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Abstract

In acoustic encoding, the fine-grained frame-001
level features are not suited for capturing global002
dependencies. But condensing them into a se-003
mantically complete representation by stacked004
down-sampling does not work well. We find005
that the condensation leads to the degraded006
correlation of the representations in adjacent007
positions, which poses the risk of informa-008
tion loss in the stacked method. In this work,009
we propose a new method, progressive down-010
sampling (PDS), for encoding the context suf-011
ficiently before each condensation. Also, we012
develop a representation fusion method to alle-013
viate information loss by combining the multi-014
scale representations. Experimental results on015
the 960h LibriSpeech automatic speech recog-016
nition task show that, for a strong Conformer-017
based system, our method down-samples the in-018
put speech features to 1/32 of the initial length,019
while yielding an improvement of 0.47 WER020
with a speedup of 1.42×. It also achieves021
the state-of-the-art BLEU score (25.8) on the022
MuST-C En-De speech translation benchmark023
with no additional training data.024

1 Introduction025

Despite the success in speech processing tasks like026

automatic speech recognition (ASR) (Lu et al.,027

2020; Zhang et al., 2021) and speech translation028

(ST) (Xu et al., 2021), how to encode the speech029

features effectively is an open problem. Differ-030

ent from modeling based on discrete units in natu-031

ral language processing, a standard paradigm for032

acoustic encoding is taking as input the continuous033

frame-level features with a very short shift.034

Framing generates a very long sequence con-035

sisting of fine-grained features. For example, a036

framing-based feature sequence is in general tens037

of times longer than the sub-word sequence in a038

transcription (see Figure 1). For encoding, such a039

problem leads to the difficulties of capturing long-040

distance dependencies and distributing the attention041
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Figure 1: The distribution of the length ratio between the
speech features (frame-level) and corresponding tran-
scriptions (sub-word level).

weights across semantically incomplete modeling 042

units (Han et al., 2019). Previous work (Al-Rfou 043

et al., 2019) also demonstrates that the fine-grained 044

character-level models yield significantly inferior 045

performance compared with word-level counter- 046

parts. In addition, the long sequence also results in 047

prohibitive computation costs due to the quadratic 048

complexity of self-attention. 049

A popular method is down-sampling (DS) fine- 050

grained feature to form a more meaningful rep- 051

resentation by stacking multiple strided convolu- 052

tion layers before encoding (Dong et al., 2018; Be- 053

rard et al., 2018). Unfortunately, it does not work 054

well when the down-sampling ratio increases. Intu- 055

itively, it is difficult to condense dozens of frames 056

into one unit straightly (Sayood, 2018). It is some- 057

thing like that a few principal components can not 058

preserve all the information in the classical princi- 059

pal component analysis method (Wold et al., 1987). 060

For shedding light on the reason of failure, we 061

analyze the condensation process. We find that the 062

correlation of representations in adjacent positions 063

degrades due to down-sampling, which increases 064

the difficulty for subsequent condensation. This 065

leads to the non-trivial issue of information loss in 066

the stacked method. 067

To address this issue, we propose a Progres- 068

sive Down-Sampling (PDS) method. For the input 069

speech features, a single layer of down-sampling is 070

employed to aggregate the consecutive representa- 071
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tions into more informative units. Then the model072

encodes the context for high correlation of the rep-073

resentation over the sequence. Repeating the above074

process, we aggregate the frame-level features into075

more semantically complete units in a progressive076

manner.077

In this way, the multi-scale representations of dif-078

ferent granularities are obtained. The fine-grained079

representations, on the other hand, may contain080

information that is lost during condensation. To081

further address the problem, we align the multi-082

scale representations to the same shape, and then083

combine them by a lightweight representation fu-084

sion method.085

PDS is a general method for acoustic encoding.086

It is easy to make a trade-off between computa-087

tional speedup and performance. We evaluate it on088

ASR and End-to-End ST tasks. Experiments on089

LibriSpeech ASR show that our method achieves090

a high down-sampling ratio up to 32. Also, it is091

beneficial to both system speedup and performance092

improvement. It outperforms the stacked counter-093

parts by 0.47 WER with a speedup of 1.42×. On094

a more challenging task of ST, our method helps095

model convergence and achieves the state-of-the-096

art BLEU score of 25.8 on the MuST-C En-De097

benchmark without additional resources.098

2 Related Work099

Unlike text that has explicit boundaries, audio is100

in general represented in continuous signals. Al-101

though researchers have explored models based on102

the raw audio signal (Schneider et al., 2019), the103

popular method for segmentation is framing with104

a frame size of 25ms and a frame shift of 10ms105

(Oppenheim, 1999). The short frame shift allows106

the continuity of the speech signal, and the overlap-107

ping segments help to avoid the information loss108

between consecutive frames.109

However, the fine-grained frame-level features110

may not be suitable for the state-of-the-art architec-111

tures (Vaswani et al., 2017). The long sequences112

composed of semantically incomplete units lead113

to the difficulties of capturing long-distance de-114

pendencies and distributing the attention weights115

across the most related positions. Researchers116

(Salesky et al., 2019; Salesky and Black, 2020)117

investigate phoneme-level methods. For exam-118

ple, one can average frame-level features within119

phoneme-like units. But this needs a non-trivial120

recognizer for phoneme alignment.121
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Figure 2: Left: the correlation after each down-
sampling. Right: the correlation in each Layer. Win-d
represents the window size of d. Note that 0 represents
the input speech features and down-sampled features
respectively.

Motivated by the work in efficient models, re- 122

searchers alleviate the modeling difficulty by the 123

improved self-attention mechanisms (Han et al., 124

2019; Alastruey et al., 2021; Papi et al., 2021). 125

However, they ignore the inherent problem of fine- 126

grained modeling and the cross-attention module 127

still suffers from the same issue. 128

A natural idea is to down-sample the fine-grained 129

features to generate a more meaningful represen- 130

tation (Chan et al., 2015; Bahdanau et al., 2016). 131

To do this, a popular method is to pass the features 132

through a stack of strided convolutional layers be- 133

fore encoding (Dong et al., 2018; Berard et al., 134

2018). But the stacked method does not work well 135

in practice due to the loss of information in con- 136

secutive convolutional operations. As a way to ad- 137

dress this, several research groups use the progres- 138

sive method to down-sample the acoustic sequence 139

(Peddinti et al., 2018; Huang et al., 2020; Han et al., 140

2020; Burchi and Vielzeuf, 2021). However, there 141

is still no in-depth analysis on this problem. 142

Another open problem for acoustic encoding is 143

the variable information caused by silence or noise. 144

Researchers develop adaptive selection (Zhang 145

et al., 2020a) or dynamic down-sampling methods 146

(Na et al., 2019; Zhang et al., 2019) for avoiding 147

useless features. However, the granularity of the 148

filtered representation is still far from ideal. Here 149

we explicitly discuss the problem and focus on ef- 150

fective down-sampling with a fixed ratio. 151

3 The Method 152

3.1 Why Is Information Lost? 153

Down-sampling generates more semantically com- 154

plete units by aggregating the adjacent frame- 155
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Figure 3: Comparison of the Stack and PDS methods.

level features. Following previous work in down-156

sampling (Dong et al., 2018; Berard et al., 2018),157

speech features are fed into a stack of 2 convolu-158

tions with a stride of 2. The convolution layers are159

followed by a number of encoder layers (see Figure160

3 (a)). For a large down-sampling ratio, it is natural161

to stack more down-sampling layers.162

We study the changes of representation during163

down-sampling. We define the correlation of rep-164

resentation as the average cosine similarity of each165

unit to the surrounding units within a small window.166

High correlation means that the representations of167

the adjacent positions are similar.168

We train a Transformer-based (Vaswani et al.,169

2017) ASR model with 4 stacked down-sampling170

on the 960h LibriSpeech dataset and show the cor-171

relation of the test-clean test set. As shown in172

Figure 2 (Left), the input speech features have an173

extremely high correlation due to the overlapping174

framing. However, the correlation degrades sharply175

after each down-sampling. The subsequent down-176

sampling processes are difficult to condense the177

diverse representation while preserving the infor-178

mation completely. We call this issue information179

loss caused by stacked down-sampling.180

Now a new question arises: how to increase the181

correlation of the representation and alleviate the182

information loss in down-sampling? An intuitive183

conjecture is that the context modeling increases184

the correlation due to the strong preference of the185

short-distance dependency (Sperber et al., 2018;186

Xu et al., 2021). Figure 2 (Right) shows the corre-187

lation in each layer of the encoder of the standard188

Transformer with a down-sampling ratio of 4. Ob-189

viously, the correlation increases from bottom to190

top, as we expected. This motivates us to develop a191

progressive method for encoding context informa-192

tion sufficiently after each down-sampling.193

3.2 Progressive Down-Sampling 194

We propose a Progressive Down-Sampling (PDS) 195

method to condense the fine-grained features into 196

the semantically complete units. See Figure 3 (b) 197

for an overview of PDS. The encoding is divided 198

to two processes: a representation down-sampling 199

process and a context interaction process. 200

For the input speech features like MFCC or Mel 201

filter bank, an overlapping down-sampling con- 202

denses it by a simple convolution 1D module. Like 203

framing, the overlapping in convolution alleviates 204

the information loss. It also enforces the model 205

to capture local modeling. To deal with varied se- 206

quence lengths, the position encoding is introduced 207

into the representation after layer normalization. 208

Inspired by the finding presented in Section 3.1, 209

the down-sampled representation requires suffi- 210

cient context interaction for high correlation. Here 211

we simply use the multiple identity layers to cap- 212

ture the dependencies. 213

Each run of down-sampling and encoding is 214

called a stage. The model runs for M stages 215

and obtains more meaningful representations 216

{H1, H2, · · · , HM}. 217

A merit of PDS is that it offers a trade-off be- 218

tween computational efficiency and performance. 219

One can stack more stages for extreme down- 220

sampling. This decreases the computational cost 221

significantly but may lead to the performance drop 222

due to the inevitable information loss. On the other 223

hand, fewer down-sampling processes preserve the 224

information for better performance but cannot pro- 225

vide sufficient speedups. Note that the stacked 226

method can be seen as a specific case of PDS: it 227

consists of two stages and the number of layers in 228

the first stage is zero. 229

PDS is also similar to the typical backbones in 230

the field of computer vision (CV), like CNN (He 231
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Figure 4: The representation fusion method. It aligns
multi-scale representations to the same shapes and com-
bines them.

et al., 2016) and Transformer (Wang et al., 2021).232

Both of them employ the same design concept, i.e.,233

aggregating the fine-grained input into the more234

informative representation by progressive down-235

sampling. This paradigm is widely used in CV236

tasks. Here we explore it in the field of speech237

processing.238

3.3 Representation Fusion239

As the nature of down-sampling, the information240

loss still occurs inevitably although we use the pro-241

gressive method. Motivated by previous methods242

to make full use of the multi-level representations243

(Wang et al., 2018, 2019), a way to further address244

the problem is to fuse the finer-grained representa-245

tions (Zhao et al., 2017; Zhang et al., 2020b). Then246

the final output representation Ho can be defined247

as:248

Ho = F(H1, · · · , HM ) (1)249

where F(·) is the fusion function1. But this raises250

a new question: how to combine the multi-scale251

representations effectively?252

The first step is to align the different scales to the253

same one. We resort to a simple but effective non-254

overlapping convolution operation to transform the255

finer-grained representations outputted in bottom256

stages to the shape of HM . The stride for the rep-257

resentation Hk is set to the multiplication of the258

subsequent down-sampling ratios2.259

Drawing on the design of the convolution mod-260

ule in Conformer, the representation fusion method261

with alignment is shown in Figure 4. We use a262

simple linear combination of the representations263

that are already in the same shape. The output F(·)264

1We drop the input feature because it is extracted by signal
processing rather than the encoding model.

2The stride for HM is set to 1.

Setting Stride Layer

Stack-4 2-2 0-12
PDS-Base-8 2-2-1-2 3-3-3-3
PDS-Base-16 2-2-2-2 2-2-6-2
PDS-Base-32 2-2-2-2-2 2-2-3-3-2

Stack-4 2-2 0-30
PDS-Deep-8 2-2-1-2 7-7-7-9
PDS-Deep-16 2-2-2-2 5-5-12-8
PDS-Deep-32 2-2-2-2-2 5-5-7-7-6

Table 1: Settings of PDS. "Stack-4" represents the
standard method. "PDS-Base-R" and "PDS-Deep-R"
denote an encoder of 12 layers and 30 layers with a
down-sampling ratio of R respectively. "Stride" and
"Layer" separated by "-" represent the stride of the down-
sampling module and the number of layers in each stage
from bottom to top.

is defined as: 265

F(H1, · · · , HM ) =

M∑
k=1

WkLN(A(Hk)) (2) 266

where A(·) is the alignment function and LN(·) 267

is the layer normalization function. Wk ∈ R is 268

a learnable scalar to weight the aligned represen- 269

tations. The weights are initialized to the same 270

values, and are updated as other parameters during 271

training. 272

3.4 PDS Settings 273

In this work, we choose 8 settings with different 274

depths and down-sampling ratios (see Table 1). We 275

basically follow the design in He et al. (2016) but 276

do adaptations for acoustic encoding: 277

• In down-sampling, a bigger window size 278

means that more context information is in- 279

volved. But this also increases the difficulty 280

for down-sampling due to the lower correla- 281

tion. We use an empirical setting of kernel 282

size = 5. 283

• We do not increase hidden dimensions as the 284

growth of the model depth, i.e., we use the 285

same hidden dimensions for all stages. Mod- 286

eling with a small dimension in the bottom 287

stage is obviously not a good idea due to the 288

high dimension of the initial features (typi- 289

cally 80-dimension). 290

• The bottom stages have fewer layers for effi- 291

cient computation due to the longer sequence. 292

The major computations are concentrated on 293

the intermediate stages. This leads to compu- 294

tation acceleration and sufficient encoding. 295
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4 Experiments296

We evaluate PDS on ASR and ST tasks.297

4.1 Datasets and Preprocessing298

The datasets are from two benchmarks:299

• LibriSpeech is a publicly available read En-300

glish ASR corpus, which consists of 960-301

hour of training data (Panayotov et al., 2015).302

The development and test data are divided303

into clean and other subsets according to the304

speech quality. We select the model on the305

dev-clean set and report results on all four306

subsets.307

• MuST-C En-De is a multilingual speech308

translation corpus extracted from the TED309

talks (Gangi et al., 2019). We train our sys-310

tems on the English-German speech transla-311

tion dataset of 400-hour speech. We select312

(and tune) the model on the dev set and report313

results on the tst-COMMON set.314

For preprocessing, we follow the common315

recipes in fairseq toolkit3, we remove the utter-316

ances of more than 3,000 frames or fewer than 5317

frames. Speed perturbation is not used in all mod-318

els. The 80-channel Mel filter bank features are319

extracted by a 25ms window with a stride of 10ms.320

We learn SentencePiece4 segmentation with a size321

of 10,000 for the two datasets. For ST, we use a322

shared vocabulary for source and target languages.323

4.2 Model Settings324

We use the encoder-decoder framework and im-325

plement the method based on the fairseq toolkit.326

We use the Adam optimizer and adopt the default327

learning schedule in fairseq. We apply dropout328

with a rate of 0.1 and label smoothing ϵls = 0.1 for329

regularization. SpecAugment (Park et al., 2019)330

is applied in the input speech features for better331

generalization and robustness.332

For ASR tasks, we evaluate our method on Trans-333

former (Vaswani et al., 2017) and Conformer (Gu-334

lati et al., 2020). The settings of the encoder for335

ASR models are shown in Table 2. The decoder336

consists of 6 Transformer layers and the settings337

are same to the encoder. CTC (Graves et al., 2006)338

multitask learning is not used due to the very mod-339

est improvement in our preliminary experiments.340

3https://github.com/pytorch/fairseq
4https://github.com/google/sentencepiece

For ST tasks, we evaluate our method on Trans- 341

former and SATE (Xu et al., 2021). Knowledge 342

distillation is not used for simplicity. The encoder 343

consists of 12 layers for Transformer. SATE has 344

an acoustic encoder of 12 layers and a textual en- 345

coder of 6 layers. Each layer comprises 256 hidden 346

units, 4 attention heads, and 2,048 feed-forward 347

hidden units. We use pre-training for more chal- 348

lenging ST task, where the ASR and MT models 349

are pre-trained with the MuST-C En-De data. Dif- 350

ferent from the ASR model, CTC is employed with 351

a weight of 0.3 for better convergence. 352

All the models are trained for 100 epochs. We 353

early stop training when there is no performance 354

improvement on the development set for 10 consec- 355

utive checkpoints. We use beam search decoding 356

with a beam size of 5 for all models. The CTC and 357

language model rescoring methods are not used. 358

WER and case-sensitive SacreBLEU are reported 359

for ASR and ST respectively. 360

4.3 Results of ASR 361

Table 2 shows the results on the 960h LibriSpeech 362

corpus. We compare the methods on Transformer 363

and Conformer with different encoder layers and 364

hidden dimensions. We use Stack-4 as the baseline 365

model (see Table 1 for the setting). The amount of 366

model parameters in each group is similar for a fair 367

comparison. 368

For the popular setting of 12 encoder layers with 369

256 hidden dimensions in rows (A), PDS is the 370

first to achieve a very high down-sampling ratio of 371

32 with no performance drop. It yields a speedup 372

of 1.20×. As the down-sampling ratio decreases, 373

performance improves significantly. Similar phe- 374

nomena are observed on the wider Transformer 375

with 512 hidden dimensions in rows (B), and this 376

bigger model benefits more in speedup. 377

Interestingly, we find that the deep models with 378

30 encoder layers in rows (C) eliminate the perfor- 379

mance gap when different down-sampling ratios 380

are employed. PDS condenses the representation to 381

1/32 of the initial length, while achieving a consid- 382

erable relative improvement of 0.75 WER points. 383

We conjecture that the deep model allows more 384

sufficient modeling in each stage and preserves 385

the information even in an extreme case of down- 386

sampling. This has a practical advantage in indus- 387

trial scenarios wherein more speedups are required. 388

For Conformer, the behavior of the base model 389

with 12 encoder layers in rows (D) is similar to 390
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Setting L dh dff h #Params dev test Avg. Speedupclean other clean other

Transformer

(A)

Stack-4

12 256 2048 4

30M 3.88 9.26 4.49 9.42 6.76 1.00×
PDS-Base-8 30M 3.57 8.63 3.85 8.58 6.16 (-0.60) 0.99×
PDS-Base-16 30M 3.71 8.73 3.74 9.02 6.30 (-0.46) 1.14×
PDS-Base-32 31M 4.13 9.31 4.21 9.31 6.74 (-0.02) 1.20×

(B)

Stack-4

12 512 2048 8

71M 3.53 8.15 3.67 7.96 5.83 1.00×
PDS-Base-8 75M 3.17 7.46 3.47 7.47 5.39 (-0.44) 1.08×
PDS-Base-16 76M 3.34 7.73 3.37 7.85 5.57 (-0.26) 1.34×
PDS-Base-32 82M 3.32 7.94 3.64 7.85 5.69 (-0.14) 1.47×

(C)

Stack-4

30 256 2048 4

53M 3.80 8.51 4.33 8.61 6.31 1.00×
PDS-Base-8 53M 3.34 7.90 3.50 7.79 5.63 (-0.68) 1.03×
PDS-Base-16 54M 3.15 7.83 3.38 7.79 5.53 (-0.78) 1.19×
PDS-Base-32 55M 3.26 7.77 3.33 7.88 5.56 (-0.75) 1.27×

Conformer

(D)

Stack-4

12 256 2048 4

45M 3.64 8.17 3.74 8.10 5.91 1.00×
PDS-Base-8 46M 3.10 7.41 3.23 7.59 5.33 (-0.58) 0.98×
PDS-Base-16 46M 3.06 7.27 3.12 7.58 5.26 (-0.65) 1.16×
PDS-Base-32 47M 2.99 7.57 3.17 7.76 5.37 (-0.54) 1.20×

(E)

Stack-4

12 512 2048 8

109M 3.67 7.66 3.79 7.50 5.56 1.00×
PDS-Base-8 113M 2.90 6.71 3.10 6.70 4.85 (-0.71) 1.00×
PDS-Base-16 114M 3.11 6.74 3.37 6.90 5.03 (-0.53) 1.33×
PDS-Base-32 119M 2.96 7.10 3.18 7.11 5.09 (-0.47) 1.42×

Table 2: WER on 960h LibriSpeech ASR corpus. L: the number of encoder layers. dh: the hidden dimension.
dff : the feed-forward dimension. h: the number of the attention heads. #Params: the number of parameters. The
speedup is computed during inference on test-clean set with the batch size of 100k and beam size of 5.

that of the deep Transformer models. One impor-391

tant improvement of Conformer is enhancing local392

dependency by convolution neural networks. It393

models interaction among neighbor context, which394

leads to the higher correlation. It is helpful for395

alleviating the issue of information loss.396

Finally, on the wider Conformer in rows (E), our397

method yields an improvement of 0.47 WER points398

with a speedup of 1.42×.399

4.4 Results of ST400

End-to-end ST has become popular recently401

(Duong et al., 2016; Berard et al., 2016). How-402

ever, unlike ASR, annotated speech-to-translation403

data is scarce, which prevents well-trained ST mod-404

els. Therefore, we use CTC and pre-training for405

sufficient training (Bahar et al., 2019). According406

to the experimental results on ASR, we use PDS-407

Base-8 to investigate the effects of PDS on both408

performance and model convergence.409

Table 3 shows an obvious performance gap of410

2.5 BLEU between the stacked and PDS methods411

when the auxiliary CTC and pre-training methods412

are not used. This indicates that PDS helps conver-413

gence and improves ST when transcription is not414

available. When pre-training and CTC are avail-415

Setting CTC #Params w/o PT w/ PT

Transformer

Stack-4 30M 20.3 22.9
✓ 32M 23.5 24.0

PDS-Base-8 29M 23.0 24.1
✓ 32M 23.9 24.8

SATE

Stack-4 ✓ 40M 24.3 25.4
PDS-Base-8 ✓ 40M 24.9 25.8

Table 3: SacreBLEU on MuST-C En-De ST corpus.
"PT" represents that initializing the ST model with the
pre-trained ASR and MT models. All pre-trained mod-
els have similar performance for a fair comparison.

able, better performance is achieved by good initial- 416

ization and strong supervision. Also, PDS always 417

outperforms the stacked method significantly. 418

On SATE (Xu et al., 2021), consistent improve- 419

ments are achieved. The encoder of SATE is com- 420

posed of an acoustic encoder and a textual encoder. 421

We only employ PDS in the first encoder. Although 422

an adaptor is introduced for adaptive representation, 423

the length inconsistency issue is not solved. As a 424

popular method, the shrink mechanism filters the 425

acoustic representation based on the CTC predic- 426
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F Ratio Stride Layer Avg.

Stack

(A) /

2 2 12 7.11
4 2-2 0-12 6.76
8 2-2-2 0-0-12 7.48

16 2-2-2-2 0-0-0-12 9.22

PDS

(B) 4 2-2-1-1 3-3-3-3 6.06
✓ 4 2-2-1-1 3-3-3-3 6.03

(C) 8 2-2-1-2 3-3-3-3 6.58
✓ 8 2-2-1-2 3-3-3-3 6.16

(D)

8 2-2-2-1 2-2-6-2 6.59
16 2-2-2-2 2-2-6-2 6.81

✓ 8 2-2-2-1 2-2-6-2 6.32
✓ 16 2-2-2-2 2-2-6-2 6.30

(E) 32 2-2-2-2-2 2-2-3-3-2 7.26
✓ 32 2-2-2-2-2 2-2-3-3-2 6.74

Table 4: Impact of representation fusion. "F" represents
the representation fusion method. We report the average
WER of all 4 sets on LibriSpeech.

tion (Liu et al., 2020). However, this also poses427

the risk of information loss. PDS provides another428

approach, which generates a length-matched se-429

quence in foundational acoustic encoding.430

Finally, combing the above methods, PDS431

achieves a new state-of-the-art performance of 25.8432

BLEU score with no additional training data.433

5 Analysis434

Next, we study a number of interesting problems435

on 960h LibriSpeech.436

5.1 Impact of Representation Fusion437

To investigate the effect of information loss and438

the need of representation fusion, we compare the439

results with different down-sampling ratios (see440

Table 4).441

For the vanilla stacked method in rows (A), the442

popular setting is to down-sample the input with a443

lower ratio of 4. This setting also achieves the best444

performance. Choosing a ratio of 2 leads to infe-445

rior WER because long but fine-grained features446

face the challenges of modeling. As the ratio of447

down-sampling increases, the performance drops448

significantly. This supports the point that informa-449

tion loss is serious in the stacked method.450

For PDS, the system outperforms the stacked451

counterpart under the same setting of ratio = 4.452

However, we find that the fusion method does not453

obtain significant improvement. This might be be-454

cause that the light condensation is lossless and455

Layer dev test Avg.clean other clean other

2-2-2-6 3.91 9.29 4.09 9.38 6.67
2-2-4-4 3.83 9.11 4.05 9.13 6.53
2-2-6-2 3.71 8.73 3.74 9.02 6.30

5-5-10-10 3.19 7.79 3.57 7.69 5.56
5-5-12-8 3.15 7.83 3.38 7.79 5.54
5-5-15-5 3.27 7.59 3.60 7.83 5.57

Table 5: Impact of the number of layers in each stage.
We report the results of Transformer with PDS-Base-16
and PDS-Deep-16 settings.

1 2 3 4
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0.4

0.6

Stage
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si
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2-2-4-4
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Figure 5: The fusion weights of the output represen-
tation in each stage. We consider three settings of the
number of layers under PDS-Base-16.

cannot benefit from the fusion of representations. 456

Interestingly, the fusion method achieves con- 457

sistent improvements when higher down-sampling 458

ratios are adopted. To study it further, we add an- 459

other set of experiments with a special setting in 460

rows (D): the down-sampling ratio decreases from 461

16 to 8 by setting the stride of the final stage to 1. 462

Then, we see a better WER of 6.59, which indicates 463

less information loss under the lighter condensation. 464

With the help of the fusion method, they achieve 465

similar performances. This is consistent with what 466

we expected. 467

5.2 Impact of Model Depth 468

We compare the results of the different number of 469

layers in each stage. Table 5 shows the results on 470

base and deep models. 471

For the model of 12 encoder layers, we use 2 472

fixed layers in the bottom 2 stages for less com- 473

putation. As we described in Section 3.4, PDS 474

achieves better performance as the number of lay- 475

ers increases in the intermedia stage. We think that 476

there are two reasons. Firstly, the information loss 477

is less compared with the top stages, and thus the 478

encoding layers are more helpful. Secondly, suffi- 479

cient encoding helps the down-sampling in the next 480

stage, but it is not the case for the top stage. This 481

is consistent with the previous conclusion (Huang 482

et al., 2020). We also show the fusion weights in 483
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Figure 6: The correlation of window size of 2 in each layer of Transformer, Conformer, and deep Transformer. The
marked points represent the correlation before each down-sampling.

Figure 5. The weight increases as the number of484

layers increases, and vice versa. The results are485

agreed with our design.486

We also compare the results in a deep Trans-487

former model with a 30-layer encoder. Due to the488

sufficient encoding in each stage, the deep model is489

robust in the design of the number of layers in each490

stage. There is no obvious performance gap across491

three different settings. It is very meaningful to492

combine PDS with the popular deep model (Pham493

et al., 2019) in the follow-up work.494

5.3 Impact on Correlation495

Unlike the stacked method, PDS runs a context496

interaction process after each down-sampling pro-497

cess. Figure 6 shows the correlation across differ-498

ent model architectures.499

In Transformer, high correlation (about 60% ∼500

80%) alleviates the information loss under the set-501

ting of PDS-Base-8. As the down-sampling ratio502

increases, fewer layers in each stage cannot cap-503

ture the context information sufficiently and thus504

make the degraded correlation. This leads to the505

performance drops, as shown in Section 4.3.506

Conformer and deep Transformer show similar507

performance under the different settings of down-508

sampling. This motivates us to investigate their509

behavior. Despite the limited layers in each stage,510

Conformer always shows a high correlation by the511

explicit local modeling. This also demonstrates512

the effectiveness of Conformer. The deep Trans-513

former alleviates the issue straightly by stacking514

more layers.515

One interesting finding is that the correlation of516

top layers is very high (> 90%) across all architec-517

tures. It may be affected by the strong supervision518

of the decoder. This inspires us to explore multitask519

learning in the future.520
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Figure 7: Distribution of summed cross-attention
weights for each encoder representation on LibriSpeech
test-clean set.

5.4 Distribution of Attention Weights 521

PDS generates the semantically complete units on 522

the top of the encoder. We suppose that this in- 523

formative representation has a greater effect on 524

decoding. Refer to Zhang et al. (2020a), Figure 7 525

shows the distribution of summed cross-attention 526

weights for each encoder representation. 527

Due to the fine-grained representations in the 528

stacked method, the smaller attention weights 529

spread across multiple relevant representations. In 530

PDS, each representation receives greater attention 531

as the down-sampling ratio increases. Although 532

our method does not explicitly filter uninformative 533

features, we argue that the stronger condensation 534

forces the model to prefer more meaningful repre- 535

sentations. 536

6 Conclusion 537

In this paper, we investigate the down-sampling 538

process and shed light on the issue of information 539

loss in the popular stacked method. This inspires us 540

to propose a Progressive Down-Sampling method, 541

which encodes the context information after each 542

down-sampling. Furthermore, we develop a repre- 543

sentation fusion method to combine the multi-scale 544

information. Results on ASR and ST tasks demon- 545

strate the effects of our method. 546
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