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Abstract

While multitask representation learning has become a popular approach in reinforce-
ment learning (RL) to boost the sample efficiency, the theoretical understanding of
why and how it works is still limited. Most previous analytical works could only
assume that the representation function is already known to the agent or from linear
function class, since analyzing general function class representation encounters
non-trivial technical obstacles such as generalization guarantee, formulation of
confidence bound in abstract function space, etc. However, linear-case analysis
heavily relies on the particularity of linear function class, while real-world practice
usually adopts general non-linear representation functions like neural networks.
This significantly reduces its applicability. In this work, we extend the analysis to
general function class representations. Specifically, we consider an agent playing
M contextual bandits (or MDPs) concurrently and extracting a shared representa-
tion function ¢ from a specific function class ® using our proposed Generalized
Functional Upper Confidence Bound algorithm (GFUCB). We theoretically vali-
date the benefit of multitask representation learning within general function class
for bandits and linear MDP for the first time. Lastly, we conduct experiments to
demonstrate the effectiveness of our algorithm with neural net representation.

1 Introduction

Recently, reinforcement learning (RL) has achieved many successful applications in games [6} 34],
robotics [23], and many other fields. However, due to the large cardinality of state space or action
space in real-world problems, the large sample complexity has been a major problem for employing
these RL algorithms in reality. A popular method called multitask representation learning tries to
tackle this problem by extracting a shared low-dimensional representation function among multiple
related tasks, then using a simple function (e.g., linear) on top of this common representation to solve
each task[4, (7, 24].

Despite the empirical success for multitask representation learning, particularly in reinforcement
learning because of its effectiveness in reducing sample complexity, the theoretical understanding
about it is still limited. A march of works[37, 36, 22| 133} 25, |31} [16L [3, (11}, 9L 141} [30]] give results
on function approximation in bandits and RL, which permits a representation. In these frameworks,
an agent is considered playing M related tasks concurrently. Each task is a distinct contextual
bandit or linear MDP problem |’} and all these M tasks share a common representation ¢ € ¢ where
® = {¢:S x A+ RF} is representation function class extracting a k-dimensional representation

! Although the name of linear MDP contains term “linear”, it actually has infinite degrees of freedom because
the representation function ¢ could be general non-linear function.
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vector from state-action pair. Such representation function can reduce the complexity of problem from
a huge space S x A to a simple regression problem in k-dimensional space. The value approximation
function class is defined by F = L o ®, here o means composition and £ means linear function,
which means the value of any state-action pair (s, a) is linear in its representation ¢(s, a).

However, previous analyses either assume & is linear [40], or assume that the agent already knows the
concrete function ¢ [17, 21]], which equivalently reduces to learning linear weight parameters. This
limits their applicability, since general non-linear value estimation is ubiquitous and is the essence
for the success of multitask representation learning. For instance, DQNJ[29] achieves great success by
employing a deep network to approximate Q-value function. Also, assuming the agent already knows
a good representation function is unrealistic in practice. Therefore, we aim to extend the analysis to
unknown general non-linear representation functions. This would not only reveal the more essential
benefit of multitask representation learning, but also inspire and facilitate future practice.

1.1 Our Contribution

The focus of previous works on linear analyses has its own reasons. The particularity of linear
function could circumvent many non-trivial obstacles in analysis, which hinders previous work from
from being applicable to real world scenarios. For instance, the formulation of confidence set in linear
parameter space is simply an ellipsoid, and its update is straightforward via covariance matrix. More
importantly, linear function class generically ensures generalization. The analysis [[18 43} 26} 21]]
only requires the samples to span the whole input space to let the covariance matrix converge, then is
able to derive uniform prediction error guarantee for the whole input space. However, generalization
issue is much more complicated for general non-linear scenarios.

In summary, our work embraces following contributions, which solves the challenges for previous
works and extends the analysis for the role of representation function in more general setting.

Eliminate the Dependency on Linearity. Towards general function class analysis, we adopt the idea
of confidence set [32} [17]. The algorithm extends the idea of upper confidence bound and maintains
a confidence set for all the possible value estimation functions. The confidence set contains all the
functions whose total empirical error at step ¢ is less than a predetermined bound ;. As more seen
data reveals more information about the environment, the confidence set will gradually shrink until
converge. Therefore, our algorithm and analysis framework is applicable to general function class.

Note that designing 3; to achieve low regret for general function class ® is non-trivial. We firstly
determine the concrete UCB form for general function class 3,(®) and propose a straightforward
algorithm called Generalized Functional Upper Confidence Bound (or GFUCB in abbreviation)
for general non-linear function class approximation. We use Eluder dimension[32] to measure the
complexity of the function class ® to give an efficient sample complexity that ensures generalization.

Multihead Function Class. To derive sharp regret bound for our algorithm and theoretically demon-
strate the benefit of multitask representation learning, we firstly introduce multihead function class
FOM which is the key technical contribution of our work. The efficacy of multitask representation
learning essentially originates from the shared knowledge and structure among tasks. Hence it is vital
and necessary to characterize such relation between multiples tasks that the agent simultaneously
learns. However, such structure is absent in previous single task work [39} 32]], and it calls for special
techniques to analyze the efficiency for learning these correlated functions.

To this end, we introduce multihead function class, namely F ®M jn section 4. This abstract
function space captures the relation between different task functions, which concatenate the val-
ues of (s, a) for all M tasks together as the output. Being more compact by sharing a common
backbone ¢, function in F&M requires much fewer samples to learn compared to M indepen-
dent tasks space M. All the tasks contribute to shape a good representation, then feedback to
each task for faster convergence. We formally prove that our algorithm enjoys regret bound as

0 <\/MT dimpg (F)(Mk + log N(CI)))), where T is the number of steps, M is the number of tasks

and A (®) means the covering number of function space ®. We also extend the algorithm and analysis
to multitask episodic RL with general value approximation under low inherent Bellman error. By
simultaneously solving M different but correlated MDP tasks, our method is sample-efficient with

regret O (\/MTH dimpg (F)(ME + log N (®) + MTHIQ)> where T is the number of episodes,
H is planning horizon and Z denotes the inherent Bellman error.




To the best of our knowledge, this is the first provably sample efficient algorithm for general
representation function bandits and linear MDP. It is comparable to the most optimal regret bound
when & is specialized to linear representation, and is better than the bounds which solve each task
independently. This also theoretically explains how multitask representation learning reduces sample
complexity. Essentially, the joint training for the shared representation function helps accelerate the
convergence of the common backbone by having more samples from all the tasks.

Empirical Value. Finally, we conduct experiments to verify our theoretical result. We design a
neural network based bandit environment and implement the GFUCB algorithm. Experimental results
corroborate the effect of multitask representation learning in boosting sample efficiency in non-linear
bandits. For the first time, the efficacy of the general representation algorithm proposed in theoretical
analysis is validated in a proof-of-concept experiment.

2 Related Work

In the supervised learning setting, a line of works have been done on multitask learning and repre-
sentation learning with various assumptions [4} (15} 2} 5, 127} 8}, 128}, [14} 138]]. These results assumed
that all tasks share a joint representation function. It is also worth mentioning that [38] gave the
method-of-moments estimator and built the confidence ball for the feature extractor, which inspired
our algorithm for the infinite-action setting.

The benefit of representation learning has been studied in sequential decision-making problems,
especially in RL domains. Arora et al. [3]] proved that representation learning could reduce the sample
complexity of imitation learning. D’eramo et al. [11] showed that representation learning could
improve the convergence rate of the value iteration algorithm. Both require a probabilistic assumption
similar to that in [28]], and the statistical rates are of similar forms as those in [28]]. Following these
works, we study a special class of MDP called Linear MDP. Linear MDP [42, [21]] is a popular model
in RL, which uses linear function approximation to generalize large state-action space. [44]] extends
the definition to low inherent Bellman error (or IBE in short) MDPs. This model assumes that both
the transition and the reward are near-linear in given features.

Recently, Yang et al. [40] showed multitask representation learning reduces the regret in linear
bandits, using the framework developed by Du et al. [14]. Moreover, some works [[17, 26, 21]]
proved results on the benefit of multitask representation learning RL with generative model or linear
representation function. However, these works either restrict the representation function class to be
linear, or the representation function is known to agent. This is unrealistic in real world practice,
which limits these works’ meaning.

The most relevant works that need to be mentioned is general function class value approximation
for bandits and MDPs. Russo et al. [32] first proposed the concept of eluder dimension to measure
the complexity of a function class and gave a regret bound for general function bandits using this
dimension. Wang et al. [39] further proved that it can also be adopted in MDP problems. Dong et
al. [[12] extended the analysis with sequential Rademacher complexity. Inspired by these works, we
adopt eluder dimension and develop our own analysis. But it should be pointed out that all those
works focus on single task setting, which give a provable bound for just one single MDP or bandit
problem. They lack the insight for why simultaneously dealing with multiple distinct but correlated
tasks is more sample efficient. Our work aim to establish a framework to explain this. By considering
locating the ground truth value function in multihead function space F®M (see detailed definition in
[section 4), we are able to theoretically explain the main reason for the boost of sample efficiency.
Informally speaking, the shared feature extraction backbone ¢ receives samples from all the tasks,
therefore accelerating the convergence for every single task compare with solving them separately.

3 Preliminaries

3.1 Notations

We use [n] to denote the set {1,2,...,n} and (-, -) to denote the inner product between two vectors.
We use f(x) = O(g(z)) to represent f(z) < C - g(x) holds for any z > xy with some C' > 0 and

xo > 0. Ignoring the logarithm term, we use f(z) = O(g(z)) .



3.2 Multitask Contextual Bandits

We first study multitask representation learning in contextual bandits. Each task ¢ € [M] is associated
with an unknown function f() € F from certain function class F. At each step ¢ € [T, the agent is
given a context vector C' ; from certain context space C and a set of actions A ; selected from certain
action space A for each task . The agent needs to choose one action A, ; € A; ;, and then receives
areward as Ry ; = f(i)(C't,,;, Am) + 14,4, where 7, ; is the random noise sampled from some i.i.d.

distribution. The agent’s goal is to understand function f(*) and maximize the cumulative reward, or
equivalently, minimize the total regret from all M tasks in T steps defined as below.

Reg(T é ZZ ( (Cris A} ;) — f(i)(ct,iyAt,i)) ,
t=1 i=1

where A;‘,i = argmaxaea, ; f (@) (Ct.i, A) is the optimal action with respect to context Cy ; in task 3.

3.3 Multitask MDP

Going beyond contextual bandits, we also study how this shared low-dimensional representation could
benefit the sequential decision making problem like Markov Decision Process (MDP). In this work, we
study undiscounted episodic finite horizon MDP problem. Consider an MDP M = (S, A, P,r, H),
where S is the state space, .4 is the action space, P is the transition dynamics, 7 (-, -) is the reward
function and H is the planning horizon. The agent starts from an initial state s; which can be
either fixed or sampled from a certain distribution, then interacts with environment for H rounds.
In the single task framework, at each round (also called level) h, the agent needs to perform an
action aj, according to a policy function a;, = m,(sp) . Then the agent will receive a reward
Ry (sh,an) = r(sn,ar) + nn, where 1y, again is the noise term. The environment then transits the
state from sy, to sy according to distribution P(+|sp, ap,). The estimation for action value function

given following action policy 7 is defined as Q7 (sp, ap) = r(sp,arn) +E [ZtthH Ry (st, Tl't(St)):| ,
and state value function is defined as V;7(sp) = Q7 (s, mr(sn)). Note that there always exists a

deterministic optimal policy 7* for which V™" (s) = max, V;"(s) and Q] (s,a) = max, Q7 (s, a),
we will denote them as V;*(s) and Q7 (s, a) for simplicity.

In the multitask setting, the agent gets a batch of states {5 M simultaneously from M different
MDP tasks { M }M  at each round £ in episode ¢, then performs a batch of actions {7} (s h )f) M,

for each task ¢ € [M]. Every H rounds form an episode, and the agent will interact with the
environment for totally 7" episodes. The goal for the agent is minimizing the regret defined as

Reg(T szl ( ) Vlwt ( (Z)>’

t=1 i=1

@)

where V,""* is the optimal value of task i and s( )

is the initial state for task ¢ at episode t.

To let representation function play a role, it is assumed that all tasks share the same state space S and
action space .A. Moreover, there exists a representation function ¢ : S x A — R” such that action
and state value function of all tasks M) is always (approximately) linear in this representation.

For example, given a representation function ¢, the action value approximation function at level i

is parametrized by a vector 8;, € R¥ as Q,[6, 0;,] def (p(s,a),0p), similar for Vi [¢, 01](s) def

max, (P(s,a), 0r). We denote all such action value functions as Qp, = {Qr[0, 0] : ¢ € D,0), €
R*}, also value function approximation space as Vi, = {V4,[¢, 0] : ¢ € ®,0), € R*}. Bach task
M is a linear MDP, which means Qj, is always approximately close under Bellman operator

def
Th(Qns1)(s,a) = 11(s,a) + Egup, (15,0) MaXae Qi (8, a').

Linear MDP Definition. A finite horizon MDP M = (S, A, P,r, H) is a linear MDP, if there exists
a representation function ¢ : S x A — R¥ and its induced value approximation function class
On, h € [H], such that the inherent Bellman error[44]

def
In = sup inf  sup  |(Qn — T (Qn+1)) (s,0)],
Qni1€Qnt1 QnELh s€S,acA



is always smaller than some small constant L.

The definition essentially assumes that for any Q-value approximation function Qy,+1 € Qp41 at
level h + 1, the Q-value function @), at level h induced by it can always be closely approximated in
class Qj,, which assures the accuracy through sequential levels.

3.4 Eluder Dimension

To measure the complexity of a general function class f, we adopt the concept of eluder dimension
[32]. First, define e-dependence and independence.

Definition 1 (e-dependent). An input x is e-dependent on set X = {x1,xa, ..., x,} with respect
to function class F, if any pair of functions f, f € F satisfying \/Zﬁzl(f(xl) — f(xz))2 < ealso
satisfies | f(x) — f(z)| < e. Otherwise, we call action x to be e-independent of data set X.

Intuitively, e-dependence captures the exhaustion of interpolation flexibility for function class F.
Given an unknown function f’s value on set X = {x1, s, ..., x,}, we are able to pin down its value
on some particular input & with only e-scale prediction error.

Definition 2 (c-eluder dimension). The c-eluder dimension dimg(F, €) is the maximum length for a
sequence of inputs T1,%a, ... xTq € X, such that for some ¢ > ¢, every element is ¢ -independent of
its predecessors.

This definition is similar to the definition of the dimensionality of a linear space, which is the
maximum length of a sequence of vectors such that each one is linear independent to its predecessors.
For instance, if F = {f(z) : R? — R, f(z) = 0Tz}, we have dimg(F,¢) = O(dlog1/e) since
any d linear independent input’s estimated value can fully describe a linear mapping function. We
also omit the e and use dim g (F) when it only has a logarithm dependent term on e.

4 Main Results for Contextual Bandits

In this section, we will present our theoretical analysis on the proposed GFUCB algorithm for
contextual bandits.

4.1 Assumptions

This section will list the assumptions that we make for our analysis. The main assumption is the
existence of a shared feature extraction function from class ® = {¢ : C x A ~ RF} that any task’s
value function is linear in this ¢.

Assumption 1.1 (Shared Space and Representation) A/l the tasks share the same context space
C and action space A. Also, there exists a shared representation function ¢ € ® and a set of
k-dimensional parameters {0;} M, such that each f® has the form f(-,-) = (¢(-, ), 0;).
Following standard regularization assumptions for bandits [17,40]], we make assumptions on noise
distribution and function parameters.

Assumption 1.2 (Conditional Sub-Gaussian Noise) Denote H;; = o(C1 i, A1,i,...,Cri, Ars)
to be the o-field summarizing the history information available before reward Ry ; is observed
for every task i € [M]. We have n,; is sampled from a I-Sub-Gaussian distribution, namely

E [exp(Ane;) | Hii) < exp ()‘72> forvl € R

Assumption 1.3 (Bounded-Norm Feature and Parameter) We assume that the parameter 0; and
the feature vector for any context-action pair (C, A) € C x A is constant bounded for each task

i € [M), namely ||0;||2 < vk for Vi € [M] and ||p(C, A)||2 < 1 forVC € C, A € A

Apart from these assumptions, we add assumption to measure and constrain the complexity of value
approximation function class 7 = L o ®.

Assumption 1.4 (Bounded Eluder Dimension). We assume that function class F has bounded
Eluder dimension d, which means for any €, dimg (F,€) = O(d).



4.2 Algorithm Details

Algorithm 1 Generalized Functional UCB Algorithm

1: forstept:1 — T do
2:  Compute F; according to
Receive contexts C; ; and action sets A; ;, ¢ € [M]

3
M
4 fi, Ay = argmaxper, aea,,; Die f(z)(ct i Ag)
5
6

Play A ; for task i, and get reward Rt,z fori € [M].
. end for

The details of the algorithm is in At each step t, the algorithm first solves the optimization
problem below to get the empirically optimal solution f; that best predicts the rewards for context-
input pairs seen so far.
M -1 5
fe + argmin ">~ (f(z)(ck,ia Aki) — Rk,i)
feFeM i k21

Here we abuse the notation of F&M as FOM = {f = (fM ... fOD): fO() = ¢(-)Tw,; € F}
to denote the M-head prediction version of F, parametrized by a shared representation function ¢(-)

and a weight matrix W = [wy, ..., wy] € R¥*M_ We use £ to denote the i, head of function f
which specially serves for task 7.

After obtaining ft, we maintain a functional confidence set 7; C F®M for possible value approxi-
mation functions

o {fef@M |£:- fH <5t,|f<i>(a,~)|g1,vg:ecXA,ie[M]} )

M —1 (G i 2
e, = T T (A @r) — 10
to denote the empirical 2-norm of function ft —f= ( ft(l) —fO ft(M) — fM )>. Basically,

(%) contains all the functions in F®M whose value estimation difference on all collected context-
action pairs @y, ; = (Ck,;, Ag,;) compared with empirical loss minimizer ft does not exceed a preset
parameter ;. We show that with high probability, the real value function fy is always contained
in F; when f; is carefully chosen as O(Mk + log (M(®, o, || - [loo))> where N (F, a, || - || oo) is the
a-covering number of functlon class ® in the sup-norm ||<b||Oo = MaXgeSx A ||¢(:c)|\2 and « is set
to be a small number as 77— MT (see detailed definition and proof in Lemma 1).

Here, for the sake of simplicity, we use H ft—1f H

For the action choice, our algorithm follows OFUL, which estimates each action value with the
most optimistic function value in our confidence set F;, and chooses the action whose optimistic
value estimation is the highest. In the multitask setting, we choose one action from each task to
form an action tuple (A1, Aa, ..., Apr) such that the summation of the optimistic value estimation

Ziul f@(Cy 4, A;) is maximized by some function f € F;.

Intractability. Some may have concerns on the intractability of building the confidence set (x) and
solving the optimization problem to get f}, ft, A¢ ;. The solution comes as two folds. From the
theoretical perspective, since the focus of problem is sample complexity rather than computational
complexity, a computational oracle can simply be assumed to give the solution of the optimization.
This is the common practice for theoretical works [20, 35, [1} [19] in order to focus on the sample
complexity analysis. From empirical perspective, there are great chances to optimize it with gradient
methods. For example, solving ft is a standard empirical risk minimization problem, and can be effec-
tively solved with gradient methods [13]. As for f; and A ;, note that it is not necessary to explicitly
build the confidence set F; by listing all the candidates. The approximation algorithm just need to
search within the confidence set via gradient method to optimize objective Zﬁl fO(Cy 4, Ai). The

start point is ft, and the algorithm knows that it approaches the border of F; when ||f t—f ||§ E,
approaches ;. The details of implementation are in section 6.



Mechanism. GFUCB algorithm solves the exploration problem in an implicit way. For a context-
action pair & = (C, A) in task 4 which has not been fully understood and explored yet, the possible
value estimation f(*)(z) will vary in large range with regard to constraint || f — ftH2 g, < B This
is because within J; there are many possible function value on this 2 while agreeing on all past
context-action pairs’ value. Therefore, the optimistic value f(*) (z) will become high by getting
a significant implicit bonus, encouraging the agent to try such action A under context C', which
achieves natural exploration.

The reduction of sample complexity is achieved through joint training for function ¢. If we solve
these tasks independently, the confidence set width 3, is at scale M log (N (P, «v, || - || )) because it
needs to cover M representation function space respectively. By involving ¢ in the prediction for all
tasks, our algorithm reduces the size of confidence set by M times, since now the samples from all
the tasks can contribute to learn the representation ¢. Usually log (N (P, a, || - ||oo)) is much greater
than k£ and M, hence our confidence set shrinks at a much faster speed. This explains how GFUCB
achieves lower regret, since the sub-optimality at each step ¢ is proportional to the confidence set
width 3; when real value function fy € F;.

4.3 Regret Bound

Based on the assumptions above, we have the regret guarantee as below.

Theorem 1. Based on assumption 1.1 to 1.4, denote the cumulative regret in T steps as Reg(T), with
probability at least 1 — 0 we have Reg(T") (\/MdT (ME + log N (@, ar, | - ||oo))) .

Here, d := dimg(F, ar) is the Eluder dimension for value approximation function class F = Lo ®
and o is discretization scale which only appears in logarithm term thus omitted. The detailed proof
is left in appendix.

To the best of knowledge, this is the first regret bound for general function class representation
learning in contextual bandits. To get a sense of its sharpness, note that when @ is specialized as

linear function class as ® = {¢(z) = Bz, B € R¥*?}, we have logN(fIJ ar, || lle) = O(dk) and

dimp(F) = d, then our bound is reduced to O(M+/dTk + dv/MTEk), which is the same optimal as
the current best provable regret bound for linear representation class bandits in [17]].

5 Main Results for MDP

5.1 Assumptions

For multitask Linear MDP setting, we adopt Assumption 3 from [17]] which generalizes the inherent
Bellman error [44] to multitask setting.

Assumption 2.1 (Low IBE for multitask) Define multi-task IBE is defined as
! def sup inf sup ’(Q(l — (Qh+1>) (s, a)‘ .

i) M M s€S,acAic[M
{Q;I+1}i:1€Qh,+1 {Qh }i=1€Qh (M]

We have T % supy, Z is small for all Qp, h € [H].

Assumption 2.1 generalize low IBE to multitask setting. It assumes that for every task ¢ € [M], its
Q-value function space is always close under Bellman operator.

Assumption 2.2 (Parameter Regularization) We assume that

o |lé(s,a)]| <1,0<QF(s,a) <1forV(s,a) €S x A h € [H| V.
* There exists a constant D such that for any h € [H] and 0,(1i), it holds that ||0§f) ll2 < D.

@ M @) def (i)
» For any fixed {Q,H_l} € Qpt1, the random noise z,° = R;’(s,a) +
=1

max, Qh+1( s a) — (Qh+1> (s,a) is bounded in [—1,1] and is always independent
to all other random varlablesfor V(s,a) € S x A h € [H|,i € [M].



These assumptions are widely adopted in linear MDP analytical works [44} 17} 26], which regularizes
the parameter, feature, and noise scale. Again we add bounded Eluder dimension constraint for the
Q-value estimation class.

Assumption 2.3 (Bounded Eluder Dimension). We assume that function class Qp, has bounded
Eluder dimension d for any h € [H].

5.2 Algorithm Details

Algorithm 2 multitask Linear MDP Algorithm
1: for episodet:1 — T do

2 QY =0,i€[M]

3: forh:H )—> 1do

4: ¢h t,Oht <+ solving (1)

5 QP = bl )0, V() = max, QP a)

6: end for

7. forh:1— Hdo

8: Compute F, ; according to Lemma 4

9: Receive states 4 5" o f (i) _ . ZM @ (s (Z) (i)
: htf. hity@py = aIEMAX e 7, | (Ve A 2ui=1 ) &

10: Play a( ) and get reward Rgi)t for task i € [M].

11:  end for

12: end for

The algorithm for multitask linear MDP is similar to contextual bandits as above. The optimization

problem in line 4 of is finding the empirically best solution for Q-value estimation at
level h in episode t as below
O, One = argmin  £($,0) (1)

be®,©=[0) ... 00M)
st. |69 < D,Vie [M]
0<(s,a)"0; <1,¥(s,a) €S x A,i € [M],

where L(¢, ©) is the empirical loss function defined as

e T (5) @ (.0 ?
ZZ( o (50 0f2) T 09 R, v, (SHM))
i=1 j=1

The framework of our work resembles LSVI [21]] and [26] which learns the Q-value estimation in a
reverse order, at each level h, the algorithm uses just-learned value estimation function V},4; to build
the regressmn target value as Rh T V}E_?l (523_1 ]> and find empirically best estimation f}g‘i =

qite h’t for each task ¢ € [M]. The optimistic value estimation of each action is again searched

within confidence set F, ; which centered at f}, ; and shrinks as the constraint || f — f5..||3 g, < B
becomes increasingly tighter. Note that the contextual bandit problem can be regarded as a 1-horizon
MDP problem without transition dynamics, and our framework at each level h is indeed a copy of
procedures in Algorithm 1.

5.3 Regret Bound

Based on assumptions 2.1 to 2.3, we prove that our algorithm enjoys a regret bound guaranteed by
the following theorem. Detailed proof is left in appendix.

Theorem 2. Based on assumption 2.1 to 2.3, denote the cumulative regret in T episodes as Reg(T),
we have the following regret bound for Reg(T) holds with probability at least 1 — § for Algorithm 2

O (MHVTdk + H\/MTdlog N'(®,a) + MHTTVd),



where « is discretization scale smaller than ﬁ

Remark. Compared with naively executing single task general value function approximation
algorithm [39] for M tasks, whose regret bound is O(M Hd+/T log N'(®)), to achieve same average

regret, our algorithm outperforms this naive algorithm with a boost of sample efficiency by O(M d).
This benefit mainly attributes to learning in function space F®M = £M o & instead of FM =
(L o ®)M the former is more compact and requires much less samples to learn.

6 Experiments

To validate our theoretical findings, we conduct experiments on a non-linear neural network bandits.
Note that it is a proof-of-concept experiment. Our main purpose is to realize the GFUCB algorithm
and check its efficacy but not to beat sophisticated real-world algorithms. The point to demonstrate is
that sample efficiency of GFUCB is scalable to the number of tasks and better than naive exploration.

6.1 Task Design

To test the efficacy of our algorithm, we use the MNIST dataset [[10] to build a bandit problem that
involves non-linear value approximation. The reward function of the bandit environment maps the
same digit into the same base reward 7}, which ranges from O to 1, plus a noise 7, sampled from a
zero-mean Gaussian with a standard deviation of 0.01. At every round, each task will present the
agent a context C' consists of K different digit images and ask the agent to take action as an integer
j € [K] meaning which image to choose, then return the reward according to the agent’s choice.

For the multitask setting, we construct M different tasks using different digit-to-reward mappings
0;:{0,...,9} — [0,1],i € [M], where o;(k) will give a unique reward for all images of digit & in
task <. Different tasks have different reward mapping function o;(-). By designing the environment
this way, it requires to learn a common representation ¢ to recognize digits for different tasks.

6.2 Implementation Details

We use a simple CNN as our feature extraction function ¢, which takes a digit image as input and
outputs a 10-dimensional normalized vector as representation. It consists of two 3x3 convolution
layers and two fully-connected layers, followed by ReLU activation and a normalization procedure.

The biggest challenge for implementation is how to solve a complex optimization problem in general
functional space. In principle, finding parameters for a neural network to achieve the (near) minimal
empirical error is an NP-Hard problem. To solve this issue, we use a gradient-based method to
approximately find a local-optimal solution. For finding the empirically best ft, we use Adam with
lr = 1e — 3 to train for sufficiently long steps; in our setting, it is set to be 200 epochs at every step ¢,
to ensure that the training loss is sufficiently low.

The next major challenge is estimating the optimistic value for each action within the abstract function
set ;. To tackle this problem, we enumerate all possible action tuples {A4;}}, and then solve the
equivalent optimization below to compute its optimistic estimated value

M

O(Cy 4, A t Hf— f
max i»A;)  s.t.
fe]:ti 1f ( b ) f

2

< Bs.

2,E,

Still, this is a complicated optimization problem within an abstract function set. Inspired by the
Lagrangian operator, we transform it into an unconstrained optimization problem minimizing loss

function ¢(f) = — vail FO(A;) + X - max(0, || f; — f1I3,5, — Bt), where X is a hyperparameter to
be determined, in our algorithm we set it to be A = 30 by empirical search. Also B; = alog(b-t+c)
is an approximation for 3; since 3; includes N/ (®, o) which is intractable to be exactly computed,
we found (a, b, ¢) = (0.4, 0.5, 2) to be a good parameter of UCB in single task. We use SGD with a

small learning rate (5e¢ — 4) to finetune the model ft for 200 iterations to optimize ¢(f).

The basic intuition is that, through optimizing £( f), the algorithm will try to maximize function
value "M f@)(A,). And as long as f satisfies || f; — flI3.5, < B, such constraint will not appear
in the loss term, thus has no effect on optimization. When f comes to the border of F;, where



I fi—f 13 i, approaches B;, the second term adds regularization term to the loss as punishment,
preserving || ft — flI3 g, at a near-constant level around B;. So we can approximately simulate the
optimistic value estimating procedure via searching in the neighborhood of ft.

6.3 Connection to Algorithm 1

The main difference between our practical version algorithm and the theoretical one is that we did not
list out all the functions in the whole confidence set F; explicitly, but just use gradient-based method
to implicitly search within a very small fraction of JF; with heuristics. Getting a candidate within the
confidence set is much easier and tractable than rigorously exhausting all functions in J; to optimize.

We can start from the parameter of ft and use gradient method to approximately find f; and A, ;.

Another difference is we do not rigorous compute 3; which involves A/ (®), but directly determine a
parametrized function form. Rigorously speaking, our tuned value of /3, is much smaller than the the-
oretical guaranteed ones, so all the candidate functions that we search along the trajectory of gradient
method still satisfy the theoretical requirement (but it may omit many other potential candidates).
Therefore, our practical version algorithm should be regarded as an inaccurate approximation to the
theoretical algorithm. Moreover, it also plays a role as regularization to enable the convergence of F;

since we only consider regular ones in the neighborhood of ft.

6.4 Results

. . . = Epsilon G dy 1 task
We test the performance of our algorithm against a naive 501 — Annesed oo Greedy 1t /

eps-greedy baseline that solves each task independently by T orca e

| == GFUCB 10 tasks

N
o

training the same CNN value prediction module. We show
our results with number of tasks M = 1,5, 10 in[Figure]
[} Firstly, we randomly generate 10 different digit-value
mapping functions ¢;(-),7 = 1, ..., 10. The total 10 tasks
are divided into 10/M groups; each group forms a M -task
problem and is solved by an individual copy of some al-
gorithm. At each step ¢, the cumulative regret from all 10
tasks is averaged to estimate the method’s performance. o]
Our result in[Figure T]verified that the multitask training 0 100 200 30, 100 00 o0
does accelerate learning, which empirically validates our Figure 1: Cumulative regret over steps
theoretical analysis. The multitask training utilizes the for M = 1,5, 10.

samples from all M tasks to jointly learn a good represen-

tation ¢, which significantly accelerates the learning procedure of the CNN backbone. Also, the
improvement in GFUCB algorithm’s performance with M = 1 validates the effect of our finetune
procedure for getting a bonus. Detailed dissection and discussion are left in appendix.

w
o

Cumulative Regret
N
o

-
o

7 Conclusion

In this work, we extend the analysis of the benefit of multitask representation learning from linear
representation class to general function class. We propose a straightforward algorithm that can
utilize samples from all the tasks to jointly train a representation function, which is demonstrated
theoretically and empirically to accelerate the sample efficiency and outperform naively single-task
learning. Also, we extend the analysis to the MDP setting and show that the benefit of multitask
representation learning is similar. Furthermore, our experimental result reveals that our proposed
algorithm is also effective in practice even for highly non-linear neural network representations.
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