Progressive Down-Sampling for Acoustic Encoding

Anonymous ACL submission

Abstract

In acoustic encoding, the fine-grained frame-
level features are not suited for capturing global
dependencies. But condensing them into a se-
mantically complete representation by stacked
down-sampling does not work well. We find
that the condensation leads to the degraded
correlation of the representations in adjacent
positions, which poses the risk of informa-
tion loss in the stacked method. In this work,
we propose a new method, progressive down-
sampling (PDS), for encoding the context suf-
ficiently before each condensation. Also, we
develop a representation fusion method to alle-
viate information loss by combining the multi-
scale representations. Experimental results on
the 960h LibriSpeech automatic speech recog-
nition task show that, for a strong Conformer-
based system, our method down-samples the in-
put speech features to 1/32 of the initial length,
while yielding an improvement of 0.47 WER
with a speedup of 1.42x. It also achieves
the state-of-the-art BLEU score (25.8) on the
MuST-C En-De speech translation benchmark
with no additional training data.

1 Introduction

Despite the success in speech processing tasks like
automatic speech recognition (ASR) (Lu et al.,
2020; Zhang et al., 2021) and speech translation
(ST) (Xu et al., 2021), how to encode the speech
features effectively is an open problem. Differ-
ent from modeling based on discrete units in natu-
ral language processing, a standard paradigm for
acoustic encoding is taking as input the continuous
frame-level features with a very short shift.
Framing generates a very long sequence con-
sisting of fine-grained features. For example, a
framing-based feature sequence is in general tens
of times longer than the sub-word sequence in a
transcription (see Figure 1). For encoding, such a
problem leads to the difficulties of capturing long-
distance dependencies and distributing the attention
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Figure 1: The distribution of the length ratio between the
speech features (frame-level) and corresponding tran-
scriptions (sub-word level).

weights across semantically incomplete modeling
units (Han et al., 2019). Previous work (Al-Rfou
et al., 2019) also demonstrates that the fine-grained
character-level models yield significantly inferior
performance compared with word-level counter-
parts. In addition, the long sequence also results in
prohibitive computation costs due to the quadratic
complexity of self-attention.

A popular method is down-sampling (DS) fine-
grained feature to form a more meaningful rep-
resentation by stacking multiple strided convolu-
tion layers before encoding (Dong et al., 2018; Be-
rard et al., 2018). Unfortunately, it does not work
well when the down-sampling ratio increases. Intu-
itively, it is difficult to condense dozens of frames
into one unit straightly (Sayood, 2018). It is some-
thing like that a few principal components can not
preserve all the information in the classical princi-
pal component analysis method (Wold et al., 1987).

For shedding light on the reason of failure, we
analyze the condensation process. We find that the
correlation of representations in adjacent positions
degrades due to down-sampling, which increases
the difficulty for subsequent condensation. This
leads to the non-trivial issue of information loss in
the stacked method.

To address this issue, we propose a Progres-
sive Down-Sampling (PDS) method. For the input
speech features, a single layer of down-sampling is
employed to aggregate the consecutive representa-



tions into more informative units. Then the model
encodes the context for high correlation of the rep-
resentation over the sequence. Repeating the above
process, we aggregate the frame-level features into
more semantically complete units in a progressive
manner.

In this way, the multi-scale representations of dif-
ferent granularities are obtained. The fine-grained
representations, on the other hand, may contain
information that is lost during condensation. To
further address the problem, we align the multi-
scale representations to the same shape, and then
combine them by a lightweight representation fu-
sion method.

PDS is a general method for acoustic encoding.
It is easy to make a trade-off between computa-
tional speedup and performance. We evaluate it on
ASR and End-to-End ST tasks. Experiments on
LibriSpeech ASR show that our method achieves
a high down-sampling ratio up to 32. Also, it is
beneficial to both system speedup and performance
improvement. It outperforms the stacked counter-
parts by 0.47 WER with a speedup of 1.42x. On
a more challenging task of ST, our method helps
model convergence and achieves the state-of-the-
art BLEU score of 25.8 on the MuST-C En-De
benchmark without additional resources.

2 Related Work

Unlike text that has explicit boundaries, audio is
in general represented in continuous signals. Al-
though researchers have explored models based on
the raw audio signal (Schneider et al., 2019), the
popular method for segmentation is framing with
a frame size of 25ms and a frame shift of 10ms
(Oppenheim, 1999). The short frame shift allows
the continuity of the speech signal, and the overlap-
ping segments help to avoid the information loss
between consecutive frames.

However, the fine-grained frame-level features
may not be suitable for the state-of-the-art architec-
tures (Vaswani et al., 2017). The long sequences
composed of semantically incomplete units lead
to the difficulties of capturing long-distance de-
pendencies and distributing the attention weights
across the most related positions. Researchers
(Salesky et al., 2019; Salesky and Black, 2020)
investigate phoneme-level methods. For exam-
ple, one can average frame-level features within
phoneme-like units. But this needs a non-trivial
recognizer for phoneme alignment.
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Figure 2: Left: the correlation after each down-
sampling. Right: the correlation in each Layer. Win-d
represents the window size of d. Note that O represents
the input speech features and down-sampled features
respectively.

Motivated by the work in efficient models, re-
searchers alleviate the modeling difficulty by the
improved self-attention mechanisms (Han et al.,
2019; Alastruey et al., 2021; Papi et al., 2021).
However, they ignore the inherent problem of fine-
grained modeling and the cross-attention module
still suffers from the same issue.

A natural idea is to down-sample the fine-grained
features to generate a more meaningful represen-
tation (Chan et al., 2015; Bahdanau et al., 2016).
To do this, a popular method is to pass the features
through a stack of strided convolutional layers be-
fore encoding (Dong et al., 2018; Berard et al.,
2018). But the stacked method does not work well
in practice due to the loss of information in con-
secutive convolutional operations. As a way to ad-
dress this, several research groups use the progres-
sive method to down-sample the acoustic sequence
(Peddinti et al., 2018; Huang et al., 2020; Han et al.,
2020; Burchi and Vielzeuf, 2021). However, there
is still no in-depth analysis on this problem.

Another open problem for acoustic encoding is
the variable information caused by silence or noise.
Researchers develop adaptive selection (Zhang
et al., 2020a) or dynamic down-sampling methods
(Na et al., 2019; Zhang et al., 2019) for avoiding
useless features. However, the granularity of the
filtered representation is still far from ideal. Here
we explicitly discuss the problem and focus on ef-
fective down-sampling with a fixed ratio.

3 The Method

3.1 Why Is Information Lost?

Down-sampling generates more semantically com-
plete units by aggregating the adjacent frame-
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Figure 3: Comparison of the Stack and PDS methods.

level features. Following previous work in down-
sampling (Dong et al., 2018; Berard et al., 2018),
speech features are fed into a stack of 2 convolu-
tions with a stride of 2. The convolution layers are
followed by a number of encoder layers (see Figure
3 (a)). For a large down-sampling ratio, it is natural
to stack more down-sampling layers.

We study the changes of representation during
down-sampling. We define the correlation of rep-
resentation as the average cosine similarity of each
unit to the surrounding units within a small window.
High correlation means that the representations of
the adjacent positions are similar.

We train a Transformer-based (Vaswani et al.,
2017) ASR model with 4 stacked down-sampling
on the 960h LibriSpeech dataset and show the cor-
relation of the test-clean test set. As shown in
Figure 2 (Left), the input speech features have an
extremely high correlation due to the overlapping
framing. However, the correlation degrades sharply
after each down-sampling. The subsequent down-
sampling processes are difficult to condense the
diverse representation while preserving the infor-
mation completely. We call this issue information
loss caused by stacked down-sampling.

Now a new question arises: how to increase the
correlation of the representation and alleviate the
information loss in down-sampling? An intuitive
conjecture is that the context modeling increases
the correlation due to the strong preference of the
short-distance dependency (Sperber et al., 2018;
Xu et al., 2021). Figure 2 (Right) shows the corre-
lation in each layer of the encoder of the standard
Transformer with a down-sampling ratio of 4. Ob-
viously, the correlation increases from bottom to
top, as we expected. This motivates us to develop a
progressive method for encoding context informa-
tion sufficiently after each down-sampling.

3.2 Progressive Down-Sampling

We propose a Progressive Down-Sampling (PDS)
method to condense the fine-grained features into
the semantically complete units. See Figure 3 (b)
for an overview of PDS. The encoding is divided
to two processes: a representation down-sampling
process and a context interaction process.

For the input speech features like MFCC or Mel
filter bank, an overlapping down-sampling con-
denses it by a simple convolution 1D module. Like
framing, the overlapping in convolution alleviates
the information loss. It also enforces the model
to capture local modeling. To deal with varied se-
quence lengths, the position encoding is introduced
into the representation after layer normalization.

Inspired by the finding presented in Section 3.1,
the down-sampled representation requires suffi-
cient context interaction for high correlation. Here
we simply use the multiple identity layers to cap-
ture the dependencies.

Each run of down-sampling and encoding is
called a stage. The model runs for M stages
and obtains more meaningful representations
{Hy,Ha,--- ,Hy}.

A merit of PDS is that it offers a trade-off be-
tween computational efficiency and performance.
One can stack more stages for extreme down-
sampling. This decreases the computational cost
significantly but may lead to the performance drop
due to the inevitable information loss. On the other
hand, fewer down-sampling processes preserve the
information for better performance but cannot pro-
vide sufficient speedups. Note that the stacked
method can be seen as a specific case of PDS: it
consists of two stages and the number of layers in
the first stage is zero.

PDS is also similar to the typical backbones in
the field of computer vision (CV), like CNN (He
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Figure 4: The representation fusion method. It aligns
multi-scale representations to the same shapes and com-
bines them.

et al., 2016) and Transformer (Wang et al., 2021).
Both of them employ the same design concept, i.e.,
aggregating the fine-grained input into the more
informative representation by progressive down-
sampling. This paradigm is widely used in CV
tasks. Here we explore it in the field of speech
processing.

3.3 Representation Fusion

As the nature of down-sampling, the information
loss still occurs inevitably although we use the pro-
gressive method. Motivated by previous methods
to make full use of the multi-level representations
(Wang et al., 2018, 2019), a way to further address
the problem is to fuse the finer-grained representa-
tions (Zhao et al., 2017; Zhang et al., 2020b). Then
the final output representation H° can be defined
as:

H° =F(Hy,--- ,Hpy) (1)

where F(-) is the fusion function'. But this raises
a new question: how to combine the multi-scale
representations effectively?

The first step is to align the different scales to the
same one. We resort to a simple but effective non-
overlapping convolution operation to transform the
finer-grained representations outputted in bottom
stages to the shape of H ;. The stride for the rep-
resentation Hy, is set to the multiplication of the
subsequent down-sampling ratios.

Drawing on the design of the convolution mod-
ule in Conformer, the representation fusion method
with alignment is shown in Figure 4. We use a
simple linear combination of the representations
that are already in the same shape. The output F ()

"'We drop the input feature because it is extracted by signal
processing rather than the encoding model.
The stride for Hy is set to 1.

Setting | Stride | Layer
Stack-4 2-2 0-12
PDS-Base-8 2-2-1-2 3-3-3-3
PDS-Base-16 | 2-2-2-2 2-2-6-2
PDS-Base-32 | 2-2-2-2-2 | 2-2-3-3-2
Stack-4 2-2 0-30
PDS-Deep-8 2-2-1-2 7-7-7-9
PDS-Deep-16 | 2-2-2-2 5-5-12-8
PDS-Deep-32 | 2-2-2-2-2 | 5-5-7-7-6

Table 1: Settings of PDS. "Stack-4" represents the
standard method. "PDS-Base-R" and "PDS-Deep-R"
denote an encoder of 12 layers and 30 layers with a
down-sampling ratio of R respectively. "Stride" and
"Layer" separated by "-" represent the stride of the down-
sampling module and the number of layers in each stage
from bottom to top.

is defined as:
M
F(Hy,-- Hy)=> WiLN(A(Hy) (2
k=1

where A(-) is the alignment function and LN(-)
is the layer normalization function. Wj, € R is
a learnable scalar to weight the aligned represen-
tations. The weights are initialized to the same
values, and are updated as other parameters during
training.

3.4 PDS Settings

In this work, we choose 8 settings with different
depths and down-sampling ratios (see Table 1). We
basically follow the design in He et al. (2016) but
do adaptations for acoustic encoding:

* In down-sampling, a bigger window size
means that more context information is in-
volved. But this also increases the difficulty
for down-sampling due to the lower correla-
tion. We use an empirical setting of kernel
size = 5.

* We do not increase hidden dimensions as the
growth of the model depth, i.e., we use the
same hidden dimensions for all stages. Mod-
eling with a small dimension in the bottom
stage is obviously not a good idea due to the
high dimension of the initial features (typi-
cally 80-dimension).

* The bottom stages have fewer layers for effi-
cient computation due to the longer sequence.
The major computations are concentrated on
the intermediate stages. This leads to compu-
tation acceleration and sufficient encoding.



4 [Experiments

We evaluate PDS on ASR and ST tasks.

4.1 Datasets and Preprocessing

The datasets are from two benchmarks:

* LibriSpeech is a publicly available read En-
glish ASR corpus, which consists of 960-
hour of training data (Panayotov et al., 2015).
The development and test data are divided
into clean and other subsets according to the
speech quality. We select the model on the
dev-clean set and report results on all four
subsets.

* MuST-C En-De is a multilingual speech
translation corpus extracted from the TED
talks (Gangi et al., 2019). We train our sys-
tems on the English-German speech transla-
tion dataset of 400-hour speech. We select
(and tune) the model on the dev set and report
results on the tst-COMMON set.

For preprocessing, we follow the common
recipes in fairseq toolkit’, we remove the utter-
ances of more than 3,000 frames or fewer than 5
frames. Speed perturbation is not used in all mod-
els. The 80-channel Mel filter bank features are
extracted by a 25ms window with a stride of 10ms.
We learn SentencePiece* segmentation with a size
of 10,000 for the two datasets. For ST, we use a
shared vocabulary for source and target languages.

4.2 Model Settings

We use the encoder-decoder framework and im-
plement the method based on the fairseq toolkit.
We use the Adam optimizer and adopt the default
learning schedule in fairseq. We apply dropout
with a rate of 0.1 and label smoothing ¢, = 0.1 for
regularization. SpecAugment (Park et al., 2019)
is applied in the input speech features for better
generalization and robustness.

For ASR tasks, we evaluate our method on Trans-
former (Vaswani et al., 2017) and Conformer (Gu-
lati et al., 2020). The settings of the encoder for
ASR models are shown in Table 2. The decoder
consists of 6 Transformer layers and the settings
are same to the encoder. CTC (Graves et al., 2006)
multitask learning is not used due to the very mod-
est improvement in our preliminary experiments.

3https://github.com/pytorch/fairseq
“https://github.com/google/sentencepiece

For ST tasks, we evaluate our method on Trans-
former and SATE (Xu et al., 2021). Knowledge
distillation is not used for simplicity. The encoder
consists of 12 layers for Transformer. SATE has
an acoustic encoder of 12 layers and a textual en-
coder of 6 layers. Each layer comprises 256 hidden
units, 4 attention heads, and 2,048 feed-forward
hidden units. We use pre-training for more chal-
lenging ST task, where the ASR and MT models
are pre-trained with the MuST-C En-De data. Dif-
ferent from the ASR model, CTC is employed with
a weight of 0.3 for better convergence.

All the models are trained for 100 epochs. We
early stop training when there is no performance
improvement on the development set for 10 consec-
utive checkpoints. We use beam search decoding
with a beam size of 5 for all models. The CTC and
language model rescoring methods are not used.
WER and case-sensitive SacreBLEU are reported
for ASR and ST respectively.

4.3 Results of ASR

Table 2 shows the results on the 960h LibriSpeech
corpus. We compare the methods on Transformer
and Conformer with different encoder layers and
hidden dimensions. We use Stack-4 as the baseline
model (see Table 1 for the setting). The amount of
model parameters in each group is similar for a fair
comparison.

For the popular setting of 12 encoder layers with
256 hidden dimensions in rows (A), PDS is the
first to achieve a very high down-sampling ratio of
32 with no performance drop. It yields a speedup
of 1.20x. As the down-sampling ratio decreases,
performance improves significantly. Similar phe-
nomena are observed on the wider Transformer
with 512 hidden dimensions in rows (B), and this
bigger model benefits more in speedup.

Interestingly, we find that the deep models with
30 encoder layers in rows (C) eliminate the perfor-
mance gap when different down-sampling ratios
are employed. PDS condenses the representation to
1/32 of the initial length, while achieving a consid-
erable relative improvement of 0.75 WER points.
We conjecture that the deep model allows more
sufficient modeling in each stage and preserves
the information even in an extreme case of down-
sampling. This has a practical advantage in indus-
trial scenarios wherein more speedups are required.

For Conformer, the behavior of the base model
with 12 encoder layers in rows (D) is similar to



dev test

Setting L | dn dgs | h | #Params Clean | other | clean | other Avg. Speedup
Transformer
Stack-4 30M | 388 | 926 | 449 | 942 | 676 1.00x
PDS-Base-8 30M | 357 | 863 | 385 | 858 | 6.16(-0.60) | 0.99x
(A) | ppS-Base-16 | 12 | 296 | 2048 | 4 30M | 371 | 873 | 374 | 9.02 | 630(-046) | 1.14x
PDS-Base-32 3IM | 413 | 931 | 421 | 931 | 6.74(-0.02) | 1.20x
© Jstack4 | | | | | 7IM | 353|815 | 367 | 796 | 58 | 1.00x
PDS-Base-8 75M | 317 | 746 | 347 | 747 | 539(-044) | 1.08x
B) | ppS-Base-16 | 12| 312 | 2048 | 8 76M | 334 | 773 | 337 | 785 | 5.57(-026) | 134x
PDS-Base-32 82M | 332 | 794 | 364 | 785 | 5.69(:0.14) | 147x
© Istack4 | | | | | 53M | 380 | 851 | 433 | 861 | 631 | 1.00x
PDS-Base-8 S3IM | 334 | 790 | 350 | 779 | 5.63(-0.68) | 1.03x
© | pps-Base-16 | 30 | 236 | 2048 | 4 SAM | 315 | 7.83 | 338 | 779 | 5.53(-0.78) | 1.19x
PDS-Base-32 SSM | 326 | 777 | 333 | 7.88 | 5.56(-0.75) | 127x
Conformer
Stack-4 45M | 364 | 8.17 | 374 | 8.10 | 591 1.00%
PDS-Base-8 46M | 310 | 741 | 323 | 759 | 533(-0.58) | 0.98x
(D) | ppS-Base-16 | 12 | 256 | 2048 | 4 46M | 306 | 727 | 312 | 7.58 | 5.26(-0.65) | 1.16x
PDS-Base-32 47M | 299 | 757 | 317 | 776 | 537(-054) | 120x
| stack4 | | | | | 109M | 3.67 | 7.66 | 3.79 | 750 | 556 | 1.00x
PDS-Base-8 113M | 290 | 671 | 3.10 | 670 | 485(-0.71) | 1.00x
(E) | pps-Base-16 | 12 [ 212 | 2048 | 81y un | 301 | 674 | 337 | 6.90 | 5.03(-053) | 133x
PDS-Base-32 1IOM | 2.96 | 7.10 | 3.18 | 7.11 | 5.09(-047) | 1.42x

Table 2: WER on 960h LibriSpeech ASR corpus. L: the number of encoder layers. dj,: the hidden dimension.
dyy: the feed-forward dimension. h: the number of the attention heads. #Params: the number of parameters. The
speedup is computed during inference on test-clean set with the batch size of 100k and beam size of 5.

that of the deep Transformer models. One impor-
tant improvement of Conformer is enhancing local
dependency by convolution neural networks. It
models interaction among neighbor context, which
leads to the higher correlation. It is helpful for
alleviating the issue of information loss.

Finally, on the wider Conformer in rows (E), our
method yields an improvement of 0.47 WER points
with a speedup of 1.42x.

4.4 Results of ST

End-to-end ST has become popular recently
(Duong et al., 2016; Berard et al., 2016). How-
ever, unlike ASR, annotated speech-to-translation
data is scarce, which prevents well-trained ST mod-
els. Therefore, we use CTC and pre-training for
sufficient training (Bahar et al., 2019). According
to the experimental results on ASR, we use PDS-
Base-8 to investigate the effects of PDS on both
performance and model convergence.

Table 3 shows an obvious performance gap of
2.5 BLEU between the stacked and PDS methods
when the auxiliary CTC and pre-training methods
are not used. This indicates that PDS helps conver-
gence and improves ST when transcription is not
available. When pre-training and CTC are avail-

Setting | CTC | #Params | w/oPT | w/PT
Transformer

30M 20.3 229
Stack-4 v 32M | 235 | 240

R o 20M | 230 | 241

PDS-Base-8 |, 32M | 239 | 248
SATE
Stack-4 v 40M 24.3 25.4
PDS-Base-8 Ve 40M 24.9 25.8

Table 3: SacreBLEU on MuST-C En-De ST corpus.
"PT" represents that initializing the ST model with the
pre-trained ASR and MT models. All pre-trained mod-
els have similar performance for a fair comparison.

able, better performance is achieved by good initial-
ization and strong supervision. Also, PDS always
outperforms the stacked method significantly.

On SATE (Xu et al., 2021), consistent improve-
ments are achieved. The encoder of SATE is com-
posed of an acoustic encoder and a textual encoder.
We only employ PDS in the first encoder. Although
an adaptor is introduced for adaptive representation,
the length inconsistency issue is not solved. As a
popular method, the shrink mechanism filters the
acoustic representation based on the CTC predic-



| F | Ratio | Stride | Layer | Avg.
Stack
212 12 7.11
4 | 22 0-12 6.76
A |/ 8 | 2-2-2 0-0-12 | 7.48
16 | 2-2-2-2 0-0-0-12 9.22
PDS
(B) 4 | 2-2-1-1 3-3-3-3 6.06
v 4 1 2-2-1-1 3-3-3-3 6.03
©) 8 | 2-2-1-2 3-3-3-3 6.58
v 8 | 2-2-1-2 3-3-3-3 6.16
8 | 2-2-2-1 2-2-6-2 6.59
D) 16 | 2-2-2-2 2-2-6-2 6.81
Ve 8 | 2-2-2-1 2-2-6-2 6.32
v 16 | 2-2-2-2 2-2-6-2 6.30
(E) 32 | 2-2-2-2-2 | 2-2-3-3-2 | 7.26
v 32 | 2-2-2-2-2 | 2-2-3-3-2 | 6.74

Table 4: Impact of representation fusion. "F" represents
the representation fusion method. We report the average
WER of all 4 sets on LibriSpeech.

tion (Liu et al., 2020). However, this also poses
the risk of information loss. PDS provides another
approach, which generates a length-matched se-
quence in foundational acoustic encoding.
Finally, combing the above methods, PDS
achieves a new state-of-the-art performance of 25.8
BLEU score with no additional training data.

5 Analysis

Next, we study a number of interesting problems
on 960h LibriSpeech.

5.1 Impact of Representation Fusion

To investigate the effect of information loss and
the need of representation fusion, we compare the
results with different down-sampling ratios (see
Table 4).

For the vanilla stacked method in rows (A), the
popular setting is to down-sample the input with a
lower ratio of 4. This setting also achieves the best
performance. Choosing a ratio of 2 leads to infe-
rior WER because long but fine-grained features
face the challenges of modeling. As the ratio of
down-sampling increases, the performance drops
significantly. This supports the point that informa-
tion loss is serious in the stacked method.

For PDS, the system outperforms the stacked
counterpart under the same setting of ratio = 4.
However, we find that the fusion method does not
obtain significant improvement. This might be be-
cause that the light condensation is lossless and

Laver dev test Av
Y clean | other | clean | other &
2-2-2-6 3.91 9.29 4.09 9.38 6.67
2-2-4-4 3.83 9.11 4.05 9.13 6.53
2-2-6-2 3.71 8.73 3.74 9.02 6.30
5-5-10-10 3.19 7.79 3.57 7.69 5.56
5-5-12-8 3.15 7.83 3.38 7.79 5.54
5-5-15-5 3.27 7.59 3.60 7.83 5.57

Table 5: Impact of the number of layers in each stage.
We report the results of Transformer with PDS-Base-16
and PDS-Deep-16 settings.

0.6

0.4

Fusion weight

Stage

Figure 5: The fusion weights of the output represen-
tation in each stage. We consider three settings of the
number of layers under PDS-Base-16.

cannot benefit from the fusion of representations.

Interestingly, the fusion method achieves con-
sistent improvements when higher down-sampling
ratios are adopted. To study it further, we add an-
other set of experiments with a special setting in
rows (D): the down-sampling ratio decreases from
16 to 8 by setting the stride of the final stage to 1.
Then, we see a better WER of 6.59, which indicates
less information loss under the lighter condensation.
With the help of the fusion method, they achieve
similar performances. This is consistent with what
we expected.

5.2 Impact of Model Depth

We compare the results of the different number of
layers in each stage. Table 5 shows the results on
base and deep models.

For the model of 12 encoder layers, we use 2
fixed layers in the bottom 2 stages for less com-
putation. As we described in Section 3.4, PDS
achieves better performance as the number of lay-
ers increases in the intermedia stage. We think that
there are two reasons. Firstly, the information loss
is less compared with the top stages, and thus the
encoding layers are more helpful. Secondly, suffi-
cient encoding helps the down-sampling in the next
stage, but it is not the case for the top stage. This
is consistent with the previous conclusion (Huang
et al., 2020). We also show the fusion weights in
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Figure 6: The correlation of window size of 2 in each layer of Transformer, Conformer, and deep Transformer. The
marked points represent the correlation before each down-sampling.

Figure 5. The weight increases as the number of
layers increases, and vice versa. The results are
agreed with our design.

We also compare the results in a deep Trans-
former model with a 30-layer encoder. Due to the
sufficient encoding in each stage, the deep model is
robust in the design of the number of layers in each
stage. There is no obvious performance gap across
three different settings. It is very meaningful to
combine PDS with the popular deep model (Pham
et al., 2019) in the follow-up work.

5.3 Impact on Correlation

Unlike the stacked method, PDS runs a context
interaction process after each down-sampling pro-
cess. Figure 6 shows the correlation across differ-
ent model architectures.

In Transformer, high correlation (about 60% ~
80%) alleviates the information loss under the set-
ting of PDS-Base-8. As the down-sampling ratio
increases, fewer layers in each stage cannot cap-
ture the context information sufficiently and thus
make the degraded correlation. This leads to the
performance drops, as shown in Section 4.3.

Conformer and deep Transformer show similar
performance under the different settings of down-
sampling. This motivates us to investigate their
behavior. Despite the limited layers in each stage,
Conformer always shows a high correlation by the
explicit local modeling. This also demonstrates
the effectiveness of Conformer. The deep Trans-
former alleviates the issue straightly by stacking
more layers.

One interesting finding is that the correlation of
top layers is very high (> 90%) across all architec-
tures. It may be affected by the strong supervision
of the decoder. This inspires us to explore multitask
learning in the future.
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Figure 7: Distribution of summed cross-attention
weights for each encoder representation on LibriSpeech
test-clean set.

5.4 Distribution of Attention Weights

PDS generates the semantically complete units on
the top of the encoder. We suppose that this in-
formative representation has a greater effect on
decoding. Refer to Zhang et al. (2020a), Figure 7
shows the distribution of summed cross-attention
weights for each encoder representation.

Due to the fine-grained representations in the
stacked method, the smaller attention weights
spread across multiple relevant representations. In
PDS, each representation receives greater attention
as the down-sampling ratio increases. Although
our method does not explicitly filter uninformative
features, we argue that the stronger condensation
forces the model to prefer more meaningful repre-
sentations.

6 Conclusion

In this paper, we investigate the down-sampling
process and shed light on the issue of information
loss in the popular stacked method. This inspires us
to propose a Progressive Down-Sampling method,
which encodes the context information after each
down-sampling. Furthermore, we develop a repre-
sentation fusion method to combine the multi-scale
information. Results on ASR and ST tasks demon-
strate the effects of our method.
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