade-offs between the com-
plexity of the model and the goodness-of-fit with respect
to multiple phenomenon targets. In total there are three
objectives in this GE problem that has to be dealt with si-
multaneously, and these are: patterns of female alcohol use;
patterns of male alcohol use, and complexity. When dealing
with multiple conflicting objectives the problem does not
contain a single optimal solution, which is often the case
with single-objective problems. Besides the existence of a
single optimal solution for each objective function, there
is also a set of trade-off solutions where an improvement
in one objective is earned at the expense (deterioration) of
another objective(s). The best trade-offs in terms of Pareto-
optimality can be captured by the concept of dominance.
Consider two solutions a ∈ RM and b ∈ RM where M is
the number of objectives, a is said to dominate b if a is not
worse than b in all objectives (i.e. ai ≤ bi ∀i = 1, . . . ,M ),
and a is strictly better than b in at least one objective (i.e.
∃i∈{1,...,M} : ai < bi). From a set of solutions, any subset
that contains only solutions that are not dominated by any
other solution in the set constitutes a non-dominated set,
and the non-dominated set with respect to the entire search
space is known as the Pareto-optimal set. The next section
will describe in detail how the GE incorporates both model
structures and parameters via the use of grammar.

4.4. Grammar

The grammar describes what components in agent be-
havioural rules will be included and how they can be com-
bined together. This study focuses on agents’ daily decision
of the number of alcoholic drinks to consume (Section 2).
The structure of agents’ intention pathway will be exposed
to the model discovery process. It is a function that decides
the number of drinks based on agent desire to drink and
social norm theory concepts (injunctive norm, descriptive
norm).

The grammar also includes the individual parameters of the
agents that are relevant to the number-of-drinks decision:
the automaticity that control the trigger between habitual
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and intentional pathway and the autonomy which refers
to individual desire to ignore the norm. For these two pa-
rameters, the grammar will have several options for their
distributions in all agents.

Listing 1 describes the grammar that guides the model dis-
covery process. Each candidate (a program < p >) contains
10 expressions: 1 for the log odds intention, 3 distribution
options for the automaticity of three different drinker types,
and 6 distribution options for the autonomy of three differ-
ent drinker types split by male and female. Each expression
can be formed only by a defined combination of expres-
sions, variables, constants, and distribution options. This
hierarchical grammar captures the complexity of different
expressions.

Listing 1. Grammar for the model discovery process
<p> ::= LogOddsIntention=<lo_exp>;

automaticity.low=<automaticity_opt>;
automaticity.med=<automaticity_opt>;
automaticity.high=<automaticity_opt>;
autonomy.male.abstainer=<autonomy_opt>;
autonomy.male.moderate=<autonomy_opt>;
autonomy.male.heavy=<autonomy_opt>;
autonomy.female.abstainer=<autonomy_opt>;
autonomy.female.moderate=<autonomy_opt>;
autonomy.female.heavy=<autonomy_opt>;

<lo_exp> ::= <vc>*log(<odds>) |
-<vc>*log(<odds>) |
(<lo_exp> + <lo_exp>)

<odds> ::= odds(<exp>)

<exp> ::= Desire | Descriptive | Injunctive |
(<exp> + <exp>) | <vc>*(<exp>) |
sqrt(<exp>) | pow(<exp>,2)

<vc> ::= <v_autonomy> | <c_01> |
<c_01>*<v_autonomy> |
sqrt(<vc>) |
pow(<vc>,2)

<v_autonomy> ::= Autonomy | (1-Autonomy)

<c_01> ::= 0.<d0><d0> | 1.<d1><d1>

<d0> ::= 0|1|2|3|4|5|6|7|8|9

<d1> ::= 0

<automaticity_opt> ::= skewed_right |
centre | skewed_left | bi_modal

<autonomy_opt> ::= skewed_right |
centre | skewed_left | bi_modal

The intention pathway uses a log odds function for each
schema because, in the model, the probabilities of in-
stantiating each drinking schema are represented using

a multinomial logit equation. The log odds expression
<lo exp> can be modified by multiplying log odds with
a variable/constant expression <vc>, or by summing two
log odds. The variable/constant expression <vc> can be
constructed from Autonomy, (1-Autonomy), constant
between 0 and 1 <c 01>, taking a square root, or rais-
ing to the power of 2. For the expression within the odds
<exp>, it can be constructed with norm-theory concepts
Desire, Descriptive, Injunctive and several op-
eration (sum, multiplication, square root, raising to the
power of 2). For simplification, automaticity and auton-
omy distributions can be selected from four distribution
options <autonomy opt>: skewed-right, centre, skewed-
left, bi-modal.

5. Results and Discussion
The model discovery evolutionary setup was as follows: 500
candidates per population for 50 generations, 75% subtree
crossover, 25% subtree mutation, and other default settings
of PonyGE2. It is computationally intensive to do a com-
plete run of GE; the process took about 60 hours on an Intel
i9 9980XE processor with 36 cores.

The hypervolume plot, Figure 2, shows the convergence of
the model discovery process over 50 generations. There
are 97 non-dominated model structures in the Pareto front
of the last generation. However, some structures are dupli-
cated (in terms of the three fitness) because they have the
equivalent functional form of log odds intention, and the
simulation was run with the same seed. After removing the
duplicated structures, there are 82 unique structures. Fig-
ure 3 shows the trade-offs between three objectives (male
goodness-of-fit, female goodness-of-fit, and complexity)
of 82 non-dominated structures in a parallel coordinates
plot. Because of the trade-offs between objectives, model
selection is not a straightforward process.
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Figure 2. Hypervolume convergence plot
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Figure 3. Parallel coordinates plot of the structures on the Pareto
front

Let us discuss the model structures in detail. There are two
parts the log odds intention and the parameters. The discus-
sion will focus on the structure of the log odds intention.
In the non-dominated structures, there are structures with
the same log odds intention but different parameters which
leads to a slightly different goodness-of-fit. So when show-
ing an example of a log odds intention, the model structure
with the least average goodness-of-fit of male and female
will be presented.

The simplest structure has a complexity measure of 26, and
the most complex one is 232. Bringing attention to the norm-
theory concepts. For structures with a complexity of less
than 35, most structures only contain Desire (for example,
Listing 2). The only different case is that Injunctive appears
by itself in the simplest structure of 26 (Listing 3). These
Injunctive-only structures result in unbalanced goodness-of-
fit: low male goodness-of-fit but high female goodness-of-fit
(0.888 and 2.255 on average). On the other hand, Desire-
only structures have a balance goodness-of-fit between male
and female (1.578 and 1.470 on average). In the context of
social norm theory, when the log odds intention consists of
only Desire and not Injunctive and Descriptive norm, agents
follow their past behaviour initialised at baseline.

As the complexity increase, injunctive and descriptive norms
start to appear. In complexity from 44 to 71, there is either
Injunctive or Descriptive in the log odds intention. From
complexity 72, both appear at the same time in most struc-
tures. This means that to achieve better male and female
fitness (as the complexity is higher), injunctive and descrip-
tive norms must be included. It is noted that Desire is still
a necessary component since it is present in all structures

Listing 2. Non-dominated structure id 95
LogOddsIntention=Autonomy*log(odds(Desire));
automaticity.low=skewed_right;
automaticity.med=skewed_left;
automaticity.high=skewed_left;
autonomy.male.abstainer=skewed_left;
autonomy.male.moderate=skewed_left;
autonomy.male.heavy=skewed_left;
autonomy.female.abstainer=skewed_left;
autonomy.female.moderate=skewed_left;
autonomy.female.heavy=bi_modal;

Fitness: [1.577748, 1.381777, 26]

Listing 3. Non-dominated structure id 84
LogOddsIntention=(1-Autonomy) *

log(odds(Injunctive));
automaticity.low=bi_modal;
automaticity.med=bi_modal;
automaticity.high=centre;
autonomy.male.abstainer=centre;
autonomy.male.moderate=skewed_right;
autonomy.male.heavy=skewed_right;
autonomy.female.abstainer=skewed_right;
autonomy.female.moderate=skewed_right;
autonomy.female.heavy=bi_modal;

Fitness: [0.8686032, 1.668882, 26]

with size greater than 27.

Table 1 summarizes the count of Desire, Injunctive, and
Descriptive in the log odds intention function, averaged over
the number of structures in different ranges of complexity.
The count of all three concepts increases as the complexity
increases. Desire concepts are always greater than the other
two concepts. Injunctive and Descriptive counts are not
greatly different.

Table 1. Average count of norm-theory concepts over different
ranges of complexity

AVERAGE OF COUNT
COMPLEXITY DESIRE INJUNCTIVE DESCRIPTIVE
20-39 0.77 0.23 0.00
40-59 2.00 0.20 0.60
60-79 4.05 1.85 0.50
80-99 4.86 2.29 1.29
100+ 9.13 3.13 3.88

Models with high complexity are extremely difficult to in-
terpret. For example, Listings 4 shows a model structure
with a complexity of 72. The log odds intention is complex
but still manageable. It shows intention as a function of
Desire, the interaction of Desire and Injunctive, and the
interaction of Desire and Descriptive. However, looking at
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Listing 4. Non-dominated structure id 28
LogOddsIntention=(-1.00*(1-Autonomy)*

log(odds(Desire)) +
((0.71*log(odds((sqrt(Desire) +
(Injunctive + Injunctive)))) +
Autonomy*log(odds(Autonomy*
((Descriptive + Descriptive))))) +
Autonomy*log(odds(Desire))));

automaticity.low=bi_modal;
automaticity.med=skewed_left;
automaticity.high=skewed_left;
autonomy.male.abstainer=skewed_left;
autonomy.male.moderate=skewed_left;
autonomy.male.heavy=skewed_right;
autonomy.female.abstainer=skewed_left;
autonomy.female.moderate=skewed_right;
autonomy.female.heavy=skewed_left;

Fitness: [0.3398256, 0.3983111, 72]

the most complex structure in Listing 5, it is near impossible
to interpret the function. Thus, if the modellers only want
the best goodness-of-fit and does not interest in theoretical
interpretability, complex structures are selected. However,
to interpret the agent behaviour and underlying social the-
ory, it is better to pick simpler structures. Other strategies
can be used during model discovery process for theoreti-
cal interpretability include simplifying the function before
evaluation, limiting the tree depth in GE configuration, or
restricting the grammar. With the grammar, modellers have
to be careful to balance exploration capability and inter-
pretability.

6. Conclusion
This paper presents a model discovery method that utilizes
multi-objective GE to explore different combinations of
social theory concepts and parameter distributions to search
for alternative agent behavioural rules. The case study of
alcohol use modeling has shown that different realizations
of theoretical mechanisms can result in trade-offs between
different metrics. Our model discovery method offers a
promising approach to generating novel combinations of
social theory components. In the research frontier of inverse
generative social science, our work shows the feasibility
of performing a bi-level optimization, i.e. joint structure-
parameter model discovery. Future research should involve
domain experts to interpret the discovered model structures.
This work also highlights the challenge of meaningful model
discovery, requiring the involvement of the domain expert
during grammar design as well as the theoretical credibility
assessment.

Listing 5. Log odds intention of the most complex structure id 1
LogOddsIntention=(((((-0.35*(1-Autonomy)*

log(odds(1.00*(1.00*
((pow((sqrt(Descriptive) + Desire),2) +
sqrt(pow(Desire,2))))))) +
pow(1.00*Autonomy,2)*
log(odds(pow(pow(1.00,2)*
(Descriptive),2)))) +
-(1-Autonomy)*log(odds(Injunctive))) +
(pow(Autonomy,2)*log(odds(Desire)) +
((pow(pow((1-Autonomy),2),2)*
log(odds(Desire)) +
(-1.00*Autonomy*log(odds(sqrt(Desire))) +
-pow(Autonomy,2)*log(
odds(pow(sqrt(Autonomy),2)*
(sqrt(pow(Desire,2))))))) +
(-sqrt(Autonomy)*log(odds(
pow((Desire + Descriptive),2))) +
sqrt(sqrt(0.49*Autonomy))*
log(odds(pow(0.27*Autonomy,2)*
(sqrt(sqrt(pow(Desire,2)))))))))) +
(1.00*log(odds(Injunctive)) +
(Autonomy*log(odds(
pow(sqrt(Descriptive),2))) +
pow(pow(pow(0.60,2),2),2)*
log(odds(Desire))))) +
sqrt(sqrt(pow(sqrt(1.00*Autonomy),2)))*
log(odds((Injunctive + Desire))))
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