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Abstract

Recent advances on large pre-trained language001
models (PLMs) lead impressive gains on many002
natural language understanding (NLU) tasks003
with task-specific fine-tuning. However, direct004
fine-tuning PLMs heavily rely on large amount005
of labeled instances, which are expensive and006
time-consuming to obtain. Prompt-based tun-007
ing on PLMs has proven valuable for few shot008
tasks. Existing works studying prompt-based009
tuning for few-shot NLU mainly focus on deriv-010
ing proper label words with a verbalizer or gen-011
erating prompt templates for eliciting semantics012
from PLMs. In addition, conventional data aug-013
mentation methods can enrich training data for014
improving few-shot learning, while ignoring015
the label semantics. It is promising to leverage016
the rich label semantics in label words for data017
augmentation to facilitate prompt-based tuning018
for the downstream NLU tasks. However, the019
work on this is rather limited. Therefore, we020
study a new problem of data augmentation for021
prompt-based few shot learners. We propose a022
novel label-guided data augmentation method023
PROMPTDA which exploits the enriched la-024
bel semantic information for data augmenta-025
tion. Experimental results on several few shot026
text classification tasks show that our proposed027
framework achieves superior performance by028
effectively leveraging label semantics and data029
augmentation in language understanding. We030
will open our code later for reproduction.031

1 Introduction032

Pre-trained language models (PLMs) have shown033

promising performance in various applications034

such as text classification (Yang et al., 2019), docu-035

ment summarization (Zhang et al., 2020a), question036

answering (Mirzaee et al., 2021). Directly fine-037

tuning PLMs such as BERT or RoBERTa is a com-038

mon approach to adapt them in downstream natural039

language understanding (NLU) (Devlin et al., 2018;040

Liu et al., 2019). For example, PLMs can be ap-041

pended with additional classification layers that are042

trained with labeled examples for text classification. 043

However, sufficient labeled data can be expensive 044

to acquire, which hinders the deployment of PLMs 045

effectively in many NLU tasks (Mukherjee et al., 046

2021; Shu et al., 2020b). Therefore, it becomes in- 047

creasingly important for developing effective PLMs 048

with few labeled data. 049

The recent advancement of prompt-based tun- 050

ing has shown significant improvement over the 051

normal fine-tuning paradigm on tasks with few la- 052

beled data (or few-shot tasks) (Brown et al., 2020). 053

Typically, a prompt-based tuning paradigm trans- 054

forms a NLU task into a masked language model- 055

ing (MLM) problem. For example, in sentiment 056

analysis, an original sentence “nice movie to 057

watch." can be augmented with a template “It 058

is [MASK]" as the input x. Each class (e.g., POS- 059

ITIVE) is usually represented by a label word (e.g., 060

good) selected by a verbalizer from the vocabu- 061

lary (Schick and Schütze, 2020). The prediction of 062

a positive label is based on the probability of the 063

[MASK] token being filled with good. 064

However, there are several challenges for ap- 065

plying prompt-based tuning methods for few shot 066

scenarios. Conventional prompt-based tuning meth- 067

ods do not fully utilize the label semantics for each 068

class in classification. Most of the verbalizers only 069

choose one label word that is the most relevant to 070

each class, namely one-to-one verbalizer (Schick 071

and Schütze, 2020; Gao et al., 2021). Using a 072

single label word to represent each class only uti- 073

lize the limited semantic information in the token. 074

For instance, the prediction for POSITIVE can only 075

be inferred based on the probability score of the 076

selected label word such as good, while other pos- 077

sible relevant tokens such as great and best are 078

ignored. In addition, selecting the suitable label 079

word manually (Schick and Schütze, 2020) or via 080

automatic search (Gao et al., 2021) can have large 081

variance and lead to unstable prediction results. 082

To address the aforementioned challenges, one 083
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natural solution is to design a verbalizer mapping084

from multiple label words to each class, namely085

multiple-to-one verbalizer, which can leverage086

rich label semantics and reduce the variance of087

selecting a single label word. For instance, with088

the verbalizer mapping from set of label words089

{good, great, best} to the class POSITIVE,090

the prediction for POSITIVE can be inferred based091

on the probability score of each token in the set.092

For few shot tasks, data augmentation (DA)093

methods are widely used to enrich training data094

by modifying existing data through transforma-095

tions on token-level or sentence-level (Chen et al.,096

2021). For example, a common approach is to097

fetch synonyms tokens for substitutions based on098

pre-defined dictionaries such as WordNet (Miao099

et al., 2020). However, previous DA methods focus100

on transforming the input while not fully utilizing101

the label semantics, which have great potentials for102

few shot tasks (Luo et al., 2021). However, the103

work on exploring label semantics for data aug-104

mentation is rather limited. Therefore, we propose105

to incorporate the rich label semantic information106

from label words derived from the aforementioned107

multiple-to-one verbalizer into a data augmenta-108

tion, by carefully constructing instance-label pairs.109

For example, we aim to generate synthetic data110

points {(x,good), (x,great), (x,best)} from111

the original instance x and leverage them to im-112

prove the prompt-based tuning.113

Specifically, our framework PROMPTDA con-114

tains three coherent modules including a label aug-115

mentation, an augmented prompt-based tuning, and116

a prediction transformation. First, we use a PLM117

to build the multiple-to-one verbalizer and derive118

the semantically similar tokens for each label class.119

Second, we construct the instance-label pairs from120

the original data for each label word, and training121

the language model with masked language mod-122

eling. Third, for inference, we utilize the trained123

language model to predict the label by aggregating124

the probability scores on label words.125

The contributions of this paper are summarized126

as follows: (1) We study a new problem of data127

augmentation in prompt-based tuning for few shot128

learning; (2) We propose a novel label-guided data129

augmentation framework PROMPTDA that can de-130

rive multiple label words and exploit the rich se-131

mantic information of the label words for prompt-132

tuning; and (3) We conduct extensive experiments133

on several real-world few shot tasks and demon-134

strate the effectiveness of the proposed framework. 135

2 Related Work 136

Prompt-based Tuning has attracted increasing 137

attention recently for various natural language infer- 138

ence tasks including text classification (Gao et al., 139

2021), question answering (Jiang et al., 2020; Li 140

and Liang, 2021), language generation (Dou et al., 141

2020), etc. The prompt-based learning framework 142

has shown promising performances especially in 143

zero shot or few shot classification tasks when lim- 144

ited or no labels are available (Liu et al., 2021). 145

For example, Dou et al. propose a prompt-based 146

fine-tuning framework that automatically gener- 147

ates prompt templates and incorporates demon- 148

strations to improve few-shot classification perfor- 149

mances (Gao et al., 2021). Shin et al. proposes 150

the AutoPrompt method to automatically generate 151

prompts for eliciting the knowledge from language 152

models (Shin et al., 2020). Other work on im- 153

proving prompt-based model performances also 154

focus on constructing various types of prompt and 155

answers (Brown et al., 2020; Jiang et al., 2020), 156

or utilizing multi-modal prompt learning (Tsim- 157

poukelli et al., 2021). etc. 158

Few-shot Text Classification aims to build text 159

classification model when few labeled data is avail- 160

able. Existing work mainly utilize the following 161

categories. First, semi-supervised learning where 162

unlabeled data, alongside usually small amounts 163

of labeled data, is used for learning (Mukher- 164

jee and Awadallah, 2020; Lee et al., 2021). For 165

example, Subhabrata et al. propose to jointly 166

learn from a small set of labeled data and a large 167

amount of unlabeled data with uncertainty using 168

self-training (Mukherjee and Awadallah, 2020). 169

Second, meta-learning frameworks such as metric- 170

based (Sui et al., 2020) and optimization-based 171

approaches (Bansal et al., 2019) are developed. 172

Third, weakly supervised learning to derive weak 173

labels (Shu et al., 2020a; Meng et al., 2020) or in- 174

corporating constraints (Stewart and Ermon, 2017) 175

to in addition to the limited clean labels to improve 176

text classification. Other approaches user transfer 177

learning to learn to adapt transferable information 178

from the source domain to the target domain (Gupta 179

et al., 2020), or leverage auxiliary tasks to improve 180

the target tasks (Xia et al., 2021; Yin, 2020). 181

Data Augmentation is to construct synthetic 182

data from an available dataset to enlarge the data 183
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size, which can help supervised training with en-184

riched training data (Shu et al., 2018; Guo, 2020),185

or self-supervised learning for constructing sam-186

ples in pretext tasks (Zhang et al., 2017; Yoon et al.,187

2020), etc. Data augmentation techniques for nat-188

ural language generally fall into data space and189

feature space (Bayer et al., 2021). Augmentation in190

data space transforms the data in the original form191

in the character-level, word-level, phrase-level and192

document-level. In the feature space, representa-193

tions in the latent space is manipulated by adding194

noise or interpolation (Schwartz et al., 2018; Verma195

et al., 2019). In general, conventional data augmen-196

tation brings marginal improvements with prompt-197

based tuning paradigm in few shot tasks (Zhou198

et al., 2021; Chen et al., 2021). It is under explor-199

ing about how to design effective data augmenta-200

tion methods for prompt-based few-shot scenarios.201

Therefore, we propose a novel label-guided data202

augmentation mechanism in prompt-based tuning203

for few shot learning tasks.204

3 Problem Definition205

Few-shot classification is a task where a classifier206

is learned to predict unseen classes with limited207

labeled examples during the training. Follow the208

widely-used few-shot setting (Gao et al., 2021; Liu209

et al., 2021), we assume to have a large pre-trained210

language model M that is utilized to fine-tune on a211

task with data D = {X ,Y}, where X denotes the212

examples and Y indicates the corresponding labels.213

For each task, the number of training instances214

in each class is K, which is usually small (e.g.,215

8 or 16). The goal is to train a prompt-learning216

strategy that generalize well on unseen examples217

in the test set Dtest with few labeled training data218

in Dtrain. To ensure a fair parameter setting, we219

assume that a validation set Dval is available, and220

|Dval| = |Dtrain|. The test set Dtest is the same as221

full-data training setting.222

4 Label-guided Data Augmentation for223

Prompt-based Tuning224

In this section, we detail the proposed framework225

of PROMPTDA, illustrated in Figure 1. It mainly226

consists of three modules: (1) a label augmenta-227

tion module to derive multiple label words from la-228

bels for enriching the label space; (2) a augmented229

prompt-based tuning module for augmenting train-230

ing data guided by label words; and (3) a prediction231

transformation module to transform the prediction232

from the label words to original labels. 233

4.1 Label Augmentation 234

Due to the limited available labels in few-shot learn- 235

ing, recent work are generating label words to help 236

prediction (Schick and Schütze, 2020; Gao et al., 237

2021). The goal is to extend the label space by 238

incorporating the rich context of vocabulary. While 239

existing work mainly focus on selecting one la- 240

bel word for each label category manually or au- 241

tomatically in prompt-tuning, the resultant label 242

words are often inconsistent and the semantics in 243

other candidate label words are ignored. There- 244

fore, we propose to automatically search multiple 245

label words for each class to better enrich the label 246

space. Let F : VY → Y denotes the multiple- 247

to-one verbalizer that maps a set of label words 248

Vy = {v1y , v2y , ..., v
ky
y } ⊂ V to each label category 249

y ∈ Y , where ky = |Vy| denotes the number of 250

selected label words. 251

Firstly, we aim to search a candidate set of label 252

word Ṽy ⊂ V that is semantically similar to each 253

class y ∈ Y . Let Dy
train denote the subset of training 254

data with class y. T (x) denotes the input x with 255

a fixed template T . Po([mask]) denotes the 256

position of [mask] in input x. We propose to 257

select the Top-m label words from vocabulary as 258

Ṽy based on the conditional likelihood over Dy
train 259

for each class y: 260

Ṽy = Top-m
v∈V

 ∑
(x,y)∈Dy

train

Pr(v, T (x))

 (1) 261

where Pr(v, T (x)) denotes the corresponding 262

probability score of each token in the vocabulary 263

filling in Po([mask]) in PLM inference as: 264

Pr(v, T (x)) = Pr(Po([mask]) = v | T (x))
(2) 265

Secondly, we construct a candidate set F for the 266

whole dataset. It is a combinatorial problem to 267

select ky label words from Ṽy to construct Vy for 268

each class y. The number of possible candidates 269

of Vy is
(|Ṽy |
ky

)
. Then the element number of can- 270

didate set F is |F | =
(|Ṽy |
ky

)|Y|
. We utilize each 271

multiple-to-one verbalizer candidate of F to infer 272

and calculate the prediction accuracy on Dtrain via 273

the same prediction transformation method in § 274

4.3. Then we select the Top-n candidates from 275

F based on the prediction accuracy. If there exist 276
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It is [MASK]

MLM Head

[CLS] nice movie to watch. [SEP]

(c) Prediction Transformation

It is [MASK]

MLM Head  great

[CLS] nice movie to watch. [SEP]

It is [MASK]

MLM Head  fine

[CLS] nice movie to watch. [SEP]

It is [MASK]

MLM Head  good

[CLS] nice movie to watch. [SEP]

(b) Augmented Prompt-based Tuning(a) Label Augmentation
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Figure 1: The proposed framework PROMPTDA for few-shot learning (with a sentiment classification task as
an example): (a) the label augmentation derive multiple label words to enrich the label semantic space; (b) the
augmented prompt-based tuning is trained with the augmented data using masked language modeling; and (c) the
prediction transformation predicts the target labels with inferred label words.

multiple candidates have the same accuracy pre-277

diction score, we randomly select one as the final278

multiple-to-one verbalizer. Otherwise, we select279

the candidate with highest accuracy score. Note280

that m and n are both hyperparameters and can be281

adjusted according to different datasets.282

4.2 Augmented Prompt-based Tuning283

To enrich the training data for few-shot text clas-284

sification, it is natural to utilize data augmenta-285

tion methods such as token-level or sentence-level286

augmentations for fine-tuning (Chen et al., 2021).287

Most of existing data augmentation methods are288

focusing on enlarging training data conditioned289

on the original label space. Orthogonal to pre-290

vious augmentation methods, our method incor-291

porates label semantic information into prompt-292

tuning via augmenting sample-label pairs rather293

than only augmenting samples. For (x, y) ∈ Dtrain,294

we have obtained the corresponding label word295

set Vy = {v1y , v2y , ..., v
ky
y }. Then we can in-296

clude {(x, v1y), (x, v2y), ..., (x, v
ky
y )} for augmenta-297

tion. Let D̃train denotes the augmented dataset. The298

resultant dataset can be denoted as follows,299

D̃train = ∪(x,y)∈Dtrain{(x, v
1
y), (x, v

2
y), ..., (x, v

ky
y )}

(3)300

In the tuning process, we follow the MLM301

training paradigm and minimize the negative log-302

likelihood on the whole training set D̃train. The303

optimization objective is: 304

L =
∑

(x,v)∈D̃train

− log Pr(v | x) (4) 305

For (x, v) ∈ D̃train, the conditional probability of 306

filling the position of [mask] with v is calculated 307

as: 308

Pr(v | x) = Pr(Po([mask]) = v | x)

=
exp (wv · h[MASK])∑

v′∈V exp (wv′ · h[MASK])
(5) 309

where wv denotes the pre-softmax output vector 310

for each token v in the vocabulary, and h[MASK] 311

denotes the corresponding hidden state of the 312

[MASK] position. Note that we completely reuse 313

the PLM and do not introduce new parameters in 314

the training process, which is important for prompt- 315

based tuning paradigm to be effective in few-shot 316

scenarios. 317

4.3 Prediction Transformation 318

We have demonstrated the process of training the 319

MLM classifier head with the augmented data in 320

prompt-based tuning paradigm. Next, we describe 321

how to perform the inference of the target label. Let 322

h denotes the function transforms the probability 323

scores on the label word set Vy = {v1y , v2y , ..., v
ky
y } 324

into the probability score of each category y . For 325

instance, h can be max() or average(). We use 326
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h = max() in our framework. The probability327

score of each class y can be calculated as:328

Pr(y | x) = h(P(v1y , x),P(v
2
y , x), ...,P(v

ky
y , x))

(6)329

where for (x, viy) that satisfies (x, viy) ∈ D̃train and330

viy ∈ Vy, (i = 1, 2, ..., ky), P(viy, x) is denoted as331

the conditional probability of filling the position of332

[mask] with viy:333

P(viy, x) = Pr(Po([mask]) = viy | x) (7)334

After we obtain the probability score over each335

category, the final predicted label ŷ is calculated as:336

337

ŷ = argmaxy∈Y Pr(y | x) (8)338

5 Experiments339

In this section, we present the experiments to eval-340

uate the effectiveness of the proposed PROMPTDA.341

Specifically, we aim to answer the following re-342

search questions:343

• RQ1 Can PROMPTDA improve the perfor-344

mance of few-shot prompt-based tuning?345

• RQ2 Can the proposed data augmentation346

strategy in PROMPTDA help for the target347

label prediction?348

• RQ3 Can the PROMPTDA make the prompt-349

based tuning method more stable?350

5.1 Experimental Settings351

Datasets. We evaluate the proposed framework352

on various few shot text classification datasets from353

the widely-used NLU benchmark GLUE (Wang354

et al., 2018) including SST-2, MR (Pang and Lee,355

2005), CR, and Subj (Pang and Lee, 2004). These356

datasets covers different tasks such as sentiment357

analysis, topic classification, from various domains358

including movie reviews, news pieces, etc. The359

statistics of the datasets are shown in Table 4 in360

Appendix.361

Baselines. We compare the proposed approach362

with the following state-of-the-art methods:363

• Majority: The label is predicted by taking the364

majority of the class in the training set.365

• Fine-Tuning: The prediction is based on the366

pre-trained language model that is fine-tuned367

with the training data.368

• LM-BFF (Gao et al., 2021): Prompt-based 369

Tuning with automatic generation of demon- 370

stration with templates. 371

• Prompt Tuning: The standard Prompt-based 372

Tuning augmented by a simple template or 373

template-free. 374

Evaluation setting. Evaluation is critical in few- 375

shot scenarios because small changes of training 376

dataset can result in a large variance in performance 377

in test dataset. Following the few-shot setting in 378

(Perez et al., 2021), (Zhang et al., 2020b), (Gu 379

et al., 2021) and (Gao et al., 2021), we randomly 380

select K-shot samples from original dataset for 381

each class to construct the training set Dtrain. and 382

select another K-shot samples to construct the de- 383

velopment set Dval. For enhancing the stability of 384

evaluation, we utilize the whole development set of 385

original dataset as out test set Dtest and change the 386

random seed of sampling Dtrain and Dval for five 387

times. We select RoBERTa-large as our backbone 388

model to make fair comparison with baselines like 389

LM-BFF (Gao et al., 2021). 390

5.2 Experimental Results 391

In this section, we present our main results, and 392

address the aforementioned research questions per- 393

taining to our PROMPTDA approach. 394

In addition to comparing with baselines such 395

as Majority, normal fine tuning and prompt-based 396

method LM-BFF, we conduct more experiments 397

to verify the effectiveness of our proposed method 398

PROMPTDA as a plug-in module. Because dif- 399

ferent template choices can result in a large vari- 400

ance of performance (Gao et al., 2021), we de- 401

sign two groups of experiments, namely template- 402

free and template-augmented, to show that our 403

method can improve over standard prompt-based 404

tuning method regardless of template design. For 405

the template-augmented group of experiments, we 406

manually choose “It is [MASK]" as the tem- 407

plate, following (Wang et al., 2021). For the 408

template-free group of experiments, we only ap- 409

pend “[MASK]" in the input. We report the results 410

of PROMPTDA in Table 3 when the size of data 411

augmentation is ×3 (i.e., ky = 3). We also con- 412

sider two scenarios that the label words are derived 413

manually or automatically with our label augmen- 414

tation mechanism. We choose 8 samples (K = 8) 415

per class as the few-shot setting of our main exper- 416

iments. For fair comparison, we choose the same 417
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SST-2 MR CR Subj

Majority 50.9 50.0 50.0 50.0
Fine-Tuning (full) 95.0 90.8 89.4 97.0
LM-BFF (K=16)§ 92.3 (1.0) 85.5 (2.8) 89.0 (1.4) 91.2 (1.1)

Few-shot scenario with K=8

Fine-Tuning 60.5 (3.1) 60.3 (7.5) 61.9 (5.1) 78.3 (8.2)
LM-BFF¶ 79.9 (6.0) 85.4 (3.9) 88.6 (2.3) 81.6 (6.2)

Prompt Tuning‡ 82.0 (3.2) 83.0 (3.7) 86.5 (3.0) 85.8 (6.4)
+ PROMPTDA(m.)‡ 87.3 (4.4) 83.5 (2.1) 88.1 (2.7) 82.9 (4.2)
+ PROMPTDA(au.)‡ 87.6 (4.1) 79.5 (2.3) 89.8 (1.5) 86.6 (3.6)

Prompt Tuning† 89.0 (2.2) 83.1 (3.2) 86.2 (3.2) 82.2 (8.8)
+ PROMPTDA(m.)† 89.8 (0.6) 83.8 (3.0) 85.9 (2.1) 87.5 (3.4)
+ PROMPTDA(au.)† 89.9 (2.2) 84.4 (2.6) 88.8 (2.4) 85.7 (3.9)

Table 1: The main results using RoBERTa-large on representative NLU tasks. All the results are evaluated on full
dev sets and averaged across 5 different training sets. K = 8 : 8 samples per class for the experiments; †: template
augmented; ‡: template-free; m.: manual label augmentation; au.: automatic label augmentation; §: result from
(Gao et al., 2021); ¶: results from (Wang et al., 2021).

random seed of training set sampling as LM-BFF.418

We train for 10 epochs for each dataset following419

(Wang et al., 2021). We report the average perfor-420

mance and standard variance of our result over five421

runs of sampling for each dataset. The main results422

can be seen in Table 3.423

Performance analysis We analyze the perfor-424

mance from three perspectives to answer the afore-425

mentioned research questions.426

To answer RQ1, we compare the proposed427

method with existing baselines. In general, we can428

see that the standard prompt-based tuning method429

with PROMPTDA consistently perform better than430

or is comparable with baselines like LM-BFF and431

normal fine tuning (results of “+ PROMPTDA (au.)"432

in Table 3). Compared with normal fine tuning433

method, standard prompt-based tuning with our434

proposed method PROMPTDA performs much bet-435

ter over all the datasets. For example, regardless436

of template, our method has achieved around 20%437

improvements on SST-2, MR and CR over nor-438

mal fine tuning method. Compared with LM-BFF,439

our method also performs better on SST-2, CR440

and Subj. On MR dataset, our method perform441

slightly worse, which could be attributed to differ-442

ent choices of template. Our manually designed443

template may not be optimal compared to the auto-444

matically searched template in LM-BFF.445

In addition, PROMPTDA consistently improve446

over standard prompt-based tuning method regard-447

less of automatic label word selection or manual448

label word selection, tuning augmented with tem-449

plate or not (two group of results, ‡ and † in Ta- 450

ble 3). Whether augmented with template or not, 451

our method can achieve at least 1-2% gain com- 452

pared to standard prompt-based tuning, which ver- 453

ify that our method PROMPTDA has no relation 454

with template design and can be used as a plug-in 455

module for improving performance. Even using the 456

manually chosen label words for guiding data aug- 457

mentation, we can still achieve better performance 458

than standard prompt-based tuning. 459

To answer RQ2, we perform an ablation study 460

of PROMPTDA, and compare the results of “+ 461

PROMPTDA (m.)" and “+ PROMPTDA (au.)" in Ta- 462

ble 3. We can see that regardless of template design, 463

our proposed method for automatically searching 464

label words generally perform better than manually 465

searching label words. We analyze the reason from 466

two perspectives. First, we hypothesize that human 467

bias may hinder selecting optimal label words and 468

our proposed automatic method rely on language 469

model itself and can minimize human bias. Second, 470

it may be easier for human to select similar words 471

with label name “positive, negative" as 472

label words for sentiment-related datasets, but it is 473

hard to select semantically similar words as label 474

words for tasks in other domains. For example, it 475

is hard to manually identify semantically similar 476

words as label words for Subj dataset with label 477

name “subjective, objective", which il- 478

lustrates the necessity of our proposed automatic 479

method for searching label words. 480

To answer RQ3, we analyze the stability of 481

performances of PROMPTDA. In general, we ob- 482

6



SST-2

label name positive | negative
label words (au.) wonderful, brilliant, fantastic | terrible done disappointing

brilliant, amazing, wonderful | not, awful, terrible
great, perfect, brilliant | terrible, disappointing, bad

label words (m.) positive, great, good | negative, terrible, bad

Subj

label name objective | subjective
label words (au.) amazing, all, disturbing | ridiculous, important, wrong

amazing, life, real | all, not, ridiculous
all, life, significant | true, awesome,brilliant

label words (m.) objective, real, actual | subjective, individual, personal

Table 2: An illustration of the label words searched automatically or manually on SST-2 and Subj datasets.

serve that PROMPTDA generally reduces the vari-483

ance of prompt-tuning. (Standard variance of “+484

PROMPTDA (au.)" in Table 3). The uncertainty of485

prompt-based tuning methods mainly comes from486

different distribution of small training set, different487

designs of template and different selections of label488

words for each class. Compared with LM-BFF and489

normal fine tuning methods, our method generally490

reduces the variance of prediction. For example,491

the standard variance of prediction over five runs492

for “+ PROMPTDA (au.)† " has decreased around493

50% on SST-2 and Subj compared to LM-BFF and494

has decreased 60% on MR compared with normal495

fine tuning. Compared with standard prompt-based496

tuning method, PROMPTDA can improve the sta-497

bility of tuning on most of the datasets.498

5.3 Analysis of Label Word Selection499

Without loss of generosity, we take dataset SST-2500

and Subj for example to analyze the quality of la-501

bel augmentation (see results in Table 2). The goal502

of label augmentation is to find semantically simi-503

lar words to enrich the label space. With regards504

to the manual way, we find the synonyms of label505

name from dictionary as the label words and ensure506

these words are in the vocabulary. And we select507

the same label words for different seeds. With re-508

gards to our proposed automatic method, we only509

rely on the training set and language model (e.g.,510

RoBERTa-large) to find the semantically similar511

words from vocabulary and do not rely on label512

name itself. The table shows the automatically513

searched label words for three different sampling514

seeds on dataset SST-2 and Subj respectively. For515

sentiment related datasets like SST-2 with the la-516

bel name {positive/negative }, the label517

words automatically searched are literally similar518

to the manually selected label words, which proba-519

bly means the way language models like RoBERTa-520

large reason about what are similar words is close521
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Figure 2: The impact analysis of the size of label words
and training samples per class.

to the human way in sentiment domain. Nonethe- 522

less, for other datasets like Subj with the label 523

name {objective/subjective }, it is inter- 524

esting to observe that the label words automatically 525

searched are not literally similar to label name or 526

manually selected label words, which may infer 527

that the way language models like RoBERTa-large 528

reason about what are similar words is different 529

from the human way in other domains. We argue 530

that how to define word similarity in label semantic 531

space needs more research in the future. 532

5.4 Assessment of Data Augmentation 533

We analyze data augmentation from three perspec- 534

tives including the size of data augmentation, the 535

size of training set and combination with conven- 536

tional data augmentation method. 537

The size of data augmentation We choose to 538

study the effect of the size of PROMPTDA with 539

manual label selection on template-free prompt- 540

based tuning. The results over five different sam- 541

pling seeds for 10 epochs are presented in Figure 2 542

(a). We can observe that PROMPTDA can generally 543

improve over prompt-based tuning regardless of the 544

size of augmentation. However, larger augmenta- 545

tion may result in more unstable final prediction. 546

We analyze the reason from two perspectives. First, 547

larger data augmentation may contain larger noise. 548
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SST-2 MR CR Subj

Few-shot scenario with K=8

Prompt Tuning 89.0 (2.2) 83.1 (3.2) 86.2 (3.2) 82.2 (8.8)
Prompt Tuning with Conventional DA 89.2 (1.3) 83.6 (3.4) 86.5 (4.5) 82.6 (5.2)
Prompt Tuning with PROMPTDA 89.9 (2.2) 84.4 (2.6) 88.8 (2.4) 85.7 (3.9)
Prompt Tuning with PROMPTDA & Conventional DA 90.8 (2.0) 85.0 (1.9) 89.3 (3.1) 86.5 (3.1)

Table 3: The main results of evaluating PROMPTDA and conventional DA method on NLU tasks. All the results
are evaluated on full dev sets and averaged across 5 different training sets. K = 8 : 8 samples per class for the
experiments. Conventional DA refers to synonym substitution.

Considering we utilize multiple-to-one verbalizer549

to guide data augmentation, the size of data aug-550

mentation is equal to the number of label words per551

class. Because we manually choose the label words552

for each class here, unsuitable label word choice553

may worsen the performance and increase the vari-554

ance of final prediction. Second, a larger number of555

label words per class may cause the model harder to556

converge on small training sets. When training for557

the same epochs, prompt-based tuning with more558

label words per class may perform more unstable.559

The size of training set We study the effect of560

the size of training set on prompt-based tuning561

with PROMPTDA and standard prompt-based tun-562

ing. The size of data augmentation is ×3. The563

results over five different sampling seeds for 10564

epochs are presented in Figure 2 (b). We have565

several observations from the results. First, Our566

method PROMPTDA consistently improves over567

standard prompt-based tuning regardless of the size568

of training sets. Second, our proposed method gen-569

erally decreases the variance of prompt-based tun-570

ing. Third, the improvement space of PROMPTDA571

over prompt-based tuning decreases as the number572

of samples per class increases.573

Combination with conventional DA Although574

conventional data augmentation methods are still575

effective when training data is limited (Chen et al.,576

2021), previous works verified that they can bring577

marginal improvement for prompt-based tuning578

methods (Zhou et al., 2021). It is interesting579

to explore whether or not our proposed method580

PROMPTDA can complement with conventional581

DA methods for further enhancing the performance582

of prompt-based tuning paradigm.583

We follow the same setting with the main exper-584

iments and test conventional DA, PROMPTDA and585

the combination of PROMPTDA and conventional586

DA on standard prompt-based tuning paradigm587

with template. With regards to conventional DA,588

we select synonym substitution method from nl- 589

paug toolkit (Ma, 2019) and enlarge the training set 590

by ×2. With regards to our proposed PROMPTDA, 591

we enlarge the training set by ×3. The experiment 592

results over five different sampling seeds for 10 593

epochs are shown in Table 3. 594

We can observe that the combination of 595

PROMPTDA and Conventional DA method consis- 596

tently outperform only using PROMPTDA or Con- 597

ventional DA method. Conventional DA methods 598

mostly focus on exploiting the semantic informa- 599

tion of the instance itself. Our method proposes to 600

utilize label semantic information to guide data aug- 601

mentation and does not change instances. There- 602

fore, our proposed method PROMPTDA can be 603

regarded orthogonal to conventional DA methods 604

to some extent and complement with each other. 605

6 Conclusion and Future Work 606

In this paper, we study a new problem of data 607

augmentation in prompt-based tuning for few shot 608

learners. To leverage the label semantic informa- 609

tion, we propose a novel label-guided data aug- 610

mentation approach PROMPTDA, which can de- 611

rive multiple label words and exploit the rich se- 612

mantic information of the label words into masked 613

language modeling. We conduct extensive experi- 614

ments in various benchmark datasets and demon- 615

strate the effectiveness of PROMPTDA for few shot 616

learning, with fine-grained analysis on the effects 617

of different base language models, size of label 618

words, and manual/automatic label augmentation. 619

There are several interesting directions for future 620

work. First, we will extend PROMPTDA to multi- 621

label few shot tasks and leverage multi-aspect label 622

space. Second, we will explore prompt-based data 623

augmentation for token-level NLU tasks such as 624

few shot name entity recognition (NER). Third, 625

we will explore prompt-base tuning to enhance its 626

interpretability capacity for various NLP tasks. 627
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A Appendix823

A.1 Limitations and Risks824

We only explore the prompt-based paradigm for825

the text classification task in this work and do not826

consider more NLU applications like Natural Lan-827

guage Inference. We only conduct experiments828

on English data in this work. We may consider829

multi-lingual scenarios as our next step.830

A.2 Implementation Details831

We implement our model and all baselines with Py-832

Torch and run each experiment on a single NVIDIA833

GPU. The hyperparameters are the same for all834

methods based on RoBERTa-large (the learning835

rate is 3e-6, the batch size is 4, the number of train-836

ing epochs is 10).837

A.3 Dataset Statistics838
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Dataset SST-2 MR CR Subj

Task sentiment sentiment sentiment subjectivity
Domain movie news

# Classes 2 2 2 2
# Train (|Dtrain|) 67349 8662 1775 8000
# Test (|Dtest|) 872 2000 2000 2000

Table 4: Statistics of selected few shot text classification tasks.
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