
Under review as a conference paper at ICLR 2021

EXPLORE WITH DYNAMIC MAP: GRAPH STRUCTURED
REINFORCEMENT LEARNING

Anonymous authors
Paper under double-blind review

ABSTRACT

In reinforcement learning, a map with states and transitions built using historical
trajectories is often helpful in exploration and exploitation. Even so, learning and
planning on such a map within a sparse environment remains a challenge. As
a step towards this goal, we propose Graph Structured Reinforcement Learning
(GSRL), which leverages graph structure in historical trajectories to slowly adjust
exploration directions and rapidly update value function estimation with related
experiences. GSRL constructs a dynamic graph on top of state transitions in the
replay buffer based on historical trajectories and develops an attention strategy
on the map to select an appropriate goal direction, which decomposes the task
of reaching a distant goal state into a sequence of easier tasks. We also leverage
graph structure to sample related trajectories for efficient value learning. Results
demonstrate that GSRL can outperform the state-of-the-art algorithms in terms of
sample efficiency on benchmarks with sparse reward functions.

1 INTRODUCTION

How can humans learn to solve tasks with complex structure and delayed and sparse feedback? Take
a complicated navigation task as an example in which the goal is to go from a start state to an end
state. A straightforward approach that one often takes is by decomposing this complicated task into
a sequence of easier ones, identifying/forming some intermediate goals that help to get to the final
goal, and finally choosing a route with the highest return among a poll of candidate routes that lead to
the final goal. Despite recent success and progress in reinforcement learning (RL) approaches (Mnih
et al., 2013; Fakoor et al., 2020; Hansen et al., 2018; Huang et al., 2019; Silver et al., 2016), there is
still a huge gap between how humans and RL agents learn.

In many real-world applications, an RL agent only has access to sparse and delayed rewards, which
by itself leads to two major challenges. (C1) The first one is how can an agent effectively learn
from sparse and delayed rewards? One possible solution is to build a new reward function, known
as an intrinsic reward, that helps expedite the learning process and ultimately solve a given task.
Although this may seem like an appealing solution, it is often not obvious how to formulate an
effective intrinsic reward. Recent works have introduced goal-oriented RL (Schaul et al., 2015;
Chiang et al., 2019) as a way of constructing intrinsic rewards. However, most goal-oriented RL
algorithms require large amounts of reward shaping (Chiang et al., 2019) or human demonstrations
(Nair et al., 2018). (C2) The second issue is how to retrieve relevant past experiences that help
to learn faster and improve sample efficiency. Recent attention has focused much on episodic RL
(Blundell et al., 2016), which builds a non-parametric episodic memory to store past experiences,
and thus can rapidly latch onto related ones through search with similarity. However, most episodic
RL algorithms require additional memory space (Pritzel et al., 2017).

 are selected based on

Environment Agent

Goal Generation

Value Estimation

Learn to generate
appropriate goal with
Supervised Learning

Learn to find
optimal strategy with

Reinforcement Learning

action

observation

reward

goal

value

is generated from
where the supervision

where the related samples

Figure 1: An illustration for motivation of GSRL.

In this work, we propose Graph Structured
Reinforcement Learning (GSRL), which con-
structs a state-transition graph, leverages struc-
tural graph information, and presents solutions
for the problems raised above. As shown in Fig-
ure 1, when we encounter a complex task, we
draw a map for planning with a long horizon
(Eysenbach et al., 2019) and scan through the
graph to seek related experiences within a short
horizon (Lee et al., 2019).

1

Under review as a conference paper at ICLR 2021

initial state

terminal state

(d)

current state

initial state

terminal state

(b)
explored state

initial state

terminal state

(a)

initial/ terminal state explored state goal state transition graph structured statescurrent state update

initial state

terminal state

goal state

(c)

Figure 2: GSRL allows joint optimization of map construction and agent exploration from scratch.
(a) An agent is located at the initial state and aims at the terminal state with an empty map at the
beginning. (b) The agent explores the environment and records the explored states on the map. (c)
The agent generates a goal from previous states to decompose the whole task into a sequence of
easier tasks. (d) The agent updates current policy with related trajectories selected by structured
map information.

Inspired by this, we propose a method to address the first problem (C1) by learning to generate
an appropriate goal ge based on map Ge0 at episode e and form the intrinsic rewards during goal
generation. This goal generation can be optimized in hindsight. That is, we can update the goal
generation model under the supervision generated by planning algorithms based on map Ge+1

0 at
episode e + 1. We can solve the second problem (C2) by updating the value estimation of the
current state with the trajectories that include neighborhood states. Note that GSRL draws a map
to help agents plan an appropriate direction in the long horizon and learn an optimal strategy in the
short horizon, which can be widely incorporated with various learning strategies such as DQN (Mnih
et al., 2013), DDPG (Lillicrap et al., 2015), etc.

However, arriving at a well-explored map in terms of state-transitions in the first place from scratch
remains a challenging problem. In this regard, GSRL should be able to jointly optimize map con-
struction, goal selection, and value estimation. As illustrated in Figure 2, we design GSRL mainly
following four steps: (a) At the beginning, an agent is located at the initial state and aims at the ter-
minal state with an empty map; (b) The agent then explores the environment with the current policy
and records those explored states on the map; (c) Considering the far distance to the terminal state
and sparse reward during the exploration, we decompose the whole task into a sequence of easier
tasks guided by goals; (d) We leverage structured map information to select related trajectories to
update the current policy; The agent can repeat procedures (b)-(d) and finally reach the terminal
state with a well-explored map.

Our primary contribution is a novel algorithm that constructs a dynamic state-transition graph from
scratch and leverages structured information to find an appropriate goal in goal selection with a long
horizon and sample related trajectories in value estimation with a short horizon. This framework
provides several benefits: (1) How to balance exploration and exploitation is a fundamental prob-
lem in any reinforcement learning (Andrychowicz et al., 2017; Nachum et al., 2018). GSRL learns
an attention mechanism on the graph to decide whether to explore the states with high uncertainty
or exploit the states with well estimated value. (2) Almost all the existing reinforcement learning
approaches (Paul et al., 2019; Eysenbach et al., 2019) utilize randomly sampled trajectories to up-
date the current policy leading to inefficiency. GSRL selects highly related trajectories for updates
through the local structure in the graph. (3) Unlike previous approaches (Kipf et al., 2020; Shang
et al., 2019), GSRL constructs a dynamic graph through agent exploration without any additional
object representation techniques and thus is not limited to several specific environments. Empir-
ically, we find that our method constructs a useful map and learns an efficient policy for highly
structured tasks. Comparisons with state-of-the-art RL methods show that GSRL is substantially
more successful for boosting the performance of a graph-structured RL algorithm.

2 PRELIMINARIES

LetM = (S,A, T, P,R) be an Markov Decision Process (MDP) where S is the state space, A is the
action space whose size is bounded by a constant, T ∈ Z+ is the episode length, P : S×A→ ∆(S)
is the transition function which takes a state-action pair and returns a distribution over states, and
R : S × A→ ∆(R) is the reward distribution. The rewards from the environment, called extrinsic,

2

Under review as a conference paper at ICLR 2021

are usually sparse and, therefore, difficult to learn. To address this, goal-oriented RL introduces goal
g ∈ G to build dense intrinsic rewards Rg : S × A × G → ∆(R). In order to make the learning
procedure stable, the goal is limited to be updated episodically. A policy π : S × G → ∆(A)
prescribes a distribution over actions for each state and goal. At each timestep, the agent samples
an action a ∼ π(s, g) and receives a corresponding reward rg(s, a) that indicates whether or not
the agent has reached the goal. The episode terminates only after T timesteps even when the agent
reaches the goal. The agent’s task is to maximize its cumulative discounted future reward. We use
an off-policy algorithm to learn such a policy, as well as its associated goal-oriented Q-function and
value function:

Qπ(s, a, g) = E

[
T−1∑

t=0

γt · rg(at, st) | st = s, at = a, π

]
, V ∗(s, g) = max

a
Q∗(s, a, g). (1)

We use off-policy algorithms named DQN (Mnih et al., 2013) for discrete action space and DDPG
(Lillicrap et al., 2015) for continuous action space to learn Q-functions and policies by utilizing
off-policy data (i.e., data stored in the replay buffer).

3 GRAPH STRUCTURED REINFORCEMENT LEARNING

As illustrated in Figure 1, GSRL constructs a dynamic graph on top of state transitions. However,
learning and planning algorithms on the state transition graph are non-trivial. In this section, we
provide a theoretical analysis to show that exploration without any constraint would lead to the
explosion of the graph. In order to guide the exploration with directions, we develop a novel goal-
oriented RL framework which incorporates the structure information of the state-transition graph.
Specifically, we first divide states into several groups according to their uncertainty and locations in
the graph. We then adopt an attention mechanism to select an appropriate group and assign the state
with the highest value in the graph as a goal to encourage further exploration. We also propose to
update goal generation hindsightly and value estimation with related trajectories, to help RL agents
learn efficiently.

3.1 EXPLORE WITH DYNAMIC GRAPH

We directly build a dynamic and directed graph using sample trajectories from the replay buffer.
We denote the state-transition graph at timestep t in episode e by Get =< Vet , Eet > with relations
Ret , the node space Vet represents state space SGe

t
, edge space Eet represents action space AGe

t
, and

relations Ret represents transition PGe
t
. We denote the graph’s boundary by ∂Get , which consists of

observed but not fully explored states. An illustrated example of these notations above is available
at Figure 7 in Appendix A.

Let an agent start from an initial state s0. Then Get grows from a single node (i.e., G0
0 = {s0}) and

expands itself at each timestep, leading to the sequence {{G1
t }T−1
t=0 , {G2

t }T−1
t=0 , . . . , {GEt }T−1

t=0 }where
T denotes episode length and E is the number of episodes. Given that state-transition graph Get is
always a connected directed graph, we describe the expansion behavior as consecutive expansion,
which means no jumping across neighborhood allowed. We denote the graph increment at timestep
t in episode e as ∆Get , and then we can ensure that Get ∪∆Get = Get+1 ⊆ Get ∪ ∂Get .

Proposition 1. (adapted from (Xu et al., 2020)) We assume that the probability of degree of an
arbitrary state in the whole state-transition graph Gwhole being less than or equal to d is larger than
p (i.e., P (deg(s) ≤ d) > p, ∀s ∈ SG). We then consider a sequence of consecutively expanding
sub-graphs {{G1

t }T−1
t=0 , {G2

t }T−1
t=0 , . . . , {GEt }T−1

t=0 }, starting with G0
1 = {s0}, for all t ≥ 0, e ≥ 1.

We can ensure that P
(
|SGe

t
| ≤ ε

)
> pε, where ε = d·(d−1)T ·e+t−2

d−2 when d > 2 and ε = 1, 3 when
d = 1, 2 respectively.

Proof. The basic proof structure follows from (Xu et al., 2020); however, because our task and
detailed setting are considerably different, several modifications are required as described in in Ap-
pendix D.1.

The proposition implies that even if the given assumption of the whole state-transition graph Gwhole
has a small d and a large p (i.e., sparse graph), the guarantee of upper-bounding |SGe

t
| becomes

looser and weaker as t, e get larger. In other words, randomly appending Get through exploration
would enhance computation complexity for learning and plan on the dynamic graph. In order to

3

Under review as a conference paper at ICLR 2021

prevent Get from an explosion, we need to constrain ∆Get by guiding exploration with goals. In this
paper, we propose to leverage the graph structure to assist agent exploration. Before the detailed
introduction of exploration strategy, we firstly introduce the definition of certainty as
Definition 1. Given a state s, we define its certainty as to the number of candidate actions that have
been already taken. In this paper, we build the state-transition graph G on the replay buffer and thus
can adopt the out degree∗ of each state to approximately measure the certainty. In other words, we
can approximate the certainty of state cert(s) ≈ deg(s), where deg(s) denotes the degree of node s.

Note that certainty of state in Definition 1 can be served as a local measurement to show the extent
of exploration on some states, which is actually proportioned to the global measurement (i.e., the
number of visited states) in a deterministic environment (See Appendix E.1 for details). In addition,
we also can define uncertainty of state as the number of untaken candidate actions.

Exploration Strategy. A simple but effective way is to do exploration based on goal-oriented
RL, which decomposes the whole task into a sequential of goal-oriented tasks. In this case, newly
explored states in each episode are guided by a specific goal. Therefore, we constrain the state-
transition graph from the explosion and balance the exploration and exploitation through assigning
an appropriate goal to the agent. In order to further discuss the definition of an appropriate goal,
we here provide the definition of the optimal goal. As shown in Figure 4, once we are accessible
to the whole state-transition graph Gwhole, we can obtain the optimal solution by short path planning
algorithm such as Dijkstra’s Algorithm. We define the optimal goal as the terminal state on the path.
Definition 2. For fully explored state-transition graph Gfull

†, we define the optimal goal g∗full as the
terminal state (e.g., s10 in Figure 4(a)). For any not fully explored state-transition graph Ge0 , we
define the optimal goal g∗e hindsightly, where we generate the optimal solution path Pe+1 based on
the shortest path planning on the next episode graph Ge+1

0 and regard the reachable terminal state
included both in Ge0 and Pe+1 as g∗e (e.g., s6 in Figure 4(c)).

One should be noted that the optimal goal is hindsight generated and keep approaching the terminal
state during exploration. We further analyze and discuss the relations between goals in this paper
and previous goal-oriented RL literature in Appendix E.2.
Proposition 2. Assume that Q-value of each state is well estimated (i.e., Q = Q∗), then optimal
goal g∗e at the beginning timestep of any episode e is always included in the boundary of the state-
transition graph Ge0 (i.e., ∂Ge0).

Proof. The proof of Proposition 2 can be found in Appendix D.2.

... ...
2

last explored
state

1

n-hop neighbors
OR

n-uncertain nodes

... ...

Figure 3: An illustration of exploration strategy.

The proposition implies that the candidate set
for each goal generation can be limited to the
boundary. However, learning to generate an ap-
propriate goal is non-trivial with respect to a
dynamic and large-scale state-transition graph
Get . One intuitive solution is to divide the whole
candidate goal space (i.e., ∂Get) into several
candidate groups C1, . . . , CN , where N is the
number of groups. In order to both cover all the
states and control exploration size in these groups, our group segment should follow the principle
that ∪Nn=1Cn = ∂Get and Cm ∩ Cn = ∅ for any m 6= n;m,n = 1, 2, . . . , N .

Here, we set the last visited state slast in the previous episodes as C0, since slast often is both close to
the terminal state and has high uncertainty. As shown in Figure 3, based on the last explored state,
we build group Cn, n = 1, . . . , N by extending scales in two different perspectives. We list two
perspectives, as follows:

• Extending from Neighbor Nodes. One perspective is to leverage local structure on graph, where
Cn := {s}, s ∈ Nn(slast)∩∂Get for n = 1, 2, . . . , N , and CN := ∂Get −∪N−1

n=1 Cn. Nn(slast) means
n-hop neighbors of slast. The intuitive motivation behind this is to keep the learning procedure
stable by slowly adjusting the goal to explore the surrounding environment.
∗In this paper, we use ‘degree’ to represent ‘out-degree’, unless otherwise stated.
†We define the full explored graph Gfull as the graph covering the optimal solution, and the whole graph

Gwhole as the graph covering all the state-transitions. Hence, we have that Gfull is a sub-graph of Gwhole (i.e.,
Gfull ⊆ Gwhole).

4

Under review as a conference paper at ICLR 2021

• Extending from Uncertain Nodes. The other perspective is to utilize certainty information to
guide goal generation, where Cn := {s}, s ∈ Sd=|A|−n ∩ ∂Get for n = 1, 2, . . . , N , and CN :=

∂Get −∪Nn=1Cn. Sd=|A|−n denotes set of states whose degree equals |A|−n, and |A| is the size of
action space. The intuitive motivation behind this is to eliminate uncertainty in the graph through
exploration.

We provide the complexity analysis for two perspectives as follows. Let d∂Ge
t

denote the maximum
degree of states in ∂Get , and |S∂Ge

t
| denote the number of states in ∂Get . The complexity to construct

C1, . . . , CN by extending from neighbor nodes is O(dN−1
∂Ge

t
) and by extending from uncertain nodes

is O(|S∂Ge
t
|). The detailed analysis and method are available in Appendix E.3.

Attention Strategy. One should be noted that extending from either neighbor or uncertain nodes
can guarantee the number of groups C1, . . . , CN on a dynamic graph Get is fixed. In order to keep all
the groups not empty, we append slast to them at the beginning timestep of each episode. However,
RL algorithms face an exploration-exploitation dilemma, which requires the agent to makes appro-
priate selection rather than random exploration over these groups. In order to the trade-off between
exploration and exploitation, we apply an attention mechanism to select an appropriate group on the
current situation. For each group, we learn an embedding vector to represent its feature (i.e., cer-
tainty for extending from uncertain nodes). In this paper, the attention module runs over N groups
at each episode and select the appropriate one, which needs to take the features of other groups
into consideration. Therefore, it’s natural to adopt self-attention mechanism (Vaswani et al., 2017)
here. For simplicity, we structure an embedding vector for each group and denote all the features of
groups as [f1, . . . , fN], and then define Q = K = V := (f1, . . . , fN)T ∈ RN×d. The self-attention
can be defined as

ATTφ(C1, . . . , CN) = softmax(
QKT

√
N

)V, (2)

where ATTφ denotes self-attention function parameterized by φ. The output of the self-attention is
then fed to a multi-layer perception (MLP) with ReLU activation function. The output of MLP is in
the dimension RN×1. And the selected group can be obtained according to

CATT = arg max
Cn

σ(MLP(ATTφ(C1, . . . , CN))), (3)

where σ(·) denotes a sigmoid function, and CATT means the group selected according to the atten-
tion score. At the beginning timestep of any episode e, we have access to state-transition graph Ge0
and its boundary ∂Ge0 . We then divide ∂Ge0 into groups C1, . . . , CN , and obtain CATT through the
aforementioned attention mechanism. We select one state with the highest value in CATT as the
goal, which can be formulated as

ge = arg max
s

V (s, ge−1)‡, ∀s ∈ CATT . (4)

In this way, we can generate an appropriate goal ge to guide the agent exploration in the episode e.

3.2 LEARN WITH GRAPH STRUCTURED REINFORCEMENT LEARNING

As illustrated in Figure 1, we update goal generation under supervised learning and value estimation
under reinforcement learning. Specifically, we introduce learning strategies as follows:

Goal Learning Strategy. As mentioned above, we learn the goal generation hindsight. As illus-
trated in Figure 4, at the beginning timestep of each episode e + 1, we first compute the shortest
path distance between initial state (s0 in (c)) and highest value state (s9 in (c)) to obtain the solution
path (Pe+1 = 〈s0, s1, s3, s6, s9〉 in (d)). We then find the optimal goal g∗e

§ at episode e based on the
solution path generated at episode e + 1. Specifically, we search for the intersection state between
Pe+1 and ∂Get in the inverse order of the solution path. Given that s9 is unexplored and unreachable
in the episode e, we select s6 as the optimal goal g∗e . We then find the optimal group C∗ that contains
goal g∗e . With this hindsight supervision on the group selection, we are able to update the attention

‡Similar as (Andrychowicz et al., 2017), we relabel all the rewards when the goal changes. Therefore,
V (s, ge−1) is used here.
§Note that we define the target state and the optimal solution path in episode e+ 1, and the optimal goal in

episode e.

5

Under review as a conference paper at ICLR 2021

initial state

terminal state

(c)
initial state

terminal state

(a)

s0

s1

s3
s6

s2

s4

s5

s7

s8

s9

s0

s1

s3 s6

s2

s4

s5

s7

s8

s9

s10

(b)
initial state

terminal states0

s1

s3 s6

s2

s4

s5

s7

e+1

e

s0 s1 s3 s6 s9

highest
value

optimal solution path
at e+1 episode

generate optimal
goal at e episode

unexploredoptimal
goal

s6 s6

Update goal generation at e episode with optimal goal at e+1 episode (d)

boundary of graph optimal solution path optimal goal generated goal

Figure 4: Illustrations of optimal goals. States surrounded by red circles and connected by red arrows
are optimal solution path, which can be obtained by the shortest path planning algorithm on the fully
explored graph Gfull in (a). When the graph is not fully explored (Ge0 in (b)), we generate the optimal
solution path hindsight, where we regard the state with the highest value in the next episode (Ge+1

0 in
(c)) as the target state, and shortest path to it as the optimal solution path (Pe+1 = 〈s0, s1, s3, s6, s9〉
in (d)). We define the optimal goal g∗e as the reachable target state in the optimal solution path in
episode e (e.g., s10 in Gfull and s6 in Ge0).

mechanism in Eq. (3) via a standard supervised learning algorithm, where the objective function can
be formulated as

Lφ = E(s,a,g,s′,r)∼D
[
(C∗ − CATT)2 + α · ‖φ‖2

]
, (5)

where ‖φ‖2 is regularizer and α is the corresponding hyper-parameter. This method updating goal
generation under the supervision of the group instead of goal can eliminate instability brought from
potentially inaccurate value estimation because our group division does not involve the result from
value estimation.

Value Learning Strategy. With a generated goal at the beginning of each episode, we can build
the critical block of our method, i.e., a goal-conditioned policy and its associated value function.
We consider a goal-reaching agent interacting with an environment. The agent observes its current
state s ∈ S and a goal state g ∈ G. The dynamics are governed by the distribution P (st+1|st, at).
At every timestep, the agent samples an action a ∼ π(a|s, g) and receives a corresponding re-
ward rg(s, a) that indicates whether the agent has reached the goal. The episode terminates after
T timesteps, and even the agent reaches the goal. The agent’s task is to maximize its cumulative
and undiscounted reward. We use an off-policy algorithm to learn such a policy, as well as its asso-
ciated goal-conditioned Q-function. For example, we obtain a policy by acting greedily, w.r.t., the
Q-function as

Q(s, a, g)← rg(s, a) + γ ·max
a′

Q(s, a′, g). (6)

In order to improve data efficiency and obtain good value estimation, we consider choosing an off-
policy RL algorithm with goal relabelling and update parameters with related trajectories. Specif-
ically, we choose an off-policy RL algorithm with goal relabelling, such as Andrychowicz et al.
(2017). We define related data as those trajectories that contain neighborhood nodes of the current
state. Formally, when we update Q-function of state s, we sampleDrelated := {τ} from replay buffer
D, where τ denotes the trajectory that contains at least one state in s’s neighborhood N 1(s). The
Q-network is learned by minimizing the following objective function:

Lθ = E(s,a,g,s′,r)∼Drelated

[
(rg + γ ·max

a
Qθ(s

′, a, g)−Qθ(s, a, g))2 + β · ‖θ‖2
]
, (7)

where β is the weight of the regularization term. Besides, as we show in Proposition 3, our GSRL
algorithm can converge to a unique optimal point if the Q-learning strategy is adopted.

Proposition 3. Denote the Bellman backup operator in Eq. (6) as B : R|S|×|A|×|G| → R|S|×|A|×|G|
and a mapping Q : S×A×G→ R|S|×|A|×|G| with |S| <∞ and |A| <∞. Repeated applications
of the operator B for our graph-based state-action value estimate Q̂G converges to a unique optimal
value Q̂∗G∗ with well-explored graph G∗ (i.e., fully explored graph Gfull).

Proof. The proof is shown in Appendix D.3.

Overall Algorithm. We provide the overall algorithm in Algorithm 1 in Appendix B, and an il-
lustrated example in Figure 8 in Appendix C. One can see that our state-transition graph can be

6

Under review as a conference paper at ICLR 2021

applied to both the learning and planning phase. Previous graph-based RL algorithms either focus
on learning (Zhu et al., 2019) or planning (Eysenbach et al., 2019) based on structured information
of the state-transition graph.

4 EXPERIMENTS

In this section, we perform an experimental evaluation of our algorithm and compare it with other
state-of-the-art methods. Our experiment environments are based on the standard robotic manipula-
tion environments in the OpenAI Gym (Brockman et al., 2016). We provide the experimental results
to answer the following questions:

1. Can GSRL obtain better convergence in various environments?
2. Can GSRL tackle a high-dimensional and continuous environment with obstacles?
3. Can GSRL perform higher sample efficiency?
4. What is the influence of group selection for goal generation and related experience for value

estimation in GSRL?

Then we check whether the exploration provided by the goals generated by HGG can result in better
policy training performance. As shown in Figure 3, we compare the vanilla HER, HER with Energy-
Based Prioritization (HER+EBP), HGG, HGG+EBP. It is worth noting that since EBP is designed
for the Bellman equation updates, it is complementary to our HGG-based exploration approach.
Among the eight environments, HGG substantially outperforms HER on four and has comparable
performance on the other four, which are either too simple or too difficult. When combined with EBP,
HGG+EBP achieves the best performance on six environments that are eligible.

Figure 4: Visualization of FetchPush with obstacle.

Performance on tasks with obstacle In a more
difficult task, crafted metric may be more suit-
able than `2-distance used in Eq. (5). As shown
in Figure 4, we created an environment based on
FetchPush with a rigid obstacle. The object and
the goal are uniformly generated in the green
and the red segments respectively. The brown
block is a static wall which cannot be moved.
In addition to `2, we also construct a distance
metric based on the graph distance of a mesh
grid on the plane, the blue line is a successful trajectory in such hand-craft distance measure. A more
detailed description is deferred to Appendix B.3. Intuitively speaking, this crafted distance should be
better than `2 due to the existence of the obstacle. Experimental results suggest that such a crafted
distance metric provides better guidance for goal generation and training, and significantly improves
sample efficiency over `2 distance. It would be a future direction to investigate ways to obtain or
learn a good metric.

5.2 Comparison with Explicit Curriculum Learning

Figure 5: Comparison with curricu-
lum learning. We compare HGG
with the original HER, HER+GOID
with two threshold values.

Since our method can be seen as an explicit curriculum learn-
ing for exploration, where we generate hindsight goals as
intermediate task distribution, we also compare our method
with another recently proposed curriculum learning method for
RL. Florensa et al. (2018) leverages Least-Squares GAN (Mao
et al., 2018b) to mimic the set called Goals of Intermediate
Difficult as exploration goal generator.

Specifically, in our task settings, we define a goal set
GOID(⇡) = {g : ↵ f(⇡, g) 1 � ↵}, where f(⇡, g)
represents the average success rate in a small region closed by
goal g. To sample from GOID, we implement an oracle goal
generator based on rejection sampling, which could uniformly
sample goals from GOID(⇡). Result in Figure 5 indicates
that our Hindsight Goal Generation substantially outperforms HER even with GOID from the oracle
generator. Note that this experiment is run on a environment with fixed initial state due to the
limitation of Florensa et al. (2018). The choice of ↵ is also suggested by Florensa et al. (2018).

5.3 Ablation Studies on Hyperparameter Selection

In this section, we set up a set of ablation tests on several hyper-parameters used in the Hindsight
Goal Generation algorithm.

Lipschitz L: The selection of Lipschitz constant is task dependent, since it iss related with scale of
value function and goal distance. For the robotics tasks tested in this paper, we find that it is easier
to set L by first divided it with the upper bound of the distance between any two final goals in a
environment. We test a few choices of L on several environments and find that it is very easy to find
a range of L that works well and shows robustness for all the environments tested in this section. We
show the learning curves on FetchPush with different L. It appears that the performance of HGG is
reasonable as long as L is not too small. For all tasks we tested in the comparisons, we set L = 5.0.

Distance weight c: Parameter c defines the trade-off between the initial state similarity and the goal
similarity. Larger c encourages our algorithm to choose hindsight goals that has closer initial state.

8

A Proof of Theorem 1

In this section we provide the proof of Theorem 1.
Theorem 1. Assuming that the generalizability condition (Eq. (4)) holds for two distributions
(s, g) ⇠ T and (s0, g0) ⇠ T 0, we have

V ⇡(T 0) � V ⇡(T)� L · D(T , T 0). (6)

where D(·, ·) is the Wasserstein distance based on d(·, ·)

D(T (1), T (2)) = inf
µ2�(T (1),T (2))

⇣
Eµ[d((s0

(1), g(1)), (s0
(2), g(2)))]

⌘

where �(T (1), T (2)) denotes the collection of all joint distribution µ(s0
(1), g(1), s0

(2), g(2)) whose
marginal probabilities are T (1), T (2), respectively.

Proof. By Eq. (4), for any quadruple (s, g, s0, g0), we have

V ⇡(s0, g0) � V ⇡(s, g)� L · d((s, g), (s0, g0)). (10)

For any µ 2 �(T , T 0), we sample (s, g, s0, g0) ⇠ µ and take the expectation on both sides of Eq. (10),
and get

V ⇡(T 0) � V ⇡(T)� L · Eµ[d((s, g), (s0, g0))]. (11)

Since Eq. (11) holds for any µ 2 �(T , T 0), we have

V ⇡(T 0) � V ⇡(T)� L · inf
µ2�(T ,T 0)

(Eµ[d((s, g), (s0, g0))]) = V ⇡(T)� L · D(T , T 0).

B Experiment Settings

B.1 Modified Environments

Figure 7: Visualization of modified task distribution in Fetch environments. The object is uniformly
generated on the green segment, and the goal is uniformly generated on the red segment.

Fetch Environments:

• FetchPush-v1: Let the origin (0, 0, 0) denote the projection of gripper’s initial coordi-
nate on the table. The object is uniformly generated on the segment (�0.15,�0.15, 0)�
(0.15,�0.15, 0), and the goal is uniformly generated on the segment (�0.15, 0.15, 0) �
(0.15, 0.15, 0).

• FetchPickAndPlace-v1: Let the origin (0, 0, 0) denote the projection of gripper’s initial coor-
dinate on the table. The object is uniformly generated on the segment (�0.15,�0.15, 0)�
(0.15,�0.15, 0), and the goal is uniformly generated on the segment (�0.15, 0.15, 0.45)�
(0.15, 0.15, 0.45).

• FetchSlide-v1: Let the origin (0, 0, 0) denote the projection of gripper’s initial coordi-
nate on the table. The object is uniformly generated on the segment (�0.05,�0.1, 0) �
(�0.05, 0.1, 0), and the goal is uniformly generated on the segment (0.55,�0.15, 0) �
(0.55, 0.15, 0).

13

(b) AntMaze (d) FetchPush with Obstacle(c) FetchPush(a) Maze

Published as a conference paper at ICLR 2020

memorized states like episodic memory, and maintain a graph on top of these states based on state
transitions at the same time. Then we develop an efficient reverse-trajectory propagation strategy
to allow the values of new experiences to rapidly propagate to all memory items through the graph.
Finally, we use the fast-adjusted non-parametric high values in associative memory as early guid-
ance for a parametric RL agent so that it can rapidly latch on states that previously yield high returns
instead of waiting for many slow gradient updates.

A

Figure 1: Comparison of selected poli-
cies based on episodic memory and as-
sociative memory. An agent starts from
two place A and B to collect two expe-
riences.

To illustrate the superiority of the associative memory
in reinforcement learning, consider a robot exploring in
a maze to seek out the apple (at place G), as shown in
Figure 1. It collects two trajectory experiences starting
from place A and B, respectively. All the states of tra-
jectory A (the top blue dash line) receive no reward be-
cause the agent terminates at a state with a non-zero re-
ward (at place C), while in trajectory B (the bottom blue
dash line) the final non-zero reward of catching an ap-
ple (at place G) back-propagates through the whole path.
Episodic memory keeps a high value at the intersection
of two trajectories (the door) when taking actions toward
lower-right corner while recording zero values at the other
states in trajectory A. If an episodic memory based robot
starts from place A, it will wander around A because there
are no positive values indicating the way to goal. Thus
based on the episodic memory, the robot may eventually
take a policy like the green line after multiple attempts.
However, if the robot adopts associative memory, the high
value in the door collected from trajectory B will be fur-
ther propagated to the start point A and thus the robot can
correctly take the red-line policy.

To some extent, our associative memory is equivalent to automatic augmentation of counterfactual
combinatorial trajectories in memory. Thus, our framework significantly improves the sample-
efficiency of reinforcement learning. Comparisons with state-of-the-art episodic reinforcement
learning methods show that ERLAM is substantially more sample efficient for general settings of
reinforcement learning. In addition, our associative memory can be used as a plug-and-play module
and is complementary to other reinforcement learning models, which opens the avenue for further
researches on associative memory based reinforcement learning.

2 BACKGROUND

In the framework of reinforcement learning (Sutton & Barto, 1998), an agent learns a policy to
maximize its cumulative rewards by exploring in a Markov Decision Processes (MDP) environment.
An MDP is defined by a tuple (S, A, P, R, �), where S is a finite set of states, A is a finite set of
actions available to the agent, P : S ⇥ A ⇥ S ! R defines the transition probability distribution,
R is the reward function, and � 2 (0, 1] is the discount factor. At each time step t, the agent
observes state st 2 S , selects an action at 2 A according to its policy ⇡ : S ! A, and receives a
scalar reward rt. In the setting of finite horizon, the accumulated discounted return is calculated as,
Rt =

PT
k=0 �

krt+k where T is the episode length and goal of the agent is to maximize the expected
return for each state st.

The state-action value function Q⇡(s, a) = E[Rt|st = s, a] is the expected return for executing
action a on state s and following policy ⇡ afterwards. DQN (Mnih et al., 2015) parameterizes
this action-value function by deep neural networks Q✓(s, a) and use Q-learning (Watkins & Dayan,
1992) to learn it to rank which action at is best to take in each state st at time step t. The parameters
of the value network ✓ are optimized by minimizing the L2 difference between the networks output
Q✓(s, a) and the Q-learning target yt = rt + � maxa Q✓̂(st+1, at), where ✓̂ are parameters of a
target network that is a older version of the value network and updated periodically. DQN uses an
off-policy learning strategy, which samples (st, at, rt, st+1) tuple from a replay buffer for training.

2

Figure 5: Visualization of robotic manipulation environments.

In order to answer the first question, we demonstrate our method in various robotic manipulation
tasks including reach task (see Figure 5(a)) and fetch task (see Figure 5(c)). To answer the sec-
ond one, we investigate how our method performs on environment with high-dimensional state and
action space (see Figure 5(b)) and obstacle (see Figure 5(d)). We answer the third one by compar-
ison on the convergence of learning curves in Figure 6. By sample efficiency, we further analysis
exploration performance in Appendix F.5. Specifically, we conduct experiments with previous ap-
proaches:

• HER: Andrychowicz et al. (2017) generated imaginary goals in a simple heuristic way to tackle
the sparse reward issue.

• MAP: Huang et al. (2019) explicitly modeled the environment in a hierarchical manner, with a
high-level map abstracting the state space and a low-level value network to derive local decisions.

• GoalGAN: Florensa et al. (2018) leveraged Least-Squares GAN (Mao et al., 2018b) to mimic the
set of Goals of Intermediate Difficulty as an automatic goal generator.

• CHER: Fang et al. (2019) proposed to enforce more curiosity in earlier stages and changes to
larger goal-proximity later.

One should be noted that graph structure in GSRL is constructed on top of the replay buffer for goal
generation and value estimation, which can be closely incorporated with policy networks such as
DQN (Mnih et al., 2013), DDPG (Lillicrap et al., 2015), etc. To demonstrate the real performance
gain from our GSRL, we set the policy network with DDPG for GSRL and all the baselines. The
detailed description of environments, experiment settings, and implementation details can be found
in Appendix F.1.

Maze. We first test our method and other strong baselines in the Maze environment, where the ant
agent learns to reach the specified target position (ε-ball depicted in red) located at the other end of
the U-turn as shown in Figure 5(a). This environment is quite simple, where most RL approaches
can converge with a success rate 1. As Figure 6(a) illustrates, GSRL performs with high sample
efficiency.

AntMaze. We show that our GSRL is efficient in a complex environment of robotic agent navigation
tasks, as illustrated in Figure 5(b), where the state space is of 8 dimensions and the action space is
of 30 dimensions. Duan et al. (2016) showed that standard RL methods are unable to solve it. As
shown in Figure 6(b), GSRL achieves the best asymptotic performance and sample efficiency.

FetchPush. As shown in Figure 5(c), in the fetch environment, the agent is trained to fetch an
object from the initial position (rectangle in green) to a distant position (rectangle in red). Although

7

Under review as a conference paper at ICLR 2021

HBGG2020

Figure 6: Learning curves of GSRL, HER, MAP, GoalGAN, and CHER on various environments
with 10 random seeds, where the solid curves depict the mean, the shaded areas indicate the standard
deviation, and dashed horizontal lines show the asymptotic performance.

the fetch tasks are more complicated than they reach ones in the maze, GSRL also yields large
performance gain, as shown in Figure 6(c).

FetchPush with Obstacle. As Figure 5(d) illustrates, we create an environment based on FetchPush
with a rigid obstacle, where the brown block is a static wall that cannot be moved. Experimental
results in Figure 6(d) suggests that the graph structure of state-transitions can provide additional
useful information, which leads to better guidance for goal generation and value estimation.

Impact of Environment Size. In order to investigate whether GSRL can be well adapted in the
environments with different complexity sizes, we extend the Maze environment, as shown in Fig-
ure 5(a). Maze environment with larger size usually means more sparse rewards. We report the
performance comparisons on the three environments with SMALL, MEDIUM, and LARGE sizes
in Figure 6(e). More details of these environments are available in Appendix F.1. One can see that
GSRL can be well address sparse reward issue in various environments.

Impact of Environment Complexity. In order to investigate whether GSRL can be well adapted
in the environments with different complexity levels, we extend the Maze environment with a more
complex or high-dimensional structure. We create AntMaze with Obstacle environment, where we
extend the AntMaze environment with an obstacle. The performance of GSRL in this environment
is illustrated in Figure 6(f). More details of these environments are available in Appendix F.1. One
can see that GSRL can be well adapted in various environments with different complexity levels.

Impact of Group Selection. We provide two strategies to divide the boundary of the graph into sev-
eral groups, namely extending from neighbor nodes and extending from uncertain nodes in Section 3.
We demonstrate the performance of these two strategies in Figure 6(g). We set GSRL without using
the attention strategy on the groups as NOGroup. We adopt the first strategy and set the number of
groups as 3, which corresponds to NEIGH3. We then show the performance of the second strategy
with the number of groups equal to 2, 3 and 4, which correspond to UNCERT2, UNCERT3 and
UNCERT4. Results show that GSRL without any group selection would lead to inefficiency since
the goal generation strategy at the beginning is almost random. Both of these two strategies perform
well, as illustrated. We also provide complexity analysis in Appendix E.3. In the main experiment,
we adopt extending from uncertain nodes with 3 groups (i.e., UNCERT3).

Impact of Discretization. We apply K-bins discretization technique (Kotsiantis & Kanellopoulos,
2006) to discretize the continuous state and action spaces, where there is a wrapper that converts a

8

Under review as a conference paper at ICLR 2021

Box observation into a single integer. DISCRETE10, DISCRETE20 and DISCRETE30 in Fig-
ure 6(h) denote the performances of K = 10, 20 and 30 respectively. We find that for the simple
tasks, the choice of K is not critical. K is set at 20 in the main experiment.

Impact of Related Experience. We further study the impact of using neighborhood structure of the
state-transition graph to select related experience to efficiently update value estimation. We build
a variant to update value estimation from transitions drawn uniformly from the replay buffer D,
denoted as ALL. RELATED is used to denote GSRL, where Drelated is adopted instead of D.

5 RELATED WORK

Structured Models of Environments. Recent work has investigated leveraging structured environ-
ments to make great strides in improving predictive accuracy (Kipf et al., 2018; Xu et al., 2019;
Chang et al., 2017; Battaglia et al., 2016; Watters et al., 2017; Sanchez-Gonzalez et al., 2018) and
accelerating reinforcement learning procedures (Shang et al., 2019; Kipf et al., 2020; Eysenbach
et al., 2019; Wang et al., 2018). These methods mainly first construct some form of graph neural
network where node update functions model the dynamics of individual objects, parts, or agents and
edge update functions model their interactions and relations through unsupervised object discovery
(Xu et al., 2019), contrastive learning (Kipf et al., 2020) or agent exploration (Eysenbach et al.,
2019). Unlike these previous works based on well-organized graphs, our model GSRL constructs
and makes use of the graph from scratch. Specially, GSRL constructs a dynamic map via explo-
ration and builds efficient exploration with structured information from this map, which allows our
approach to be widely deployed into more complex environments.

Goal-oriented Reinforcement Learning. Goal-oriented RL allows an agent to generate intrinsic
rewards, which is defined with respect to target subsets of the state space called goals (Florensa et al.,
2018; Paul et al., 2019). Recently, goal-oriented RL has been investigated widely in various deep
RL scenarios such as imitation learning (Pathak et al., 2018; Srinivas et al., 2018), disentangling task
knowledge from the environment (Mao et al., 2018a; Ghosh et al., 2019), constituting lower-level
controller in hierarchical RL (Shang et al., 2019; Nachum et al., 2018) and organizing cooperation in
multi-agent RL (Jin et al., 2019; Yang et al., 2020). Hence, how to generate appropriate goals is the
essential technique in any goal-oriented RL (Andrychowicz et al., 2017; Ren et al., 2019). Eysen-
bach et al. (2019) proposed to utilize the shortest-path search on replay buffer to generate a sequence
of goals. Instead of planning goals from a well-explored state-transition graph, in this paper, we in-
vestigate guiding exploration with structured information from a dynamic graph, which can largely
improve the performance in terms of sample efficiency in tasks with sparse reward signals. (Zhao
et al., 2019) proposed to maximize entropy of selected trajectories; however, our method utilizes the
structure information in the state-transition graph to select related trajectories for learning.

Hierarchical Reinforcement Learning. Hierarchical RL learns a set of primitive tasks that together
help an agent learn the complex task. There are mainly two lines of work. One class of algorithms
(Shang et al., 2019; Nachum et al., 2018; Bacon et al., 2017; Vezhnevets et al., 2017) jointly learn
a low-level policy together with a high-level policy, where the lower-level policy interacts directly
with the environment to achieve each task, while the higher-level policy instructs the lower-level
policy via high-level actions or goals to sequence these tasks into the complex task. The other class
of methods (Bagaria & Konidaris, 2019; Fox et al., 2017; Hartikainen et al., 2019; Pitis et al., 2020;
Pong et al., 2019) focus on discovering sub-goals that are easy to reach in a short time, or options
which are lower-level control primitives, can be invoked by the meta-control policy. The common
idea GSRL shares with Hierarchical RL is to decompose the complex task into several sub-tasks to
achieve. In this paper, the key difference is that, we propose to build the state-transition graph and
utilize the structure information for goal generation and value estimation.

6 CONCLUSION

In this paper, we propose a novel framework called GSRL, which leverages structure information of
the state-transition graph for efficient goal generation and value estimation. We provide theoretical
analysis to show the efficiency and converge property of our method. Results on various challenging
robotic manipulation environments demonstrate that GSRL can outperform the state-of-the-art RL
algorithms. In the future, this work would shed light on graph-structured RL for efficient learning
and planning, where various graph-based algorithms can help RL agents learn and infer in highly
structured environments.

9

Under review as a conference paper at ICLR 2021

REFERENCES

Marcin Andrychowicz, Filip Wolski, Alex Ray, Jonas Schneider, Rachel Fong, Peter Welinder, Bob
McGrew, Josh Tobin, OpenAI Pieter Abbeel, and Wojciech Zaremba. Hindsight experience re-
play. In NeurIPS, 2017.

Pierre-Luc Bacon, Jean Harb, and Doina Precup. The option-critic architecture. In AAAI, 2017.

Akhil Bagaria and George Konidaris. Option discovery using deep skill chaining. In ICLR, 2019.

Peter Battaglia, Razvan Pascanu, Matthew Lai, Danilo Jimenez Rezende, et al. Interaction networks
for learning about objects, relations and physics. In NeurIPS, 2016.

Marc Bellemare, Sriram Srinivasan, Georg Ostrovski, Tom Schaul, David Saxton, and Remi Munos.
Unifying count-based exploration and intrinsic motivation. In NeurIPS, 2016.

Richard Bellman. Dynamic programming. Science, 1966.

Dimitri P Bertsekas. Dynamic programming and optimal control, volume 1. Athena scientific
Belmont, MA, 1995.

Charles Blundell, Benigno Uria, Alexander Pritzel, Yazhe Li, Avraham Ruderman, Joel Z Leibo,
Jack Rae, Daan Wierstra, and Demis Hassabis. Model-free episodic control. arXiv, 2016.

Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John Schulman, Jie Tang, and
Wojciech Zaremba. Openai gym. arXiv preprint arXiv:1606.01540, 2016.

Michael B Chang, Tomer Ullman, Antonio Torralba, and Joshua B Tenenbaum. A compositional
object-based approach to learning physical dynamics. In ICLR, 2017.

Hao-Tien Lewis Chiang, Aleksandra Faust, Marek Fiser, and Anthony Francis. Learning navigation
behaviors end-to-end with autorl. RA-L, 2019.

Yan Duan, Xi Chen, Rein Houthooft, John Schulman, and Pieter Abbeel. Benchmarking deep
reinforcement learning for continuous control. In ICML, 2016.

Ben Eysenbach, Russ R Salakhutdinov, and Sergey Levine. Search on the replay buffer: Bridging
planning and reinforcement learning. In NeurIPS, 2019.

Rasool Fakoor, Pratik Chaudhari, and Alexander J Smola. P3o: Policy-on policy-off policy opti-
mization. In UAI, 2020.

Meng Fang, Tianyi Zhou, Yali Du, Lei Han, and Zhengyou Zhang. Curriculum-guided hindsight
experience replay. In NeurIPS, 2019.

Carlos Florensa, David Held, Xinyang Geng, and Pieter Abbeel. Automatic goal generation for
reinforcement learning agents. In ICML, 2018.

Roy Fox, Sanjay Krishnan, Ion Stoica, and Ken Goldberg. Multi-level discovery of deep options. In
arXiv, 2017.

Dibya Ghosh, Abhishek Gupta, and Sergey Levine. Learning actionable representations with goal-
conditioned policies. In ICLR, 2019.

Steven Hansen, Alexander Pritzel, Pablo Sprechmann, André Barreto, and Charles Blundell. Fast
deep reinforcement learning using online adjustments from the past. In NeurIPS, 2018.

Kristian Hartikainen, Xinyang Geng, Tuomas Haarnoja, and Sergey Levine. Dynamical distance
learning for semi-supervised and unsupervised skill discovery. In ICLR, 2019.

Zhiao Huang, Fangchen Liu, and Hao Su. Mapping state space using landmarks for universal goal
reaching. In NeurIPS, 2019.

Jiarui Jin, Ming Zhou, Weinan Zhang, Minne Li, Zilong Guo, Zhiwei Qin, Yan Jiao, Xiaocheng
Tang, Chenxi Wang, Jun Wang, et al. Coride: Joint order dispatching and fleet management for
multi-scale ride-hailing platforms. In CIKM, 2019.

10

Under review as a conference paper at ICLR 2021

Thomas Kipf, Ethan Fetaya, Kuan-Chieh Wang, Max Welling, and Richard Zemel. Neural relational
inference for interacting systems. In ICML, 2018.

Thomas Kipf, Elise van der Pol, and Max Welling. Contrastive learning of structured world models.
In ICLR, 2020.

Sotiris Kotsiantis and Dimitris Kanellopoulos. Discretization techniques: A recent survey. GESTS
International Transactions on Computer Science and Engineering, 32(1):47–58, 2006.

Su Young Lee, Choi Sungik, and Sae-Young Chung. Sample-efficient deep reinforcement learning
via episodic backward update. In NeurIPS, 2019.

Timothy P Lillicrap, Jonathan J Hunt, Alexander Pritzel, Nicolas Heess, Tom Erez, Yuval Tassa,
David Silver, and Daan Wierstra. Continuous control with deep reinforcement learning. arXiv,
2015.

Jiayuan Mao, Honghua Dong, and Joseph J Lim. Universal agent for disentangling environments
and tasks. In ICLR, 2018a.

Xudong Mao, Qing Li, Haoran Xie, Raymond YK Lau, Zhen Wang, and Stephen Paul Smolley. On
the effectiveness of least squares generative adversarial networks. IEEE transactions on pattern
analysis and machine intelligence, 41(12):2947–2960, 2018b.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis Antonoglou, Daan Wier-
stra, and Martin Riedmiller. Playing atari with deep reinforcement learning. arXiv, 2013.

Ofir Nachum, Shixiang Shane Gu, Honglak Lee, and Sergey Levine. Data-efficient hierarchical
reinforcement learning. In NeurIPS, 2018.

Ashvin Nair, Bob McGrew, Marcin Andrychowicz, Wojciech Zaremba, and Pieter Abbeel. Over-
coming exploration in reinforcement learning with demonstrations. In ICRA, 2018.

Georg Ostrovski, Marc G Bellemare, Aaron van den Oord, and Rémi Munos. Count-based explo-
ration with neural density models. arXiv, 2017.

Deepak Pathak, Parsa Mahmoudieh, Guanghao Luo, Pulkit Agrawal, Dian Chen, Yide Shentu, Evan
Shelhamer, Jitendra Malik, Alexei A Efros, and Trevor Darrell. Zero-shot visual imitation. In
CVPR Workshops, 2018.

Sujoy Paul, Jeroen Vanbaar, and Amit Roy-Chowdhury. Learning from trajectories via subgoal
discovery. In NeurIPS, 2019.

Silviu Pitis, Harris Chan, Stephen Zhao, Bradly Stadie, and Jimmy Ba. Maximum entropy gain
exploration for long horizon multi-goal reinforcement learning. In ICML, 2020.

Vitchyr H Pong, Murtaza Dalal, Steven Lin, Ashvin Nair, Shikhar Bahl, and Sergey Levine. Skew-
fit: State-covering self-supervised reinforcement learning. arXiv preprint arXiv:1903.03698,
2019.

Alexander Pritzel, Benigno Uria, Sriram Srinivasan, Adria Puigdomenech, Oriol Vinyals, Demis
Hassabis, Daan Wierstra, and Charles Blundell. Neural episodic control. In ICML, 2017.

Zhizhou Ren, Kefan Dong, Yuan Zhou, Qiang Liu, and Jian Peng. Exploration via hindsight goal
generation. In NeurIPS, 2019.

Alvaro Sanchez-Gonzalez, Nicolas Heess, Jost Tobias Springenberg, Josh Merel, Martin Riedmiller,
Raia Hadsell, and Peter Battaglia. Graph networks as learnable physics engines for inference and
control. In ICML, 2018.

Tom Schaul, Daniel Horgan, Karol Gregor, and David Silver. Universal value function approxima-
tors. In ICML, 2015.

Wenling Shang, Alex Trott, Stephan Zheng, Caiming Xiong, and Richard Socher. Learning world
graphs to accelerate hierarchical reinforcement learning. In ICML Workshop, 2019.

11

Under review as a conference paper at ICLR 2021

David Silver, Aja Huang, Chris J Maddison, Arthur Guez, Laurent Sifre, George Van Den Driessche,
Julian Schrittwieser, Ioannis Antonoglou, Veda Panneershelvam, Marc Lanctot, et al. Mastering
the game of go with deep neural networks and tree search. Nature, 2016.

Aravind Srinivas, Allan Jabri, Pieter Abbeel, Sergey Levine, and Chelsea Finn. Universal planning
networks. In ICML, 2018.

Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduction. MIT press, 2018.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. In NeurIPS, 2017.

Alexander Sasha Vezhnevets, Simon Osindero, Tom Schaul, Nicolas Heess, Max Jaderberg, David
Silver, and Koray Kavukcuoglu. Feudal networks for hierarchical reinforcement learning. In
ICML, 2017.

Tingwu Wang, Renjie Liao, Jimmy Ba, and Sanja Fidler. Nervenet: Learning structured policy with
graph neural networks. In ICLR, 2018.

Nicholas Watters, Daniel Zoran, Theophane Weber, Peter Battaglia, Razvan Pascanu, and Andrea
Tacchetti. Visual interaction networks: Learning a physics simulator from video. In NeurIPS,
2017.

Xiaoran Xu, Wei Feng, Yunsheng Jiang, Xiaohui Xie, Zhiqing Sun, and Zhi-Hong Deng. Dynam-
ically pruned message passing networks for large-scale knowledge graph reasoning. In ICML,
2020.

Zhenjia Xu, Zhijian Liu, Chen Sun, Kevin Murphy, William T Freeman, Joshua B Tenenbaum, and
Jiajun Wu. Unsupervised discovery of parts, structure, and dynamics. In ICLR, 2019.

Jiachen Yang, Alireza Nakhaei, David Isele, Kikuo Fujimura, and Hongyuan Zha. Cm3: Coopera-
tive multi-goal multi-stage multi-agent reinforcement learning. In ICLR, 2020.

Rui Zhao, Xudong Sun, and Volker Tresp. Maximum entropy-regularized multi-goal reinforcement
learning. In ICML, 2019.

Guangxiang Zhu, Zichuan Lin, Guangwen Yang, and Chongjie Zhang. Episodic reinforcement
learning with associative memory. In ICLR, 2019.

12

Under review as a conference paper at ICLR 2021

A NOTATIONS

initial state

terminal state

(a)
explored state at timestep t

initial state

terminal state

terminal state

(c)
initial state

goal stateexplored state

transition

neighborhood state

graph at timestep t graph at timestep t+1

boundary of graph graph increment

(b)

3 2 2

20

denote

t

t+1 t

Figure 7: An illustrated example of notations in Graph Structured Reinforcement Learning (GSRL).

In this paper, we construct a state-transition graph on top of the replay buffer. As Figure 7(a) shows,
we build the graph Get based on historical explored trajectories at timestep t in episode e. For any
not fully explored state-transition graph, there exist many poorly-explored states. We measure the
exploration (i.e., certainty in Defintion 1) of these states according to the number of their untaken
candidate actions. As illustrated in Figure 7(b), we define the boundary of Get as a set of states, at
least one of whose candidate actions is not readily taken. Each untaken action may lead to unvisited
states (denoted by ? icon). We denote the boundary as ∂Get . As illustrated in Figure 7(c), after each
timestep t + 1, the agent explored a new state denoted as ∆Get . Then, Get and ∆Get together make
up the dynamic graph at timestep t+ 1 denoted as Get+1.

B ALGORITHM

Algorithm 1 Graph Structured Reinforcement Learning (GSRL)

1: Initialize replay buffer D = {s0} and state-trainsition graph G = {s0}
2: for epsiode number e = 1, 2, . . . , E do
3: Select an appropriate group for exploration according to Eq. (3)
4: Generate goal ge according to Eq. (4)
5: for timestep t = 0, 1, 2, . . . , T − 1 do
6: Receive observation st from environment
7: at ← ε-greedy policy based on Q(st, a, g)
8: Take action at, receive reward rt and next state st+1

9: Append (st, at, rt, st+1, ge) to D
10: Relabel rewards rg with ge
11: Append (st, at, st+1) to G if (st, at, st+1) /∈ G
12: if t mod update interval == 0 then
13: Sample related experience (st, at, st+1, rt, ge) to Drelated
14: Update parameter θ using Eq. (7)
15: end if
16: end for
17: Compute optimal goal g∗e according to Definition 2
18: Update parameter φ using Eq. (5)
19: end for

We provide the overall algorithm in Algorithm 1. The key contribution of our paper is to leverage
structured information in the state-transition graph for efficient goal generation and value estimation,
which is represented in line 4 and 13, respectively. We then describe the overall procedure of GSRL
according to Algorithm 1 as follows:

There is no graph structure for the agent to support when the task starts. Hence, the agent initializes
the replay buffer D and the state-transition graph G in line 1. At the beginning timestep of each

13

Under review as a conference paper at ICLR 2021

episode e, we divide the boundary of the state-transition graph ∂Ge0 into N groups and adopt atten-
tion mechanism to select an appropriate one for exploration in line 3. Within the selected group, we
choose the state with the highest value as the generated goal ge in line 4. The agent tries to reach
the goal state through current policy-based Q value in line 7 and record interaction history in the
replay buffer in line 9. As goal-oriented RL provides the agent intrinsic reward conditioned on the
current goal, the agent is required to relabel reward with rg conditioned on ge in line 10. Then the
agent updates the state-transition graph in line 11. In order to efficiently update policy, the agent
sample related trajectories that contain at least one neighbor states of the current state in line 13. In
line 14, the policy is updated with DDPG (Lillicrap et al., 2015). At the end of each episode e, the
state-transition graph is actually built for episode e + 1 denoted as Ge+1

0 . The agent is able to find
optimal goal g∗e through planning algorithm on Ge+1

0 in line 17. The attention mechanism is updated
by supervised learning in line 18.

C ILLUSTRATION

Replay Buffer

Continuous Space Space
Discretization

Discrete Space

(a)

(b)
initial state

terminal states0

s1

s3 s6

s2

s4

s5

s7

e

s0 s1 s3 s6

s0

s0

s0

s2 s5

s1 s4 s7

s1 s4 s6 s7

initial state

last state

Groups

s7

s7

s7

s5

s6

Graph
Construction

Grou
p

Divis
ion

s7

s6
s6

Attention
Network

Value
Network

argmaxargmax

Goal-oriented
Exploration

(c)

boundary of graph
Figure 2(d) Figure 4(d)

update at each interval update at beginning timestep of each episodeexplored stategenerated goal

Figure 8: An illustrated example of Graph Structured Reinforcement Learning (GSRL).

We provide an illustrated example for GSRL in Figure 8. When an agent encounters a complex
environment, GSRL first discretize the continuous space into a discrete one, as illustrated in (a).
We color the last state (i.e., slast = s7) visited in the previous episodes with red. Meanwhile,
the historical trajectories stored in the replay buffer can be represented with several paths (e.g.,
〈s0, s1, s3, s6〉). With these paths, we can easily construct a state-transition graph at the beginning
timestep of episode (i.e., Ge0). As illustrated in (b), we can find the boundary of the graph (i.e., ∂Get)
as shown in Appendix A. In this case, s5, s6 are in the boundary of the current graph (i.e., ∂Ge0). We
then follow extending from uncertain nodes to divide the boundary into several groups. The number
groups is the hyper-parameter, and we choose 3 here. For each group, we include slast since slast
is often with high value and close to the terminal state. As shown in (c), we then adopt attention
mechanism to select one group CATT and assign the state with the highest value in the select group
as the goal ge. With the generated goal, the agent can perform goal-oriented exploration to divide
the complex task into several sub-tasks to deal with. There are two learned parts in GSRL, namely
attention network for goal generation, and value network for value estimation. We design a hindsight
learning approach to update the attention network at the beginning timestep of each episode (as
shown in Figure 4), and use related experiences to update value network at each update interval (as
shown in Figure 2).

D PROOFS

D.1 PROOF OF PROPOSITION 1

Proposition 1. (adopted from (Xu et al., 2020)) We assume that the probability of degree of an
arbitrary state in the whole state-transition graph Gwhole being less than or equal to d is larger than
p (i.e., P (deg(s) ≤ d) > p, ∀s ∈ SG). We then consider a sequence of consecutively expanding
sub-graphs {{G1

t }T−1
t=0 , {G2

t }T−1
t=0 , . . . , {GEt }T−1

t=0 }, starting with G0
1 = {s0}, for all t ≥ 0, e ≥ 1.

We can ensure that P
(
|SGe

t
| ≤ ε

)
> pε, where ε = d·(d−1)T ·e+t−2

d−2 when d > 2 and ε = 1, 3 when
d = 1, 2 respectively.

14

Under review as a conference paper at ICLR 2021

initial state

terminal states0

s1

s3 s6

s2

s4

s5

s7

e

s0 s1 s3 s6

(b)
initial state

terminal states0

s1

s3
s6

s2

s4

s5

s7

s9e+1

s9e+1

(a)

Figure 9: An illustrated example of the proof of Proposition 1 and the key difference between the
proposition in this paper and the one in the previous work.

Proof. In (Xu et al., 2020), the new node of the current graph (i.e., Ge0) can be sampled directly from
the neighborhood. As illustrated in Figure 9, considering the graph in this paper is the state-transition
graph, we can not directly sample from the neighborhood. We only can obtain the new states by the
explored trajectories (e.g., 〈s0, s1, s3, s6, s9〉 in Figure 9). Therefore, we propose to consecutively
expand the sub-graphs at the timestep level (i.e., {{G1

t }T−1
t=0 , {G2

t }T−1
t=0 , . . . , {GEt }T−1

t=0 }, starting with
G0

1 = {s0}). Although we follow the framework in (Xu et al., 2020), several modifications are
required. And, we provide the detailed proof as follows:

We consider the extreme case of greedy consecutive expansion at each timestep t in any episode
e, where Get+1 = Get ∪ ∆Get = Get ∪ ∂Get , since if this case satisfies the inequality, any case of
consecutive expansion can also satisfy it. By definition, all the subgraphs Get are a connected graph.
Here, we use ∆St to denote S∆Gt for short. In each episode, we can ensure that the newly added
nodes ∆Set at timestep t only belong to the neighborhood of the last added nodes ∆Set−1.

Within each episode e, we study the sequence {∆Ge0 ,∆Ge1 , . . . ,∆GeT−1}, where T is the episode
length. In this case, each node in ∆Set already has at least one edge within ∆Get−1 due to the
definition of connected graphs. We can have

P
(
|∆Set | ≤ |∆Set−1| · (d− 1)

)
> p|∆S

e
t−1|. (8)

For e = 1 and t = 0, we have P (|∆S1
1 | ≤ d) > p and thus

P (|SG1
0
| ≤ 1 + d) > p. (9)

For e ≥ 1 and t ≥ 1, we analyze the conseutive expansion of the state-transition graph G as

G1 → G2 → · · · → GE

⇒G1
0 → G1

1 → · · · → G1
T−1︸ ︷︷ ︸

G1

→ G2
0 → G2

1 → · · · → G2
T−1︸ ︷︷ ︸

G2

→ · · · → GE0 → GE1 → · · · → GET−1︸ ︷︷ ︸
GE

.

(10)
Given that |∆SGe

t
| ≥ 1,∀t ∈ [0, T − 1], we consider the extreme case that |∆SGe

t
| = 1,∀t ∈

[0, T − 1], which means that every exploration will result in a new explored state and should be
respondes to the upper bound of the explosion. Based on |∆SGe

t
| = 1 + |∆SG1

0
|+ |∆SG1

1
|+ · · ·+

|∆SG1
T−1
|+ |∆SG2

0
|+ |∆SG2

1
|+ · · ·+ |∆SG2

T−1
|+ · · ·+ |∆SGe

0
|+ · · ·+ |∆SGe

t
|, we have

P
(
|SGe | ≤ 1 +d+d · (d−1) + · · ·+d · (d−1)e·T+t−1

)
> p1+d+d·(d−1)+···+d·(d−1)e·T+t−2

. (11)

When d = 1, there can be only one node, so in this case, ε = 1. When d = 2, we follow Eq. (11)
and derive that in this case, ε = 3. When d > 2, it holds that

P
(
|SGt | ≤ d · (d− 1)e·T+t − 2

d− 2

)
> p

d·(d−1)e·T+t−1−2
d−2 . (12)

We can find that t = 0 also satisfies this inequality.

D.2 PROOF OF PROPOSITION 2

Proposition 2. Assume that Q-value of each state is well estimated (i.e., Q = Q∗), then optimal
goal g∗e at the beginning timestep of any episode e is always included in the boundary of the state-
transition graph Ge0 (i.e., ∂Ge0).

Proof. According to Definition 2, as shown in Figure 10(a), in the fully explored graph Gfull, the
optimal goal g∗full is the terminal state in the optimal solution Pfull, which is also the terminal state

15

Under review as a conference paper at ICLR 2021

initial state

terminal state

(c)
initial state

terminal state

(a)

s0

s1

s3
s6

s2

s4

s5

s7

s8

s9

s0

s1

s3 s6

s2

s4

s5

s7

s8

s9

s10

(b)
initial state

terminal states0

s1

s3 s6

s2

s4

s5

s7

e+1

e

s0 s1 s3 s6 s9

highest
value

optimal solution path
at e+1 episode

generate optimal
goal at e episode

unexploredoptimal
goal

s6 s6

Update goal generation at e episode with optimal goal at e+1 episode (d)

boundary of graph optimal solution path optimal goal generated goal

Figure 10: An illustrated example of the relationship between optimal goal and boundary. In the
fully explored graph Gfull, the red circled states together show the optimal solution path (Pfull =
〈s0, s1, s3, s6, s9, s10〉) with terminal one (s10) for the optimal goal in (a). In any other not fully
explored state-transition graph Ge0 at the beginning timestep of any episode e in (b), we regard the
reachable state in the dashed line circle (s6) through planning in the next episode Ge+1

0 in (c) as the
optimal goal in (d).

in the environment (i.e., s10). The intuitive explanation behind this is very natural, where the en-
vironment in this case is fully explored, and thus the agent is ready to target at the terminal state.
In the other cases, we generate the optimal goal g∗e of episode e at the episode e + 1. Specially,
we find the shortest path to the highest value state in Ge+1

0 as the optimal solution path Pe+1. As
Figure 10 illustrates, in the episode e + 1, the highest value is s9 and the optimal solution path in
this case is Pe+1 = 〈s0, s1, s3, s6, s9〉. We then compare the explored states in Ge0 with the states
in P inverse

e+1 , where P inverse
e+1 = 〈s9, s6, s3, s1, s0〉 is the inverse order of Pe+1. As Figure 10(d) shows,

finally we obtain s6 as the optimal goal g∗e . As stated above, it’s easy to find that there are two cases
in the optimal goal generation. One is the last node of solution path Pe+1. The other is one of the
rest nodes in Pe+1 except the last one. We then prove that in both of these cases, optimal goal g∗e is
always included in the boundary of the state-transition graph ∂Ge0 .

Case I: Node at Last. If Q-value of each state is well estimated, i.e., Q = Q∗, then the optimal
solution path Pe+1 at episode e+1 should be close to the optimal solution path Pfull in the full graph
Gfull, and the last state of the path Pe+1 should be closest to the terminal state. Hence, if g∗e is not in
the boundary, there must be one neighbor node closer to the terminal state. Otherwise, g∗e is the dead
end and thus should not be regarded as the optimal goal. And if there is one neighbor node closer
to the terminal state, then this state should be regarded as the optimal goal. Therefore, we obtain a
contradiction.

Case II: Node Not at Last. If the optimal goal is not the last state, then there must exist the state
unexplored at episode e. Take Figure 10 as an example, if we take s6 as the optimal goal g∗e in (d),
state s9 must be unexplored in Ge0 in (c) and explored in Ge+1

0 in (b). If g∗e is not included in ∂Ge0 ,
then there should not exist any unexplored state that is included in its neighborhood. According to
the definition of the boundary of the graph, we have proved the proposition by contradiction.

In summary, we have proved the proposition in both two cases by contradiction.

D.3 PROOF OF PROPOSITION 3

Proposition 3. Denote the Bellman backup operator in Eq. (6) as B : R|S|×|A|×|G| → R|S|×|A|×|G|
and a mapping Q : S×A×G→ R|S|×|A|×|G| with |S| <∞ and |A| <∞. Repeated applications
of the operator B for our graph-based state-action value estimate Q̂G converges to a unique optimal
value Q̂∗G∗ with well-explored graph G∗ (i.e., fully explored graph Gfull) including optimal solution
path.

Proof. The proof of Proposition 3 is done in two main steps. The first step is to show that our state-
transition graph G can converge to the well-explored graph G∗. Here, we define G∗ as the graph that
includes the optimal path (i.e., Pfull in Definition 2). In the second step, we prove that given graph
G, our graph-based method can converge to unique optimal value Q∗G .

16

Under review as a conference paper at ICLR 2021

Step I. Since |S| < ∞ and |A| < ∞, we can obtain that VG < ∞ and EG < ∞. Note that the
state-transition graph G is a dynamic graph, and goals g generated on G are updated at the beginning
timestep of each episode. Hence, there is a sequence of goals denoted as (g1, g2, · · · , gE) and
corresponding sequence of graphs denoted as (G1

0 ,G2
0 , · · · ,GE0), where E here is the number of

episodes. Given that |S| <∞ and |A| <∞, the number of nodes and edges in the full graph Gfull is
also bounded. Based on the explore strategy introduced in Section 3, we know that goal-oriented RL
will first search for a path leading to the terminal state. After that, the terminal state will be included
in G. Then the agent will seek the shortest path to the terminal state because the agent is given a
negative reward at each timestep. Hence, the optimal solution path Pfull will be involved. Hence, we
can obtain that

G1
0 ⊆ G2

0 ⊆ · · · ⊆ G∗ ⇒ G → G∗. (13)
Assume that E is large enough, our state-transition graph G can finally converge to well-explored
graph G∗.
Step II. Note that the proof of convergence for our graph-based goal-oriented RL is quite similar
to Q-learning (Bellman, 1966; Bertsekas, 1995; Sutton & Barto, 2018). The differences between
our approach and Q-learning are that Q value Q(s, a, g) is also conditioned on goal g, and that the
state-transition probability PG(s′|s, a) can be reflected by graph G. We provide detailed proof as
follows:

For any state-transition graph G, we can obtain goal g ∈ G conditioned on G from Step I. Based on
that, our estimated graph-based action-value function Q̂G can be defined as

BQ̂G(s, a, g) = R(s, a, g) + γ ·max
a′∈A

∑

s′∈S
PG(s′|s, a) · Q̂G(s′, a′, g). (14)

For any action-value function estimates Q̂1
G , Q̂

2
G , we study that

|BQ̂1
G(s, a, g)− BQ̂2

G(s, a, g)|
= γ · |max

a′∈A

∑

s′∈S
PG(s′|s, a) · Q̂1

G(s′, a′, g)−max
a′∈A

∑

s′∈S
PG(s′|s, a) · Q̂2

G(s′, a′, g)|

≤ γ ·max
a′∈A

|
∑

s′∈S
PG(s′|s, a) · Q̂1

G(s′, a′, g)−
∑

s′∈S
PG(s′|s, a) · Q̂2

G(s′, a′, g)|

= γ ·max
a′∈A

∑

s′∈S
PG(s′|s, a) · |Q̂1

G(s′, a′, g)− Q̂2
G(s′, a′, g)|

≤ γ · max
s∈S,a∈A

|Q̂1
G(s, a, g)− Q̂2

G(s, a, g)|

(15)

So the contraction property of Bellman operator holds that

max
s∈S,a∈A

|BQ̂1
G(s, a, g)− BQ̂2

G(s, a, g)| ≤ γ · max
s∈S,a∈A

|Q̂1
G(s, a, g)− Q̂2

G(s, a, g)| (16)

For the fixed point Q∗G , we have that

max
s∈S,a∈A

|BQ̂G(s, a, g)− BQ̂∗G(s, a, g)| ≤ γ · max
s∈S,a∈A

|Q̂G(s, a, g)− Q̂∗G(s, a, g)| ⇒ Q̂G → Q∗G .

(17)

Combining Step I and II, we can conclude that our graph-based estimated state-action value Q̂G can
converge to a unique optimal value Q∗G∗ .

E DISCUSSIONS

E.1 DISCUSSION ON CERTAINTY OF STATE

In this section, we further discuss the relationship between the certainty of state and the number of
states. In the previous exploration RL literature (Ostrovski et al., 2017; Bellemare et al., 2016), the
performance of exploration often is measured by the number of the visited states. Namely, given
a fixed number of episodes, more visited states, better performance. In this paper, we propose to
utilize a new measurement, i.e., certainty of state as illustrated in Definition 1. We conclude the
relations between certainty and the number of visited states as Proposition 4.

17

Under review as a conference paper at ICLR 2021

initial state

terminal state

(a)

s0

s1

s3 s6

s2

s4

s5

s7

s8

s9

s10

initial state

terminal state

(b)

s0

s1

s3 s6

s2

s4

s5

s7

s8

s9

s10

Figure 11: An illustrated example for relationship between certainty and number of visited states.

Proposition 4. Given a whole state-transition graph Gwhole, we can regard the certainty of states as
the local measurement and the number of states as the global measurement for exploration, which
share a similar trend during agent exploration.

Proof. We illustrate and prove the proposition hindsightly. If we have the full observation for states
as shown in Figure 11(a), we can model the agent finding new states as connecting new states
with visited states. In other words, since the state-transition graph Get must keep being a fully
connected graph at any timestep t in any episode e. Hence, adding new states into the visited
state set can always be regarded as finding new edge between new states and the visited state set.
And each directed edge in the state-transition graph, as shown in Figure 11(b) is determined by
action and state-transition function. If the environment is determined, we can roughly regard the
number of edges as the approximate measurement for exploration. The certainty of states is the
local perspective for this measurement.

E.2 DISCUSSION ON OPTIMAL GOAL

In the previous goal-oriented RL literature (Andrychowicz et al., 2017; Ren et al., 2019), what kind
of generated goals is helpful for the agent to efficiently learn a well-performed policy is one of the
key questions to be answered. The basic idea of goal-oriented RL architecture is to generate goals to
decompose the complex task into several goal-oriented tasks. In this paper, we analyze our generated
goals from two perspectives, namely reachability and curriculum.

Reachability. The first property required in the optimal goal is that the generated goal is guaranteed
to be reachable for the agent. To this end, in this paper, the candidate goal set is constrained into the
visited states. In other words, the goal generated in the episode e must be visited before the episode
e. Therefore, we can guarantee that the generated goal is reachable.

Curriculum. The second property is the curriculum, which means that our optimal goals are re-
quired to approach the terminal state during the exploration. If the Q-value of each state is well es-
timated, our goal generation under the supervision of forward-looking planning at the next episode
will focus on the potential highest value states in the future, which is actually the terminal state when
the agent has the full observation of states.

E.3 DISCUSSION ON GROUP DIVISION

Motivation. The intuitive motivation behind the group division is very natural. Proposition 1 implies
that exploration on the state-transition graph Get at timestep t in episode ewithout any constraint may
lead to explosion of graph and inefficiency of exploration. Therefore, the agent is expected to do
exploration within a limited domain. Considering that Get is always changing and the number of
nodes (i.e., |SGe

t
|) keeps increasing, it is non-trivial for the agent to learn to select state as the goal

for further exploration. Hence, we first restrict the exploration within the boundary of state-transition
graph ∂Get according to Proposition 2. We then consider partitioning ∂Get into several groups.

We set the last visited state slast as the original point because slast is likely to be close to the target
state and reachable for current policy. As introduced in Section 3, we propose to extend groups from
slast following two possible perspectives, namely neighbor and uncertain nodes.

Complexity. Let d∂Ge
t

denote the maximum degree of states in ∂Get , and |S∂Ge
t
| denote the number

of states in ∂Get . Note that ∂Get is always a directed fully connected graph. If we want to find the n-
hop neighbors of slast, we need to iteratively go through related nodes’ neighborhood. In other words,
the computation complexity should be O(dn∂Ge

t
). Hence, the complexity to construct C1, . . . , CN by

extending from neighbor nodes is O(d1
∂Ge

t
) +O(d2

∂Ge
t
) + · · ·+O(dN−1

∂Ge
t

) = O(dN−1
∂Ge

t
). If we want

to find nodes whose uncertainty equals n, we need to go through the graph once. In this case,

18

Under review as a conference paper at ICLR 2021

the computation complexity should be O(|S∂Ge
t
|). Hence, the complexity to construct C1, . . . , CN

extending from uncertain nodes is O(|S∂Ge
t
|).

F EXPERIMENTS

F.1 ENVIRONMENT CONFIGURATION

Then we check whether the exploration provided by the goals generated by HGG can result in better
policy training performance. As shown in Figure 3, we compare the vanilla HER, HER with Energy-
Based Prioritization (HER+EBP), HGG, HGG+EBP. It is worth noting that since EBP is designed
for the Bellman equation updates, it is complementary to our HGG-based exploration approach.
Among the eight environments, HGG substantially outperforms HER on four and has comparable
performance on the other four, which are either too simple or too difficult. When combined with EBP,
HGG+EBP achieves the best performance on six environments that are eligible.

Figure 4: Visualization of FetchPush with obstacle.

Performance on tasks with obstacle In a more
difficult task, crafted metric may be more suit-
able than `2-distance used in Eq. (5). As shown
in Figure 4, we created an environment based on
FetchPush with a rigid obstacle. The object and
the goal are uniformly generated in the green
and the red segments respectively. The brown
block is a static wall which cannot be moved.
In addition to `2, we also construct a distance
metric based on the graph distance of a mesh
grid on the plane, the blue line is a successful trajectory in such hand-craft distance measure. A more
detailed description is deferred to Appendix B.3. Intuitively speaking, this crafted distance should be
better than `2 due to the existence of the obstacle. Experimental results suggest that such a crafted
distance metric provides better guidance for goal generation and training, and significantly improves
sample efficiency over `2 distance. It would be a future direction to investigate ways to obtain or
learn a good metric.

5.2 Comparison with Explicit Curriculum Learning

Figure 5: Comparison with curricu-
lum learning. We compare HGG
with the original HER, HER+GOID
with two threshold values.

Since our method can be seen as an explicit curriculum learn-
ing for exploration, where we generate hindsight goals as
intermediate task distribution, we also compare our method
with another recently proposed curriculum learning method for
RL. Florensa et al. (2018) leverages Least-Squares GAN (Mao
et al., 2018b) to mimic the set called Goals of Intermediate
Difficult as exploration goal generator.

Specifically, in our task settings, we define a goal set
GOID(⇡) = {g : ↵ f(⇡, g) 1 � ↵}, where f(⇡, g)
represents the average success rate in a small region closed by
goal g. To sample from GOID, we implement an oracle goal
generator based on rejection sampling, which could uniformly
sample goals from GOID(⇡). Result in Figure 5 indicates
that our Hindsight Goal Generation substantially outperforms HER even with GOID from the oracle
generator. Note that this experiment is run on a environment with fixed initial state due to the
limitation of Florensa et al. (2018). The choice of ↵ is also suggested by Florensa et al. (2018).

5.3 Ablation Studies on Hyperparameter Selection

In this section, we set up a set of ablation tests on several hyper-parameters used in the Hindsight
Goal Generation algorithm.

Lipschitz L: The selection of Lipschitz constant is task dependent, since it iss related with scale of
value function and goal distance. For the robotics tasks tested in this paper, we find that it is easier
to set L by first divided it with the upper bound of the distance between any two final goals in a
environment. We test a few choices of L on several environments and find that it is very easy to find
a range of L that works well and shows robustness for all the environments tested in this section. We
show the learning curves on FetchPush with different L. It appears that the performance of HGG is
reasonable as long as L is not too small. For all tasks we tested in the comparisons, we set L = 5.0.

Distance weight c: Parameter c defines the trade-off between the initial state similarity and the goal
similarity. Larger c encourages our algorithm to choose hindsight goals that has closer initial state.

8

A Proof of Theorem 1

In this section we provide the proof of Theorem 1.
Theorem 1. Assuming that the generalizability condition (Eq. (4)) holds for two distributions
(s, g) ⇠ T and (s0, g0) ⇠ T 0, we have

V ⇡(T 0) � V ⇡(T)� L · D(T , T 0). (6)

where D(·, ·) is the Wasserstein distance based on d(·, ·)

D(T (1), T (2)) = inf
µ2�(T (1),T (2))

⇣
Eµ[d((s0

(1), g(1)), (s0
(2), g(2)))]

⌘

where �(T (1), T (2)) denotes the collection of all joint distribution µ(s0
(1), g(1), s0

(2), g(2)) whose
marginal probabilities are T (1), T (2), respectively.

Proof. By Eq. (4), for any quadruple (s, g, s0, g0), we have

V ⇡(s0, g0) � V ⇡(s, g)� L · d((s, g), (s0, g0)). (10)

For any µ 2 �(T , T 0), we sample (s, g, s0, g0) ⇠ µ and take the expectation on both sides of Eq. (10),
and get

V ⇡(T 0) � V ⇡(T)� L · Eµ[d((s, g), (s0, g0))]. (11)

Since Eq. (11) holds for any µ 2 �(T , T 0), we have

V ⇡(T 0) � V ⇡(T)� L · inf
µ2�(T ,T 0)

(Eµ[d((s, g), (s0, g0))]) = V ⇡(T)� L · D(T , T 0).

B Experiment Settings

B.1 Modified Environments

Figure 7: Visualization of modified task distribution in Fetch environments. The object is uniformly
generated on the green segment, and the goal is uniformly generated on the red segment.

Fetch Environments:

• FetchPush-v1: Let the origin (0, 0, 0) denote the projection of gripper’s initial coordi-
nate on the table. The object is uniformly generated on the segment (�0.15,�0.15, 0)�
(0.15,�0.15, 0), and the goal is uniformly generated on the segment (�0.15, 0.15, 0) �
(0.15, 0.15, 0).

• FetchPickAndPlace-v1: Let the origin (0, 0, 0) denote the projection of gripper’s initial coor-
dinate on the table. The object is uniformly generated on the segment (�0.15,�0.15, 0)�
(0.15,�0.15, 0), and the goal is uniformly generated on the segment (�0.15, 0.15, 0.45)�
(0.15, 0.15, 0.45).

• FetchSlide-v1: Let the origin (0, 0, 0) denote the projection of gripper’s initial coordi-
nate on the table. The object is uniformly generated on the segment (�0.05,�0.1, 0) �
(�0.05, 0.1, 0), and the goal is uniformly generated on the segment (0.55,�0.15, 0) �
(0.55, 0.15, 0).

13

(b) AntMaze (d) FetchPush with Obstacle(c) FetchPush(a) Maze

Published as a conference paper at ICLR 2020

memorized states like episodic memory, and maintain a graph on top of these states based on state
transitions at the same time. Then we develop an efficient reverse-trajectory propagation strategy
to allow the values of new experiences to rapidly propagate to all memory items through the graph.
Finally, we use the fast-adjusted non-parametric high values in associative memory as early guid-
ance for a parametric RL agent so that it can rapidly latch on states that previously yield high returns
instead of waiting for many slow gradient updates.

A

Figure 1: Comparison of selected poli-
cies based on episodic memory and as-
sociative memory. An agent starts from
two place A and B to collect two expe-
riences.

To illustrate the superiority of the associative memory
in reinforcement learning, consider a robot exploring in
a maze to seek out the apple (at place G), as shown in
Figure 1. It collects two trajectory experiences starting
from place A and B, respectively. All the states of tra-
jectory A (the top blue dash line) receive no reward be-
cause the agent terminates at a state with a non-zero re-
ward (at place C), while in trajectory B (the bottom blue
dash line) the final non-zero reward of catching an ap-
ple (at place G) back-propagates through the whole path.
Episodic memory keeps a high value at the intersection
of two trajectories (the door) when taking actions toward
lower-right corner while recording zero values at the other
states in trajectory A. If an episodic memory based robot
starts from place A, it will wander around A because there
are no positive values indicating the way to goal. Thus
based on the episodic memory, the robot may eventually
take a policy like the green line after multiple attempts.
However, if the robot adopts associative memory, the high
value in the door collected from trajectory B will be fur-
ther propagated to the start point A and thus the robot can
correctly take the red-line policy.

To some extent, our associative memory is equivalent to automatic augmentation of counterfactual
combinatorial trajectories in memory. Thus, our framework significantly improves the sample-
efficiency of reinforcement learning. Comparisons with state-of-the-art episodic reinforcement
learning methods show that ERLAM is substantially more sample efficient for general settings of
reinforcement learning. In addition, our associative memory can be used as a plug-and-play module
and is complementary to other reinforcement learning models, which opens the avenue for further
researches on associative memory based reinforcement learning.

2 BACKGROUND

In the framework of reinforcement learning (Sutton & Barto, 1998), an agent learns a policy to
maximize its cumulative rewards by exploring in a Markov Decision Processes (MDP) environment.
An MDP is defined by a tuple (S, A, P, R, �), where S is a finite set of states, A is a finite set of
actions available to the agent, P : S ⇥ A ⇥ S ! R defines the transition probability distribution,
R is the reward function, and � 2 (0, 1] is the discount factor. At each time step t, the agent
observes state st 2 S , selects an action at 2 A according to its policy ⇡ : S ! A, and receives a
scalar reward rt. In the setting of finite horizon, the accumulated discounted return is calculated as,
Rt =

PT
k=0 �

krt+k where T is the episode length and goal of the agent is to maximize the expected
return for each state st.

The state-action value function Q⇡(s, a) = E[Rt|st = s, a] is the expected return for executing
action a on state s and following policy ⇡ afterwards. DQN (Mnih et al., 2015) parameterizes
this action-value function by deep neural networks Q✓(s, a) and use Q-learning (Watkins & Dayan,
1992) to learn it to rank which action at is best to take in each state st at time step t. The parameters
of the value network ✓ are optimized by minimizing the L2 difference between the networks output
Q✓(s, a) and the Q-learning target yt = rt + � maxa Q✓̂(st+1, at), where ✓̂ are parameters of a
target network that is a older version of the value network and updated periodically. DQN uses an
off-policy learning strategy, which samples (st, at, rt, st+1) tuple from a replay buffer for training.

2

Figure 12: Visualization of robotic manipulation environments.

Maze. As shown in Figure 12(a), in the maze environment, a point in a 2D U -maze aims to reach
a goal represented by a red point. The size of maze is 15 × 15, the state space and is in this 2D
U -maze, and the goal is uniformly generated on the segment from (0, 0) to (15.0, 15.0). The action
space is from (−1.0,−1.0) to (1.0, 1.0), which represents the movement in x and y directions.

AntMaze. As shown in Figure 12(b), in the AntMaze environment, an ant is put in aU -maze, and the
size of the maze is 12×12. The ant is put on a random location on the segment from (−2.0,−2.0) to
(10.0, 10.0), and the goal is uniformly generated on the segment from (−2.0,−2.0) to (10.0, 10.0).
The state of ant is 30-dimension, including its positions and velocities.

FetchPush. As shown in Figure 12(c), in the fetch environment, the agent is trained to fetch an
object from the initial position (rectangle depicted in green) to a distant position (rectangle depicted
in red). Let the origin (0, 0, 0) denote the projection of the gripper’s initial coordinate on the table.
The object is uniformly generated on the segment from (−0.0,−0.0, 0) to (8, 8, 0), and the goal is
uniformly generated on the segment from (−0.0,−0.0, 0) to (8, 8, 0).

FetchPush with Obstacle. As shown in Figure 12(d), in the fetch with obstacle environment, we
create an environment based on FetchPush with a rigid obstacle, where the brown block is a static
wall that can’t be moved. The object is uniformly generated on the segment from (−0.0,−0.0, 0) to
(8, 8, 0), and the goal is uniformly generated on the segment from (−0.0,−0.0, 0) to (8, 8, 0).

AntMaze with Obstacle. This environment is an extended version of AntMaze, where a 1× 1 rigid
obstacle is put in U-maze.

F.2 EVALUATION DETAILS

• All curves presented in this paper are plotted from 10 runs with random task initialization and
seeds.

• The shaded region indicates 60% population around the median.
• All curves are plotted using the same hyper-parameters (except the ablation section).
• Following (Andrychowicz et al., 2017), an episode is considered successful if ‖g− sobject‖2 ≤ δg

is achieved, where sobject is the object position at the end of the episode. δg is the threshold.
• The max timestep for each episode is set as 200 for training and 500 for tests.
• The average success rate using in the curve is estimated by 102 samples.

F.3 HYPER-PARAMETERS

Almost all hyper-parameters using DDPG (Lillicrap et al., 2015) and HER Andrychowicz et al.
(2017) are kept the same as benchmark results, except these:

• Number of MPI workers: 1;
• Actor and critic networks: 3 layers with 256 units and ReLU activation;
• Adam optimizer with 5× 10−4 learning rate;
• Polyak-averaging coefficient: 0.98;
• Action l2-norm penalty coefficient: 0.5;
• Batch size: 256;

19

Under review as a conference paper at ICLR 2021

• Probability of random actions: 0.2;
• Scale of additive Gaussian noise: 0.2;
• Probability of HER experience replay: 0.8;
• Number of batches to replay after collecting one trajectory: 50.

Hyper-parameters in goal generation:

• Adam optimizer with 1× 10−3 learning rate;
• K of K-bins discretization: 20;
• Number of groups to depart the graph: 3.

F.4 IMPACT OF GROUP SELECTION

We provide a separate numerical table of asymptotic performance values besides Figure 6(g) here,
since the curves of all the models (GSRL and its variants) are close to each other.

Model NOGroup UNCERT2 UNCERT3 UNCERT4 NEIGH3
Success Rate 0.98± 0.03 0.98± 0.02 0.99± 0.02 0.97± 0.03 0.97± 0.03

Table 1: Results of investigation on impact of group selection. Note that the success rate is limited
between 0.00 and 1.00.

F.5 COMPARISON ON EXPLORATION

By sample efficiency, we show the comparisons according to the number of states visited and actions
taken. In other words, given the fix number of episodes, more unique states visited and actions taken
usually denote the efficiency of exploration. We report the log files of GSRL and HER in Maze
environment here at 10, 50, 100 episodes, which contain the number of visited nodes and actions
taken.
==================== Graph Structured Reinforcement Learning (GSRL) ====================
episode is: 10
nodes: [22, 21, 11, 31, 42, 32, 41, 23, 43, 33, 44, 34, 13, 14, 15, 26, 25, 36, 35, 45, 16, 24, 37, 47, 38, 48, 46, 12, 49,

59, 69, 79, 80, 78, 90, 89, 99, 109, 110, 100, 27, 28, 39, 50, 40]
number of nodes: 45
edges: [(22, 22), (22, 21), (22, 23), (22, 32), (22, 33), (22, 13), (22, 31), (22, 12), (21, 21), (21, 11), (21, 31), (21,

32), (21, 22), (11, 11), (11, 21), (11, 12), (31, 31), (31, 42), (31, 41), (31, 22), (31, 32), (31, 21), (42, 42), (42,
32), (42, 43), (42, 41), (42, 31), (32, 31), (32, 32), (32, 42), (32, 43), (32, 33), (32, 23), (32, 22), (41, 41),

(41, 31), (23, 22), (23, 23), (23, 32), (23, 34), (23, 33), (23, 24), (43, 32), (43, 43), (43, 42), (43, 33), (43, 44),
(43, 34), (33, 33), (33, 44), (33, 32), (33, 43), (33, 23), (33, 34), (44, 44), (44, 33), (44, 43), (44, 35), (44, 34)

, (44, 45), (34, 43), (34, 33), (34, 34), (34, 24), (34, 35), (34, 44), (34, 45), (13, 13), (13, 14), (13, 23), (14,
15), (14, 25), (14, 14), (15, 15), (15, 26), (15, 25), (15, 14), (15, 16), (26, 26), (26, 25), (26, 36), (26, 16), (26,
37), (26, 27), (25, 26), (25, 25), (25, 15), (25, 36), (36, 35), (36, 26), (36, 36), (36, 37), (36, 27), (35, 35),

(35, 45), (35, 26), (35, 34), (35, 36), (35, 44), (35, 25), (45, 35), (45, 44), (45, 45), (16, 26), (24, 35), (24, 34),
(24, 25), (37, 47), (37, 37), (37, 38), (37, 48), (47, 37), (47, 47), (47, 48), (47, 46), (38, 47), (38, 48), (38, 37)

, (38, 49), (38, 28), (38, 39), (48, 38), (48, 48), (48, 49), (46, 47), (46, 46), (12, 11), (12, 21), (12, 23), (12,
22), (12, 13), (49, 48), (49, 59), (49, 50), (59, 69), (69, 69), (69, 79), (79, 80), (79, 78), (79, 79), (79, 90), (80,
79), (78, 79), (90, 89), (89, 99), (99, 99), (99, 109), (109, 110), (109, 109), (109, 100), (110, 100), (100, 109),

(27, 36), (27, 27), (27, 38), (28, 28), (28, 38), (39, 50), (39, 40), (39, 39), (50, 39), (50, 40), (50, 50), (40, 49),
(40, 39), (40, 50)]

number of edges: 166
episode is: 50
nodes: [22, 21, 11, 31, 42, 32, 41, 23, 43, 33, 44, 34, 13, 14, 15, 26, 25, 36, 35, 45, 16, 24, 37, 47, 38, 48, 46, 12, 49,

59, 69, 79, 80, 78, 90, 89, 99, 109, 110, 100, 27, 28, 39, 50, 40, 29, 30, 51, 57, 18, 19, 58, 68, 17, 60, 20, 67, 70,
71, 61]

number of nodes: 60
edges: [(22, 22), (22, 21), (22, 23), (22, 32), (22, 33), (22, 13), (22, 31), (22, 12), (22, 11), (21, 21), (21, 11), (21,

31), (21, 32), (21, 22), (21, 12), (11, 11), (11, 21), (11, 12), (11, 22), (31, 31), (31, 42), (31, 41), (31, 22), (31,
32), (31, 21), (31, 40), (31, 30), (42, 42), (42, 32), (42, 43), (42, 41), (42, 31), (32, 31), (32, 32), (32, 42),

(32, 43), (32, 33), (32, 23), (32, 22), (32, 41), (32, 21), (41, 41), (41, 31), (41, 40), (41, 32), (23, 22), (23, 23),
(23, 32), (23, 34), (23, 33), (23, 24), (23, 13), (23, 14), (23, 12), (43, 32), (43, 43), (43, 42), (43, 33), (43, 44)

, (43, 34), (33, 33), (33, 44), (33, 32), (33, 43), (33, 23), (33, 34), (33, 22), (33, 42), (33, 24), (44, 44), (44,
33), (44, 43), (44, 35), (44, 34), (44, 45), (34, 43), (34, 33), (34, 34), (34, 24), (34, 35), (34, 44), (34, 45), (34,
25), (13, 13), (13, 14), (13, 23), (13, 12), (13, 22), (13, 24), (14, 15), (14, 25), (14, 14), (14, 24), (14, 13),

(14, 23), (15, 15), (15, 26), (15, 25), (15, 14), (15, 16), (26, 26), (26, 25), (26, 36), (26, 16), (26, 37), (26, 27),
(26, 35), (26, 17), (25, 26), (25, 25), (25, 15), (25, 36), (25, 24), (25, 35), (25, 16), (25, 34), (36, 35), (36, 26)

, (36, 36), (36, 37), (36, 27), (36, 46), (36, 47), (36, 45), (35, 35), (35, 45), (35, 26), (35, 34), (35, 36), (35,
44), (35, 25), (35, 46), (35, 24), (45, 35), (45, 44), (45, 45), (45, 46), (45, 36), (45, 34), (16, 26), (16, 16), (16,
27), (16, 17), (16, 15), (16, 25), (24, 35), (24, 34), (24, 25), (24, 24), (24, 14), (24, 23), (24, 15), (24, 33),

(37, 47), (37, 37), (37, 38), (37, 48), (37, 28), (37, 36), (37, 46), (37, 27), (47, 37), (47, 47), (47, 48), (47, 46),
(47, 38), (47, 58), (47, 57), (47, 36), (38, 47), (38, 48), (38, 37), (38, 49), (38, 28), (38, 39), (38, 38), (38, 27)

, (48, 38), (48, 48), (48, 49), (48, 57), (48, 47), (48, 58), (48, 59), (46, 47), (46, 46), (46, 37), (46, 45), (46,

20

Under review as a conference paper at ICLR 2021

36), (46, 35), (12, 11), (12, 21), (12, 23), (12, 22), (12, 13), (12, 12), (49, 48), (49, 59), (49, 50), (49, 39), (49,
49), (49, 60), (59, 69), (59, 59), (59, 48), (59, 50), (59, 60), (59, 49), (59, 58), (69, 69), (69, 79), (69, 78),

(69, 80), (79, 80), (79, 78), (79, 79), (79, 90), (79, 68), (80, 79), (80, 69), (80, 80), (80, 90), (78, 79), (78, 78),
(78, 68), (78, 69), (78, 89), (90, 89), (90, 79), (90, 90), (89, 99), (89, 79), (99, 99), (99, 109), (109, 110), (109,
109), (109, 100), (110, 100), (100, 109), (27, 36), (27, 27), (27, 38), (27, 28), (27, 26), (27, 37), (27, 18), (27,

16), (27, 17), (28, 28), (28, 38), (28, 27), (28, 18), (28, 19), (28, 37), (28, 39), (28, 29), (39, 50), (39, 40), (39,
39), (39, 29), (39, 38), (50, 39), (50, 40), (50, 50), (50, 49), (50, 59), (50, 60), (50, 51), (40, 49), (40, 39),

(40, 50), (40, 40), (40, 51), (40, 41), (40, 29), (40, 31), (40, 30), (29, 30), (29, 39), (29, 29), (29, 19), (29, 28),
(30, 29), (30, 40), (30, 31), (30, 30), (30, 20), (30, 39), (51, 40), (57, 57), (57, 68), (57, 47), (57, 58), (57, 48)

, (18, 19), (18, 27), (18, 28), (18, 18), (18, 17), (18, 29), (19, 28), (19, 19), (19, 18), (19, 30), (19, 29), (58,
48), (58, 58), (58, 57), (58, 59), (58, 49), (58, 47), (58, 67), (68, 69), (68, 78), (68, 79), (17, 17), (17, 18), (17,
28), (17, 16), (17, 27), (60, 50), (60, 60), (60, 49), (60, 70), (60, 61), (60, 59), (20, 19), (67, 67), (67, 58),

(70, 71), (70, 70), (70, 60), (70, 69), (71, 71), (71, 70), (61, 70)]
number of edges: 336
episode: 100
nodes: [22, 21, 11, 31, 42, 32, 41, 23, 43, 33, 44, 34, 13, 14, 15, 26, 25, 36, 35, 45, 16, 24, 37, 47, 38, 48, 46, 12, 49,

59, 69, 79, 80, 78, 90, 89, 99, 109, 110, 100, 27, 28, 39, 50, 40, 29, 30, 51, 57, 18, 19, 58, 68, 17, 60, 20, 67, 70,
71, 61, 88, 87, 96, 106, 105, 104, 114, 115, 81, 77, 97, 107, 86, 98, 108, 95, 85, 94, 103]

number of nodes: 79
edges: [(22, 22), (22, 21), (22, 23), (22, 32), (22, 33), (22, 13), (22, 31), (22, 12), (22, 11), (21, 21), (21, 11), (21,

31), (21, 32), (21, 22), (21, 12), (21, 20), (21, 30), (11, 11), (11, 21), (11, 12), (11, 22), (31, 31), (31, 42), (31,
41), (31, 22), (31, 32), (31, 21), (31, 40), (31, 30), (42, 42), (42, 32), (42, 43), (42, 41), (42, 31), (42, 33),

(32, 31), (32, 32), (32, 42), (32, 43), (32, 33), (32, 23), (32, 22), (32, 41), (32, 21), (41, 41), (41, 31), (41, 40),
(41, 32), (41, 42), (41, 50), (41, 30), (23, 22), (23, 23), (23, 32), (23, 34), (23, 33), (23, 24), (23, 13), (23, 14)

, (23, 12), (43, 32), (43, 43), (43, 42), (43, 33), (43, 44), (43, 34), (33, 33), (33, 44), (33, 32), (33, 43), (33,
23), (33, 34), (33, 22), (33, 42), (33, 24), (44, 44), (44, 33), (44, 43), (44, 35), (44, 34), (44, 45), (34, 43), (34,
33), (34, 34), (34, 24), (34, 35), (34, 44), (34, 45), (34, 25), (34, 23), (13, 13), (13, 14), (13, 23), (13, 12),

(13, 22), (13, 24), (14, 15), (14, 25), (14, 14), (14, 24), (14, 13), (14, 23), (15, 15), (15, 26), (15, 25), (15, 14),
(15, 16), (15, 24), (26, 26), (26, 25), (26, 36), (26, 16), (26, 37), (26, 27), (26, 35), (26, 17), (26, 15), (25, 26)

, (25, 25), (25, 15), (25, 36), (25, 24), (25, 35), (25, 16), (25, 34), (25, 14), (36, 35), (36, 26), (36, 36), (36,
37), (36, 27), (36, 46), (36, 47), (36, 45), (36, 25), (35, 35), (35, 45), (35, 26), (35, 34), (35, 36), (35, 44), (35,
25), (35, 46), (35, 24), (45, 35), (45, 44), (45, 45), (45, 46), (45, 36), (45, 34), (16, 26), (16, 16), (16, 27),

(16, 17), (16, 15), (16, 25), (24, 35), (24, 34), (24, 25), (24, 24), (24, 14), (24, 23), (24, 15), (24, 33), (24, 13),
(37, 47), (37, 37), (37, 38), (37, 48), (37, 28), (37, 36), (37, 46), (37, 27), (37, 26), (47, 37), (47, 47), (47, 48)

, (47, 46), (47, 38), (47, 58), (47, 57), (47, 36), (38, 47), (38, 48), (38, 37), (38, 49), (38, 28), (38, 39), (38,
38), (38, 27), (38, 29), (48, 38), (48, 48), (48, 49), (48, 57), (48, 47), (48, 58), (48, 59), (48, 37), (48, 39), (46,
47), (46, 46), (46, 37), (46, 45), (46, 36), (46, 35), (12, 11), (12, 21), (12, 23), (12, 22), (12, 13), (12, 12),

(49, 48), (49, 59), (49, 50), (49, 39), (49, 49), (49, 60), (49, 58), (49, 40), (49, 38), (59, 69), (59, 59), (59, 48),
(59, 50), (59, 60), (59, 49), (59, 58), (59, 68), (59, 70), (69, 69), (69, 79), (69, 78), (69, 80), (69, 70), (69, 68)

, (69, 59), (79, 80), (79, 78), (79, 79), (79, 90), (79, 68), (79, 88), (79, 89), (79, 69), (80, 79), (80, 69), (80,
80), (80, 90), (80, 89), (80, 81), (80, 70), (80, 71), (78, 79), (78, 78), (78, 68), (78, 69), (78, 89), (78, 87), (78,
67), (78, 77), (78, 88), (90, 89), (90, 79), (90, 90), (90, 80), (89, 99), (89, 79), (89, 80), (89, 89), (89, 88),

(89, 90), (89, 78), (89, 98), (99, 99), (99, 109), (99, 88), (99, 89), (99, 98), (99, 100), (109, 110), (109, 109),
(109, 100), (110, 100), (100, 109), (100, 99), (27, 36), (27, 27), (27, 38), (27, 28), (27, 26), (27, 37), (27, 18),
(27, 16), (27, 17), (28, 28), (28, 38), (28, 27), (28, 18), (28, 19), (28, 37), (28, 39), (28, 29), (28, 17), (39, 50),
(39, 40), (39, 39), (39, 29), (39, 38), (39, 49), (39, 48), (39, 30), (50, 39), (50, 40), (50, 50), (50, 49), (50, 59)

, (50, 60), (50, 51), (50, 61), (50, 41), (40, 49), (40, 39), (40, 50), (40, 40), (40, 51), (40, 41), (40, 29), (40,
31), (40, 30), (29, 30), (29, 39), (29, 29), (29, 19), (29, 28), (29, 18), (29, 40), (29, 38), (29, 20), (30, 29), (30,
40), (30, 31), (30, 30), (30, 20), (30, 39), (30, 19), (30, 21), (51, 40), (51, 51), (51, 60), (51, 50), (57, 57),

(57, 68), (57, 47), (57, 58), (57, 48), (57, 67), (18, 19), (18, 27), (18, 28), (18, 18), (18, 17), (18, 29), (19, 28),
(19, 19), (19, 18), (19, 30), (19, 29), (19, 20), (58, 48), (58, 58), (58, 57), (58, 59), (58, 49), (58, 47), (58, 67)

, (58, 69), (58, 68), (68, 69), (68, 78), (68, 79), (68, 68), (68, 57), (68, 67), (68, 77), (68, 58), (17, 17), (17,
18), (17, 28), (17, 16), (17, 27), (60, 50), (60, 60), (60, 49), (60, 70), (60, 61), (60, 59), (60, 51), (60, 69), (60,
71), (20, 19), (20, 30), (20, 20), (20, 21), (20, 29), (67, 67), (67, 58), (67, 68), (67, 78), (67, 77), (67, 57),

(70, 71), (70, 70), (70, 60), (70, 69), (70, 79), (70, 80), (70, 59), (71, 71), (71, 70), (71, 80), (61, 70), (61, 61),
(61, 50), (61, 60), (88, 87), (88, 79), (88, 89), (88, 88), (88, 99), (88, 98), (88, 78), (88, 97), (87, 78), (87, 88)

, (87, 96), (87, 87), (87, 97), (87, 77), (87, 86), (96, 106), (96, 97), (96, 87), (96, 86), (96, 96), (96, 95), (106,
105), (106, 107), (106, 96), (105, 105), (105, 104), (105, 114), (105, 115), (104, 114), (104, 104), (104, 105), (114,
114), (114, 104), (114, 105), (115, 105), (81, 80), (77, 77), (77, 67), (77, 68), (77, 88), (77, 78), (97, 96), (97,
106), (97, 107), (97, 87), (107, 96), (107, 106), (107, 107), (107, 108), (86, 96), (86, 86), (98, 99), (98, 89), (98,
98), (95, 95), (95, 85), (95, 94), (85, 85), (85, 95), (94, 103), (103, 103)]

number of edges: 486
==================== Hindsight Experience Replay (HER) ====================
episode is: 10
nodes: [22, 21, 31, 41, 42, 32, 23, 43, 33, 44, 34, 35, 45, 46, 36, 37, 47, 13, 12, 14, 15, 16, 17, 26, 25, 24, 48, 11, 27]
number of nodes: 29
edges: [(22, 21), (22, 23), (22, 22), (22, 32), (22, 33), (22, 12), (21, 21), (21, 31), (21, 22), (31, 31), (31, 41), (31,

21), (31, 42), (41, 42), (41, 41), (41, 32), (41, 31), (42, 41), (42, 42), (42, 32), (42, 43), (42, 31), (32, 31), (32,
32), (32, 42), (32, 33), (32, 43), (32, 23), (32, 41), (23, 22), (23, 13), (23, 14), (23, 33), (43, 32), (43, 43),

(43, 42), (43, 33), (43, 44), (43, 34), (33, 33), (33, 44), (33, 32), (33, 43), (33, 34), (44, 44), (44, 33), (44, 43),
(44, 34), (44, 35), (44, 45), (34, 43), (34, 33), (34, 35), (34, 34), (34, 45), (35, 45), (35, 46), (35, 35), (35, 34)

, (35, 25), (45, 46), (45, 45), (45, 35), (45, 44), (45, 34), (46, 46), (46, 45), (46, 35), (46, 36), (46, 37), (36,
36), (36, 37), (36, 47), (36, 26), (36, 46), (37, 47), (37, 37), (37, 36), (37, 48), (47, 47), (47, 37), (47, 36), (47,
46), (13, 13), (13, 12), (13, 14), (12, 13), (12, 11), (12, 12), (12, 23), (14, 14), (14, 13), (14, 15), (15, 15),

(15, 16), (15, 26), (15, 25), (16, 16), (16, 17), (26, 25), (26, 26), (26, 37), (26, 36), (26, 27), (25, 24), (25, 36),
(25, 26), (24, 15), (48, 37), (11, 12), (11, 11), (27, 27)]

number of edges: 112
episode is: 50
nodes: [22, 21, 31, 41, 42, 32, 23, 43, 33, 44, 34, 35, 45, 46, 36, 37, 47, 13, 12, 14, 15, 16, 17, 26, 25, 24, 48, 11, 27,

18, 19, 20, 58, 57, 49, 39, 60, 50, 59, 40, 38, 28, 29, 30, 69, 70, 80, 90, 101, 100, 67, 68, 77, 78, 61]
number of nodes: 55

21

Under review as a conference paper at ICLR 2021

edges: [(22, 21), (22, 23), (22, 22), (22, 32), (22, 33), (22, 12), (22, 13), (22, 11), (21, 21), (21, 31), (21, 22), (21,
11), (21, 12), (21, 32), (31, 31), (31, 41), (31, 21), (31, 42), (31, 32), (41, 42), (41, 41), (41, 32), (41, 31), (42,
41), (42, 42), (42, 32), (42, 43), (42, 31), (42, 33), (32, 31), (32, 32), (32, 42), (32, 33), (32, 43), (32, 23),

(32, 41), (32, 22), (32, 21), (23, 22), (23, 13), (23, 14), (23, 33), (23, 34), (23, 24), (23, 23), (23, 12), (43, 32),
(43, 43), (43, 42), (43, 33), (43, 44), (43, 34), (33, 33), (33, 44), (33, 32), (33, 43), (33, 34), (33, 23), (33, 22)

, (33, 42), (33, 24), (44, 44), (44, 33), (44, 43), (44, 34), (44, 35), (44, 45), (34, 43), (34, 33), (34, 35), (34,
34), (34, 45), (34, 23), (34, 44), (34, 25), (34, 24), (35, 45), (35, 46), (35, 35), (35, 34), (35, 25), (35, 44), (35,
36), (45, 46), (45, 45), (45, 35), (45, 44), (45, 34), (45, 36), (46, 46), (46, 45), (46, 35), (46, 36), (46, 37),

(46, 47), (36, 36), (36, 37), (36, 47), (36, 26), (36, 46), (36, 45), (36, 35), (36, 27), (37, 47), (37, 37), (37, 36),
(37, 48), (37, 46), (37, 27), (47, 47), (47, 37), (47, 36), (47, 46), (47, 48), (47, 38), (47, 57), (47, 58), (13, 13)

, (13, 12), (13, 14), (13, 22), (13, 23), (12, 13), (12, 11), (12, 12), (12, 23), (12, 22), (12, 21), (14, 14), (14,
13), (14, 15), (14, 23), (14, 25), (14, 24), (15, 15), (15, 16), (15, 26), (15, 25), (15, 14), (16, 16), (16, 17), (16,
15), (16, 26), (17, 17), (17, 18), (26, 25), (26, 26), (26, 37), (26, 36), (26, 27), (26, 15), (26, 16), (25, 24),

(25, 36), (25, 26), (25, 16), (25, 15), (25, 14), (25, 25), (25, 35), (24, 15), (24, 35), (24, 24), (24, 25), (24, 33),
(24, 23), (24, 34), (48, 37), (48, 47), (48, 48), (48, 58), (48, 49), (48, 59), (48, 38), (11, 12), (11, 11), (11, 21)

, (27, 27), (27, 28), (27, 38), (27, 37), (18, 18), (18, 19), (19, 19), (19, 20), (20, 20), (20, 19), (20, 30), (58,
57), (58, 69), (58, 58), (58, 67), (58, 59), (58, 48), (57, 48), (57, 57), (57, 58), (57, 67), (49, 39), (49, 60), (49,
50), (49, 59), (49, 49), (39, 49), (39, 29), (39, 39), (60, 49), (60, 50), (60, 70), (50, 60), (50, 49), (50, 40),

(59, 49), (59, 59), (59, 69), (59, 58), (59, 60), (40, 49), (38, 47), (38, 28), (38, 38), (38, 39), (38, 48), (28, 29),
(28, 38), (29, 29), (29, 30), (29, 39), (30, 30), (30, 20), (30, 29), (69, 69), (69, 70), (69, 58), (69, 68), (69, 59)

, (70, 70), (70, 80), (70, 61), (80, 80), (80, 90), (90, 90), (90, 101), (101, 101), (101, 100), (100, 101), (100, 100)
, (100, 90), (67, 68), (67, 67), (67, 77), (68, 58), (68, 69), (77, 77), (77, 78)]

number of edges: 255
episode: 100
nodes: [22, 21, 31, 41, 42, 32, 23, 43, 33, 44, 34, 35, 45, 46, 36, 37, 47, 13, 12, 14, 15, 16, 17, 26, 25, 24, 48, 11, 27,

18, 19, 20, 58, 57, 49, 39, 60, 50, 59, 40, 38, 28, 29, 30, 69, 70, 80, 90, 101, 100, 67, 68, 77, 78, 61, 88, 87, 97,
96, 106, 117, 107, 71, 79, 89, 86, 85, 95, 51, 99, 110]

number of nodes: 71
edges: [(22, 21), (22, 23), (22, 22), (22, 32), (22, 33), (22, 12), (22, 13), (22, 11), (22, 31), (21, 21), (21, 31), (21,

22), (21, 11), (21, 12), (21, 32), (21, 20), (31, 31), (31, 41), (31, 21), (31, 42), (31, 32), (31, 30), (31, 40), (31,
22), (41, 42), (41, 41), (41, 32), (41, 31), (42, 41), (42, 42), (42, 32), (42, 43), (42, 31), (42, 33), (32, 31),

(32, 32), (32, 42), (32, 33), (32, 43), (32, 23), (32, 41), (32, 22), (32, 21), (23, 22), (23, 13), (23, 14), (23, 33),
(23, 34), (23, 24), (23, 23), (23, 12), (43, 32), (43, 43), (43, 42), (43, 33), (43, 44), (43, 34), (33, 33), (33, 44)

, (33, 32), (33, 43), (33, 34), (33, 23), (33, 22), (33, 42), (33, 24), (44, 44), (44, 33), (44, 43), (44, 34), (44,
35), (44, 45), (34, 43), (34, 33), (34, 35), (34, 34), (34, 45), (34, 23), (34, 44), (34, 25), (34, 24), (35, 45), (35,
46), (35, 35), (35, 34), (35, 25), (35, 44), (35, 36), (35, 24), (35, 26), (45, 46), (45, 45), (45, 35), (45, 44),

(45, 34), (45, 36), (46, 46), (46, 45), (46, 35), (46, 36), (46, 37), (46, 47), (36, 36), (36, 37), (36, 47), (36, 26),
(36, 46), (36, 45), (36, 35), (36, 27), (36, 25), (37, 47), (37, 37), (37, 36), (37, 48), (37, 46), (37, 27), (37, 38)

, (37, 26), (47, 47), (47, 37), (47, 36), (47, 46), (47, 48), (47, 38), (47, 57), (47, 58), (13, 13), (13, 12), (13,
14), (13, 22), (13, 23), (13, 24), (12, 13), (12, 11), (12, 12), (12, 23), (12, 22), (12, 21), (14, 14), (14, 13), (14,
15), (14, 23), (14, 25), (14, 24), (15, 15), (15, 16), (15, 26), (15, 25), (15, 14), (15, 24), (16, 16), (16, 17),

(16, 15), (16, 26), (16, 27), (17, 17), (17, 18), (17, 16), (17, 28), (17, 27), (17, 26), (26, 25), (26, 26), (26, 37),
(26, 36), (26, 27), (26, 15), (26, 16), (26, 35), (26, 17), (25, 24), (25, 36), (25, 26), (25, 16), (25, 15), (25, 14)

, (25, 25), (25, 35), (24, 15), (24, 35), (24, 24), (24, 25), (24, 33), (24, 23), (24, 34), (24, 14), (48, 37), (48,
47), (48, 48), (48, 58), (48, 49), (48, 59), (48, 38), (48, 39), (48, 57), (11, 12), (11, 11), (11, 21), (27, 27), (27,
28), (27, 38), (27, 37), (27, 18), (27, 26), (27, 17), (18, 18), (18, 19), (18, 17), (19, 19), (19, 20), (19, 29),

(19, 18), (19, 28), (20, 20), (20, 19), (20, 30), (20, 29), (20, 21), (58, 57), (58, 69), (58, 58), (58, 67), (58, 59),
(58, 48), (58, 68), (58, 49), (57, 48), (57, 57), (57, 58), (57, 67), (57, 68), (49, 39), (49, 60), (49, 50), (49, 59)

, (49, 49), (49, 58), (49, 48), (39, 49), (39, 29), (39, 39), (39, 38), (39, 30), (39, 40), (60, 49), (60, 50), (60,
70), (60, 60), (60, 69), (60, 59), (60, 61), (50, 60), (50, 49), (50, 40), (50, 61), (50, 50), (50, 51), (59, 49), (59,
59), (59, 69), (59, 58), (59, 60), (59, 68), (40, 49), (40, 40), (40, 39), (40, 29), (40, 30), (40, 31), (40, 50),

(38, 47), (38, 28), (38, 38), (38, 39), (38, 48), (38, 37), (38, 29), (38, 49), (28, 29), (28, 38), (28, 28), (28, 39),
(28, 18), (28, 19), (29, 29), (29, 30), (29, 39), (29, 19), (29, 28), (29, 38), (29, 40), (30, 30), (30, 20), (30, 29)

, (30, 31), (30, 40), (69, 69), (69, 70), (69, 58), (69, 68), (69, 59), (69, 78), (69, 80), (69, 79), (70, 70), (70,
80), (70, 61), (70, 71), (70, 60), (80, 80), (80, 90), (80, 79), (80, 70), (80, 69), (80, 89), (90, 90), (90, 101),
(90, 79), (90, 89), (101, 101), (101, 100), (100, 101), (100, 100), (100, 90), (100, 110), (67, 68), (67, 67), (67, 77)
, (67, 57), (68, 58), (68, 69), (68, 68), (68, 67), (68, 78), (77, 77), (77, 78), (77, 67), (77, 87), (78, 88), (78,
77), (78, 68), (78, 69), (61, 61), (61, 60), (61, 50), (61, 70), (88, 87), (87, 97), (87, 86), (97, 96), (96, 106),
(106, 117), (106, 107), (117, 106), (107, 107), (71, 71), (71, 70), (79, 79), (79, 68), (79, 80), (79, 69), (79, 78),
(89, 90), (89, 99), (86, 85), (85, 95), (51, 60), (99, 99), (99, 100)]

number of edges: 370

22

	Introduction
	Preliminaries
	Graph Structured Reinforcement Learning
	Explore with Dynamic Graph
	Learn with Graph Structured Reinforcement Learning

	Experiments
	Related Work
	conclusion
	Notations
	Algorithm
	Illustration
	Proofs
	Proof of Proposition 1
	Proof of Proposition 2
	Proof of Proposition 3

	Discussions
	Discussion on Certainty of State
	Discussion on Optimal Goal
	Discussion on Group Division

	Experiments
	Environment Configuration
	Evaluation Details
	Hyper-Parameters
	Impact of Group Selection
	Comparison on Exploration

