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Abstract

Many, if not most, systems of interest in science are naturally
described as nonlinear dynamical systems (DS). Empirically,
we commonly access these systems through time series mea-
surements, where often we have time series from different
types of data modalities simultaneously. For instance, we may
have event counts in addition to some continuous signal. While
by now there are many powerful machine learning (ML) tools
for integrating different data modalities into predictive models,
this has rarely been approached so far from the perspective of
uncovering the underlying, data-generating DS (aka DS recon-
struction). Recently, sparse teacher forcing (TF) has been sug-
gested as an efficient control-theoretic method for dealing with
exploding loss gradients when training ML models on chaotic
DS. Here we incorporate this idea into a novel recurrent neu-
ral network (RNN) training framework for DS reconstruction
based on multimodal variational autoencoders (MVAE). The
forcing signal for the RNN is generated by the MVAE which
integrates different types of simultaneously given time series
data into a joint latent code optimal for DS reconstruction. We
show that this training method achieves significantly better
reconstructions on multimodal datasets generated from chaotic
DS benchmarks than various alternative methods.

Introduction
For many temporally evolving phenomena in physics, biol-
ogy, or the social sciences, we have only limited knowledge
about the generating dynamical mechanisms. Inferring these
from data is a core interest in any scientific discipline. It
is also practically highly relevant for predicting important
changes in system dynamics, like tipping points in climate
systems (Bury et al. 2021; Patel and Ott 2022). In recent
years, a variety of methods for recovering dynamical systems
(DS) directly and automatically from time series observa-
tions has been proposed (Brunton, Proctor, and Kutz 2016;
Vlachas et al. 2018; Koppe et al. 2019b), mostly based on
recurrent neural networks (RNNs) for approximating the un-
known governing equations of the true DS. However, almost
all of these methods assume that observed time series come
as continuous signals with Gaussian noise, except for one
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recent study that also considered non-Gaussian, like categori-
cal or sparse count data for DS reconstruction (Kramer et al.
2022). Time series data from discrete random processes are
in fact quite commonplace in many areas, e.g., in the medical
domain (electronic health records, smartphone-based data)
(Koppe et al. 2019a), neuroscience (behavioral responses)
(Durstewitz, Koppe, and Thurm 2022), or climate science
(event counts) (Peyre et al. 2020). While it was shown that, in
principle, integrating such different measurement modalities
can help to improve DS reconstruction (Kramer et al. 2022),
major issues remain. Arguably one of the most challenging
aspects is the ‘exploding and vanishing gradient problem
(EVGP)’ (Bengio, Simard, and Frasconi 1994; Hochreiter
and Schmidhuber 1997), a problem that cannot easily be
avoided when attempting to capture natural systems with
chaotic dynamics due to the exponential divergence of trajec-
tories (Mikhaeil, Monfared, and Durstewitz 2022).

Thus, rather than trying to conquer the EVGP by RNN
design, control-theoretic methods based on sparse teacher
forcing (TF) were recently suggested to address the EVGP
directly in BPTT-based training (Mikhaeil, Monfared, and
Durstewitz 2022). The idea here is to guide the training pro-
cess by pulling the reconstruction algorithm ‘back on track’
at times determined from the observed system’s maximal
Lyapunov exponent, i.e. by replacing the RNN’s latent states
by states inferred from the current observations. While this
turned out to be a simple yet powerful remedy for reconstruct-
ing systems with chaotic dynamics, outperforming many
other state-of-the-art algorithms (Brenner et al. 2022), it re-
mained unclear how to harvest this idea for non-Gaussian
observations as it relies on an invertible linear-Gaussian ob-
servation model. Hence, one major contribution of the present
work is to make the sparse-TF approach amenable to other
than continuous Gaussian observations.

Another contribution is a novel formulation of the multi-
modal data integration problem for DS reconstruction: Build-
ing on the success of variational autoencoders (VAEs) for
multimodal integration (Baltrušaitis, Ahuja, and Morency
2017; Wu and Goodman 2018; Sutter, Daunhawer, and Vogt
2021), we use multimodal VAEs (MVAEs) to construct a
common latent representation from random variables fol-
lowing different distributional models. However, rather than
constructing a sequential VAE process that directly oper-
ates on this latent code, as in Kramer et al. (2022), here



the purpose of the MVAE is to provide a TF signal that ac-
knowledges all recorded data modalities. Thus, the MVAE
learns a variational approximation to a latent distribution that
yields the joint distribution over the observed multimodal
data, which is then used as a TF signal in the latent space
of a simultaneously trained RNN. This makes the insights
derived from sparse-TF applicable to a fully probabilistic
MVAE training framework, called MVAE-TF in here, which –
unlike classical BPTT-TF – also explicitly allows for process
(dynamical) noise and uncertainty estimates. At the same
time, it leaves the distributional assumptions of the individual
observed modalities intact.

Related Work
Dynamical Systems Reconstruction In DS reconstruction
the goal is to infer or learn a model of the nonlinear DS that
produced a set of observed quantities such that invariant tem-
poral and geometrical properties of the data-generating DS
are preserved. This is highly relevant for both science and
engineering. In general, nonlinear DS, especially when high-
dimensional, noisy, and chaotic, are challenging to learn and
difficult to analyze (Champion et al. 2019). RNNs are popular
machine learning tools for modeling DS (Park et al. 2022),
and various RNN architectures such as Reservoir Computing
(RC) (Pathak et al. 2018), Long-Short-Term-Memory net-
works (LSTMs) (Vlachas et al. 2018), or piecewise-linear
RNNs (PLRNNs) (Koppe et al. 2019b; Schmidt et al. 2021)
have been employed for DS reconstruction. However, with
few exceptions (Kramer et al. 2022), almost all of the previ-
ously designed methods for DS reconstruction have focused
solely on the case where all observations are continuous with
Gaussian noise. RNN models trained with classical BPTT
suffer from the EVGP (Bengio, Simard, and Frasconi 1994;
Hochreiter and Schmidhuber 1997; Pascanu, Mikolov, and
Bengio 2013). Recent theoretical work (Mikhaeil, Monfared,
and Durstewitz 2022) has shown that this problem is particu-
larly severe when training on time series from chaotic systems
(as almost always the case for complex physical or biological
systems), as in this case loss gradients inevitably diverge.
While many specific RNN architectures have been proposed
to deal with the EVGP (Kerg et al. 2019; Chang et al. 2019;
Kag, Zhang, and Saligrama 2020; Rusch and Mishra 2021),
most of them are not suitable for DS reconstruction as their
specific form or parameterization prevents many important
DS phenomena (like chaos) by design. Instead, Mikhaeil,
Monfared, and Durstewitz (2022) suggested a variant of TF
(Williams and Zipser 1989; Pearlmutter 1990), called sparse
TF, that strikes an optimal balance between learning relevant
long time scales while avoiding too furiously diverging gradi-
ents. At present, this method, however, relies on a continuous
linear-Gaussian assumption for connecting the data to the
latent process.

Generative Models for Multimodal Data Integration
Variational generative models are powerful methods for learn-
ing latent representations of joint distributions across many
data types in an unsupervised fashion. Variational autoen-
coders (VAE) (Kingma and Welling 2014; Rezende, Mo-
hamed, and Wierstra 2014) are one popular variant which

naturally lends itself to multimodal settings (Baltrušaitis,
Ahuja, and Morency 2017; Wu and Goodman 2018; Sutter,
Daunhawer, and Vogt 2021) and a sequential formulation
(Bayer et al. 2021; Girin et al. 2021; Bai, Wang, and Gomes
2021). Longitudinal autoencoders have been proposed (Ram-
chandran et al. 2021) to model temporal correlations in latent
space with Gaussian process priors, and have also been ex-
tended to multimodal data (Öğretir et al. 2022). Other gener-
ative models for sequential data include state space models
that have been applied for posterior inference of latent state
paths zt ∼ p(zt|x1:T ) of DS given time series observations
{x1:T } (Ghahramani and Roweis 1998; Durstewitz 2017;
Pandarinath et al. 2018; Zhao and Park 2020; Kim et al. 2021).
Through their probabilistic formulation, they can account for
uncertainty in the model formulation or latent process itself
and yield the full distribution over latent states (Karl et al.
2017). Many natural and engineered systems are observed
through multiple channels with distinct statistical properties
simultaneously. For instance, in climate science we may have
simultaneous records of temperatures and counts of extreme
weather events like tornados. Multimodal data integration can
improve model inference and reveal interesting connections
between observed modalities (Liang et al. 2015). Multimodal
models have also been developed for time series forecasting
(Antelmi et al. 2018; Bhagwat et al. 2018; Dezfouli et al.
2018; Shi et al. 2021; Sutter, Daunhawer, and Vogt 2021).
DS reconstruction, however, goes beyond forecasting in that
we also require an approximation to the governing equations
which captures the temporal and geometrical structure of the
original system. Such a model enables further analysis and
mechanistic insight into the underlying dynamics (Strogatz
2015). Kramer et al. (2022) recently proposed a nonlinear
state space model embedded within a sequential VAE (SVAE)
for reconstructing DS from multimodal time series data. Their
work demonstrates the advantages of exploiting various data
modalities simultaneously for DS reconstruction, including
non-Gaussian like categorical series. Here we develop a more
efficient approach that takes into account recent insights on
training RNNs for DS reconstruction (Mikhaeil, Monfared,
and Durstewitz 2022).

Method
Our approach to DS reconstruction from multimodal time
series rests on three components: 1) A specific type of dynam-
ically interpretable and mathematically tractable RNN, the
recently introduced ‘dendritic PLRNN (dendPLRNN)’ (Bren-
ner et al. 2022); 2) a specific TF algorithm, sparse identity-
TF, for guiding the training process (Brenner et al. 2022;
Mikhaeil, Monfared, and Durstewitz 2022); 3) an MVAE for
producing a multimodal TF signal, trained jointly with the
dendPLRNN through a combined loss. The whole procedure
is illustated in Fig. 1.

dendPLRNN The dendPLRNN (Brenner et al. 2022) used
for DS reconstruction is defined by the M -dimensional latent
process equation
zt = Azt−1 +Wϕ(zt−1) + h+ ϵt, ϵt ∼ N (0,Σ) (1)

which describes the temporal evolution of a M -dimensional
latent state vector zt = (z1t . . . zMt)

T , with a linear diagonal



matrix term A ∈ RM×M , off-diagonal matrix W ∈ RM×M ,
and diagonal noise covariance matrix Σ ∈ RM×M . The
nonlinearity is given by the ‘dendritic’ spline expansion

ϕ(zt−1) =

B∑
b=1

αb max(0, zt−1 − hb), (2)

with slopes αb ∈ R and thresholds hb ∈ RM (Brenner
et al. 2022). This formulation retains analytical access to
fixed points and cycles (Durstewitz 2017) and allows for
a translation into an equivalent continuous-time represen-
tation (Monfared and Durstewitz 2020). To infer the latent
process equation jointly from multiple data modalities, the
dendPLRNN is connected to different decoder models that
take the distinct distributional properties of each modality
into account (see next section and Appx.). For example, for
normally distributed data this may take the simple linear
Gaussian form

xt = Bzt + ηt, (3)
with factor loading matrix B ∈ RN×M , and Gaussian ob-
servation noise ηt ∼ N (0,Γ) with diagonal covariance
Γ ∈ RN×N .

Identity Teacher Forcing Without any purpose-tailoring
of the RNN architecture for dealing with exploding gradients,
sparse TF (Mikhaeil, Monfared, and Durstewitz 2022), a
variant of TF (Williams and Zipser 1989; Pearlmutter 1990),
can minimize the problem when training on chaotic systems.
It does so by balancing loss and trajectory divergence with
the need to capture relevant long time scales. To apply sparse
TF to the latent space, the observation model needs to be
inverted. Most simply, this is achieved if we have a linear-
Gaussian model as in Eq. 3 and choose an “identity-mapping”
for the observation model x̂t = Izt, where I ∈ RN×M

with Ikk = 1 if k ≤ N and zeroes everywhere else.1
Consider an observed time series X = {x1,x2, · · · ,xT }

generated by a DS we want to reconstruct. For times lτ +
1, l ∈ N0, with forcing interval τ ≥ 1, we replace the first N
latent states by observations ẑk,lτ+1 = xk,lτ+1, k ≤ N . The
observations are thereby mapped one-to-one onto a subset
of latent ‘readout’ states, while the remaining latent states,
ẑk,lτ+1 = zk,lτ+1, k > N , remain unaffected. Replacing
latent states with observations significantly helps to stabilize
training while allowing unimpeded gradient flow through
the non-forced states. As shown in Mikhaeil, Monfared,
and Durstewitz (2022), the best tradeoff between explod-
ing gradients and capturing relevant long-term dependencies
is achieved when choosing the forcing interval τ according
to the system’s maximal Lyapunov exponent (predictability
time). However, for non-continuous data (like counts), this
cannot readily be determined. In this case the forcing interval
τ may also be considered as a hyperparameter, and optimal
settings found via grid search. With F = {lτ + 1}l∈N0

, the
dendPLRNN updates can then be written as

zt+1 =

{
dendPLRNN(ẑt) if t ∈ F
dendPLRNN(zt) else

. (4)

1Note that by ‘invertible’ we are referring to the pseudo-inverse
of B here.

The squared error loss used within the BPTT-TF algorithm
is given by LMSE =

∑T
t=2∥xt − Izt∥22 and is calculated

prior to forcing for every time step. When sampling from the
trained model, the dendPLRNN runs freely without forcing.

Multimodal Variational Autoencoder (MVAE) While
our model formulation is general and can work with
any combination of data modalities, for the present ex-
position we consider time series of multivariate Gaus-
sian, ordinal, and count nature of length T , Y =
{{x1, · · · ,xT }; {o1, · · · ,oT }; {c1, · · · , cT }}. We employ
an MVAE for inferring a joint latent representation over these
data. We denote encoded states at time t by z̃t ∈ RK to
avoid confusion with the latent dynamical process zt ∈ RM

generated by the dendPLRNN. To this end, we minimize the
negative Evidence Lower Bound (ELBO)

L(ϕ,θ;Y ) = −Eqϕ [log pθ(Y |Z̃) + log pθ(Z̃)] (5)

−Hqϕ(Z̃ | Y )

using the reparameterization trick for latent random vari-
ables (Kingma and Welling 2014). For the encoding step, we
concatenate all input modalities and use convolutional neu-
ral networks (CNNs) for parameterizing the encoder model
qϕ(Z̃|Y ), with hyperparameters as proposed in Brenner et al.
(2022). This allows the recognition model to embed temporal
context into the latent representation (see, e.g., Cui, Chen,
and Chen (2016)). As the latent dendPLRNN process itself is
conditionally Gaussian, we make a Gaussian assumption for
the variational density qϕ(Z̃|Y ) = N (µϕ(Y ),Σϕ(Y )) to
approximate the true posterior p(Z̃|Y ), where mean and co-
variance are functions of the data. We further use the common
mean field approximation to factorize qϕ(Z̃|Y ) across time
(Girin et al. 2021). Observations are assumed to be condition-
ally independent given the latent states z̃t. A linear decoder
as in Eq. 3 is employed for Gaussian data, a cumulative link
model for ordinal data (see Appx.), and a log-link function
for Poisson data (but recall the present framework can deal
with any set of distributional models):

xt | z̃t ∼ N (Bz̃t,Γ) (6)
ot | z̃t ∼ Ordinal(βz̃t, ϵ)

ct | z̃t ∼ Poisson(λ(z̃t))

Due to the conditional independence given the la-
tent states, the likelihood terms related to the
observations simply sum up, log pθ(Y |Z̃) =∑T

t=1 (log pθ(xt|z̃t) + log pθ(ot|z̃t) + log pθ(ct|z̃t)).

Multimodal Teacher Forcing The MVAE provides a flexi-
ble and convenient framework for mapping any combination
of observed data modalities into the process model’s latent
space, and is employed here to generate a TF signal for the
dendPLRNN. We call this the MVAE-TF approach. For train-
ing, observed time series Y = {y1, · · · ,yT } from possibly
many different and non-Gaussian modalities are first con-
verted to a common latent code Z̃ = {z̃1, · · · , z̃T } using
the MVAE. The initial condition z1 of the latent process is
inferred from the encoded state z̃1. If K < M , the M −K



remaining states are randomly sampled from a standard nor-
mal distribution. The dendPLRNN is then iterated forward
from z1 across the length of the observed time series T to ob-
tain a latent path Z = {z1, z2, · · · , zT }, while in analogy to
identity-TF at times lτ+1, l ∈ N0, the first K latent states are
replaced by the encoded states zk,lτ+1 = z̃k,lτ+1, k ≤ K.
The first K states of the generated latent trajectory Z (using
the unforced states) are then used to compute the modality-
specific negative log-likelihoods for the observed multi-
modal time series, LPLRNN = −

∑T
t=1(log pθ(xt|z1:K,t) +

log pθ(ot|z1:K,t) + log pθ(ct|z1:K,t)), using the decoder
models from Eq. 6 (hence, importantly, the latent states zt
and z̃t of the dendPLRNN and MVAE, respectively, are both
coupled to the observations through the very same set of
decoder models with same parameters).

A crucial assumption of the MVAE-TF framework now
is that the process prior pθ(Z̃) in Eq. 5 comes from the
dendPLRNN. For the second term in Eq. 5 we assume

Eqϕ [log pθ(Z̃)] ≈ 1

L

L∑
l=1

T∑
t=1

−1

2

(
log |Σ| (7)

+(z̃
(l)
t − µt)

⊤Σ−1(z̃
(l)
t − µt) + const.

)
,

where the expectation value is approximated by L Monte
Carlo samples z̃(l)

t ∼ qϕ(z̃t|Y ). To connect the latent codes
of the MVAE and the dendPLRNN, the model prior of the
MVAE is instantiated through the dendPLRNN by taking
µt = z1:K,t (i.e., the first K states of the generated latent
sequence {zt}). As the initial state z1 is estimated directly
from the encoded state z̃1, the term for t = 1 evaluates
to zero. Setting L = 1, we thus obtain a consistency loss
between encoded and generated latent state paths as

Lcons =
1

2

T∑
t=2

(
log |Σ|+ (z̃t − z1:K,t)

⊤Σ−1(z̃t − z1:K,t)
)

(8)

The general scheme for the MVAE-TF is visualised in Fig. 1.
The total MVAE-TF loss is thus given by the reconstruction
loss of the MVAE (first and third term in Eq. 5), the latent loss
in Eq. 8 that ensures consistency between the latent codes
of the MVAE and dendPLRNN, and the dendPLRNN loss
from the likelihoods of the observed time series Y given the
predicted latent path Z (above Eq. 7):

Ltotal = LMVAE + Lcons + LPLRNN (9)

Experiments
Performance Measures In DS reconstruction, we are pri-
marily interested in capturing invariant properties of the
underlying DS like its geometrical and asymptotic temporal
structure. While mean-squared errors (MSE) may be used
to asses short-term ahead prediction, especially in chaotic
systems they are not suited for evaluating the system’s longer-
term behavior because of exponential trajectory divergence
(Koppe et al. 2019b; Mikhaeil, Monfared, and Durstewitz

Figure 1: MVAE-TF setup. Multimodal observations are
translated via an encoder into a common latent represen-
tation, which is used for sparse TF in the dendPLRNN’s
latent space. The latent trajectory is then mapped back into
the multimodal observation space via modality-specific ob-
servation (decoder) models.

2022). To assess the quality of reconstructions, we compile
a set of general as well as modality-specific performance
measures (for more details, see Appendix):

• To assess overlap in attractor geometries, we employ a
Kullback-Leibler divergence in state space, Dstsp (Koppe
et al. 2019b; Brenner et al. 2022).

• To assess the agreement in asymptotic temporal structure,
in the continuous-Gaussian case power spectra were first
computed through the Fast Fourier Transform (Cooley
and Tukey 1965) on all observed time series dimensions
and slightly smoothed with Gaussian kernels to remove
noise. The Hellinger distance DH between empirical and
model-generated power spectra was then computed. To
assess the agreement in temporal structure for ordinal
and count data, we determined the MSE between auto-
correlation functions (Wiener 1930) computed for up to
200 time lags based on the Spearman rank correlation co-
efficient for discrete ordinal data (see Appx. Fig. 9, OACF
for ordinal and CACF for count data in Table 1). We also
assessed how well the Spearman cross-correlation struc-
ture between observed ordinal variables was preserved
within the generated time series (SCC, see Appx. Fig. 4).

• To assess short-term behavior, for Gaussian data the clas-
sical 10-step-ahead prediction error (PE) along test set
trajectories was used. For ordinal data, we computed a
linear L1 PE (OPE) instead, as suggested in Öğretir et al.
(2022).

Benchmark Comparisons on Multi-Modal Time Series
We first evaluate the MVAE-TF’s ability to combine different



Dataset Method Dstsp ↓ DH ↓ PE ↓ OPE ↓ SCC ↓ OACF ↓ CACF ↓

Lorenz

MVAE-TF 3.4± 0.35 0.30± 0.06 1.3e−2± 2e−4 0.12± 0.03 0.07± 0.01 0.07± 0.01 6.6e−5± 8.1e−6
SVAE 11.1± 0.6 0.82± 0.05 6.3e−1 ± 5.1e−2 0.68± 0.03 0.14± 0.01 0.18± 0.02 8.5e−5 ± 1.6e−5

GVAE-TF 4.3± 0.3 0.47± 0.07 3.6e−1± 1.5e−3 X X X X
BPTT-TF 8.8± 1.9 0.86± 0.05 4.4e−1± 2.2e−2 X X X X

MS 4.5± 1.5 0.61± 0.08 X X 0.14± 0.04 0.11± 0.02 6.5e−5± 3.8e−6

Rössler

MVAE-TF 1.45± 0.71 0.32± 0.03 1.9e−3± 7.1e−5 0.08± 0.02 0.04± 0.004 0.017± 0.003 6.5e−5± 1.2e−5
SVAE 10.7± 1.5 0.66± 0.05 1.5e−1 ± 3.1e−2 0.24± 0.02 0.17± 0.03 0.13± 0.02 1.1e−4± 1.4e−5

GVAE-TF 12.1± 0.5 0.55± 0.04 4.9e−2± 3.4e−3 X X X X
BPTT-TF 8.9± 1.4 0.64± 0.07 2.8e−1± 1.8e−3 X X X X

MS 3.99± 1.1 0.59± 0.04 X X 0.08± 0.04 0.09± 0.02 1.6e−4 ± 5.9e−5

Lewis-Glass

MVAE-TF 0.27± 0.07 0.33± 0.02 2.1e−3± 7e−5 0.11± 0.01 0.12± 0.03 0.05± 0.02 2.3e−4± 2.0e−5
SVAE 2.6± 0.5 0.52± 0.03 8.0e−2 ± 4e−3 0.26± 0.01 0.4± 0.05 0.18± 0.03 7.5e−3± 4.7e−3

GVAE-TF 0.28± 0.08 0.44± 0.02 4.6e−3± 4e−4 X X X X
BPTT-TF 2.51± 0.71 0.43± 0.03 2.6e−2± 3e−3 X X X X

MS 0.33± 0.06 0.35± 0.01 X X 0.08± 0.01 0.04± 0.002 1.9e−4± 7.5e−6

Table 1: Comparison of dendPLRNN trained by MVAE-TF (proposed method), by a SVAE based on Kramer et al. (2022), an
VAE-TF approach similar to MVAE-TF except that all data modalities were ‘Gaussianized’ (GVAE-TF), BPTT-TF as in Brenner
et al. (2022) using Gaussianized data, and a multiple-shooting (MS) approach (see Appx. for details). Training was performed on
multivariate normal, ordinal, and count data produced by the chaotic Lorenz system, Rössler system, and Lewis-Glass model.
Observation noise with 10% of the data variance was added to the Gaussian observations. Values are mean ± SEM, averaged
over 15 trained models. X = value cannot be computed for this model (e.g., because resp. decoder model is not present). Note
that SCC, OACF, and CACF all refer to MSEs between ground truth and generated correlation functions.

observed data modalities (Gaussian, ordinal, and count data)
for inferring a common latent DS model on three ground-truth
datasets, and compare its performance to a variety of other
methods. We generated a training and a test set of 100, 000
time steps from a Lorenz-63 and a Rössler system with 1%
process noise, and a 6d Lewis-Glass network model (Lewis
and Glass 1992; Gilpin 2022), all in their chaotic regimes
(see Appx. for detailed parameter settings and numerical in-
tegration). From the simulated trajectories we then sample
ordinal and count observations using Eqs. 18 and 20 (with
randomly drawn parameters), as well as continuous observa-
tions with 10% Gaussian noise. Example reconstructions of
the MVAE-TF are in Fig. 9. For comparison, the same dend-
PLRNN was trained as proposed in Kramer et al. (2022) with
a sequential VAE, optimizing its multimodal ELBO. This to
our knowledge is currently the only other general approach
specifically designed for DS reconstruction from arbitrary
data modalities observed simultaneously. Results are given in
Table 1. We also included three other comparisons: One naive
approach is to transform all data modalities to approximately
Gaussian (via Box-Cox & Gaussian kernel smoothing, see
Appx.), and then either train the dendPLRNN via standard
BPTT-TF (Brenner et al. 2022) or by VAE-TF, as proposed
here, but without multi-modal integration (labeled GVAE-TF
in Table 1). A third approach that can deal with multi-modal
observation models but, unlike TF, does not require model
inversion, is ‘multiple shooting (MS)’, a method suggested in
the dynamical systems literature (Voss, Timmer, and Kurths
(2004); see Appx. for more details). As evidenced in Table 1,
MVAE-TF outperforms all these other possible model setups.
We also tested the situation where faithful reconstruction
should be possible from the Gaussian modality alone, with
just 1% Gaussian noise. As seen in Appx. Table 4, even in
this case MVAE-TF outperforms all other methods (possibly
because here count and ordinal data may actually tend to
mislead DS reconstruction for some of the other models).

Challenging Data Situations To really challenge the algo-
rithm, we next tested a scenario where continuous observa-
tions from the Lorenz-63 system were heavily distorted by
Gaussian noise with 50% of the data variance. At the same
time, ordinal observations with 8 variables divided into 7
ordered categories each, ont ∈ {1 . . . 7}, n = 1...8, were
sampled using Eq. 18. We then trained the dendPLRNN via
MVAE-TF once with, and once without, ordinal observations.
Figure 2(a) proves that with ordinal observations on board,
DS reconstruction is, in principle, possible even under these
challenging conditions. The cumulative histograms of the
geometric measure Dstsp in Figure 2(b) and the temporal
measure DH in Figure 8 (b), comparing runs in the unimodal
and multimodal settings, furthermore shows that inclusion of
ordinal observations significantly improves reconstruction of
the underlying system.
Motivated by these results, we pushed the system even fur-
ther and attempted DS reconstruction solely from ordinal
data (created as above), i.e. completely omitting continu-
ous observations. This is profoundly more challenging than
the multimodal setting with Gaussian data, since the ordinal
process considerably coarse-grains the underlying continu-
ous dynamical process. Since in this case we do not have
a direct linear mapping between ground truth state space
and that of the trained dendPLRNN (which in the case of
Gaussian observations would simply be given by Eq. 3), we
construct one post-hoc by optimizing a linear operator given
by a linear dimensionality reduction (PCA) concatenated with
a geometry-preserving rotation operation (see Appx.). Fig. 3
shows that, using MVAE-TF, successful DS reconstruction
is, in principle, even feasible in this situation. Comparable
results could not be achieved by the multimodal SVAE (see
Appx., Table 3).



Figure 2: DS reconstruction from heavily distorted contin-
uous observations (Gaussian observation noise of 50% of
the data variance) and simultaneously provided ordinal ob-
servations. a) Example of a successful reconstruction of the
butterfly wing structure of the Lorenz attractor by the MVAE-
TF (M = 20,K = 15, τ = 10, B = 10). b) Normalized
cumulative densities of geometrical attractor disagreement
(Dstsp) between reconstructed and ground-truth system.

Figure 3: Rössler attractor reconstructed by the MVAE-TF
solely from an 8-dimensional set of ordinal observations
with 7 categories each (M = 20,K = 15, τ = 10, B =
10). Comparison of attractor geometries was performed by
reducing latent space dimensionality by PCA followed by a
rotation operator that did not alter geometry.

Conclusions

In the present work we introduced a novel training method for
DS reconstruction from multimodal time series data based on
dynamically interpretable RNNs. While DS reconstruction is
meanwhile a large field in scientific ML (Brunton and Kutz
2022), reconstruction based on multimodal, especially non-
continuous/ non-Gaussian data has hardly been addressed
so far, although such scenarios are commonplace in many
areas like medicine, neuroscience, or climate research. Here
we utilize recent insights on guiding the training process by
control signals (Mikhaeil, Monfared, and Durstewitz 2022)
within a novel multimodal data integration framework for
DS reconstruction. In our approach, a sparse TF signal is
generated by an MVAE that translates many different data
modalities into a common latent code. This yields a flexi-
ble inference framework for recovering DS from multimodal
data while avoiding common training issues associated with
chaotic systems (Mikhaeil, Monfared, and Durstewitz 2022).
We show that for various chaotic benchmarks and sampling
conditions, assessed by a variety of DS statistics, training
the dendPLRNN by MVAE-TF clearly outperformed several
other model formulations, including a SVAE-based approach
previously suggested by Kramer et al. (2022). We conjecture
that this is due to the fact that MVAE-TF allows latent trajec-
tories to evolve freely for longer time spans during training.
In contrast, in classical SVAEs temporal consistency is en-
sured only through the one-step ahead prediction terms in
the ELBO. Moreover, the MVAE-TF algorithm was able, in
principle, to recover the underlying attractor based on or-
dinal observations alone. That attractor geometries can be
faithfully reconstructed from discrete random variables alone
to our knowledge has indeed never been shown before. A
further advantage of our method is that it is modular, that
is, subcomponents of the algorithm, such as the encoder or
latent model, can easily be replaced within the same overall
training framework. More sophisticated encoder models, e.g.
combinations of mixtures-of-experts or products-of-experts
(Wu and Goodman 2018; Shi et al. 2019), could be used to
find more effective embeddings of multimodal data. Opti-
mal weighing schemes for the different loss terms making
up the total loss (Bakarji et al. 2022) may further improve
performance. While here we presented first results on DS
reconstruction for discrete data, whether and how much of
the original state space topology of a data-generating DS can
be recovered from non-continuous, non-Gaussian random
variables remains an important topic for future theoretical
and empirical research.
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Öğretir, M.; Ramchandran, S.; Papatheodorou, D.; and
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Appendix
Performance Measures
Geometrical Measure To assess the (dis-)agreement Dstsp between the data distribution ptrue(x) and the generated distribution
pgen(x | z) across state space, p̂true(x) and p̂gen(x | z) are estimated by sampling 100 trajectories with randomly drawn initial
conditions and 1000 time steps each. Transients are removed from each sampled trajectory to ensure that the measure is evaluated
on the limit set. The match between distributions is then approximated by binning the state space into discrete bins (Koppe et al.
2019b).

Dstsp (ptrue(x), pgen(x | z)) ≈
K∑

k=1

p̂
(k)
true(x) log

(
p̂
(k)
true(x)

p̂
(k)
gen(x | z)

)
. (10)

Here, K is the total number of bins. A range of 2× the data standard deviation on each dimension was partitioned into m bins,
leading to a total of K = mN bins, where N is the dimension of the ground truth system. Due to the exponential scaling of the
number of bins with system dimensionality, for the 6-dimensional Lewis-Glass network model we instead used an approximation
of ptrue(x) and pgen(x | z) based on Gaussian mixture models placed along trajectories, as described in Brenner et al. (2022).

Power Spectrum Hellinger Distance The power spectrum Hellinger distance (DH ) was obtained by first sampling a time
series of 100, 000 time steps and computing dimension-wise Fast Fourier Transforms (using scipy.fft) for both the ground
truth system and simulated time series. The noise dominated high-frequency tails of the spectra were cut off, and the power
spectra were slightly smoothed with a Gaussian kernel and normalized. We then computed the Hellinger distance (Mikhaeil,
Monfared, and Durstewitz 2022) between smoothed power spectra of ground-truth, F (ω), and generated, G(ω), trajectories
given by

H(F (ω), G(ω)) =

√
1−

∫ ∞

−∞

√
F (ω)G(ω)dω ∈ [0, 1] (11)

The dimension-wise Hellinger distances were then averaged to yield the DH values from Tables 1 and 4.

Mean Squared Prediction Error A mean squared prediction error (PE) was computed across test sets of length T = 10000
by initializing the trained dendPLRNN with the test set time series up to some time point t, from where it was then iterated
forward by n time steps to yield a prediction at time step t+ n. The n-step PE is then defined as the MSE between predicted and
true observations:

PE(n) =
1

N(T − n)

T−n∑
t=1

N∑
i=1

(xi,t+n − x̂i,t+n)
2 (12)

Due to exponential divergence of initially close trajectories in chaotic systems, the PE is sensible only for a limited number of
time steps (Koppe et al. 2019b).

Ordinal Prediction Error The ordinal PE was computed similarly as the mean squared PE above, but – as pointed out in
Öğretir et al. (2022) – due to the non-metric nature of ordinal data taking the absolute (L1) deviation between observed and
predicted values is more sensible:

OPE(n) =
1

N(T − n)

T−n∑
t=1

N∑
i=1

|oi,t+n − ôi,t+n| (13)

Spearman Cross-Correlation (SCC) To assess whether the global cross-correlation structure between the different ordinal
time series is preserved by the reconstruction method, the Spearman correlation between each pair of ordinal time series was
computed based on 100, 000 time steps long samples, using scipy.stats.spearmanr, for both generated and test set data
(see Fig. 4). The mean squared error between all elements of the correlation matrices was then taken.

Spearman Autocorrelation Function (SACF) To assess the temporal agreement between generated and ground truth ordinal
and count observations, we computed a measure based on the average SACF. To this end we first sampled a time series of
100, 000 time steps and compute the dimension-wise Spearman autocorrelation for time lags up to 200 for both generated data
and test set data (see Fig. 9). The squared error between the resulting SACFs was then averaged across all dimensions.

Geometric reconstruction measure in the absence of continuous observations If the underlying DS was observed only
through time series of discrete random variables, we lack a direct mapping between the true and reconstructed continuous
state spaces. To construct a mapping for such cases, we aimed for a linear operator that does not introduce additional degrees
of freedom for modifying the reconstructed attractor geometry, but consists only of 1) a projection into a space of same
dimensionality (and re-standardization of variables) followed by 2) a (geometry-preserving) rotation. This was to ensure that the
quality of geometrical agreement can be attributed solely to the reconstruction method and not to any post-hoc fitting. For the first
step, we simply used Principal Component Analysis (PCA) to reduce the dendPLRNN’s latent space to the same dimensionality
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Figure 4: Spearman cross-correlation matrix for the ground truth ordinal data (left) and for freely generated ordinal trajectories
(right) from a reconstructed Lorenz-63 system. The correlation structure of simulated data closely resembles that of the ground
truth data.

N as that of the ground truth system (which usually is of lower dimensionality). Afterwards, all axes were re-standardized
(as for the original system). In the second step, a rotation matrix was then determined to rotate the latent state space such as
to minimize the same Kullback-Leibler measure Dstsp that was used to assess agreement in attractor geometries, see Fig. 5
for an example. This was done simply by grid search over the space of rotation matrices, as we found numerical optimization
to often yield inferior results. Note that this operation does not alter the geometry of objects in the latent space but merely
rotates them such that they are best aligned with their ground truth counterparts (we also attempted Procrustes analysis (Gower
1975), using the Procrustes library (Meng et al. 2022), to determine the best affine mapping between spaces directly, but found
this generally to be inferior despite actually being less conservative than our approach). Comparing different grid- and step
sizes in preliminary runs, we fixed parameters such that a single grid search takes no more than 30− 60 seconds on a single
CPU. To confirm that this procedure yields results in agreement with those obtained from a co-trained linear-Gaussian model
fed with continuous observations, we compared Dstsp computed in observation space (’Dbin’) as outlined above with Dstsp

obtained from ordinal data alone using our PCA+rotation method (’DPCA’). As shown in Fig. 6, these two measures were
indeed highly correlated, r ≈ 0.94. An example reconstruction from solely ordinal observations for a Rössler system is given
in Fig. 3. For the 6-dimensional Lewis-Glass chaotic network model, performing a grid search over rotation matrices in the
observation space was unfortunately no longer computationally feasible, such that in this case we resorted to Procrustes analysis
(see above; generally, the Procrustes method aims to superimpose two data sets by optimally translating, rotating, and scaling
them, preserving geometric similarity). In this case, the correlation between the Dstsp measures obtained by a co-trained linear
model and the one obtained post-hoc via the Procrustes-transformed space dropped to r ≈ 0.57, but was still significant.

Details on Dynamical Systems Benchmarks
Lorenz-63 System The 3d Lorenz-63 system, originally proposed in Lorenz (1963), is defined by

dx = (σ(y − x))dt+ dϵ1(t),

dy = (x(ρ− z)− y)dt+ dϵ2(t), (14)
dz = (xy − βz)dt+ dϵ3(t).

Parameters used for producing ground truth data in the chaotic regime were σ = 10, ρ = 28, and β = 8/3. Process noise
was injected into the system by drawing from a Gaussian term dϵ ∼ N (0, 0.012dt × I). For both training and test data, a
trajectory of 100, 000 time steps was sampled, performing numerical integration with scipy.odeint (dt = 0.05; note this
value differs from the one used in Mikhaeil, Monfared, and Durstewitz (2022), explaining the different τ values required). To
obtain multimodal observations, trajectories drawn from the ground truth system were fed into the different types of observation
models in Eq. 6, with randomly drawn parameters.



Figure 5: Ground truth and rotated attractors of the Rössler system with associated Dstsp-values.

Figure 6: Correlation between geometrical reconstruction measures for the Rössler system directly in observation space given a
co-trained linear (Gaussian) observation model (Dbin), and from a 3d PCA projection of latent space followed by an optimal
rotation of the reconstructed attractor (DPCA), based on a total of 30 trained models.
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Figure 7: Example ground truth time series and freely generated series from a dendPLRNN (M = 20,K = 15, τ = 20, B = 10)
trained with MVAE-TF on the Lewis-Glass neural network model (Lewis and Glass 1992).

Rössler System The Rössler system was introduced in Rössler (1976) as a simplified version of the Lorenz system, and is
given by

dx = (−y − z)dt+ dϵ1(t),

dy = (x+ ay)dt+ dϵ2(t), (15)
dz = (b+ z(x− c))dt+ dϵ3(t).

Parameters used for producing ground truth data in the chaotic regime were a = 0.2, b = 0.2, and c = 5.7. Process noise was
added by drawing dϵ ∼ N (0, 0.012dt× I). Training and test data was sampled as described above for the Lorenz-63 system,
using dt = 0.1.

Lewis-Glass Chaotic Network Model We simulate a 6-dimensional model of a neural network, originally introduced in Lewis
and Glass (1992). Here the individual units of the network are endowed with a continuous gain function G(x) = 1+tanh(−αx)

2 ,
with the vector field given by

dx/dt =
−x

τ
+G(ϵKx)− β (16)

To sample from this system in the chaotic regime, we used the Hopfield model implementation in the Python package
dysts.flows, based on Gilpin (2022). Here, α = −1, β = 0.5, ϵ = 10, τ = 2.5, and

K =


0 −1 0 0 −1 −1
0 0 0 −1 −1 −1
−1 −1 0 0 −1 0
−1 −1 −1 0 0 0
−1 −1 0 −1 0 0
0 −1 −1 −1 0 0


We generated training and test data by maketrajectory, and down-sampled the generated data by a factor of 30. We sampled
ordinal and count data in the same way as for the other datasets. Example time series and reconstructions are displayed in Figure
7.



Figure 8: DS reconstruction with MVAE-TF from heavily distorted continuous observations and simultaneously provided ordinal
observations (see also Figure 2). a) Example reconstructed ordinal observations with 7 categories each. b) Normalized cumulative
densities of Hellinger distances between power spectra of reconstructed and ground-truth systems.

Observation Models for Multimodal Data
Ordinal Model Ordinal data are not associated with a metric space, but there is a natural ordering between variables, as e.g. in
survey data in economy or psychology commonly assessed through Likert scales (Likert 1932). Treating ordinal data as metric
can lead to a variety of problems, as pointed out in (Liddell and Kruschke 2018). Ordinal observations are coupled to latent states
via a generalized linear model (McCullagh 1980). Here, specifically, we assume that the ordinal observations ot are derived from
an underlying unobserved continuous variable uit, which is linked to the latent states zt via a linear model

uit = βT
i zt + ϵit, (17)

where βT
i ∈ RM are the model parameters and ϵit is an independently distributed noise term. The distributional assumptions

about the noise term ϵit determine which link function to use. A Gaussian assumption leads to an ordered probit model, while a
logistic assumption leads to an ordered logit model (Winship and Mare 1984). While both models lead to similar results, we
found the ordered logit model to work slightly better in practice, and hence we focus on it here. Inverting the link function leads
to an expression for the cumulative probabilities:

p (uit ≤ k | zt) =
exp

(
β0
ik − βT

i zt
)

1 + exp
(
β0
ik − βT

i zt
) (18)

The probability masses p (uit = k | zt) follow from the cumulative distribution via p (uit = k | zt) = p (uit ≤ k | zt) −
p (uit ≤ k − 1 | zt), from which we can compute the log-likelihood as

log pθ(O | Z) =

N∑
i

T∑
t

K∑
k

[uit = k] log p (uit = k | zt) (19)

Poisson Model For count observations {ct}Tt=1, with ct = (c1t, . . . , cLt)
T , we employ a Poisson observation model. The

probability of an observed count under a Poisson model is given by

pθ (clt | zt) =
λclt
lt

clt!
e−λlt (20)

The probability is related to the latent states via a log-link function by log λlt = γ
(l)
0 +

∑M
m=1 γ

(l)
m zmt, where γ(l) is a 1xM

vector. Thus, λlt = eγ
(l)
0 +γ(l)zt is the expected count for the lth observation variable at time t.

Details on Training
Multiple Shooting Another technique from the dynamical systems literature for controlling trajectory divergence, similar in
spirit to teacher forcing, is ‘multiple shooting’ (Bock and Plitt 1984). Multiple shooting aims to solve boundary value problems



by dividing time into sub-intervals, treating each sub-interval as a separate initial value problem, and then imposing continuity
conditions between intervals. Multiple shooting has also been applied to DS reconstruction, where the initial conditions (‘shooting
nodes’) for each interval are model parameters and continuity across intervals is enforced through a penalty term in the loss (Voss,
Timmer, and Kurths 2004). Hence, rather than controlling trajectory flows through a sparse teacher forcing signal applied after
forcing intervals τ , alternatively one may reset the latent model trajectory to an inferred initial condition after τ time steps. The
advantage is that this method does not require inversion of observation models and is hence naturally suited to handle different
data modalities without further care (i.e., retaining the distributional properties of the original data). More specifically, the
observed time series Y is partitioned into Nseq subsequences Y s, s = 1 . . . Nseq , of length L, and for each subsequence a new
initial condition µs

0 is learned. During training trajectories are freely generated for L time steps from µs
0 for each subsequence,

and likelihoods for the observed trajectories Y s are computed using the observation models from Eq. 6. A consistency (penalty)
term in the loss ensures continuity between subsequences according to

LMS = λMS

Nseq−1∑
s=1

||Fθ(z
s
L)− µs+1

0 ||22 (21)

where Fθ in our case is the dendPLRNN, Eq. 1, λMS is a regularization parameter, and Fθ(z
s
L) = Fθ(Fθ(. . . Fθ(µ

s
0))) = FL

θ (µs
0).

The sequence length L plays a similar role as the teacher forcing interval τ for MVAE-TF, controlling the times at which states
and gradients are reset during training. Indeed, optimal settings for τ and L closely agreed for the datasets studied here (see
Table 2).

Standard Unimodal Approach with Data ‘Gaussianization’ A naive approach for handling multi-modal observations with
any type of DS reconstruction model would be to pre-process all modalities such as to bring them into approximate agreement
with Gaussian assumptions. Thus, for training the dendPLRNN with standard BPTT-TF (Brenner et al. 2022) and GVAE-TF, we
transformed ordinal and count observations into approximately Gaussian variables through a Box-Cox-transformation (Box
and Cox 1964), z-scoring, and Gaussian kernel smoothing across the time series. For the optimal width of the Gaussian kernel,
we performed a grid search over kernel sizes ν ∈ {0, 0.01, 0.1, 1, 10, 15, 20, 25}. Optimal settings for the results displayed in
Tables 1 and 4 are given in Table 2.

Hyperparameter Settings To train the dendPLRNN with MVAE-TF, RAdam (Liu et al. 2020) was used with a learning rate
scheduler that iteratively reduced the learning rate from 10−3 to 10−5 during training. For each epoch, we randomly sampled
sequences of length Tseq = 300 from the total training data with a batch size of 16. The network weights A, W and h from Eq.
1 were initialized according to Talathi and Vartak (2016). To train the dendPLRNN with the SVAE from Kramer et al. (2022), we
followed the implementation of the encoder model as provided on https://github.com/DurstewitzLab/mmPLRNN, training with a
sequence-length of 150 time steps per batch, a hidden dimension of 20, and other model parameters similar to the runs with the
MVAE-TF. Hyperparameter settings were chosen such as to approximately keep the number of total parameters similar to that
used for MVAE-TF.

Dataset M B K τ, L λMS ν
Lorenz 20 15 15 10 1.0 10
Rössler 20 15 15 10 1.0 15

Lewis-Glass 20 15 15 20 1.0 20

Table 2: Hyperparameter settings for MVAE-TF, GVAE-TF and MS trained on the Lorenz, Rössler and Lewis-Glass model.



Figure 9: a) Freely generated example trajectories and time series from a dendPLRNN (M = 20,K = 15, τ = 10, B = 10)
trained with MVAE-TF jointly on Gaussian, ordinal, and count data sampled from a Lorenz-63 system. b) Example power
spectra (Gaussian data) and Spearman autocorrelation functions (ordinal and count data). Simulated latent trajectories faithfully
capture the geometry of the Lorenz attractor, as well as the temporal structure of the ground truth data when projected back into
observation space.

Dataset Method Dstsp ↓ OPE ↓ SCC ↓ OACF ↓
Lorenz MVAE-TF 8.8± 0.59 0.24± 0.015 0.085± 0.02 0.016± 0.04

SVAE 14.7± 0.7 0.8± 0.03 0.17± 0.02 0.23± 0.02
MS 13.8± 1.1 X 0.24± 0.06 0.15± 0.03

Rössler MVAE-TF 7.9± 0.8 0.093± 0.007 0.051± 0.009 0.051± 0.009
SVAE 11.5± 1.3 0.39± 0.02 0.23± 0.05 0.18± 0.04

MS 14.1± 1.0 X 0.12± 0.04 0.14± 0.03

Lewis-Glass MVAE-TF 0.35± 0.05 0.15± 0.02 0.28± 0.05 0.15± 0.03
SVAE 0.55± 0.07 0.29± 0.01 0.49± 0.04 0.24± 0.02

MS 0.35± 0.02 X 0.51± 0.04 0.45± 0.03

Table 3: Comparison of dendPLRNN trained by MVAE-TF (proposed method), by a SVAE based on (Kramer et al. 2022), and
a multiple-shooting (MS) approach, on 8 ordinal observations with seven ordered categories, produced by the chaotic Lorenz
system, Rössler system, and Lewis-Glass model. Values are mean ± SEM, averaged over 15 trained models. X = value cannot
easily be computed for MS (because here initial conditions cannot be obtained directly from the data but require additional
parameters).



Dataset Method Dstsp ↓ DH ↓ PE ↓ OPE ↓ SCC ↓ OACF ↓ CACF ↓

Lorenz

MVAE-TF 1.1± 0.2 0.16± 0.04 3.9e−3± 2.2e−4 0.08± 0.01 0.042± 0.002 0.011± 0.002 4.6e−5± 1.4e−6
SVAE 6.7± 0.7 0.87± 0.05 3.4e−1 ± 2.1e−2 0.46± 0.03 0.14± 0.01 0.13± 0.03 9.5e−5 ± 1.2e−5

GVAE-TF 1.94± 0.28 0.40± 0.08 2.4e−1± 1.2e−3 X X X X
BPTT-TF 5.3± 0.7 0.45± 0.05 4.4e−1± 2.2e−2 X X X X

MS 2.44± 0.25 0.34± 0.03 X X 0.051± 0.04 0.064± 0.01 6.5e−5 ± 3.8e−6

Rössler

MVAE-TF 1.01± 0.31 0.20± 0.02 4.8e−4± 2.4e−5 0.05± 0.04 0.027± 0.004 0.006± 0.001 4.4e−5± 2.3e−6
SVAE 9.7± 1.5 0.69± 0.05 1.2e−1 ± 3.4e−2 0.20± 0.06 0.12± 0.06 0.10± 0.03 1.1e−4± 2.3e−5

GVAE-TF 10.1± 0.74 0.55± 0.06 3.4e−2± 2.3e−3 X X X X
BPTT-TF 8.1± 1.1 0.64± 0.07 1.8e−1± 1.8e−3 X X X X

MS 4.21± 0.68 0.51± 0.03 X X 0.08± 0.04 0.05± 0.01 7.8e−5 ± 8.5e−6

Lewis-Glass

MVAE-TF 0.24± 0.16 0.35± 0.03 1.8e−3± 8e−5 0.1± 0.01 0.12± 0.03 0.04± 0.03 9.3e−4± 4.5e−4
SVAE 2.8± 1.3 0.53± 0.05 6.1e−2 ± 6e−3 0.23± 0.01 0.42± 0.04 0.26± 0.03 1.5e−2± 8.1e−3

GVAE-TF 0.26± 0.1 0.39± 0.02 2.6e−3± 5e−4 X X X X
BPTT-TF 1.53± 0.31 0.41± 0.03 2.4e−2± 3e−3 X X X X

MS 0.27± 0.06 0.37± 0.01 X X 0.08± 0.01 0.03± 0.02 1.7e−4± 7.9e−6

Table 4: Comparison of dendPLRNN trained by MVAE-TF (proposed method), by a SVAE based on Kramer et al. (2022), an
VAE-TF approach similar to MVAE-TF except that all data modalities were ‘Gaussianized’ (GVAE-TF), BPTT-TF as in Brenner
et al. (2022) using Gaussianized data, and a multiple-shooting (MS) approach. Training was performed on multivariate normal,
ordinal, and count data produced by the chaotic Lorenz system, Rössler system, and Lewis-Glass model. Observation noise with
1% of the data variance was added to the Gaussian observations. Values are mean ± SEM, averaged over 15 trained models. X =
value cannot be computed for this model (e.g., because resp. decoder model is not present).


