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ABSTRACT

Post-training Quantization (PTQ) has been gaining popularity for the deployment
of deep neural networks on resource-limited devices since unlike quantization-
aware training, neither a full training dataset nor end-to-end training is required
at all. As PTQ schemes based on reconstructing each layer or block output turn
out to be effective to enhance quantized model performance, recent works have
developed algorithms to devise and learn a new weight-rounding scheme so as
to better reconstruct each layer or block output. We notice that, however, such
new rounding schemes are established on element-wise addition. In this work, we
propose a simple yet effective new rounding mechanism for post-training weight
quantization, coined FlexRound, via element-wise division to learn not only a
common quantization grid size but also a different scale for each pre-trained weight.
Thanks to the reciprocal rule of derivatives induced by element-wise division,
FlexRound is inherently able to exploit the importance of a pre-trained weight
when updating its corresponding scale, and thus, flexibly quantize a pre-trained
weight depending on its own importance. We empirically validate the efficacy of
FlexRound on a wide range of models and tasks. To the best of our knowledge,
our work is the first to carry out comprehensive experiments on not only image
classification and natural language understanding but natural language generation
in the per-tensor uniform PTQ setting. Our code will be open-sourced soon.

1 INTRODUCTION

Recent years have witnessed the unprecedented success of deep neural networks in a wide variety of
domains including computer vision, natural language processing, automatic speech recognition, and
so on. Although state-of-the-art deep neural networks surpass human-level performance, these neural
networks cannot help requiring more and more computation cost and memory usage as networks
become deeper and wider. In order to reduce the model size and accelerate inference operations,
many researchers have attempted diverse compression techniques such as network quantization
(Courbariaux et al., 2016) and network pruning (Han et al., 2016). In this paper, we concentrate on
network quantization due to the advantage that INT4 or INT8 quantization allows us to accelerate
quantized neural networks using off-the-shelf accelerators such as the NVIDIA A100 Tensor Core
GPU (Wu et al., 2020) or ARM Cortex MCUs (Kim et al., 2021).

Network quantization techniques can be generally divided into two categories: quantization-aware
training (QAT) and post-training quantization (PTQ). When quantizing neural networks via QAT
(Jung et al., 2019; Jain et al., 2019; Zhao et al., 2020; Esser et al., 2020; Lee et al., 2021), the
performance gap between a full-precision neural network and its quantized counterpart can be
marginal. Yet, QAT requires end-to-end retraining or fine-tuning on a full training dataset, which
often causes an enormous amount of time and resources to obtain a quantized neural network with
competitive performance. Furthermore, a whole training dataset may not be available due to data
privacy issues or demands to utilize legacy models. Such drawbacks of QAT are the reasons why
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researchers recently pay more attention to PTQ (Zhao et al., 2019; Wang et al., 2020; Nahshan et al.,
2021) that needs neither a full training dataset nor end-to-end learning at all.

PTQ had been initially performed via rounding-to-nearest scheme by minimizing the quantization
error in the parameter space. Unfortunately, this approach suffers from severe performance degrada-
tion. Since it is reported that the loss degradation resulting from quantization can be approximated
as the second-order error in Taylor Expansion by viewing quantized weights as perturbed weights,
Nagel et al. (2020) and Li et al. (2021) substantiate that reconstructing each output of layer or block
is equivalent to minimizing the approximation of loss degradation resulting from quantization under
some assumptions. Accordingly, recent works (Nagel et al., 2020; Li et al., 2021; Hubara et al.,
2021; Wei et al., 2022) have suggested to reconstruct each output of layer or block by devising and
learning a new weight-rounding scheme, deviating from rounding-to-nearest, as an effort to preserve
the performance of a full-precision model. However, all those new rounding schemes designed in
existing studies either round or quantize pre-trained weights adaptively via element-wise addition.

Changing the perspective of a new rounding policy from element-wise addition to element-wise divi-
sion, we propose a simple yet effective post-training weight quantization method called FlexRound,
which flexibly quantizes pre-trained weights by learning how much each pre-trained weight should
be divided by. Interestingly, thanks to the reciprocal rule of derivatives induced by element-wise
division, FlexRound can inherently leverage pre-trained weights when updating an individual scale
for every pre-trained weight. Specifically, we corroborate that a relatively wider range of discrete
values needs to be explored when quantizing pre-trained weights of large magnitude. The rationale
behind such an approach is that the magnitude of weight can be considered as its importance. Given
that it is crucial to retain the knowledge of important weights even after quantization so as to maintain
the performance of a pre-trained model, the constraints associated with quantizing weights of large
absolute value should be relaxed compared to those of small absolute value (i.e., those important
weights can be quantized to one of not only its two nearest discrete values but also discrete ones far
from it). Accordingly, FlexRound quantizes pre-trained weights flexibly depending on each their own
importance, thereby leading to better performance.

Our contributions are threefold:

• We propose FlexRound as a new rounding scheme for post-training weight quantization based
on the principle of element-wise division to enable learning separate scales for all pre-trained
weights as well as a common quantization grid size across a group (e.g., a channel or a layer).

• We demonstrate that such a new rounding scheme via element-wise division takes into con-
sideration the importance of pre-trained weights when updating their corresponding scales so
that FlexRound can quantize pre-trained weights of large magnitude (i.e., important pre-trained
weights) more flexibly.

• To the best of our knowledge, we are the first to conduct extensive experiments in the form
of per-tensor uniform PTQ reconstruction on natural language generation as well as image
classification and natural language understanding. We verify the effectiveness of FlexRound
using numerous models such as ResNet, MobileNetV2, BERT, GPT-Neo, and OPT.

2 RELATED WORK

Recently, many researchers have attempted to quantize a wide range of models for various tasks such
as vision and language understanding/generation without any (re)training. OCS (Zhao et al., 2019)
replicates channels entailing outliers, and then, halves outliers of those channels. Unfortunately, even
though OCS explicitly addresses outliers, it still suffers from severe accuracy degradation when both
weights and activations are quantized into low-bit. As an alternative solution, Wang et al. (2020)
proposed Bit-Split that splits an integer into several bits and optimizes them separately. Although
Wang et al. (2020) showed that the performance of Bit-Split is close to that of a full-precision model
in the low-bit setting, Bit-Split may not be effective for certain architectures including MobileNetV2.
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To overcome the limitations discussed above, Nagel et al. (2020) and Hubara et al. (2021) minimize
the mean squared error (in a layer-by-layer fashion) between the full-precision layer’s output and
its quantized layer’s output by inventing and learning a new weight-rounding mechanism dubbed as
AdaRound and AdaQuant, respectively. As such a layer-wise reconstruction error minimization opens
the door to 4-bit PTQ regime, Li et al. (2021) proposed block-wise reconstruction, titled BRECQ,
to consider cross-layer dependency along with the possibility of fully quantizing MobileNetV2 into
4-bit. In addition to block-wise reconstruction, Wei et al. (2022) proposed QDrop that drops the
quantization of activations at random during reconstruction to induce activation quantization to be
synchronized with weight quantization. Both BRECQ and QDrop, however, are based on AdaRound,
which cannot learn a quantization grid size while quantizing weights allows for rounding either up or
down only at most. AdaQuant quantizes weights adaptively. AdaQuant, however, does not consider
the magnitude of weights for quantization that turns out to be important as we discuss later.

As another line of post-training quantization (PTQ) research, some PTQ techniques are specialized
in quantizing language models such as BERT and GPT-like models. Bondarenko et al. (2021) first
applied PTQ to BERT by introducing per-embedding-group activation quantization scheme to deal
with highly dynamic activation ranges. Bai et al. (2021) studied the PTQ reconstruction in parallel for
BERT. Yao et al. (2022) proposed ZeroQuant that quantizes BERT and GPT-3 in group-wise weight
quantization manner driven by token-wise activation quantization via layer-by-layer knowledge
distillation. Dettmers et al. (2022) quantizes large language models like OPT with vector-wise weight
quantization and mixed-precision decomposition with FP16 activation. All those methods do not
consider per-tensor weight quantization which can enable integer matrix-to-matrix multiplication
API/function calls (Migacz, 2017).

Most of the aforementioned PTQ studies are targeted to either vision models or language models
only, but not to both. Most experimental results in the above PTQ works are conducted via channel-
wise/group-wise/vector-wise weight quantization at the expense of reduced parallelism. To the best
of our knowledge, our work is the first to carry out extensive experiments on diverse tasks ranging
from image classification to natural language generation assuming a per-tensor uniform PTQ setting.

3 METHODOLOGY

In this section, we first present the notations used in the paper, describe the concept and design
of FlexRound for per-tensor uniform post-training quantization (PTQ) reconstruction, and then,
scrutinize how FlexRound can leverage the importance of a pre-trained weight.

3.1 PRELIMINARIES

Notations. A scalar, a vector, and a matrix (or a tensor) are expressed as a non-bold letter, a
small bold letter and a capital bold letter (e.g. s, s and S) respectively. Ŵ indicates the quantized
counterpart of W . The input to a convolutional or fully-connected layer is denoted as X if all
previous layers are intact or as X̃ if all previous layers are quantized. The (i, j) element of a matrix
W is represented as W(i,j). We let ⊙ and / indicate element-wise product and element-wise division,
respectively, similar to the broadcasting process in Python Numpy. ⌊ · ⌉ and ⌊·⌋ express the rounding
function and the floor function. || · ||F represents the Frobenius norm.

PTQ Background. The conventional uniform PTQ approach is to quantize pre-trained weights
W to be Ŵ = s1

⌊
W
s1

⌉
via rounding-to-nearest and to minimize ∥W − Ŵ ∥2F with respect to the

quantization grid size s1, but the minimization of quantization error in the parameter space is not
equivalent to that of the final task loss. On the grounds that Li et al. (2021) proves that the loss
degradation resulting from quantization can be approximated as the quadratic form of the network
output and its Hessian matrix, several existing studies have strove to minimize ∥WX − Ŵ X̃∥2F
layer-by-layer or block-by-block with respect to continuous variables V with only a small amount
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(a) A new rounding scheme via element-wise division. Both s1 and
S are updated toward minimizing the reconstruction error, L.

(b) Rounding functions with learned
parameters s1 and S as shown in (a).

Figure 1: Illustration of FlexRound in the per-tensor uniform PTQ reconstruction. As seen in (b),
FlexRound flexibly quantizes pre-trained weights by observing W(2,4) < W(3,2) but Ŵ(2,4) > Ŵ(3,2).

of data, where Ŵ is either s1(⌊W
s1
⌋ + h(V )) with a certain function h(·) (Nagel et al., 2020) or

s1

⌊
W+V

s1

⌉
] (Hubara et al., 2021). However, all these aforementioned rounding mechanisms are

founded on element-wise addition.

3.2 FLEXROUND

Unlike prior works based on element-wise addition, we exploit element-wise division for quantizing
pre-trained weights. We can formulate our proposed weight-rounding scheme via element-wise
division as follows:

Ŵ = s1

⌊W
S

⌉
, (1)

where the shape of S is equal to that of W while all entries of S as well as the quantization grid size
s1 are positive and learnable. Similarly to preceding studies, both s1 and S are updated as an attempt
to minimize ∥WX − Ŵ X̃∥2F .

Eq. 1 implies that the basic formula of FlexRound supports per-tensor uniform PTQ. Notice that
although FlexRound can adopt a per-channel weight quantization scheme simply by replacing a scalar
s1 with a vector s1, since we show later that per-tensor uniform PTQ (using FlexRound) is enough to
provide the accuracy of a full-precision model, we set a single quantization grid size s1 for each layer
(Per-tensor quantization schemes might enable integer matrix-to-matrix multiplication API/function
calls that can facilitate efficient inference of quantized models. (Migacz, 2017)). From now on, thus,
we study only the per-tensor uniform PTQ reconstruction. The overall procedure of FlexRound is
described in Figure 1.

= 𝑠! ⊙ ⊙𝑺𝟐𝑺 𝑠#

Figure 2: Formation of S for a linear layer.

Now let us discuss how to design S. Let W ∈
RCout×Cin in the case of a fully-connected layer
and W ∈ RCout×Cin×H×W in the case of a con-
volutional layer. We first start formulating S as
S = s1⊙S2 where S2 ∈ RCout×Cin

>0 in the case of a
fully-connected layer and S2 ∈ RCout×Cin×H×W

>0 in
the case of a convolutional layer while all elements
of S2 are learnable. Then, motivated by a wide acknowledgement that the statistics of output chan-
nels can vary greatly (Nagel et al., 2019; Lou et al., 2020), we account for the variation of output
channel’s statistics by complementing S with an additional learnable tensor s3, where s3 ∈ RCout×1

>0

in the case of a fully-connected layer and s3 ∈ RCout×1×1×1
>0 in the case of a convolutional layer.

For a convolutional layer, S is additionally complemented by another learnable tensor s4, where
s4 ∈ R1×Cin×1×1

>0 . Consequently, S is formulated as s1 ⊙ S2 ⊙ s3 for a fully-connected layer as
displayed in Figure 2 and s1 ⊙ S2 ⊙ s3 ⊙ s4 for a convolutional layer.
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Accordingly, quantization process for FlexRound can be expressed as

Ŵ =

s1

⌊
W

s1⊙S2⊙s3

⌉
if W is a fully-connected layer

s1

⌊
W

s1⊙S2⊙s3⊙s4

⌉
if W is a convolutional layer

(2)

where all entries of S2, s3, and s4 are initialized to be ones in order to enable learning S2, s3, and s4

from rounding-to-nearest, s1
⌊
W
s1

⌉
. s1, S2, s3, and s4 are updated to minimize ∥WX − Ŵ X̃∥2F

subject to the constraint that all elements of s1, S2, s3, and s4 are positive.

Since s1, S2, s3, and s4 are all learnable and FlexRound does not need any explicit regularization
terms, no additional hyper-parameter is necessary, and thus, FlexRound would be convenient for
practitioners. Moreover, as all entries of s1, S2, s3, and s4 are positive and FlexRound is based on
element-wise division, FlexRound encourages Ŵ to employ the same sign as W . Hence, FlexRound
prevents extreme changes of weights through quantization process unlike some element-wise addition
rounding scheme such as AdaQuant (Hubara et al., 2021).

4 EXPERIMENTS

In this section, we present experimental results for benchmark datasets and network models in
computer vision and natural language processing tasks. We first empirically confirm that additional
tensors s3 and s4 introduced in Section 3.2 implement distinct contributions in the per-tensor uniform
post-training quantization (PTQ) setting. Then, we compare the performance of FlexRound with
that of some state-of-the-art PTQ approaches in the following cases: image classification on the
ImageNet (Russakovsky et al., 2015) dataset with the ResNet (He et al., 2016) and MobileNetV2
(Sandler et al., 2018) architectures (Section 4.3), natural language understanding (NLU) on the GLUE
(Wang et al., 2018) benchmark with the BERT (Devlin et al., 2018) and GPT-Neo (Black et al., 2021)
architectures (Section 4.4), and natural language generation (NLG) on WikiText2 (Merity et al.,
2016) and Penn Treebank (PTB) (Marcus et al., 1993) with the GPT-Neo and OPT (Zhang et al.,
2022) architectures (Section 4.4). For brevity, we let “B + X” and “Q + X” indicate that a certain
rounding scheme ‘X’ is performed in the experimental setup described in BRECQ (Li et al., 2021)
or QDrop (Wei et al., 2022), respectively (an experimental setup includes the definition of a block
unit for reconstruction error minimization or how much the probability of dropping the quantization
of activations is). As introduced in BRECQ and QDrop, we also utilize the LSQ technique (Esser
et al., 2020) when updating an activation step size for activation quantization. Throughout our
comprehensive experiments, we verify that FlexRound can achieve competitive performance with a
full-precision model for the above tasks even in the per-tensor uniform PTQ reconstruction, which
has not been introduced previously. All experimental results in this section are conducted by our own
implementation based on open-source codes.

4.1 LEVERAGING THE IMPORTANCE OF A PRE-TRAINED WEIGHT

As we discussed previously, either element-wise addition or element-wise division is effective to
produce a better rounding scheme than a rounding to the nearest scheme. In order to investigate
the difference between element-wise addition and element-wise division, it would be instructive to
analyze the gradient of the reconstruction error L = ∥WX − Ŵ X̃∥2F with respect to S′ (where
S′ is S2 ⊙ s3 for a fully-connected layer and S2 ⊙ s3 ⊙ s4 for a convolutional layer). Through
analysis, unlike element-wise addition, we show that element-wise division enables ∂L

∂S′ to leverage
the importance of pre-trained weights W , as follows1:

Using the straight-through estimator (Bengio et al., 2013), for every i and j,
∣∣∣ ∂L
∂S′

(i,j)

∣∣∣ is directly

proportional to
∣∣∣∣W(i,j)

∂L
∂Ŵ(i,j)

∣∣∣∣, which implies that S′
(i,j) is (partially) affected by W(i,j). As a result,

1For simplicity, we take into account the case of a fully-connected layer.
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(a) MobileNetV2

(b) ResNet-18

Figure 3: Weight updates through FlexRound of the first convolutional layer in the first block of
(a) MobileNetV2 and (b) ResNet-18, after quantizing pre-trained weights into 4-bit (by FlexRound)
while activations are kept in full-precision.

W (i,j) =
⌊

W(i,j)

s1⊙S′
(i,j)

⌉
can also be updated and influenced by W(i,j) as well. In other words, as the

magnitude of a pre-trained weight W(i,j) is larger, the chance of W (i,j) receiving a larger update
becomes higher during the PTQ reconstruction. In light of the fact that the magnitude of a weight
can be regarded as a metric to measure importance during compressing a neural network (Han et al.,
2015; Zhu & Gupta, 2017), if the goal is to enhance model accuracy after quantization, it would be
reasonable to have less important (that is, smaller magnitude) weights rounded either up or down
only while allowing more important (i.e., exhibiting larger magnitude) weights to be quantized to one
of the two closest quantization grids or more.

Figure 3 presents the amount of weight updates through FlexRound for MobileNetV2 and ResNet-18.
On the left side and the center side of Figure 3, histograms describe the change of W (i,j) grouped for
small pre-trained weights (|W | < 1, left) and large pre-trained weights (|W | > 1, center). On the
right side, scatter plots show the amount of grid shifts from the grids obtainable by the rounding-to-
nearest (RTN) scheme. We note that MobileNetV2 and ResNet-18 are quantized distinctively due
to FlexRound. For example, in the case of MobileNetV2 as illustrated in Figure 3(a), the change of
W (i,j) attained by minimizing L is more aggressive (i.e., rounding can be deviated by more than
one-step up or one-step down) when the absolute value of W(i,j) is larger than one, which means
that FlexRound more flexibly quantizes pre-trained weights of large magnitude as illustrated in red
dotted squares in Figure 3(a). The amount of aggressively rounded weights in the first convolutional
layer of the first block of MobileNetV2 is around 12.8% of the total. For ResNet-18, however, there
are no pre-trained weights whose magnitudes are larger than one. Thus, most pre-trained weights
are rounded either up or down as shown in Figure 3(b) (e.g., only about 1.5% weights are rounded
aggressively in the first convolutional layer of the first block of ResNet-18). Different rounding
results by FlexRound, AdaRound, and AdaQuant are visually compared in Appendix A.

4.2 ABLATION STUDY

To justify the introduction of s3 and s4 on FlexRound in the per-tensor uniform PTQ setting, we
investigate the impact of s3 and s4 on the performance of FlexRound using the ImageNet dataset
with pre-trained weights quantized into 2-bit (activations are not quantized). As shown in the last
two rows in Table 1, the presence of s3 and s4 enhances the accuracy for all models. Interestingly,
FlexRound outperforms both AdaQuant and AdaRound even without s3 and s4, which would support
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Table 1: Top-1/Top-5 accuracy (%) on ImageNet by ResNet-18, ResNet-50, and MobileNetV2 with
only weights quantized into 2-bit. “B + X” denotes the implementation of X in the setting of BRECQ.
We employ pre-trained models available from the official PyTorch repository.

Method ResNet-18 ResNet-50 MobileNetV2
B + AdaQuant 1.13/4.10 0.12/0.60 0.10/0.50
B + AdaRound 63.01/85.20 68.31/88.98 33.10/60.58
B + FlexRound without s3, s4 63.19/85.08 70.00/89.82 34.75/62.51
B + FlexRound with s3, s4 63.73/85.41 70.57/90.07 38.09/64.90

Table 2: Top-1/Top-5 accuracy (%) for ResNet-18, ResNet-50, and MobileNetV2 on ImageNet when
only weights are quantized. “B + X” expresses the implementation of X in the BRECQ’s setting. We
employ pre-trained models available from the BRECQ github repository

Method # Bits (W./A.) ResNet-18 ResNet-50 MobileNetV2
Full-precision 32/32 71.00/89.97 76.63/93.04 72.62/90.67

B + AdaQuant 4/32 67.50/87.75 72.79/90.77 15.17/32.89
B + AdaRound 4/32 70.18/89.38 75.86/92.62 69.46/88.85
B + FlexRound (Ours) 4/32 70.28/89.44 75.95/92.68 70.82/89.67

B + AdaQuant 3/32 57.09/80.82 52.13/75.22 0.20/0.79
B + AdaRound 3/32 68.79/88.62 74.31/91.81 62.51/84.52
B + FlexRound (Ours) 3/32 68.65/88.54 74.38/91.81 66.87/87.56

B + AdaQuant 2/32 0.23/0.92 0.10/0.50 0.10/0.50
B + AdaRound 2/32 61.99/84.81 48.47/77.09 39.57/66.18
B + FlexRound (Ours) 2/32 62.57/84.84 63.67/85.72 46.04/72.48

our claim that a new rounding scheme, shifted from element-wise addition to element-wise division,
is the key to improving quantization quality significantly.

4.3 RESNET-18, RESNET-50, AND MOBILENETV2 ON IMAGENET

In this subsection, we quantize ResNet-18, ResNet-50, and MobileNetV2 in the low-bit PTQ recon-
struction with 1024 randomly sampled images. Linear symmetric per-tensor quantization format is
assumed to quantize weights and/or activations. For FlexRound, the output of each layer or block is
reconstructed during 5k iterations while all learnable parameters (i.e., s1, S2, s3, and s4) are updated
by using one learning rate (e.g., 4e-4 for the ResNet models quantized by 3-bit or 4-bit, or 1e-3 for
the ResNet models quantized by 2-bit and MobileNetv2). The first and last layers are quantized into
8-bit and the batch normalization layer is folded into convolution, as done in Li et al. (2021). Our
experiments are performed based on full-precision pre-trained models available from the BRECQ (Li
et al., 2021) github repository2, and we report the median over five random trials.

Assuming the quantization of weights only, we compare FlexRound with AdaRound and AdaQuant
that utilize the principle of element-wise addition to decide rounding operations. Table 2 shows
that FlexRound consistently outperforms those two addition-based rounding policies. Note that the
performance of AdaQuant is inferior to that of AdaRound in Table 2. Correspondingly, FlexRound
would be compared to AdaRound only to save space hereafter. Table 3 provides model accuacy
when AdaRound and FlexRound (to quantize both weights and activations) are associated with the
settings of BRECQ or QDrop. In Table 3, it should be noted that FlexRound is particularly successful
for MobileNetV2 incorporating weights of large magnitude, for the reason that we explained in
Section 4.1. It is also interesting to see that even when both weights and activations of the ResNet

2https://github.com/yhhhli/BRECQ
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Table 3: Top-1/Top-5 accuracy (%) for ResNet-18, ResNet-50, and MobileNetV2 on ImageNet when
both weights and activations are quantized. “B + X” and “Q + Y” represent the implementation of X
in the BRECQ’s setting and that of Y in the QDrop’s setting, respectively. We employ pre-trained
models available from the BRECQ github repository.

Method # Bits (W./A.) ResNet-18 ResNet-50 MobileNetV2
Full-precision 32/32 71.00/89.97 76.63/93.04 72.62/90.67

B + AdaRound 4/4 69.18/88.85 74.44/91.80 61.05/83.30
B + FlexRound (Ours) 4/4 69.32/88.83 74.56/91.87 63.74/85.01
Q + AdaRound 4/4 69.20/88.96 74.90/92.15 65.42/86.23
Q + FlexRound (Ours) 4/4 69.26/88.81 75.08/92.20 66.66/87.21

B + AdaRound 3/3 64.83/86.12 67.01/87.28 3.74/11.54
B + FlexRound (Ours) 3/3 64.99/85.93 68.29/87.89 25.43/48.28
Q + AdaRound 3/3 65.71/86.96 70.49/89.93 39.86/66.00
Q + FlexRound (Ours) 3/3 65.43/86.60 70.74/89.78 51.49/76.90

Table 4: Performance of BERTBase, BERTLarge, on the GLUE benchmark. For evaluation metrics,
matched and mismatched accuracies are reported for MNLI, F1 score and accuracy are reported for
QQP, Mathews correlation is reported for CoLA, Pearson and Spearman correlations are reported for
STS-B, and accuracy is reported for the others. “Q + X” indicates the implementation of X in the
QDrop’s setting.

Dataset Method BERTBASE BERTLARGE GPT-Neo125M GPT-Neo1.3B GPT-Neo2.7B

Full-precision 84.49/85.20 86.05/85.98 79.11/79.63 85.12/86.04 86.36/87.02
MNLI Q+AdaRound 83.69/84.61 85.75/85.86 72.67/74.11 84.90/85.82 86.33/86.75

Q+FlexRound (Ours) 84.53/84.98 85.93/85.99 72.94/74.24 85.56/86.14 86.41/86.89
Full-precision 88.06/91.08 88.66/91.59 85.20/88.99 88.26/91.28 88.62/91.50

QQP Q+AdaRound 87.65/90.58 87.48/90.62 72.97/79.35 87.98/91.04 88.38/91.27
Q+FlexRound (Ours) 87.81/90.83 88.38/91.31 73.75/80.65 88.27/91.18 88.60/91.39
Full-precision 91.25 92.13 85.15 91.36 92.46

QNLI Q+AdaRound 91.16 92.24 80.87 91.40 92.04
Q+FlexRound (Ours) 91.16 92.04 80.52 91.54 92.50
Full-precision 93.00 92.78 89.91 93.35 94.50

SST-2 Q+AdaRound 92.66 93.00 84.75 92.55 93.81
Q+FlexRound (Ours) 92.43 93.58 83.03 93.12 94.04
Full-precision 58.55 63.57 37.83 57.42 58.88

CoLA Q+AdaRound 56.79 54.30 20.15 58.93 57.14
Q+FlexRound (Ours) 57.53 60.57 21.59 59.30 57.37
Full-precision 88.52/88.20 88.98/88.89 79.87/80.12 88.94/88.90 89.75/89.82

STS-B Q+AdaRound 88.00/87.53 86.87/86.69 68.55/68.25 88.97/88.77 89.03/88.91
Q+FlexRound (Ours) 88.29/87.91 88.82/88.76 67.65/68.34 88.82/88.58 89.06/88.69
Full-precision 85.05 85.54 80.15 85.05 87.99

MRPC Q+AdaRound 81.62 82.35 75.25 84.80 85.78
Q+FlexRound (Ours) 84.07 84.31 75.49 85.05 86.76
Full-precision 64.62 71.19 64.98 76.17 80.87

RTE Q+AdaRound 63.54 66.79 62.82 75.09 80.51
Q+FlexRound (Ours) 64.62 68.95 62.82 76.17 81.23

models are quantized into 4-bit under the per-tensor uniform PTQ setting, the performance degradation
(compared to a full-precision pre-trained model) is negligible (less than 1.5%) in Table 3.

4.4 LANGUAGE MODELS

All language models we consider in this paper are based on the structure of Transformers (Vaswani
et al., 2017). To quantize Transformers into 8-bit, we apply linear asymmetric per-tensor quantization
scheme for both weights and activations, while reconstruction (for PTQ) is considered for each

8



Under review as a conference paper at ICLR 2023

Table 5: Performance of GPT-Neo125M, GPT-Neo1.3B, GPT-Neo2.7B, OPT125M, OPT1.3B and
OPT2.7B on the WikiText2 and PTB datasets. The perplexity (PPL) is employed as a performance
metric. The lower PPL, the better. “Q + X” means the implementation of X in the QDrop’s setting.

Dataset Method GPT-Neo125M GPT-Neo1.3B GPT-Neo2.7B OPT125M OPT1.3B OPT2.7B

Full-precision 31.54 15.40 13.35 56.08 29.76 26.13
WikiText2 Q+AdaRound 35.60 15.75 13.95 226.48 40.40 47.48

Q+FlexRound (Ours) 33.44 15.68 13.80 66.07 40.01 40.38

Full-precision 64.63 31.51 27.22 129.90 76.06 68.81
PTB Q+AdaRound 70.16 31.97 28.24 220.01 103.15 120.37

Q+FlexRound (Ours) 66.62 31.74 27.68 145.45 101.81 106.88

Transformer layer that includes attention sublayers and feedforward sublayers. All weights are
quantized into 8-bit except the last randomly initialized layer. As for activation quantization, on-
the-fly (static) quantization is conducted before every fully-connected layer except the inputs of the
softmax layer and the normalization layer that remain to be of full-precision as in Zafrir et al. (2019)
and Zhang et al. (2020).

BERT and GPT-Neo on GLUE We evaluate the natural language understanding (NLU) per-
formance of FlexRound using various models including BERTBase, BERTLarge, GPT-Neo125M,
GPT-Neo1.3B and GPT-Neo2.7B on the GLUE benchmark. The learning rate applied to all learnable
parameters (s1, S2, and s3) is selected to be 2e-4 for BERT and to be 3e-4 for GPT-Neo. Reconstruc-
tion process is performed by using 1024 random samples for 20K iterations. For all experiments,
the batch size is 64 and maximum sequence length of all experiments is 128. We utilize pre-trained
language models (PLMs) and datasets available from the HuggingFace (Wolf et al., 2020) repository3.
Further experimental details are referred to Appendix G. In Table 4, we report the performance of
‘Q + AdaRound’ and ‘Q + FlexRound’ that are potentially promising as shown in Table 3. We can
notice that ‘Q + FlexRound’ yields better NLU scores than ‘Q + AdaRound’ for most NLU tasks. In
particular, for the MNLI and QQP datasets, ‘Q + FlexRound’ can achieve comparable or even superior
performance to a full-precision model in the per-tensor uniform PTQ setting except GPT-Neo125M.

GPT-Neo and OPT on WikiText2 and PTB We test the natural language generation (NLG)
performance of FlexRound on the WikiText2 and PTB datasets. PLMs (for NLG) are quantized by
FlexRound (in a per-tensor quantization manner) while a small amount of data of downstream tasks
are used for reconstruction and evaluation. Specifically, PLMs include GPT-Neo125M, GPT-Neo1.3B,
GPT-Neo2.7B, OPT125M, OPT1.3B and OPT2.7B, while 256 downstream task data samples are chosen
at random for reconstruction. More details on the experimental setup are provided in Appendix I.
Table 5 presents the results of GPT-Neo and OPT on NLG tasks and it is clear that ‘Q + FlexRound’ is
superior to ‘Q + AdaRound’ for all models and NLG tasks. Note that for GPT-Neo, ‘Q + FlexRound’
can achieve the similar performance of a full-precision PLM even in the per-tensor uniform PTQ
setting, while some previous attempts rely on group-wise or vector-wise quantization (Yao et al.,
2022; Dettmers et al., 2022).

5 CONCLUSION

We propose a new rounding scheme, named FlexRound, for post-training quantization under the the
principle of element-wise division, to enable learning both a common quantization grid size and
an individual scale for each pre-trained weight. We validate that FlexRound can flexibly quantizes
pre-trained weights by exploiting their magnitude as a metric to measure importance. Consequently,
FlexRound can achieve comparable performance to a full-precision model even in the per-tensor
uniform PTQ setting. As a future work, we plan to quantize large language models beyond 6.7B
parameters in the per-tensor uniform PTQ setting.

3https://github.com/huggingface/transformers
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A COMPARISON OF FLEXROUND TO ADAROUND AND ADAQUANT

Figure 4 shows that the comparison of FlexRound to AdaRound and AdaQaunt. As seen in Figure
4(a), FlexRound can quantize pre-trained weights more flexibly than AdaRound and AdaQuant. As
weights of large magnitude are not quantized aggressively in the middle of Figure 4(a) compared to
the right of Figure 4(a), AdaQuant quantizes weights of large importance marginally, which seems to
make it difficult for AdaQuant to quantize MobileNetV2 into 4-bit.

(a) MobileNetV2

(b) ResNet-18

Figure 4: Scatter plot of the amount of grid shifts from rounding-to-nearest gird in the first layer of
the first block in MobileNetV2 and ResNet-18 when only weights are quantized into 4-bit.
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B DERIVATION OF SECTION 4.1

Let L = ∥WX − Ŵ X̃∥2F and S′ be S2 ⊙ s3 for a fully-connected layer and S2 ⊙ s3 ⊙ s4 for a
convolutional layer. In the case of a fully-connected layer,
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The derivation in the case of a convolutional layer can be done by just replacing Ŵ(i,j) with Ŵ(i,j,k,l)

and S′
(i,j) with S′

(i,j,k,l).
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C RESNET-18, RESNET-50, AND MOBILENETV2 ON IMAGENET WITH

PRE-TRAINED MODELS FROM THE OFFICIAL PYTORCH REPOSITORY

Table 6: Top-1/Top-5 accuracy (%) for ResNet-18, ResNet-50, and MobileNetV2 on ImageNet when
only weights are quantized. “B + X” expresses the implementation of X in the BRECQ’s setting. We
employ pre-trained models available from the official PyTorch repository.

Method # Bits (W./A.) ResNet-18 ResNet-50 MobileNetV2
Full-precision 32/32 69.76/89.08 76.15/92.87 71.88/90.29

B + AdaQuant 4/32 67.55/87.73 74.09/91.77 0.48/0.53
B + AdaRound 4/32 69.15/88.70 75.51/92.73 67.76/88.12
B + FlexRound (Ours) 4/32 69.21/88.76 75.59/92.63 69.56/89.02

B + AdaQuant 3/32 60.75/83.41 66.19/87.08 0.10/0.52
B + AdaRound 3/32 67.98/88.17 74.51/92.20 60.18/83.52
B + FlexRound (Ours) 3/32 68.02/88.03 74.61/92.11 64.85/86.38

B + AdaQuant 2/32 1.13/4.10 0.12/0.60 0.10/0.50
B + AdaRound 2/32 63.01/85.20 68.31/88.98 33.10/60.58
B + FlexRound (Ours) 2/32 63.73/85.41 70.57/90.07 38.09/64.90

Table 7: Top-1/Top-5 accuracy (%) for ResNet-18, ResNet-50, and MobileNetV2 on ImageNet when
both weights and activations are quantized. “B + X” and “Q + Y” represent the implementation of X
in the BRECQ’s setting and that of Y in the QDrop’s setting, respectively. We employ pre-trained
models available from the official PyTorch repository.

Method # Bits (W./A.) ResNet-18 ResNet-50 MobileNetV2
Full-precision 32/32 69.76/89.08 76.15/92.87 71.88/90.29

B + AdaRound 4/4 68.32/88.13 74.28/92.02 28.46/52.60
B + FlexRound (Ours) 4/4 68.34/88.19 74.42/92.04 55.25/78.61
Q + AdaRound 4/4 68.19/88.18 74.68/92.02 56.68/80.95
Q + FlexRound (Ours) 4/4 68.23/88.22 74.83/92.11 61.56/84.18

B + AdaRound 3/3 64.44/85.73 68.80/88.79 2.11/7.24
B + FlexRound (Ours) 3/3 64.61/85.85 69.62/89.19 8.80/21.79
Q + AdaRound 3/3 65.33/86.60 71.80/90.72 32.41/59.27
Q + FlexRound (Ours) 3/3 65.28/86.49 71.84/90.48 41.51/68.02
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D IMPORTANCE OF JOINTLY LEARNING THE QUANTIZATION GRID SIZE s1
WITH ROUNDING

Table 8: Top-1/Top-5 accuracy (%) on ImageNet by ResNet-18, ResNet-50, and MobileNetV2 with
only weights quantized into 4-bit. “B + X” denotes the implementation of X in the setting of BRECQ.
We employ pre-trained models available from the official PyTorch repository.

Method ResNet-18 ResNet-50 MobileNetV2
B + AdaQuant 67.55/87.73 74.09/91.77 0.48/0.53
B + AdaRound 69.15/88.70 75.51/92.73 67.76/88.12
B + FlexRound with s1 fixed 69.11/88.64 75.52/92.64 68.19/88.45
B + FlexRound (Ours) 69.21/88.76 75.59/92.63 69.56/89.02

To demonstrate the importance of jointly learning s1 with the rounding, we did an additional study
with s1 fixed. When fixing s1, for ResNet models the performance of FlexRound is almost comparable
to that of AdaRound, while for MobileNetV2 FlexRound is somewhat superior to AdaRound. When
jointly learning s1 with the rounding, however, FlexRound outperforms AdaRound for all models. It
is therefore critical to learn s1 jointly with the rounding.
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E ABLATION STUDY ON SAMPLE SIZE

Figure 5: Ablation study on sample size when quantizing MobileNetV2 into 4-bit. Only weights are
quantized, with activations kept in full-precision. We employ pre-trained models available from the
official PyTorch repository.

No matter how much data is used, B+FlexRound always outperforms B+AdaRound. When the
sample size decreases from 64 to 32, the accuracy of B+FlexRound declines by almost one percent.
Correspondingly, a sample size of 32 would be a breakthrough point.
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F COMBINING ELEMENT-WISE ADDITION AND ELEMENT-WISE DIVISION

Table 9: Top-1/Top-5 accuracy (%) for ResNet-18, ResNet-50, and MobileNetV2 on ImageNet when
only weights are quantized. “B + X” expresses the implementation of X in the BRECQ’s setting. We
employ pre-trained models available from the official PyTorch repository.

Method # Bits (W./A.) ResNet-18 ResNet-50 MobileNetV2
Full-precision 32/32 69.76/89.08 76.15/92.87 71.88/90.29

B + AdaQuant 4/32 67.55/87.73 74.09/91.77 0.48/0.53
B + AdaQuant + FlexRound 4/32 68.75/88.45 75.14/92.45 68.36/88.49
B + FlexRound (Ours) 4/32 69.21/88.76 75.59/92.63 69.56/89.02

B + AdaQuant 3/32 60.75/83.41 66.19/87.08 0.10/0.52
B + AdaQuant + FlexRound 3/32 67.36/87.71 74.05/91.87 61.64/84.28
B + FlexRound (Ours) 3/32 68.02/88.03 74.61/92.11 64.85/86.38

B + AdaQuant 2/32 1.13/4.10 0.12/0.60 0.10/0.50
B + AdaQuant + FlexRound 2/32 62.23/84.77 69.39/89.35 34.11/61.64
B + FlexRound (Ours) 2/32 63.73/85.41 70.57/90.07 38.09/64.90

To identify whether there comes any benefit from both addition and division, we combine AdaQuant
with FlexRound. AdaQuant + FlexRound is superior to AdaQuant but inferior to FlexRound. This
might be due to the naive combination of AdaQuant with FlexRound. Considering both addition and
division would be an interesting future work.
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G BERT AND GPT-NEO ON GLUE

The experimental setting of ‘Q + AdaRound’ follows Wei et al. (2022). To investigate the natural
language understanding performance of FlexRound from BERT4 to GPT-Neo5, we directly fine-tune
pre-trained models on the GLUE6 dataset. For BERT, we use uncased models. Hyper-parameter
selection for fine-tuning a pre-trained model is given in Table 10. We use ADAM optimizer as
default for all methods and models. In the QDrop’s setting, the probability of dropping activation
quantization is set to 0.5. We utilize the Huggingface repository7 for the evaluation method without
any modification.

Table 10: Hyper-parameter selection for fine-tuning BERTBase, BERTLarge, GPT-Neo125M,
GPT-Neo1.3B, and GPT-Neo2.7B on the GLUE benchmark.

Configuration BERTBase BERTLarge GPT-Neo125M GPT-Neo1.3B GPT-Neo2.7B

Learning Rate 2e-5 2e-5 2e-5 2e-5 1e-5
Batch Size 32 32 32 32 16

Epoch 3
Max Sequence Length 128

Weight Decay 0.01

4https://huggingface.co/bert-base-uncased
5https://huggingface.co/EleutherAI/gpt-neo-1.3B
6https://huggingface.co/datasets/glue
7https://github.com/huggingface/transformers/tree/main/examples/

pytorch/text-classification
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H BERT ON SQUAD

Table 11 additionally shows the performace of FlexRound on the SQuADv1(Rajpurkar et al., 2016)8

dataset for the BERT models. For experimental details, Both BERTBase and BERTLarge are uncased
models. For ‘Q + FlexRound’, the learning rate is set to 1e-4 for both models. For both ‘Q +
AdaRound’ and ‘Q + FlexRound’, the batch size and the number of iterations for reconstruction
are 64 and 20k respectively. We use ADAM optimizer as default for all methods and models. The
other experimental setting of ‘Q + AdaRound’ follows Wei et al. (2022). Table 12 shows the hyper-
parameter selection for fine-tuning. Both BERTBase and BERTLarge are using the same configuration.
The other setting for fine-tuning and the evaluation method are the same as HuggingFace repository9.

Table 11: F1 score for BERTBase and BERTLarge on SQuADv1 dataset when both weights and
activations are quantized into 8-bit. “Q + X” represent the implementation of X in the QDrop’s
setting.

Method # Bits (W./A.) BERTBase BERTLarge

Full-precision 32/32 87.05 89.31

Q + AdaRound 8/8 86.90 88.89
Q + FlexRound (Ours) 8/8 87.25 89.25

Table 12: Hyper-parameter selection for fine-tuning BERTBase and BERTLarge on SQuADv1 dataset.

Learning rate Batch size Epoch Maximum sequence length Document stride
1e-4 32 4 384 128

8https://huggingface.co/datasets/squad
9https://github.com/huggingface/transformers/tree/main/examples/

pytorch/question-answering

20

https://huggingface.co/datasets/squad
https://github.com/huggingface/transformers/tree/main/examples/pytorch/question-answering
https://github.com/huggingface/transformers/tree/main/examples/pytorch/question-answering


Under review as a conference paper at ICLR 2023

I GPT-NEO AND OPT ON WIKITEXT2 AND PTB

To evaluate FlexRound for natural language generation tasks, we utilize the WikiText2 10 and PTB
11 datasets. Table 13 reports the learning rate, the batch size, and the number of iterations for ‘Q
+ FlexRound’. The experimental setting of ‘Q + AdaRound’ follows Wei et al. (2022) except the
number of iterations; we employ 15k iterations for GPT-Neo and 20k iterations for OPT12. The
batch size for ‘Q + AdaRound’ is same as that for ‘Q + FlexRound’. We use ADAM optimizer as
default for all methods and models. The probability of dropping activation quantization is set to 0.5
in the QDrop’s setting. We use the Huggingface repository13 for the evaluation method without any
modification.

Table 13: Hyper-parameter selection for ‘Q + FlexRound’ in Table 5.

Dataset Configuration GPT-Neo125M GPT-Neo1.3B GPT-Neo2.7B OPT125M OPT1.3B OPT2.7B

WikiText2 Learning rate 2e-3 6e-4 4e-4 1e-3 9e-5 8e-5
Batch size 32 16 8 32 16 8
Iteration 15k 15k 15k 5k 5k 5k

PTB Learning rate 4e-3 4e-3 2e-3 8e-4 1e-3 5e-3
Batch size 32 16 8 32 16 8
Iteration 15k 15k 15k 5k 5k 5k

10https://huggingface.co/datasets/wikitext
11https://huggingface.co/datasets/ptb_text_only
12https://huggingface.co/facebook/opt-1.3b
13https://github.com/huggingface/transformers/tree/main/examples/

pytorch/language-modeling
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J FINETUNED GPT-NEO AND OPT ON WIKITEXT2 AND PTB

As for the evaluation of quantized pre-trained language models, the performance (i.e., accuracy) of
quantized OPT (by Q+AdaRound or Q+FlexRound) is not close to that of full-precision OPT, while
GPT-Neo can be quantized without noticeable accuracy degradation. To investigate whether such an
observation is also valid for finetuned OPT or not, we conduct additional experiments on finetuned
OPT and GPT-Neo with Wikitext2 and PTB dataset. As shown in the table 14, quantized model’s
performance of finetuned OPT turns out to be close to full-precision performance. Considering that
the model was finetuned with each downstream dataset, We utilize smaller dataset and lesser iteration
for reconstruction. We use 128 samples for calibrations set and the iteration is fixed to 500 for all
experiments. Learning rate and batch size for the experiments are shown in Table 15. Other settings
are the same as Appendix I.

Table 14: Performance of GPT-Neo125M, GPT-Neo1.3B, GPT-Neo2.7B, OPT125M, OPT1.3B and
OPT2.7B Finetuned on the WikiText2 and PTB datasets. The perplexity (PPL) is employed as
a performance metric. The lower PPL, the better. “Q + X” means the implementation of X in the
QDrop’s setting.

Dataset Method GPT-Neo125M GPT-Neo1.3B GPT-Neo2.7B OPT125M OPT1.3B OPT2.7B

Full-precision 21.96 12.09 10.78 19.85 11.52 10.27
WikiText2 Q+AdaRound 30.52 12.47 14.09 27.96 12.66 10.97

Q+FlexRound (Ours) 24.30 12.37 12.43 21.43 12.02 10.63

Full-precision 24.20 16.09 14.70 16.50 11.62 10.80
PTB Q+AdaRound 31.40 16.63 19.80 20.28 13.00 12.02

Q+FlexRound (Ours) 26.03 16.32 16.87 17.68 12.22 11.29

Table 15: Hyper-parameter selection for ‘Q + FlexRound’ in Table 14. Sample size is 128 and
iteration is 500.

Dataset Configuration GPT-Neo125M GPT-Neo1.3B GPT-Neo2.7B OPT125M OPT1.3B OPT2.7B

WikiText2 Learning rate 5e-3 4e-4 4e-3 3e-5 7e-6 1e-5
Batch size 32 16 8 32 16 8

PTB Learning rate 5e-3 7e-3 7e-3 5e-5 3e-5 8e-6
Batch size 32 16 8 32 16 8
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