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ABSTRACT

Transformers have shown outstanding performance in recent years, achieving
state-of-the-art results in speech processing tasks such as speech recognition,
speech synthesis and speech enhancement. In this paper, we show that, despite
their success, such complex models are not needed for some important speech re-
lated tasks, which can be solved with much simpler and compact models. Thus, we
propose a multi-layer perceptron (MLP) architecture, namely speech-MLP, useful
for extracting information from speech signals. The model splits feature chan-
nels into non-overlapped chunks and processes each chunk individually. These
chunks are then merged together and further processed to consolidate the output.
By setting different numbers of chunks and focusing on different contextual win-
dow sizes, speech-MLP learns multiscale local temporal dependency. The pro-
posed model is successfully evaluated on two tasks: keyword spotting and speech
enhancement. In our experiments, two benchmark datasets are adopted for key-
word spotting (Google speech command V2-35 and LibriWords) and one dataset
(VoiceBank) for speech enhancement. In all experiments, speech-MLP surpassed
the transformer-based solutions, achieving better performance with fewer param-
eters lower GFLOPS. Such results indicate that more complex models, such as
transformers, are oftentimes not necessary for speech processing tasks. Hence,
simpler and more compact models should always be considered as an alternative,
specially in resource-constrained scenarios.

1 INTRODUCTION

As in many machine learning disciplines, speech processing is embracing more and more complex
models, where transformer (Vaswani et al., 2017) is a particular example. It was first proposed to
tackle machine translation, and afterwards was successfully applied to multiple research fields such
as natural language processing (NLP) (Devlin et al., 2018) and computer vision (CV) (Dosovitskiy
et al., 2020). The core of the transformer model is a self-attention mechanism, by which any two
elements in a sequence can interact with each other, hence capturing long-range dependency. Con-
sidering that speech signals are naturally temporal-dependent, researchers in the speech community
recently explored transformer-based models in multiple speech processing tasks, and remarkable
performance was reported in speech recognition (Dong et al., 2018; Karita et al., 2019; Huang et al.,
2020), speech enhancement (SE) (Kim et al., 2020; Fu et al., 2020), keyword spotting (KWS) (Berg
et al., 2021; Vygon & Mikhaylovskiy, 2021) and speech synthesis (Li et al., 2019). Recently, the
conformer architecture, which combines convolution and self-attention, achieved excellent success
in speech processing tasks and attracted much attention Gulati et al. (2020).

In this paper, we ask the following question: Do we need complex models such as transformers for
certain speech processing tasks?

This question is closely related to the principle of ‘parsimony of explanations’, a.k.a., Occam’s ra-
zor (Walsh, 1979). According to this principle, if there is any possibility, we should seek the models
that can represent the data with the least complexity (Rasmussen & Ghahramani, 2001; Blumer et al.,
1987). However, in the public benchmark tests, complex and elaborately designed models are often
ranked higher, due to the better reported performance. For example, the KWS benchmark on Google
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speech command1 and the SE benchmark on VoiceBank+DEMAND2, transformer-based models are
among the top ranks. Although the good performance is celebrating, the increased model complexity
implies potential over-tuning and over-explanation, the risk that the Occam’s razor principle intends
to avoid.

We, therefore, attempt to discover the simplest neural architecture, that is powerful enough to achieve
comparable performance as the best existing models, in particular transformers, while eliminating
unnecessary complexity. Our design is based on domain knowledge, in particular, three properties
of speech signals: (1) temporal invariance, (2) frequency asymmetry, and (3) short-term depen-
dency (Huang et al., 2001; Benesty et al., 2008; Furui, 2018). Based on these knowledge, we build
the speech-MLP, a simple multi-layer perceptron (MLP) architecture, shown in Fig. 1. Besides the
normalization components, the architecture involves simple linear transformations only. The core of
the architecture is the Split & Glue layer, which splits the channel dimension into multiple chunks,
processes each chunk separately, and finally merges the processed chunks in order to attain the out-
put. Speech-MLP processes each time frames independently (compatible to temporal invariance),
and the splitting & gluing procedure allows different treatments for different frequency bands (com-
patible to frequency asymmetry), and involves the local context of multiple scales (compatible to
short-term dependency),

We tested the model on two speech processing tasks: keyword spotting with the Google speech
command V2-35 and Libriword benchmark datasets; and speech enhancement with the VoiceBank
benchmark dataset. Results showed that on both tasks the proposed speech-MLP outperforms com-
plex models, in particular models based on transformers. Such results demonstrate that by utilizing
domain knowledge and employing appropriate normalization techniques, it is possible to design
simple yet powerful models. In some cases, these simple models even beat complex models on open
benchmarks, where complex models are more likely to obtain good performance by careful tuning.

In summary, we proposed Speech-MLP, a simple yet effective neural model to represent speech sig-
nal. On the KWS and SE tasks, we demonstrated that the simple model can achieve performance
comparable to or even better than transformers with less parameters and inference time. Our work
shows that by taking domain-knowledge into account, it is possible to remove unnecessary complex-
ity (e.g., modeling for the long-range dependency in KWS and SE) in model design, as advocated
by the Occam’s razor.

2 RELATED WORK

Recent research has shown that a simple model can be as effective as complex and task specific
models such as transformers in some important tasks. In (Tolstikhin et al., 2021), for example,
the authors proposed a simple architecture for vision, namely MLP-Mixer. The model receives
a sequence of image patches and performs channel-wise and patch-wise linear projection alterna-
tively and iteratively. Without using convolutions or self-attention, the Mixer architecture separates
the per-location (channel-mixing) and cross-location (token-mixing) operations (Tolstikhin et al.,
2021). While the channel-mixing MLPs enable communication between different channels, the
token-mixing MLPs allow communication between different spatial locations (tokens). Tested on
image classification benchmarks, MLP-Mixer achieved performance comparable to SOTA models,
in particular the vision transformer model (Tolstikhin et al., 2021).

In another recent work (Liu et al., 2021), the authors investigated the need of the self-attention mech-
anism in transformers, proposing an alternative MLP-based architecture, namely gMLP. The model,
based on MLP layers with gating, consists of a stack of L identical blocks. Each block comprises
a normalization layer, a channel projection, followed by an activation function and a spatial gating
unit, followed by another channel projection (Liu et al., 2021). It achieves similar performance when
compared to the vision transformer model (Touvron et al., 2021b), being 3 % more accurate than
the aforementioned MLP-mixter model with 66 % fewer parameters. The model was also success-
ful on language modeling in the BERT setup (Liu et al., 2021), minimizing perplexity as well as
Transformers. The authors also found that perplexity reduction was more influenced by the model
capacity than by the attention mechanism.

1https://paperswithcode.com/sota/keyword-spotting-on-google-speech-commands
2https://paperswithcode.com/sota/speech-enhancement-on-demand
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Inspired by vision transformers (Touvron et al., 2021b)(Dosovitskiy et al., 2020), in (Touvron et al.,
2021a), the authors apply the skip connection technique from ResNet’s to MLP layers and propose
the so-called Residual Multi-Layer Perceptrons (ResMLP). The model receives non-overlapping
image patches, typically 16 × 16. These patches go through a linear transformation in order to
attain d-dimensional embeddings. The embeddings are then fed to a sequence of ResMLP blocks
to produce a set of d-dimensional output embeddings. An average pooling is applied on the d-
dimension output vector to represent the image, a linear classifier is used then to predict the label
associated with the image (Touvron et al., 2021a).

Differently from Mixer-MLP, gMLP and ResMLP, CycleMLP can process inputs of arbitrary reso-
lution with linear computational complexity as its receptive fields are enlarged for context aggrega-
tion (Chen et al., 2021). The model is based on Cycle Fully-Connected Layer (Cycle FC), serving
as a generic, plug-and-play transformer-free architecture. Results show CycleMLP outperforming
existing MLP-like models on ImageNet classification, achieving good performance on object detec-
tion, instance segmentation and semantic segmentation (Chen et al., 2021).

The aforementioned research highlights that, despite their success, convolution and self-attention
mechanisms are not mandatory for some CV and NLP tasks, and can be replaced by simpler layers
such as MLP with a customized design. Although typical convolution operations are not used by
these MLP solutions (but rather 1 × 1 convolution as pointed out in (Chen et al., 2021) and (Tol-
stikhin et al., 2021)), these MLP approaches are inspired by CNN architectures for computer vision
related tasks. Their building block, nonetheless, is similar and based on applying linear transforma-
tion on spatial locations and feature channels.

Although inspired by these new MLP architectures, speech-MLP focuses on speech signals rather
than images. This implies in processing different input resolutions given the nature of the input
signal. The split & glue layer is very similar to a separable CNN (Chen et al., 2018), if we re-
gard the frame-independent processing as 1-D convolution in time. In particular, it is essentially
a group-wised CNN (Romero et al., 2020) with different kernels for each group. However, from
the perspective of feature learning, the entire split & glue is an MLP if our focus is a particular
frame (within a context). That is why a 1-D convolution is often called a time-delay neural net
(TDNN) (Waibel et al., 1989). We follow this convention and name our structure as speech-MLP.

A key motivation of the speech-MLP structure is to respect the properties of speech signals. It should
be emphasized that almost all successful techniques in speech processing take these properties into
account, for instance the hidden Markov model (HMM) assumes short-term dependency (Rabiner &
Juang, 1986), TDNN assumes temporal invariance (Waibel et al., 1989), and frequency asymmetry
is explicitly implemented in the famous MFCC feature (Mermelstein, 1976). In this paper, the role
of knowledge of speech signals is to help remove unnecessary complexity, i.e., seeking the minimum
structure that make reflect these basic properties.

Finally, MLP is not new in speech processing; in fact the neural models used in early days in speech
processing are all general MLPs, e.g., (Bourlard & Morgan, 2012). Speech-MLP is a special de-
signed MLP, by taking the properties of speech signals into account.

3 METHODOLOGY

Our model, referred to as speech-MLP, is presented in Figure 1. Note that for a given speech wave-
form, a sequence of acoustic features, denoted by X = {x1, x2, ..., xn}, are first extracted. These
features are then fed into N stacked speech-MLP blocks and the output of the last speech-MLP
block is a speech representation that needs to undergo task-specific layers in order to perform spe-
cific tasks, such as the ones addressed in this study: SE and KWS.

Inside of each speech-MLP block, there are three components: (1) a linear transformation for a
pre-projection of the extracted acoustic features; (2) a Split & Glue layer for processing the pro-
jected acoustic features while addressing frequency asymmetry and temporal dependency, and (3)
another linear transformation for post-projection of the final representation. Two residual connec-
tions are also adopted to encourage gradient propagation. The first one maps the input features onto
the output of the last linear transformation (i.e., the output of the post-projection operation). The
second residual connection maps the output of the first linear transformation (i.e., the output of the
pre-projection operation) onto the output of the Split & Glue layer. Note that normalization tech-
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Figure 1: Proposed architecture consisting of N speech-MLP blocks, comprising three components:
(1) a linear transformation as pre-projection; (2) a Split & Glue layer as the main processing module;
and (3) another linear transformation as post-processing.

niques are also applied to regulate the feature distribution (by layer norm) and temporal variance (by
instance norm). In the next section, we give more details on the Split & Glue layer, followed by a
discussion on the normalization methods adopted in this work.

3.1 SPLIT & GLUE

Figure 2 depicts how the Split & Glue layer operates. The sequence of acoustic features is denoted
by X ∈ RH×T , with T and H being, respectively, the length and the number of channels of the
input sequence. The first step is to split X into K non-overlapping chunks, as illustrated in both
Figure 1 and Figure 2. The split referred to as X → {X1, .., Xk, .., XK}, is performed along the
channel dimension. In our experiments, the channel dimension of each chunk is considered the
same, leading to Xk ∈ RH/K×T . For each chunk, Xk, a context expansion is then performed
through the so-called unfolding operations. This results in context-expanded chunks, denoted by
Xk

w ∈ RwkH/K×T , where wk is the size of the context window induced by the unfolding operation.

Note that the number of chunks K and the window size wk can be arbitrarily selected for each
chunk. This flexibility allows us to represent multi-scale contexts by adopting different window
sizes for different chunks. In Figure 2, for instance, the input channels are split into two chunks, and
the window sizes are set to 3 and 5, respectively. This leads to the model learning from small and
large contexts simultaneously.

The unfolded chunk Xk
w is projected by a linear transformation, leading to a new representation for

the initial chunk, Y k ∈ RĤ×T , where Ĥ could be set arbitrary and is called the number of Glue
channels. We highlight that the linear transformation used in the above chunk-wise operation is
shared across all the time steps for a single chunk, and each time frame is processed independently.
This setting reduces the number of parameters and is compatible with the temporal invariance prop-
erty of speech signals. Nevertheless, different weight parameters are adopted for different chunks,
to provide sufficient flexibility.

Finally, all the learned speech representations, Y i, are concatenated along the channel dimension,
forming a glued feature matrix Y G = {Y 1, Y 2, ..., Y K}. Following, another linear transformation
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Figure 2: The Split & Glue layer, best viewed in color. The input feature X is split to 2 chunks
(denoted by blue and green box respectively), and the window sizes of the unfold operation are set
to 3 and 5 respectively for the two chunks. The red box indicates a single time step, and ‘P’ in X1

w
and X2

w represents padding.

is applied in order to obtain the output feature Y ∈ RH×T . Again, the linear transformation is
shared across all the time steps, to reflect temporal invariance.

3.2 NORMALIZATIONS

Normalization plays an important role in our speech-MLP model. We employed two normaliza-
tion approaches: (1) layer normalization (LN) (Ba et al., 2016) and (2) instance normalization
(IN) (Ulyanov et al., 2016).

Layer normalization is applied across the channel dimension at each time step. Thus, it computes
statistics (mean and variance) on each column of X ∈ RH×T , and then uses these statistics to
normalize the elements in the same column. With this normalization technique, the distribution of
the feature vector at each time step is regularized.

Instance normalization is used to perform per-channel normalization. That is, the statistics are com-
puted on each row of X ∈ RH×T and applied across the time steps to normalize the elements of
each row. Thus, the temporal variation of each channel is normalized. Note that IN extends the
conventional cepstral mean normalization (CMN) approach (Liu et al., 1993), by normalizing not
only acoustic features, but also features produced by any hidden layer.

Empirically, we found that IN was only effective for the SE task while the LN was more important
for the KWS task. Therefore, we apply LN only for KWS and IN for SE.

4 EXPERIMENTS

We evaluate the proposed speech-MLP model in two speech processing tasks: speech enhancement
and keyword spotting. In this section, we introduce these tasks and their respective datasets, used in
our experiments, followed by experimental settings, experimental results, and the ablation study.3

3The code will be available on github. To respect the double-blind review, the link will be sent to the
reviewers when the discussion is open.
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Table 1: Adopted architectures for the KWS and SE tasks. In the KWS setting, (S) and (L) denote
small model and large model respectively.

KWS SE

Linear 0
Input Channels 40 257

Output Channels 128(S/L)/256(XL) 256
Bias true true

Speech-MLP

#Blocks 4(S/L)/12(XL) 10
Input Channels 128(S/L)/256(XL) 256
Glue Channels 60(S)/100(L)/120(XL) 60

Hidden Channels 40(S)/80(L)/100(XL) 40
Bias true true

Context Window {3, 7, 9, 11} {3, 7, 9, 11}
Normalization Layer Norm Instance Norm

- GELU
MaxPooling -

Linear 1
Input Channels 128 256

Output Channels 128 257
Bias true true

GELU -

Linear 2
Input Channels 128 -

Output Channels #Keywords -
Bias true -

4.1 KEYWORD SPOTTING

Keyword spotting aims at detecting predefined words in speech utterances (Szöke et al., 2005;
Mamou et al., 2007; Wang, 2010; Mandal et al., 2014). In our experiments, we explore two KWS
datasets: (1) the Google speech commands V2 dataset (Warden, 2018), and (2) the LibriWords (Vy-
gon & Mikhaylovskiy, 2021). The Google speech commands V2 dataset (here, referred to as V2-35)
consists of 105, 829 utterances of 35 words, recorded by 2,618 speakers. The training, validation
and test sets contain 84, 843, 11, 005 and 9, 981 utterances respectively. The LibriWords dataset,
larger and more complex, is derived from 1000-hours of English speech from the LibriSpeech
dataset (Panayotov et al., 2015). Signal-to-word alignments were generated using the Montreal
Forced Aligner (McAuliffe et al., 2017) and are available in (Lugosch et al., 2019). The averaged
duration of the keywords are 0.28 seconds. The provider defined four benchmark tests, based on the
number of target keywords: LW-10, LW-100, LW-1K and LW-10K, where the target keywords are
10, 100, 1k and 10k respectively. More details on this dataset are presented in Appendix.

4.1.1 SETTINGS

We used the same architecture in all the KWS tasks, except that the dimension of the output layer
was adapted to the number of keywords, as shown in Table 1. Note that we set the window size w
to be {3, 7, 9, 11}. This allows us to exploit multi-scale contexts. Additionally, we set the stride to
be 1 and appropriately set the padding list p to ensure that all the expanded features are in the same
length and equal to that of the input feature.

Prior to the feature extraction step, each speech recording is resampled to 16 kHz. Then, 40-
dimensional Mel-Frequency Cepstral Coefficients (MFCC) are attained as the acoustic features. The
MFCC features are then projected target dimensional feature vector by a linear layer and then for-
warded to speech-MLP blocks. The output features are then passed through a max-pooling operation
collects the information across time steps. Finally, two linear layers with a GELU activation function
in the middle and a softmax activation are employed in order to attain the posterior probabilities that
the input speech belongs to each keyword. For regularization we used SpecAugment (Park et al.,
2019), dropout (Baldi & Sadowski, 2013), and label smoothing (Müller et al., 2019) were used to
prevent overfitting.

Three model architectures have been verified in all the experiments: a 180k small model denoted by
Speech-MLP-S, a 480k large model denoted by Speech-MLP-L, and a 2375K extra large model
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Table 2: Performance comparison on KWS tasks in terms of accuracy (%).∗The size is reported
from the entire KWS model on the V2-35 task. Due to the different numbers of keywords, the value
varies from task to task, although the backbone is the same. #The Gflops is calculated on V2-35
task.

Models GFlops# Size∗
Accuracy%

V2-35 LW-10 LW-100 LW-1K LW-10K
Att-RNN (de Andrade et al., 2018) - 202k 93.90 - - - -
KWT-1 (Berg et al., 2021) 0.108 607k 96.85± 0.07 - - - -
KWT-2 (Berg et al., 2021) 0.469 2394k 97.53± 0.07 - - - -
KWT-3 (Berg et al., 2021) 1.053 5361k 97.51± 0.14 - - - -
Res15-CE (Vygon & Mikhaylovskiy, 2021) - 237k 95.96 88.8 82.3 78.2 69.3
Res15-TL (Vygon & Mikhaylovskiy, 2021) - 237k 97.00 91.7 86.9 84.3 81.2
Speech-MLP-S (Ours) 0.016 180k 97.15± 0.07 95.03 90.91 90.16 89.16
Speech-MLP-L (Ours) 0.046 480k 97.36± 0.16 95.37 92.11 91.50 90.82
Speech-MLP-XL (Ours) 0.228 2375K 97.56± 0.09 95.80 93.22 93.27 93.01

denoted by Speech-MLP-XL. The three models are different in the number of channels of the
hidden layer (i.e., after the pre-projection) and the channels within the Split & Glue block (i.e.,
channels after Linear A, and layers in Fig. 2), as shown in Table 1.

For the experiments on the Google speech commands dataset, we applied the following data aug-
mentation techniques: time shifting, audio re-sampling and noise perturbation: as in (Berg et al.,
2021; Vygon & Mikhaylovskiy, 2021). After augmentation, the data was increased to 10 times the
size of V2-35. We set the batch size to be 256 and trained the model for 100 epochs on 4 cards V100
Nvidia GPU.

For the experiments on the LibriWords, the batch size was set to 1024, and we trained the model
for 20 epochs on 2 cards V100 Nvidia GPU which showed to be enough for this dataset. The
training schemes were set differently simply because Libriwords is huge and long-term training is
not economic.

The performance of the proposed model is compared to three benchmarks. The first one referred
to as Att-RNN, is a CNN-LSTM architecture with the attention mechanism introduced in (de An-
drade et al., 2018). The model has approximately 202k trainable parameters and attains reasonable
performance. Another recent solution, based on a transformer architecture is adopted as the second
benchmark (Berg et al., 2021). We refer to this benchmark as KWT-K where K refers to differ-
ent size of models. Res15 (Vygon & Mikhaylovskiy, 2021), another recent work based on ResNet
reports high performance on both V2-35 and Libriwords. The authors reported results with two con-
figurations, one trained by cross entropy (Res15-CE) and the other based on triple loss (Res15-TL).
We use them as the third benchmark.

4.1.2 RESULTS

Table 2 presents the results of the benchmarks discussed in the previous section and the performance
of the proposed Speech-MLP, the experimental results are presented by mean value and 95% con-
fidence of 5 trials with different random seeds on V2-35. It can be observed that the Speech-MLP
models outperform all the benchmarks with comparable model sizes. Note that the small version of
speech-MLP, which contains less than half of the parameters of its large version, can still maintain
reasonable performance, providing higher accuracy than most benchmarks. The performance of our
solution on the Libriword dataset is even more significant. It outperforms Res15-CE and Res15-TL
while being able to maintain performance across all LibriWord dataset sizes. Our conjecture is that
by the knowledge-driven design, we can use the parameters more efficiently, which allows for the
use of smaller models to handle large-scale tasks.

4.1.3 ABLATION STUDY

To investigate how each module impacts the performance of speech-MLP, we conducted an ablation
study, in order to fair compare each model we use fixed random seed 123 in all ablation study
experiments, we show that window list to {3} equivalent to use TDNN with kernel size to 3, and
window list to {3, 3, 3, 3} equivalent the TDNN with 4 groups convolution operation with kernel size
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to 3 in split & glue layer, and our proposed speech-MLP with a variance of window sizes outperform
these existing solutions. We particularly focus on the chunk splitting, specially the number of chunks
and the context window of each chunk. They are the only hyperparameters that we need to design
in speech-MLP, by using domain knowledge.

The results are reported in Table 3. It can be observed that the setting for the number of chunks and
the context window does matter. A longer context window is clearly beneficial, and setting differ-
ent context windows for different chunks can further improve the performance. This confirms our
conjecture that contextual information is important for representing speech signals, and exploiting
multi-scale contextual information is especially important.

An interesting comparison is between the Speech-MLP-S model with window {3, 7, 9, 11} and the
Speech-MLP-L model with window {1}. The parameters of the two models are comparable, but the
latter model does not involve any chunk splitting and context expansion. The clear advantage of the
Speech-MLP-S model demonstrated that the performance improvement with larger and multi-scale
context windows (ref. performance of Speech-MLP-S or Speech-MLP-L with different windows)
is due to the newly designed Split& Glue structure, rather than the increase in parameters. This in
turn demonstrated the value of domain knowledge: if we can exploit it appropriately, it is possible
to design very parsimonious models.

Table 3: Performance of speech-MLP on KWS tasks with different configurations.

Models Window Size
Accuracy%

V2-35 LW-10 LW-100 LW-1000 LW-10000

Speech-MLP-S
{3,7,9,11} 180k 97.14 95.03 90.91 90.16 89.16
{3,3,3,3} 138k 96.74 94.83 90.25 89.20 87.89
{3} 108k 96.46 94.31 89.11 87.81 85.69
{1} 88k 87.67 66.06 36.96 21.87 22.03

Speech-MLP-L
{3,7,9,11} 480k 97.31 95.37 92.11 91.50 90.82
{3,3,3,3} 337K 96.96 95.29 91.52 90.83 89.89
{3} 239k 96.95 94.79 90.26 89.26 87.52
{1} 175k 82.43 66.12 32.36 28.42 22.85

Speech-MLP-XL
{3,7,9,11} 2375K 97.60 95.80 93.22 93.27 93.01
{3,3,3,3} 1727K 97.39 95.65 92.97 92.75 92.24
{3} 1291K 97.50 95.45 92.44 92.16 91.55
{1} 1003K 85.69 61.03 45.88 28.59 22.51

4.2 SPEECH ENHANCEMENT

Speech enhancement, which aims at inferring clean speech from its corrupted version (Benesty
et al., 2006; Loizou, 2007; Das et al., 2020), is another fundamental task used to evaluate our model.
We choose the Voicebank+Demand datasetValentini-Botinhao et al. (2016) to perform the SE test.
It contains clean speech signals from the Voicebank dataset, includes 28 speakers for training and 2
speakers for testing. Noise signals of 40 types from the DEMAND atabase Thiemann et al. (2013)
were selected and were mixed into the clean speech. After the mixing, the training set and testing
set involve 11,572 and 824 clips respectively. We split the training utterances into segments of 3
seconds without overlap. This resulted into 17,989 training samples, each sampling consisting of a
noise corrupted segment and the corresponding clean segment. The goal of SE is to learn a mapping
function that converts a noisy segment to a clean segment.

4.2.1 SETTINGS

The architecture of our SE model is shown in Table 1. As input, the model receives a 257-
dimensional log-magnitude spectrum. The extracted features are first projected by a linear layer
and reduced to 256-dimensional feature vector, which are then forwarded to 10 stacked speech-
MLP blocks. The output from the last speech-MLP block is re-projected to 257-dimensional feature
vector. After a hard-sigmoid function Courbariaux et al. (2015), the value of the output units corre-
spond to the ratio masks on the 257-dimensional input log-magnitude spectrum. The clean speech
signal is estimated by applying the ratio masks onto the noisy spectrum and reusing the noisy phase.
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Table 4: SE results on VoiceBank+Demand dataset.∗The size of T-GSA was estimated from the
structure reported in the original paper, which involves 10 transformer layers, and the dimension of
the input/output is 1024.

Models PESQ CSIG CBAK COVL Size
Unprocessed speech 1.97 3.37 2.49 2.66 -
SEGAN (Pascual et al., 2017) 2.16 3.48 2.94 2.8 -
TF-GAN (Soni et al., 2018) 2.53 3.8 3.12 3.14 -
MDPHD (Kim et al., 2018) 2.7 3.85 3.39 3.27 -
Metric-GAN (Fu et al., 2019) 2.86 3.99 3.39 3.42 -
Metric-GAN+ (Fu et al., 2021a) 3.15 4.14 3.16 3.64 -
Metric-GANU (Fu et al., 2021b) 2.45 3.47 2.63 2.91 -
PHASEN (Yin et al., 2020) 2.99 4.21 3.55 3.62 -
T-GSA (Kim et al., 2020) 3.06 4.18 3.59 3.62 60M∗

Speech-MLP (Ours) 3.08 4.28 3.50 3.70 636K

More details of the settings can be found in Appendix. The performance of the proposed model
is compared to six benchmarks. Note that we focus on models trained without extra data, or extra
models for knowledge distillation. The reader can find details on these enhancement methods in the
references presented in Table 4. Following the convention on this test set, we report the results of
four metrics: PESQ, BAK, SIG and OVL (Hu & Loizou, 2007).

4.2.2 RESULTS

The results are shown in Table 4, where we choose 6 baseline systems for comparison. Among these
systems, T-GAS (Kim et al., 2020) is based on a transformer model. Similar to speech-MLP, the
authors of T-GAS also noticed the importance of local context and designed an annealing approach
to encourage attention on neighbour frames. However the attention is still global in nature, and the
improvement with T-GAS was still attributed to the capacity of transformers in learning (not so)
long-range dependency. Note that the size of the T-GAS model was not reported in the original
paper, so we made an estimation according to the structure description.

The results shown in Table 4 demonstrated that our speech-MLP model outperformed all the six
baselines. In particular, without modeling any long-range dependency, it outperformed T-GSA by
almost 100 times smaller of model size. This comparative results challenge the assumption that
the better performance of T-GSA over other baselines is due to its capacity of capturing long-range
dependence in speech. Moreover, the model size of Speech-MLP is much smaller than T-GSA,
and due to the concise architecture, the training is simple and fast. It provides a strong support for
our argument that complex models are not necessarily the best, and a knowledge-based model may
easily beat complex models with parsimonious parameters.

5 CONCLUSIONS

In this paper, we propose the speech-MLP model, a simple MLP architecture for speech processing
tasks. Our main motivation was to find a compact solution that eliminates unnecessary complexity
while being able to capture essential information from speech signals. By utilizing domain knowl-
edge of speech, we designed a simple yet effective structure that involves only linear transform
and normalization. The main ingredient is a split & glue structure, which splits input features into
multiple chunks and makes them accounting for different contexts. This knowledge-based design
reflects several properties of speech signals, including temporal variance, frequency symmetry, and
short-term dependency. The experimental results on keyword spotting and speech enhancement
demonstrated that speech-MLP is highly effective: with much less parameters and computation, it
can beat larger and more elaborately designed models including transformers.

Much work remains, for example, how to design a better chunking and context; how to make the
model even smaller (e.g., removing unnecessary residual connections); how to trade off the com-
plexity in chunks and in depth. The ultimate goal is to design a light-weighted, sufficiently powerful
and generalizable component for speech feature extraction. We believe the knowledge-driven feature
extractor benefits general speech processing tasks, such as speech recognition and understanding.

9
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6 REPRODUCIBILITY STATEMENT

We made the following efforts to ensure that the results reported in the paper can be reproduced by
other researchers.

• We will release the code on github, so everyone can download
• The datasets used in this paper are all publicly available for researchers
• We documented the required python environment and provided a step-by-step guidance for

the reproduction
• We fixed the random seed in the code, so that others can reproduce our result exactly.
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Hervé Jégou. Training data-efficient image transformers & distillation through attention. In
International Conference on Machine Learning, pp. 10347–10357. PMLR, 2021b.

Dmitry Ulyanov, Andrea Vedaldi, and Victor Lempitsky. Instance normalization: The missing in-
gredient for fast stylization. arXiv preprint arXiv:1607.08022, 2016.

Cassia Valentini-Botinhao, Xin Wang, Shinji Takaki, and Junichi Yamagishi. Investigating rnn-
based speech enhancement methods for noise-robust text-to-speech. In SSW, pp. 146–152, 2016.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez,
Lukasz Kaiser, and Illia Polosukhin. Attention is all you need, 2017.

Roman Vygon and Nikolay Mikhaylovskiy. Learning efficient representations for keyword spotting
with triplet loss. arXiv preprint arXiv:2101.04792, 2021.

13



Under review as a conference paper at ICLR 2022

Alex Waibel, Toshiyuki Hanazawa, Geoffrey Hinton, Kiyohiro Shikano, and Kevin J Lang. Phoneme
recognition using time-delay neural networks. IEEE transactions on acoustics, speech, and signal
processing, 37(3):328–339, 1989.

Dorothy Walsh. Occam’s razor: A principle of intellectual elegance. American Philosophical Quar-
terly, 16(3):241–244, 1979.

Dong Wang. Out-of-vocabulary spoken term detection. 2010.

Pete Warden. Speech commands: A dataset for limited-vocabulary speech recognition. arXiv
preprint arXiv:1804.03209, 2018.

Dacheng Yin, Chong Luo, Zhiwei Xiong, and Wenjun Zeng. Phasen: A phase-and-harmonics-aware
speech enhancement network. In Proceedings of the AAAI Conference on Artificial Intelligence,
volume 34, pp. 9458–9465, 2020.

14



Under review as a conference paper at ICLR 2022

A APPENDIX A: DETAILS OF KWS EXPERIMENT

In this section, we present the details of the KWS experiment. We start with the system architecture,
followed by the data preparation. We then present the training methods and the hyperparameters
used in the experiments.

Table 5: Experimental settings on keyword spotting

Parameter Value

Feature Extraction

win len 512
win hop 160
fft len 480
n mel 80
n mfcc 40
window hann

Spec Aug

Time masks 2
Time mask bin [0, 15]
Frequency Masks 2
Frequency mask bin [0, 7]

Learning Parameters

init lr 1.0e-03(V2-35)/1.0e-02(LW)
label smoothing 0.1
Schedule cosine
end lr 1.0e-05(V2-35)/1.0e-04(LW)
Optimizer AdamW
Weight Decay 1.0e-4
Dropout 0.1

A.1 SYSTEM ARCHITECTURE

Prior to feature extraction, speech signals are resampled to 16 kHz if needed. Then, we use librosa4

to extract a 40-dimensional MFCC features. The parameters used to extract these features are pre-
sented in Table 5. Global mean and variance is also applied to normalize the extracted features.
These statistics are calculated using the respective training set of each task. After that, the features
are fed into the model shown in Figure 3.

Specifically, a linear transformation (Linear 0) operates on the normalized MFCC features, project-
ing them to 128-dimensional embeddings. These embeddings are then forwarded to stacked Speech-
MLP blocks (4 blocks in our KWS study) to extract multiscale contextual representations. For each
speech utterance, the last Speech-MLP block outputs a sequence of context-rich representations,
and then a max pooling operation is adopted to aggregate this sequence to a single utterance-level
representation. This representation is then passed to a 128× 128 linear transformation and a GELU
nonlinear activation function. It is then further processed by a 128 ×M linear transformation and
a softmax nonlinear activation, where M is the number of keywords. The final output of the above
process is a vector that represents the posterior probabilities that the original speech utterance be-
longs to each keyword.

A.2 DATA PREPARATION

A.2.1 GOOGLE SPEECH COMMANDS

The google speech commands V2-35 contains 35 classes. The data can be obtained at the provider’s
website5. There are 84, 843 training samples in total, with strictly no overlapping between training,
validation and test sets.

4https://librosa.org/doc/latest/index.html
5http://download.tensorflow.org/data/speech_commands_v0.02.tar.gz
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Figure 3: The system architecture used in the keyword spotting experiment.

Data augmentation techniques have been used to increase the training data by 9 times. Combined
with the original data, we have 848, 430 training samples in total. We fixed the random seed to be
59185 when producing the augmented samples. Following are the augmentation strategies adopted
in this work:

• Noise perturbation: the noise perturbation script provided by the organizer of the DNS
challenge is used to add background noise to clean speech6. The SNR factor is randomly
sampled from [5, 10, 15] with equal probabilities;

• Time shifting: time shifting is applied in the time domain. It shifts the waveform by a time-
shift factor t sampled from [−T, T ]. In our experiments we set T = 100. When t < 0, the
waveform is shifted left by t samples and t zeros are padded to the right side. When t > 0,
the waveform is shifted right by t samples and t zeros are padded to left side;

• Resampling: the resample function from scipy (scipy.signal.resample) is used to perform
resampling augmentation, which changes the sampling rate slightly. Specifically, given a
parameter R, a resampling factor r is drawn from [1−R, 1+R], and the augmented sample
is obtained by changing the sampling rate to r×16000. R is set to 0.15 in our experiments.

6We use the segmental snr mixer function from https://github.com/microsoft/
DNS-Challenge/blob/master/audiolib.py
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After the above augmentation, the original speech and the augmented speech are further corrupted
by SpecAug (Park et al., 2019). The setting of SpecAug is shown in Table 5. Note that SpecAug
does not enlarge the dataset.

A.2.2 LIBRIWORDS

The LirbriWords dataset is a larger and more complex dataset. The samples are extracted from the
json files provided by the providers7. We follow the task definition of the dataset provider, and the
details are given below.

• LibriWords 10 (LW-10): this task contains 10 keywords, including “the”, “and”, “of”, “to”,
“a”, “in”, “he”, “I”, “that”, and “was”. There are 1, 750k samples in total, and they are spit
to a training set (1, 400k), a validation set (262, 512) and a test set (87, 501).

• LibriWords 100 (LW-100): a more challenging task that contains 100 keywords. There
are 1, 512k training samples, 189, 010 validation samples and 188, 968 samples, totalling
1, 890k samples.

• LibriWords 1000 (LW-1K): with increased difficult, this task contains 1000 keywords. The
training set involves 2, 178k samples, and the validation set and the test set contain 272, 329
samples and 271, 858 samples respectively.

• LibriWords 10000 (LW-10K): The most challenging task presents 9998 keywords. The
training set contains 2, 719k training samples, 339, 849 validation samples and 335, 046
test samples.

Given the large number of samples, data augmentation was not required for this task. We only
performed SpecAug (Park et al., 2019) based on the settings presented in Table 5.

A.3 TRAINING PARAMETERS

The parameters used during training are specified in Table 5. Further details are presented below.

• the cross entropy between the model prediction and the ground truth is used as loss func-
tion;

• The optimizer used in all the experiments is AdamW. The initial learning rate is set to 0.01,
and cosine annealing is applied to adjust the learning rate from 0.01 to 0.0001;

• Dropout is applied onto the residual connections within the speech-MLP block, with the
dropout rate set to 0.1;

• Label smoothing is employed to prevent the over-confidence problem. The smoothing
factor is set to 0.1;

• In the V2-35 experiment, the models are trained for 100 epochs and 10 epochs warmup
is applied, In the LibriWords experiment, the models are trained for 20 epochs without
warmup;

• In both the experiments, the model of each epoch is evaluated on the evaluation set, and the
checkpoint that performs the best on the validation set is saved to report the performance
on test set;

• We fix the random seed to be 123 in all the ablation study experiments, for the sake of
reproducibility.

B APPENDIX B: DETAILS OF SE EXPERIMENT

B.1 SYSTEM ARCHITECTURE

The model architecture has been presented in Figure 4. The primary goal is to learn a mapping
function that converts noisy magnitude spectrum to clean magnitude spectrum. The model output

7https://github.com/roman-vygon/triplet_loss_kws
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Table 6: Experimental settings on speech enhancement

Parameter Value

Feature Extraction

win len 512
win len 480
win hop 160
fft len 512
window hann

Learning Parameters

init lr 1.0e-02
Schedule cosine
T 3000
end lr 1.0e-04
Warmup 30
Optimizer AdamW
Epoch 1000

Figure 4: The system architecture used in the speech enhancement experiment.

predicts the soft ratio masks, that can be applied to the noisy magnitude spectrum to estimate the
mangitude spectrum of the clean speech. Combining the denoised magnitude spectrum and the phase
spectrum of the original noisy speech, one can attain the denoised waveform by inverse STFT.8

8We used the STFT class implemented in the torch-mfcc toolkit(https://github.com/echocatzh/
torch-mfcc).
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More specifically, 257-dimensional log-magnitude spectrum is firstly extracted from the noisy
speech as the acoustic features, following the configuration shown in Table 6. Then a linear layer
follows and transfers the input features to 256-dimensional vectors PreX . The transformed feature
vectors are then forwarded to 10 Speech-MLP blocks, and the output from the last block, denoted by
PostX , involves multiscale contextual information. Afterwards, a residual connection adds PreX
and PostX together, and instance normalization is applied to regulate temporal variance. Finally,
another linear transform and a non-linear HardSigmoid activation projects the normalized feature to
a masking space where the dimensionality is the same as the input feature, corresponding the ratio
mask M ∈ [0, 1] on the noisy magnitude spectrum.

B.2 LOSS FUNCTIONS

The loss function of our model is computed based on the discrepancy between the denoised speech
Xd and the clean speech Xc. The entire loss consists of two parts: (1) the distance on power-
composed magnitude spectrum, denoted by Lmag , and (2) the distance on power-compressed STFT,
denoted by Lstft. We use a single frame to demonstrate this computation, where the real loss should
compute the average of L on all the frames.

Dreal, Dimag = STFT (Xd)

Creal, Cimag = STFT (Xc)

Dmag =
√
D2

real +Dimag
2

Cmag =
√

C2
real + Cimag

2

Lmag = (C0.3
mag − C0.3

mag)
2

D0.3
real =

D0.3
mag

Dmag
×Dreal

D0.3
imag =

D0.3
mag

Dmag
×Dimag

C0.3
real =

C0.3
mag

Cmag
× Creal

C0.3
imag =

C0.3
mag

Cmag
× Cimag

Lstft =
{
(C0.3

real −D0.3
real)

2 + (C0.3
imag −D0.3

imag)
2
}2

L = 10× Lmag + Lstft

B.3 TRAINING PARAMETERS

The parameters for model training are summarized in Table 6. Specifically, the model was trained
for 1000 epochs using the adamw optimizer. The initial learning was set to 0.01, and a cosine
annealling learning scheduler was used to adjust the learning rate from 0.01 to 0.0001 in 3000 steps.
Warmup was applied and involved 30 epochs . The model was evaluated on the evaluation set every
epoch, and the best checkpoint (in terms of PESQ) on the evaluation set was saved. The results are
reported in terms of four metrics: PESQ, BAK, SIG and OVL (Hu & Loizou, 2007).9

C APPENDIX C: PSEUDO CODE FOR SPLIT & GLUE

9The evaluation script is pysepm (https://github.com/schmiph2/pysepm).
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Algorithm 1 Pseudo code for Split & Glue
Input Sequence: X ∈ RH×T : sequence of acoustic features of T frames and H dimensions
Input Parameter: w = {w0, w1, ..., wK}: window sizes of the K chunks
Input Parameter: p = {p0, p1, ..., pK}: padding definition for the K chunks
Input Parameter: s: stride in context expansion
Output Y ∈ RH×T : sequence of output features of T frames and H dimensions

Ensure: H%K = 0
{X1, ..., XK} = chunk(X,H,K) . Split X to K pieces on the channel dimension
for k in range(K) do

Xk
w = unfold(Xk, wk, pk, s) . Context expansion by unfolding

Y k = W k
AX

k
w + bkA . Linear projection A for each chunk, where W k

A = [Ĥ, wk ×H/K]
end for
Y G = [Y 0;Y 1, ..., Y K ] . Concatenate Y k along channel dimension
Y G = GELU(Y G)

Y = WBY + bB . Linear projection B to glue the chunks, where WB = [H,K × Ĥ]
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