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ABSTRACT

In vitro cellular experimentation with genetic interventions, using for example
CRISPR technologies, is an essential step in early-stage drug discovery and target
validation that serves to assess initial hypotheses about causal associations be-
tween biological mechanisms and disease pathologies. With billions of potential
hypotheses to test, the experimental design space for in vitro genetic experiments
is extremely vast, and the available experimental capacity - even at the largest
research institutions in the world - pales in relation to the size of this biological
hypothesis space. Machine learning methods, such as active and reinforcement
learning, could aid in optimally exploring the vast biological space by integrating
prior knowledge from various information sources as well as extrapolating to yet
unexplored areas of the experimental design space based on available data. How-
ever, there exist no standardised benchmarks and data sets for this challenging
task and little research has been conducted in this area to date. Here, we introduce
GeneDisco, a benchmark suite for evaluating active learning algorithms for exper-
imental design in drug discovery. GeneDisco contains a curated set of multiple
publicly available experimental data sets as well as open-source implementations
of state-of-the-art active learning policies for experimental design and exploration.

1 INTRODUCTION

The discovery and development of new therapeutics is one of the most challenging human endeav-
ours with success rates of around 5% (Hay et al., 2014; Wong et al., 2019), timelines that span on
average over a decade (Dickson & Gagnon, 2009; 2004), and monetary costs exceeding two billion
United States (US) dollars (DiMasi et al., 2016; Berdigaliyev & Aljofan, 2020). The successful
discovery of drugs at an accelerated pace is critical to satisfy current unmet medical needs (Rawl-
ins, 2004; Ringel et al., 2020), and, with thousands of potential treatments currently in development
(informa PLC, 2018), increasing the probability of success of new medicines by establishing causal
links between drug targets and diseases (Nelson et al., 2015) could introduce an additional hundreds
of new and potentially life-changing therapeutic options for patients every year.

However, given the current estimate of around 20 000 protein-coding genes (Pertea et al., 2018), a
continuum of potentially thousands of cell types and states under a multitude of environmental con-
ditions (Trapnell, 2015; MacLean et al., 2018; Worzfeld et al., 2017), and tens of thousands of cel-
lular measurements that could be taken (Hasin et al., 2017; Chappell et al., 2018), the combinatorial
space of biological exploration spans hundreds of billions of potential experimental configurations,
and vastly exceeds the experimental capacity of even the world’s largest research institutes. Machine
learning methods, such as active and reinforcement learning, could potentially aid in optimally ex-
ploring the space of genetic interventions by prioritising experiments that are more likely to yield
mechanistic insights of therapeutic relevance (Figure 1), but, given the lack of openly accessible
curated experimental benchmarks, there does not yet exist to date a concerted effort to leverage the
machine learning community for advancing research in this important domain.

To bridge the gap between machine learning researchers versed in causal inference and the challeng-
ing task of biological exploration, we introduce GeneDisco, an open benchmark suite for evaluating
batch active learning algorithms for experimental design in drug discovery. GeneDisco consists of
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Figure 1: In the setting considered in this work, counterfactual estimators of experimental out-
comes (step 1, left) are used to propose experimental hypotheses (step 2, center) for validation in
in vitro experiments with genetic interventions (step 3, right), such as CRISPR knockouts, in order
to discover potential causal associations between biological entities that could be relevant for the
development of novel therapeutics. The trained counterfactual estimators can be used to direct the
experimental search towards the space of biological interest, and thus more efficiently explore the
vast space of genetic interventions. After every cycle, experimental data are generated that could
lead to mechanistic scientific discoveries forming the basis for new therapeutics development, and
guide subsequent experiment cycles with enhanced counterfactual estimators.

several curated datasets, tasks and associated performance metrics, open implementations of state-
of-the-art active learning algorithms for experimental design, and an accessible open-source code
base for evaluating and comparing new batch active learning methods for biological discovery.

Concretely, the contributions presented in this work are as follows:

• We introduce GeneDisco, an open benchmark suite for batch active learning for drug dis-
covery that provides curated datasets, tasks, performance evaluation and open source im-
plementations of state-of-the-art algorithms for experimental exploration.

• We perform an extensive experimental baseline evaluation that establishes the relative per-
formance of existing state-of-the-art methods on all the developed benchmark settings using
a total of more than 20 000 central processing unit (CPU) hours of compute time.

• We survey and analyse the current state-of-the-art of active learning for biological explo-
ration in the context of the generated experimental results, and present avenues of height-
ened potential for future research based on the developed benchmark.

2 RELATED WORK

Background. Drug discovery is a challenging endeavour with (i) historically low probabilities of
successful development into clinical-stage therapeutics (Hay et al., 2014; Wong et al., 2019), and,
for many decades until recently (Ringel et al., 2020), (ii) declining industry productivity commonly
referred to as “Eroom’s law” (Scannell et al., 2012). Seminal studies by Nelson et al. (2015) and
King et al. (2019) respectively first reported and later independently confirmed that the probability
of clinical success of novel therapeutics increases up to three-fold if a medicine’s molecular target
is substantiated by high-confidence causal evidence from genome-wide association studies (GWAS)
Visscher et al. (2017). With the advent of molecular technologies for genetic perturbation, such as
Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) (Jehuda et al., 2018), there
now exist molecular tools for establishing causal evidence supporting the putative mechanism of
a potential therapeutic hypothesis by means of in vitro experimentation beyond GWAS early on
during the target identification and target validation stages of drug discovery (Rubin et al., 2019;
Itokawa et al., 2016; Harrer et al., 2019; Vamathevan et al., 2019). Among other applications (Chen
et al., 2018; Ekins et al., 2019; Mak & Pichika, 2019), machine learning methods, such as active and
reinforcement learning, could potentially aid in discovering the molecular targets with the highest
therapeutic potential faster.

Machine Learning for Drug Discovery. There exist a number of studies that proposed, advanced or
evaluated the use of machine learning algorithms for drug discovery: Costa et al. (2010) used deci-
sion tree meta-classifier to identify genes associated with morbidity using protein-protein, metabolic,
transcriptional, and sub-cellular interactions as input. Jeon et al. (2014) used a support vector ma-
chine (SVM) on protein expressions to predict target or non-target for breast pancreatic or ovarian
cancers, and Ament et al. (2018) used least absolute shrinkage and selection operator (LASSO)
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regularised linear regression on transcription factor binding sites and transcriptome profiling to pre-
dict transcriptional changes associated with Huntington’s disease. In the domain of human muscle
ageing, Mamoshina et al. (2018) used a SVM on deep features extracted from gene expression sig-
natures in tissue samples from young and old subjects to discover molecular targets with putative
involvement in muscle ageing. More recently, Stokes et al. (2020) utilised deep learning to discover
Halicin as a repurposed molecule with antibiotic activity in mice.

Reinforcement and Active Learning. The use of deep reinforcement learning for de novo molec-
ular design has been extensively studied (Olivecrona et al., 2017; Popova et al., 2018; Putin et al.,
2018; Lim et al., 2018; Blaschke et al., 2020; Gottipati et al., 2020; Horwood & Noutahi, 2020).
Active learning for de novo molecular design has seen less attention (Dixit et al., 2016; Green et al.,
2020), however, active learning for causal inference has seen increasing application toward causal-
effect estimation (Deng et al., 2011; Schwab et al., 2018; Sundin et al., 2019; Schwab et al., 2020;
Bhattacharyya et al., 2020; Parbhoo et al., 2021; Qin et al., 2021; Jesson et al., 2021; Chau et al.,
2021), and causal graph discovery (Ke et al., 2019; Tong & Koller, 2001; Murphy, 2001; Hauser &
Bühlmann, 2014; Ghassami et al., 2018; Ness et al., 2017; Agrawal et al., 2019; Lorch et al., 2021;
Annadani et al., 2021; Scherrer et al., 2021).

Benchmarks. Benchmark datasets play an important role in developing machine learning method-
ologies. Examples include ImageNet (Deng et al., 2009) or MSCOCO (Lin et al., 2014) for com-
puter vision, as well as cart-pole (Barto et al., 1983) or reinforcement learning (Ahmed et al., 2020).
Validation of active learning for causal inference methods depends largely on synthetic data exper-
iments due to the difficulty or impossibility of obtaining real world counterfactual outcomes. For
causal-effect active learning, real world data with synthetic outcomes such as IHDP (Hill, 2011) or
ACIC2016 Dorie et al. (2019) are used. For active causal discovery, in silico data such as DREAM4
(Prill et al., 2011) or the gene regulatory networks proposed by Marbach et al. (2009) are used. Non
synthetic data has been limited to protein signalling networks (Sachs et al., 2005) thus far. Several
benchmarks focus on some aspects of drug discovery, for instance Brown et al. (2019) focusing on
de novo molecular screening. However, to our knowledge, no other benchmark addressing the target
identification part of the drug discovery pipeline, which is what our work focuses on.

In contrast to existing works, we develop an open benchmark to evaluate the use of machine learning
for efficient experimental exploration in an iterative batch active learning setting. To the best of our
knowledge, this is the first study (i) to introduce a curated open benchmark for the challenging
task of biological discovery, and (ii) to comprehensively survey and evaluate state-of-the-art active
learning algorithms in this setting.

3 METHODOLOGY

Problem Setting. We consider the setting in which we are given a dataset consisting of covariates
X ∈ Rp with input feature dimensionality p ∈ N and treatment descriptors T ∈ Rq with treatment
descriptor dimensionality q ∈ N+ that indicate similarity between interventions. Our aim is to
estimate the expectation of the conditional distribution of an unseen counterfactual outcome Yt ∈ R
given observed covariates X = x and intervention do(T = t), ŷt = ĝ(X = x, do(T = t)) ≈
E[Y | X = x, do(T = t)]. This setting corresponds to the Rubin-Neyman potential outcomes
framework (Rubin, 2005) adapted to the context of genetic interventions with a larger number of
parametric interventions. In the context of a biological experiment with genetic interventions, yt is
the experimental outcome relative to a non-interventional control (e.g., change in pro-inflammatory
effect) that is measured upon perturbation of the cellular system with intervention t, x is a descriptor
of the properties of the model system and/or cell donor (e.g., the immuno-phenotype of the cell
donor), and t is a descriptor of the genetic intervention (e.g., a CRISPR knockout on gene STAT1)
that indicates similarity to other genetic interventions that could potentially be applied. In general,
certain ranges of yt may be preferable for further pursuit of an intervention T = t that inhibits
a given molecular target - often, but not necessarily always, larger absolute values that move the
experimental result more are of higher mechanistic interest. We note that the use of an empty
covariate vector X = x0 with p = 0 is permissible if all experiments are performed in the same
model system with the same donor properties. In in vitro experimentation, the set of all possible
genetic interventions Dpool = {ti}

npool
i=1 is typically known a-priori and of finite size (e.g., knockout

interventions on all 20 000 protein-coding genes).
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Batch Active Learning. In the considered setting, reading out additional values for yet unexplored
interventions t requires a lab experiment and can be costly and time-consuming. Lab experiments
are typically conducted in parallelised manner, for example by performing a batch of multiple inter-
ventions at once in an experimental plate. Our overall aim is to leverage the counterfactual estimator
ĝ trained on the available dataset to simulate future experiments with the aim of maximising an
objective function L in the next iteration with as few interventions as possible. For the purpose
of this benchmark, we consider the counterfactual mean squared error (MSE) of ĝ in predicting
experimentally observed true outcomes yt from predicted outcomes ŷt as the optimisation objec-
tive LMSE = MSE(yt, ŷt). Depending on context, other objective functions, such as for example
maximising the number of discovered molecular targets with certain properties of interest (e.g.,
druggability (Keller et al., 2006)) may also be sensible in the context of biological exploration. At
every time point, a new counterfactual estimator ĝ is trained with the entire available experimental
dataset, and used to propose the batch of b interventions to be explored in the next iteration with
the batch size b ∈ N+. When using LMSE, this setting corresponds to batch active learning with the
optimisation objective of maximally improving the counterfactual estimator ĝ.

Acquisition Function. An acquisition function Dk = α(g(t),Dk
avail) takes the model and the set

of all available interventions Dk
avail in cycle k as input and outputs the set of interventions Dk that

are most informative after the kth experimental cycle with cycle index k ∈ [K] = [0 . . K] where
K ∈ N+ is the maximum number of cycles that can be run. Formally speaking, the acquisition
function α : P(Davail)×G → P(Davail) takes a subset of all possible interventions that have not been
tried so far (Davail), together with the trained model (ĝ) derived from the cumulative data collected
over the previous cycles, and outputs a subset of the available interventions Dk that are likely to be
most useful under L to obtain ĝ ∈ G as a better estimate of E[Y | X = x, do(T = t)] with G being
the space of the models which can be, e.g. the space of models and (hyper-)parameters.

4 DATASETS, METRICS & BASELINES

The GeneDisco benchmark curates and standardizes two types of datasets: three standardized feature
sets describing interventions t (inputs to counterfactual estimators; Section 4.1), and four different in
vitro genome-wide CRISPR experimental assays (predicted counterfactual outcomes; Section 4.2),
each measuring a specific outcome yt following possible interventions T . We perform an extensive
evaluation across these datasets, leveraging two different model types (Section 4.3) and nine differ-
ent acquisition functions (Section 4.4). Since all curated assay datasets contained only outcomes for
only one model system, we used the empty covariate set X = x0 for all evaluated benchmark con-
figurations. The metrics used to evaluate the various experimental conditions (acquisition functions
and model types) include model performance (Figure 2) and the ratio of discovered interesting hits
(Figure 3) as a function of number of samples queried.

4.1 TREATMENT DESCRIPTORS

The treatment descriptors T characterize a genetic intervention and generally should correspond to
data sources that are informative as to a genes’ functional similarity - i.e. defining which genes if
acted upon, would potentially respond similarly to perturbation. The treatment descriptor T is the
input to the model described in Section 3 for a fixed vector of covariates x. Any dataset considered
for use as a treatment descriptor must be available for all potentially available interventions Dpool in
the considered experimental setting. In GeneDisco, we provide three standardised gene descriptor
sets for genetic interventions, and furthermore enable users to provide custom treatment descriptors
via a standardised programming interface:

Achilles. The Achilles project generated dependency scores across cancer cell lines by assaying 808
cell lines covering a broad range of tissue types and cancer types (Dempster et al., 2019). The genetic
intervention effects are based on interventional CRISPR screens performed across the included cell
lines. When using the Achilles treatment descriptors, each genetic intervention is summarized using
a gene representation T with q = 808 corresponding to the dependency scores measured in each
cell line. In Achilles, after processing and normalisation (see Dempster et al. (2019)), the final
dependency scores provided are such that the median negative control (non-essential) gene effect
for each cell line is 0, and the median positive control (essential) gene effect for each cell line
is -1. The rationale for using treatment descriptors based on the Achilles dataset is that genetic
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effects measured across the various tissues and cancer types in the 808 cell line assays included in
(Dempster et al., 2019) could serve as a similarity vector in functional space that may extrapolate to
other biological contexts due to its breadth.

Search Tool for the Retrieval of Interacting Genes/Proteins (STRING) Network Embeddings.
The STRING (Szklarczyk et al., 2021) database collates known and predicted protein-protein in-
teractions (PPIs) for both physical as well as for functional associations. In order to derive a vec-
tor representation suitable to serve as a genetic intervention descriptor T , we utilised the network
embeddings of the PPIs contained in STRING as provided by Cho et al. (2016; 2015) with dimen-
sionality q = 799. PPI network embeddings could be an informative descriptor of functional gene
similarity since proteins that functionally interact with the same network partners may serve similar
biological functions (Vazquez et al., 2003; Saha et al., 2014).

Cancer Cell Line Encyclopedia (CCLE). The CCLE (Nusinow et al., 2020) project collected quan-
titative proteomics data from thousands of proteins by mass spectrometry across 375 diverse cancer
cell lines. The generated protein quantification profiles with dimensionality q = 420 could indicate
similarity of genetic interventions since similar expression profiles across a broad range of biological
contexts may indicate functional similarity.

Custom Treatment Descriptors. Additional, user-defined treatment descriptors can be evaluated
in GeneDisco by implementing the standardised dataset interface provided within.

4.2 ASSAYS

As ground-truth interventional outcome datasets, we leverage various genome-wide CRISPR
screens, primarily from the domain of immunology, that evaluated the causal effect of intervening
on a large number of genes in cellular model systems in order to identify the genetic perturbations
that induce a desired phenotype of interest. In connection with the problem formulation in Sec-
tion 3, the CRISPR screens are the random variables whose realized values are the outcome of the
interventional experiments. In the following, we add more details about four CRISPR screens.

4.2.1 REGULATION OF HUMAN T CELLS PROLIFERATION

Experimental setting. This assay is based on Shifrut et al. (2018). After isolating CD8+ T cells
from human donors, Shifrut et al. (2018) performed a genome-wide loss-of-function screen to iden-
tify genes that impact the proliferation of T cells following stimulation with T cell receptors.

Measurement. The measured outcome is the proliferation of T cells in response to T cell receptor
stimulation. Cells were labeled before stimulation with CFSE (a fluorescent cell staining dye).
Proliferation of cells is measured 4 days following stimulation by FACS sorting (a flow cytometry
technique to sort cells based on their fluorescence).

Importance. Human T cells play a central role in immunity and cancer immunotherapies. The
identification of genes driving T cell proliferation could serve as the basis for new preclinical drug
candidates or adoptive T cell therapies that help eliminate cancerous tumors.

4.2.2 INTERLEUKIN-2 PRODUCTION IN PRIMARY HUMAN T CELLS

Experimental setting. This dataset is based on a genome-wide CRISPR interference (CRISPRi)
screen in primary human T cells to uncover the genes regulating the production of Interleukin-2
(IL-2). CRISPRi screens test for loss-of-function genes by reducing their expression levels. IL-2
is a cytokine produced by CD4+ T cells and is a major driver of T cell expansion during adaptive
immune responses. Assays were performed on primary T cells from 2 different donors. The detailed
experimental protocol is described in Schmidt et al. (2021).

Measurement. Log fold change (high/low sorting bins) in IL-2 normalized read counts (averaged
across the two biological replicates for robustness). Sorting was done via flow cytometry after
intracellular cytokine staining.

Importance. IL-2 is central to several immunotherapies against cancer and autoimmunity.
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4.2.3 INTERFERON-γ PRODUCTION IN PRIMARY HUMAN T CELLS

Experimental setting. This data is also based on Schmidt et al. (2021), except that this experiment
was performed to understand genes driving production of Interferon-γ (IFN-γ). IFN-γ is a cytokine
produced by CD4+ and CD8+ T cells that induces additional T cells.

Measurement. Log fold change (high/low sorting bins) in IFN-γ normalized read counts (aver-
aged across the two biological replicates for robustness).

Importance. IFN-γ is critical to cancerous tumor killing and resistance to IFN-γ is one escape
mechanism for malignant cells.

4.2.4 VULNERABILITY OF LEUKEMIA CELLS TO NK CELLS

Experimental setting. This genome-wide CRISPR screen was performed in the K562 cell line to
identify genes regulating the sensitivity of leukemia cells to cytotoxic activity of primary human NK
cells. Detailed protocol is described in Zhuang et al. (2019).

Measurement. Log fold counts of gRNAs in surviving K562 cells (after exposition to NK cells)
compared to control (no exposition to NK cells). Gene scores are normalized fold changes for all
gRNAs targeting this gene.

Importance. Better understanding and control over the genes that drive the vulnerability of
leukemia cells to NK cells will help improve anti-cancer treatment efficacy for leukemia patients,
for example by preventing relapse during hematopoeitic stem cell transplantation.

4.3 MODELS

Parametric or non-parametric models can be used to model the conditional expected outcomes,
E[Y | X = x, do(T = t)]. Parametric models assume that the outcome Y has density f(y | t, ω)
conditioned on the intervention t and the parameters of the model ω (we drop x0 for compact-
ness). A common assumption for continuous outcomes is a Gaussian distribution with density
f(y | t, ω) = N (y | ĝ(t;ω), σ2), which assumes that y is a deterministic function of ĝ(t;ω) with ad-
ditive Gaussian noise scaled by σ2. Bayesian methods treat the model parameters ω as instances of
the random variable Ω ∈ W and aim to model the posterior density of the parameters given the data,
f(ω | D). For high-dimensional, large-sample data, such as we explore here, a variational approxi-
mation to the posterior is often used, q(ω | D) (MacKay, 1992; Hinton & Van Camp, 1993; Barber
& Bishop, 1998; Gal & Ghahramani, 2016). In this work we use Bayesian Neural Networks (BNNs)
to approximate the posterior over model parameters. A BNN gives ĝk−1(t) = 1

m

∑m
j=1 ĝ(t;ωk−1

j ),
where ĝ(t;ωk−1

j ) is a unique functional estimator of E[Y | X = x, do(T = t)] induced by
ωk−1
j ∼ q(ω | Dk−1

cum ): a sample from the approximate posterior over parameters given the cu-
mulative data at acquisition step k − 1. We also use non-parametric, non-Bayesian, Random Forest
Regression (Breiman, 2001). A Random Forest gives ĝk−1(t) = 1

m

∑m
j=1 ĝ

k−1
j (t), where ĝk−1j (t)

is a unique functional estimator of E[Y | X = x, do(T = t)] indexed by the jth sample in the
ensemble of m trees trained on Dk−1

cum ).

We emphasize two main assumptions behind the above modeling choices for the problem formu-
lation of Section 3: (1) A causal link between from the gene intervention to the phenotype screen
exists. (2) Gaussian noise is a reasonable choice for the output noise as the interventional outcome
is a continuous variable. We leave it to future work to explore heterogeneity in output noise and
other likelihood functions.

In the following, we will define our acquisition functions in terms of parametric models, but the
definitions are easily adapted for non-parametric models as well.

4.4 ACQUISITION FUNCTIONS

We included a diverse set of the existing active learning methods to serve as an informative set of
baselines for comparison and intuition activation for future improvements. Most of the Different
acquisition function methods can be categorized in the following way:
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• Random: Random acquisition function is an integral part of whatever baseline set in active
learning’s performance criteria.

• Uncertainty-based acquisition functions: These categories are popular because of
their easy-to-develop and low-computational properties while having great performance.
Uncertainty-based functions usually are employed in the shallow models that some sense
of intrinsic uncertainty exists for them, e.g., random forests. Here, we adapted some of
them to our notion of uncertainty (based on our regression task). These functions include
topuncertain and Margin Sample.

• Deep Bayesian Active Learning acquisition functions: One way to bridge between classical
uncertainty-based algorithms and deep active learning methods is to leverage deep bayesian
active learning. Bayesian Active Learning by Disagreement (BALD) calculates mutual
information between samples and model parameters as a definition for uncertainty.

• Density-based acquisition functions: These functions try to select a sample that is the best
representative of the whole dataset in terms of diversity. Based on different repesentativee
power measures various methods exist that here Coreset and kmeansdata are covered.

• Adversarial learning attacks: By choosing adversarial samples as nominated samples for
active learning, one may use most of the adversarial learning algorithms as acquisition
functions. We implemented AdvBIM as a compelling example of this category.

• Hybrid acquisition functions: These methods take into account both sample diversity and
also prediction uncertainty of the model. In other words, they increase the diversity of
data samples according to model properties. BADGE considers the gradient of the loss
function w.r.t weights of the final layer while kmeansembed looks at the data from their
embeddings in the last layer of the deep learning model.

Each one of these acquisition functions (Random, BADGE, BALD (topuncertain and
softuncertain)), Coreset, Margin Sample (Margin), Adversarial Basic Iteractive Method
(AdvBIM), k-means Sampling (kmeansdata and kmeansembed)) included in the benchmark
are described in detail in Appendix B.

5 EXPERIMENTAL EVALUATION

Setup. In order to assess current state-of-the-art methods on the GeneDisco benchmark, we per-
form an extensive baseline evaluation of 9 acquisition functions, 6 acquisition batch sizes and 4
experimental assays using in excess of 20 000 CPU hours of compute time. Due to the space limit,
we include the results for 3 batch sizes in the main text and present the results for all batch sizes
in the appendix. The employed counterfactual estimator ĝ is a multi-layer perceptron (MLP) that
has one hidden layer with ReLU activation and a linear output layer. The size of the hidden layer
is determined at each active learning cycle by k-fold cross validation against 20% of the acquired
batch. At each cycle, the model is trained for at most 100 epochs but early stopping may interrupt
training earlier if the validation error does not decrease. Each experiment is repeated with 5 random
seeds to assess experimental variance. To choose the number of active learning cycles, we use the
following strategy: the number of cycles are bounded to 40 for the acquisition batches of sizes 16,
32 and 64 due to the computational limits. For larger batch sizes, the number of cycles are reduced
proportionally so that the same total number of data points are acquired throughout the cycles. At
each cycle, the model is trained from scratch using the data collected up to that cycle, i.e. a trained
model is not transferred to the future cycles. The test data is a random 20% subset of the whole data
that is left aside before the active learning process initiates, and is kept fixed across all experimental
settings (i.e., for different datasets and different batch sizes) to enable a consistent comparison of
the various acquisition functions, counterfactual estimator and treatment descriptor configurations.

Results. The model performance based on the STRING treatment descriptors for different acquisi-
tion functions, acquisition batch sizes and datasets are presented in Figure 2. The same metrics in
the Achilles and CCLE treatment descriptors are provided in Appendix C. To showcase the effect
of the model class, we additionally repeat the experiments using a random forest model as an un-
certainty aware ensemble model with a reduced set of acquisition functions that are compatible with
non-differentiable models (Appendix C). The random forest model is also used in another set of
experiments with other datasets (Sanchez et al., 2021; Zhu et al., 2021) which are fully postponed to
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Figure 2: The evaluation of the model trained with STRING treatment descriptors at each active
learning cycle for 4 datasets and 3 acquisition batch sizes. In each plot, the x-axis is the active
learning cycles multiplied by the acquisition bath size that gives the total number of data points
collected so far. The y-axis is the test MSE error evaluated on the test data.
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Figure 3: The hit ratio of different acquisition for BNN model, different target datasets, and different
acquisition batch sizes. We use STRING treatment descriptors here. The x-axis shows the number
of data points collected so far during the active learning cycles. The y-axis shows the ratio of the set
of interesting genes that have been found by the acquisition function up until each cycle.
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the appendix due to the space constraint. To investigate the types of genes chosen by different acqui-
sition functions, we defined a subset of potentially interesting genes as the top 5% with the largest
absolute target value. These are the genes that could potentially be of therapeutic value due to their
outsized causal influence on the phenotype of interest. The hit ratio out of the set of interesting
genes chosen by different acquisition functions are presented in Figure 3 for the STRING treatment
descriptors, and in Appendix C for Achilles and CCLE. Benchmark results of interest include that
model-independent acquisition methods using diversity heuristics (random, kmeansdata) perform
relatively better in terms of model improvement than acquisition functions based on model uncer-
tainty (e.g., topuncertain, softuncertain) when using lower batch acquisition sizes than in regimes
with larger batch acquisition sizes potentially due to diversity being inherently higher in larger batch
acquisition regimes due to the larger set of included interventions in an intervention space with a
limited amount of similar interventions. Notably, while diversity-focused, model-independent ac-
quisition functions, such as random and kmeansdata, perform well in terms of model performance,
they underperform in terms of interesting hits discovered as a function of acquired interventional
samples (Figure 3). Based on these results, there appears to be a trade-off between model improve-
ment and hit discovery in experimental exploration with counterfactual estimators that may warrant
research into approaches to manage this trade-off to maximize long-term discovery rates.

6 DISCUSSION AND CONCLUSION

The ranking of acquisition functions in GeneDisco depends on several confounding factors, such as
the choice of evaluation metric to compare different approaches, the characteristics of the dataset of
interest, and the choice of the model class and its hyperparameters. An extrapolation of results ob-
tained in GeneDisco to new settings may not be possible under significantly different experimental
conditions. There is a subtle interplay between the predictive strength of the model and the acqui-
sition function used to select the next set of interventions, as certain acquisition functions are more
sensitive to the ability of the model to estimate its own epistemic uncertainty. An important message
learned from Figures 2 and 3 is the observation that in active learning, the best acquisition function
is the one that gives a more accurate model with the same budget of experiments. However, in drug
discovery, learning an accurate predictive model has secondary importance. The primary objective
is to find the optimal set of targets for a potential medicine. This objective may be unaligned or even
in the opposite direction of training the predictive model. For example, even though the Kmeans
acquisition function that chooses the centroids in the data domain has a decent performance in the
active learning task (finding the most informative labeled dataset for training the predictive model),
it does not perform well in choosing the most interesting targets (those that moves the phenotype
maximally.) A potential reason could be the intuition that the interesting targets may be close to
each other in terms of the information content they provide to the predictive model. The acquisition
function then considers them as redundant and does not choose in the next iteration. Hence, AL
algorithms must be used with care in drug discovery. We postpone further study of a more suitable
objective function for the acquisition function to future work.

From a practical standpoint, GeneDisco assumes the availability of a labeled set that is sufficiently
representative to train and validate the different models required by the successive active learning
cycles. However, model validation might be challenging when this set is small (e.g., during the
early active learning cycles) or when the labelling process is noisy. Label noise is common in in-
terventional biological experiments, such as the ones considered in GeneDisco. Experimental noise
introduces additional trade-offs for consideration not considered in GeneDisco, such as choosing
the optimal budget allocation between performing experiment replicates (technical and biological)
to mitigate label noise or collecting more data points via additional active learning cycles.

GeneDisco addresses the current lack of standardised benchmarks for developing batch active learn-
ing methods for experimental design in drug discovery. GeneDisco consists of several curated
datasets for experimental outcomes and genetic interventions, provides open source implementa-
tions of state-of-the-art acquisition functions for batch active learning, and includes a thorough
assessment of these methods across a wide range of hyperparameter settings. We aim to attract
the broader active learning community with an interest in causal inference by providing a robust
and user-friendly benchmark that diversifies the benchmark repertoire over standard vision datasets.
New models and acquisition functions for batch active learning in experimental design are of criti-
cal importance to realise the potential of machine learning for improving drug discovery. As future
research, we aim to expand GeneDisco to enable multi-modal learning and support simultaneous
optimization across multiple output phenotypes of interest.
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REPRODUCIBILITY STATEMENT

This work introduces a new curated and standardized benchmark, GeneDisco, for batch active learn-
ing for drug discovery. The benchmark includes four publicly available datasets, which have previ-
ously been published in a peer review process. Using a total of more than 20,000 central processing
unit (CPU) hours of compute time, we perform an extensive evaluation of state-of-the-art acquisition
functions for batch active learning on the GeneDisco benchmark, across a wide range of hyperpa-
rameters. To the best of our knowledge, this is the first comprehensive survey and evaluation of
active learning algorithms on real-world interventional genetic experiment data. Similar to develop-
ments in other fields e.g. for the learning of disentangled representations (Locatello et al., 2019) or
generative adversarial networks (Lucic et al., 2017), we hope that our large scale experiments across
a diverse set of real-world datasets provide an evidence basis to better understand the settings in
which different active learning approaches work or do not work for drug discovery applications.

All used models and acquisition functions are described in detail and referenced in Section 4.4 and
Section 4.3. For all introduced datasets, we include a detailed description and the details on the
train, test and validation splits at the beginning of Section 5.

For all experimental results we report the range of hyper-parameters considered and the methods of
selecting hyper-parameters as well as the exact number of training and evaluation runs (Appendix C).
We additionally provide error bars over multiple random seeds and the code was executed on a cloud
cluster with Intel CPUs. We provide detailed results for all investigated settings in the appendix (C).
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A NOTATIONS

Here is the list of notations used in this manuscript.

• Dpool: The pool of unlabeled data.

• Dk
acq: Acquired data at k-th AL cycle.

• Dk
train: Cumulative training data after k-th cycle of AL.

• Dval: Validation data.
• Dtest: Held-out test data.
• b: Acquisition batch size.
• K: Total number of AL cycles.
• k = [1, 2, . . . ,K]: Index of the AL cycle.
• [K] = [1, 2, . . . ,K].
• e ∈ E : Inherent noise (aleatoric uncertainty).
• T ∈ T : Treatment variable.
• E[Y | X = x, do(T = t)]: The conditional expected outcomes.
• ĝ(t;ω): The model parameterised by ω ∈ Ω to estimate E[Y | X = x, do(T = t)].
• X: random variable X with distribution X ∼ F (X) and density f(x).

B ACQUISITION FUNCTIONS CONT.

Random. As a baseline we look at random acquisition. Random acquisition at cycle k can be seen
as uniformly sampling data from Dk

avail:

αRandom(ĝk−1(t),Dk
avail) = {t1, . . . tb} ∼

{
ti;

1

navail

}navail

i=1

. (1)

Here, the acquisition function samples b elements without replacement from the set of navail ele-
ments. The set element (ti) is on the left of the semicolon, and the probability of the element being
acquired ( 1

navail
) is on the right of the semicolon. This convention will be used again below.

BADGE. BADGE looks to maximize the diversity of acquired samples, but, in contrast to Coreset,
it additionally takes the uncertainty of the prediction into account (Ash et al., 2019). If the true
label y were observed, BADGE would proceed by maximizing the diversity of samples based on
the gradient of the loss function l with respect to the weights of the final layer of the most recently
trained model w̃k−1: ∂

∂ω̃k−1 l(y, ĝ(t;ω)). Intuitively, it asks how much would our parameters change
if we observed the labeled outcome for this example? However, the true label y is not yet observed.
Ash et al. (2019) explore BADGE in the classification setting. For a two class problem, where f(y |
t, ω) = Bernoulli(y | ĝ(t;ω)), they propose using the class with the highest predicted probability,
ŷ = argmaxy∈0,1 f(y | t, ω), to approximate the gradient as ∂

∂ω̃k−1 l(ŷ, ĝ(t;ω)). This does not
directly translate to the regression setting, as under our modelling assumptions the y with the highest
predicted likelihood corresponds exactly to ĝ(t;ω), which would lead to a loss of zero, and gradients
of zero. As a starting point, we instead take ŷ as a random sample from f(y | t, ω) = N (y |
ĝ(t;ω), σ2). We then use the same k-means++ algorithm as Ash et al. (2019) to approximate:

αBADGE(ĝk−1(t),Dk
avail)

= argmin
{t1,...tb}∈Dk

avail

argmax
ti∈Dk

avail

argmin
tj∈Dk

avail∪D
k−1
cum

∆

(
∂l(ŷ, ĝ(ti;ω

k−1))

∂ω̃k−1 ,
∂l(ŷ, ĝ(tj ;ω

k−1))

∂ω̃k−1

)
(2)

where ∆ is again the Euclidean distance.

Bayesian Active Learning by Disagreement (BALD). Given an uncertainty aware model, such as
a BNN or Random Forest we can now take an information theoretic approach to selecting interven-
tions from the pool data. Houlsby et al. (2011) frame active learning as looking to maximize the
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information gain about the model parameters if we observe the outcome Y = y given model inputs.
Formally, the information gain is given by the mutual information between the random variables Y
and Ω given the intervention t and acquired training data Dk−1

cum up until acquisition step k:

I(Y ; Ω | t,Dk−1
cum ) = H(Y | t,Dk−1

cum )−H(Y | Ω, t,Dk−1
cum )

= H(Y | t,Dk−1
cum )− E

f(ω|Dk−1
cum )

H(Y | ω, t).
(3)

Under the assumed model we have

I(Y ; Ω | t,Dk−1
cum ) =

1

2
log

(
σ2 + E

f(ω|Dk−1
cum )

[
ĝ(t;ω)2

]
− E

f(ω|Dk−1
cum )

[ĝ(t;ω)]2

σ2

)
, (4)

which leads to the following estimator setting σ2 = 1

Î(Y ; Ω | t,Dk−1
cum ) =

1

2
log

(
1 +

1

m

m∑
j=1

(
ĝ(t;ωk−1

j )− 1

m

m∑
j=1

ĝ(t;ωk−1
j )

)2)
. (5)

We look at two acquisition functions for BALD. First, we consider the naive batch acquisition αBALD
proposed by Gal et al. (2017) which acquires the the top b examples from Dk

avail:

αBALD(ĝk−1(t),Dk
avail) = argmax

{t1,...tb}∈Dk
avail

b∑
i=1

Î(Y ; Ω | ti,Dk−1
cum ). (6)

This method will be referred to as topuncertain in the plots later. And second, we consider
αSoftBALD which randomly samples b interventions from Dk

avail weighted by a tempered softmax
function (Kirsch et al., 2021):

αSoftBALD(ĝk−1(t),Dk
avail) = {t1, . . . tb} ∼

ti; exp
(

1
Temp Î(Y ; Ω | ti,Dk−1

cum )
)

∑navail
l=1 exp

(
1

Temp Î(Y ; Ω | tl,Dk−1
cum )

)


navail

i=1

, (7)

where Temp > 0 is a user defined constant. This method will be referred to as softuncertain
in the plots. As Temp→∞, αSoftBALD will behave more like αRandom. And as Temp→ 0, αSoftBALD
will behave more like αBALD.

Coreset. Coreset acquisition looks to maximize the diversity of acquired samples. This is done by
finding the data points in Dk

avail that are furthest from the labelled data points in Dk−1
cum . The robust

K-centers algorithm of Sener & Savarese (2017) approximates a solution to:

αCORESET(ĝk−1(t),Dk
avail) = argmin

{t1,...tb}∈Dk
avail

argmax
ti∈Dk

avail

argmin
tj∈Dk

avail∪D
k−1
cum

∆(ti, tj). (8)

Euclidean distances, ∆(ti, tj), are calculated between the output of the penultimate layer of ĝ(t;ω).

Margin Sample. Margin sampling is designed for classifiers where selection is based on the dis-
tance of a sample from the classifiers decision boundary (Roth & Small, 2006). As a proxy, the
difference between the predicted probability of the most and second most probable classes is used.
The distance between the most probable and the second most probable classes for a multi-class clas-
sification problem can be seen as how confident the model is about the label of that class. However,
The concept of a decision boundary is ill-defined for regression tasks. One option to approximate
margin sampling could be to model the aleatoric uncertainty of the model by predicting the condi-
tional variance of the outcome σ2(t;ω) and select data based on the magnitude of this value. Here,
we instead look at the difference in the maximum and minimum values of the predicted outcome as
a measure of the model’s confidence and select data based on the magnitude of this value. Formally,
we have

M̂(Y ; Ω | ti,Dk−1
cum ) = max

j∈{1,...m}
(ĝ(t;ωk−1

j ))− min
j∈{1,...m}

(ĝ(t;ωk−1
j )), (9)

and the acquisition function:

αMargin(ĝk−1(t),Dk
avail) = argmax

{t1,...tb}∈Dk
avail

b∑
i=1

M̂(Y ; Ω | ti,Dk−1
cum ). (10)

Note that this approximation is similar to BALD under the assumption of a uniformly distributed
outcome: f(y | t, ω) = U(y | ĝ(t;ω)).
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Adversarial Basic Iteractive Method (AdvBIM). Some of the adversarial algorithms can act as
active learning acquisition functions by nominating the adversarial samples. Here, we extended the
famous Adversarial BIM method for our regression task as an example. BIM was introduced by
(Kurakin et al., 2016) to iteratively perturb adversarial samples to maximize the cost function J
subject to an lp norm constraint as

t̂(0) = t, t̂(i) = clipt,e(t̂
(i−1) + sign(∇t̂(i−1)J(θ, t̂(i−1), y))) (11)

(intermediate results are clipped to stay in e-neighbourhood of the primary data point t). This
technique bypasses the intractable problem of finding the distance from the decision boundary by
iteratively perturbing the features until crossing the boundary (Tramèr et al., 2017). In our regression
task, we perturb the features in the gradients’ direction to increase the conditional variance of the
outcome, i.e.,

t̂(0) = t, t̂(i) = clipt,e(t̂
(i−1) + sign(∇t̂(i−1)Varω(ĝ(t, ω)))) for i = {1, . . . ,m}, (12)

where ||t̂i − t||2 < γ ∗ ||t||2 with the hyperparameter γ. After creating adversarial samples for each
data point in Dk

avail, αAdversarialBIM acquires the samples by

αAdversarialBIM(ĝk−1(t),Dk
avail) =

⋃
ti∈Dk

avail

argmin
tj∈Dk

avail

∆(t̂
(m)
i , tj), (13)

where ∆ is the euclidean distance.

k-means Sampling. This method nominates samples by returning the closest sample to each cen-
ter of the unlabeled data clusters. In order to do so, one may run Kmeans++ clustering algorithm
with the number of clusters equal to b over either the unlabeled data points Dk

avail or the output
of the penultimate layer of ĝ(t;ω). We refer to the former as kmeansdata and to the latter as
kmeansembed in the experiments. Assuming {µ1, . . . , µb} are the centers of the clustering, we
have

αKmeans(ĝ
k−1(t),Dk

avail) =

b⋃
i=1

argmin
tj∈Dk

avail

∆(µi, tj), (14)

where ∆ is euclidean distance over the data points or the penultimate layer of ĝ(t;ω).

C DETAILED EXPERIMENTAL RESULTS

C.1 BAYESIAN NEURAL NETWORK (BNN) MODEL

We provide here detailed experimental results across all hyperparameter settings. The result of fig. 2
that was presented for 3 batch sizes are provided for 6 batch sizes in fig. 4. Similarly, the results
of fig. 3 are provided for additional batch sizes in fig. 7. In addition, both fig. 2 and fig. 3 report
the results for the STRING treatment descriptors. All experiments are repeated for two other sets of
input treatment descriptors (Achilles and CCLE) whose results are provided in figs. 5, 6, 8 and 9.

C.2 RANDOM FOREST MODEL

In addition to the BNN model, we carried out thorough analyses for a different model class. The
experiments are repeated for the random forest as an uncertainty aware ensemble model. The un-
certainty in random forests, similar to other ensemble methods, is originated from the prediction
made by each model instance in the ensemble. We use the random forest implementation in the
Scikit-learn package (Pedregosa et al., 2011) with 100 trees and set the option max_depth=None so
that the depth of the trees are determined automatically. The performance of the model trained over
the active learning cycles can be seen in fig. 10 for different acquisition functions, different batch
sizes, different target datasets, and the STRING treatment descriptors. Similarly, the hit ratio of the
interesting genes for a random forest model is reported in fig. 12. The same experiment was repeated
for CCLE treatment descriptors whose results are provided in fig. 11 and fig. 13. Notice that random
forest experiments are done with a reduced set of acquisition functions that could be adjusted to the
random forest model.
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C.3 IN-DEPTH DESCRIPTION OF THE Hit Ratio EXPERIMENT

Here we elaborate more on the purpose and the message of the hit ratio experiment whose results
are reported in figs. 7 to 9, 12 and 13 for various settings. The purpose of these experiments is to
compare the performance of different acquisition functions in different settings of batch sizes and
input/output datasets to hit the gene targets that are known to be interesting by genomics experts.
To choose the set of interesting genes, we sort them based on their absolute target values. Then we
choose the top 5% of this list that corresponds to both extremes of positive and negative values (both
extremes are considered to be good targets by experts.) The experiments are repeated for 5 different
random seeds to obtain the error bars.
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Figure 4: The evaluation of the model trained with STRING treatment descriptors at each active
learning cycle for 4 datasets and 6 acquisition batch sizes. In each plot, the x-axis is the active
learning cycles multiplied by the acquisition bath size that gives the total number of data points
collected so far. The y-axis is the test MSE error evaluated on the test data.
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Figure 5: The evaluation of the model trained with Achilles treatment descriptors at each active
learning cycle for 4 datasets and 6 acquisition batch sizes. In each plot, the x-axis is the active
learning cycles multiplied by the acquisition bath size that gives the total number of data points
collected so far. The y-axis is the test MSE error evaluated on the test data.
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Figure 6: The evaluation of the model trained with CCLE treatment descriptors at each active learn-
ing cycle for 4 datasets and 6 acquisition batch sizes. In each plot, the x-axis is the active learning
cycles multiplied by the acquisition bath size that gives the total number of data points collected so
far. The y-axis is the test MSE error evaluated on the test data.
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Figure 7: The hit ratio of different acquisition for BNN model, different target datasets, and different
acquisition batch sizes. We use STRING treatment descriptors here. The x-axis shows the number
of data points collected so far during the active learning cycles. The y-axis shows the ratio of the set
of interesting genes that have been found by the acquisition function up until each cycle.
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Figure 8: The hit ratio of different acquisition for BNN model, different target datasets, and different
acquisition batch sizes. We use Achilles treatment descriptors here. The x-axis shows the number
of data points collected so far during the active learning cycles. The y-axis shows the ratio of the set
of interesting genes that have been found by the acquisition function up until each cycle.
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Figure 9: The hit ratio of different acquisition for BNN model, different target datasets, and different
acquisition batch sizes. We use CCLE treatment descriptors here. The x-axis shows the number of
data points collected so far during the active learning cycles. The y-axis shows the ratio of the set of
interesting genes that have been found by the acquisition function up until each cycle.
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Figure 10: The evaluation of the random forest model trained with STRING treatment descriptors
at each active learning cycle for 4 datasets and 6 acquisition batch sizes. In each plot, the x-axis is
the active learning cycles multiplied by the acquisition bath size that gives the total number of data
points collected so far. The y-axis is the test MSE error evaluated on the test data.
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Figure 11: The evaluation of the random forest model trained with CCLE treatment descriptors at
each active learning cycle for 4 datasets and 6 acquisition batch sizes. In each plot, the x-axis is
the active learning cycles multiplied by the acquisition bath size that gives the total number of data
points collected so far. The y-axis is the test MSE error evaluated on the test data.
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Figure 12: The hit ratio of different acquisition for random forest model, different target datasets,
and different acquisition batch sizes. We use STRING treatment descriptors here. The x-axis shows
the number of data points collected so far during the active learning cycles. The y-axis shows the
ratio of the set of interesting genes that have been found by the acquisition function up until each
cycle.
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Figure 13: The hit ratio of different acquisition for random forest model, different target datasets,
and different acquisition batch sizes. We use CCLE treatment descriptors here. The x-axis shows
the number of data points collected so far during the active learning cycles. The y-axis shows the
ratio of the set of interesting genes that have been found by the acquisition function up until each
cycle.
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D ADDITIONAL DATASETS

We tested the GeneDisco pipeline on two additional datasets which are included in this appendix
due to space constraints. The relative performance of the random forest model with the acquisition
functions that are compatible wit this model class are shown in Figure 14 for the predictive accuracy
task and Figure 15 for the hit ratio task.

D.1 MODULATION OF TAU PROTEINS IN NEURONS

Experimental setting. This assay is based on Sanchez et al. (2021) in which authors have con-
ducted genome-wide CRISPR screens in two SH-SY5Y neuroblastoma cell lines to identify genes
that, when knocked out, either increased or decreased expression of endogenous tau proteins.
Measurement. After editing (for 21 or 30 days), cells are FACS sorted based on low tau expression
(low quartile 25%) and high tau expression (high quartile 25%). Statistical significance of gRNA
enrichment is determined via a redundant siRNA activity (RSA; log p-value) analysis. RSA up
scores were used to find genes enriched in the 25% of cells with highest tau protein, while RSA
down scores were used to find genes enriched in the 25% of cells with the lowest tau protein.
Importance. While the exact mechanism leading to the buildup of Tau proteins is unknown, their
accumulation is correlated with several neurodegenerative pathologies (eg., Alzheimer’s disease,
progressive supranuclear palsy, and frontotemporal dementia). The genes identified in this screen
may therefore help gaining a better understanding of the underlying disease pathways as well as
leading to potential treatments.

D.2 REGULATION OF ENDOSOMAL ENTRY IN CELLS FOR SARS-COV-2

Experimental setting. This dataset is based on the genome-wide CRISPR screen described in Zhu
et al. (2021). The assay was designed to identify endosomal entry-specific regulators of SARS-CoV-
2 virions in A549-ACE2 cells.
Measurement. The top candidates from the CRISPR screen were determined according to their
MAGeCK score (- log10).
Importance. The endosomal pathway is one of the two pathways (along with fusion at the plasma
membrane) used by SARS-CoV-2 to infect cells. A better understanding of mechanisms under-
pinning this pathway may help identify targets for the development of new SARS-CoV-2 antiviral
therapeutics.
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Figure 14: The evaluation of the random forest model trained with CCLE and STRING treatment
descriptors at each active learning cycle for the datasets (Sanchez et al., 2021) and (Zhu et al., 2021)
and also for 5 acquisition batch sizes. In each plot, the x-axis is the active learning cycles multiplied
by the acquisition bath size that gives the total number of data points collected so far. The y-axis is
the test MSE error evaluated on the test data.
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Figure 15: The hit ratio of different acquisition for random forest model, different target datasets,
and different acquisition batch sizes. We use STRING and CCLE treatment descriptors here. The
x-axis shows the number of data points collected so far during the active learning cycles. The y-axis
shows the ratio of the set of interesting genes that have been found by the acquisition function up
until each cycle.
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