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ABSTRACT

Modern supervised learning neural network models require a large amount of
manually labeled data, which makes the construction of domain-specific knowl-
edge graphs time-consuming and labor-intensive. In parallel, although there has
been much research on named entity recognition and relation extraction based
on distantly supervised learning, constructing a domain-specific knowledge graph
from large collections of textual data without manual annotations is still an urgent
problem to be solved. In response, we propose an integrated framework for adapt-
ing and re-learning knowledge graphs from one coarse domain (biomedical) to a
finer-define domain (oncology). In this framework, we apply distant-supervision
on cross-domain knowledge graph adaptation. Consequently, no manual data an-
notation is required to train the model. We introduce a novel iterative training
strategy to facilitate the discovery of domain-specific named entities and triples.
Experimental results indicate that the proposed framework can perform domain
adaptation and construction of knowledge graph efficiently.

1 INTRODUCTION

The triples in the knowledge graph (KG) contain the relationships between various entities, pro-
viding rich semantic background knowledge for various natural language processing (NLP) tasks,
such as natural language representation Liu et al. (2020), question answering Saxena et al. (2020),
image captioning Zhang et al. (2021a), and text classification Jiang et al. (2020). Consequently, au-
tomatically constructing knowledge graphs directly from natural texts has attracted close attentions
of re-searchers in recent years Kertkeidkachorn & Ichise (2017); Rossanez et al. (2020); Stewart &
Liu (2020).

KG construction from text generally involves two primitive steps: named entity recognition (NER)
and relation extraction (RE). Named entity recognition aims to identify the types of entities men-
tioned in text sequences, such as people, place, etc. in the open domain; or disease, medicine, disease
symptom, etc. in the biomedical domain. The relation extraction also known as triple extraction,
aims to identify the relationship between two entities, such as the birthplace relationship between
people and places in the open domain; or the therapeutic relationship between drug and disease in
the biomedical domain. NER and RE are necessary steps for information extraction to construct
KG from the text. In addition to NER and RE, constructing a KG usually includes other steps such
as coreference resolution, entity linking, knowledge fusion, and ontology extraction. In order to
facilitate model evaluation, this paper mainly focuses on information extraction and then constructs
a KG.

In the construction of fine-domain KG scenarios, there are usually some existing resources available,
such as biomedical KGs in coarse domains, which generally cover broader concepts and more com-
monsense knowledge. When constructing the oncology KG, the biomedical KG is thus available.
However, few studies have focused on adapting KG from the coarse domain (e.g., biomedical) to the
fine domain (e.g., oncology) where a large collection of unlabeled textual data are available, which
motivates the work in this paper.

Distant supervision Smirnova & Cudré-Mauroux (2018) is an intuitive way to transfer coarse-
domain KG to fine domains. Distant-supervision provides labels for data with the help of an external
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knowledge base, which saves the time of manual labeling. For distantly-supervised NER, we can
build distant labels by matching unlabeled sentences with external semantic dictionaries or knowl-
edge bases. The matching strategies usually include string matching Zhao et al. (2019), regular
expressions Fries et al. (2017), and some heuristic rules. The distantly-supervised RE holds an as-
sumption Mintz et al. (2009): if two entities participate in a relation, then any sentence that contains
those two entities might express that relation. Following this assumption, any sentence mentioning a
pair of entities that have a relation according to the knowledge base will be labeled with this relation
Smirnova & Cudré-Mauroux (2018).

Therefore, the KG in the coarse domain can be potentially used as a knowledge base for distant
supervision, thus avoiding a large number of manual annotations. However, only using the KG of
the coarse domain as the knowledge base might limit the model’s ability to discover domain-specific
named entities and triples in the fine domain, which further limits the construction of the fine domain
KG. To address these problems, in this paper, we propose a novel coarse-to-fine knowledge graph
domain adaptation (KGDA) framework. Our KGDA framework utilizes an iterative training strategy
to enhance the model’s ability to discover fine-domain entities and triples, thereby facilitating fast
and effective coarse-to-fine KG domain adaptation.

Overall, the contributions of our work are as follows:

• An integrated framework for adapting and re-learning KG from coarse-domain to fine-
domain is proposed. As a case study, the biomedical domain and oncology domain are
considered the coarse domain and fine domain, respectively.

• Our model does not require human annotated samples with distant-supervision for cross-
domain KG adaptation, and the iterative training strategy is applied to discovering domain-
specific named entities and new triples.

• The proposed method can be adapted to various pre-trained language models (PLMs) and
can be easily applied to different coarse-to-fine KGDA tasks. It is so far the simplest data-
driven approach for learning a KG from free text data, with the help of the coarse domain
KG.

• Experimental results demonstrate the effectiveness of the proposed KGDA framework. We
will release the source code and the data used in this work to fuel further research. The
constructed oncology KG will be hosted as a web service to be used by the general public.

2 RELATED WORK

2.1 PIPELINE-BASED METHODS FOR KG CONSTRUCTION

The pipeline-based methods apply carefully-crafted linguistic and statistical patterns to extract the
co-occurred noun phrases as triples. There are many off-the-shelf toolkits available, for example,
Stanford CoreNLP Manning et al. (2014), NLTK Thanaki (2017), and spaCy, which can be used for
the NER tasks; Reveb Fader et al. (2011), OLLIE Schmitz et al. (2012), and Stanford OpenIE An-
geli et al. (2015) can be used for the information extraction task. There have been multiple pipelines
Mehta et al. (2019); Rossanez et al. (2020) developed as well, consisting of modules targeting differ-
ent functionalities needed for the KG construction. However, the pre-defined rules of off-the-shelf
toolkits are generally tailored to specific domains, such methods are not domain-agnostic, and a new
set of rules will be needed for a new domain.

2.2 DATA-DRIVEN METHODS FOR KG CONSTRUCTION

With the development of representation learning in language models, researchers began to apply
data-driven models to solve the KG construction tasks. Based on how the model is trained, these
works can be divided into three categories: fully-supervised methods Zhao et al. (2019); Li et al.
(2022b), semi-supervised methods Zahera et al. (2021), and weakly-supervised methods Yu et al.
(2021). We will introduce the methods of fully-supervised and weakly-supervised in this section.
Specifically, the NER, RE, and entity linking tasks in the KG construction pipeline can all be solved
by fully-supervised learning methods such as long short-term memory neural network (LSTM)
Hochreiter & Schmidhuber (1997); Zeng et al. (2017). Graph neural network methods have also
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Figure 1: The overall framework of iterative training KGDA.

been applied for domain-specific NER tasks Chen et al. (2021) and document-level RE Zhang et al.
(2020). The bidirectional encoder representation from transformers (BERT) Kenton & Toutanova
(2019), the widely-used PLM, can also tackle the NER Jia et al. (2020), RE Roy & Pan (2021), and
entity linking Li et al. (2022a) tasks. While the advancement of deep learning-based methods has
greatly improved the effectiveness of KG construction, fully-supervised learning requires a large
amount of human-annotated data text. Furthermore, the annotation can only be domain-specific,
making it difficult to transfer the KG construction work to a new domain, and ultimately limiting
the scalability and efficiency of the research in KG.

On the other hand, distant supervision, a weakly supervised learning method, can replace manual
annotation with an existing and remote knowledge base. Previous studies have applied remote super-
vised learning to deal with NER Zheng et al. (2021), and RE Wei (2021); Zhang et al. (2021b) tasks.
Thus in this work, we adopted the distant-supervision scheme in the proposed KGDA framework. It
should be noted that KG of the coarse domain (e.g., biomedical) generally will not contain the com-
plete knowledge of its finer sub-domains (e.g., oncology). So when we use the coarse-domain KG
for distant supervision, labels of the target domain will be limited by the source domain, making it
less effective to discover new knowledge. To address this issue, we introduced an iterative strategy to
gradually update the model via distant supervision while at the same time using the partially-trained
model to discover new entities and relations from the data of the target fine domain.

3 METHODOLOGY

3.1 NOTATION AND TASK DEFINITION

An unstructured sentence s = [w1, w2, w3, ..., wn] indicates a sequence of tokens, where n is its
length. A dataset D is a collection of unstructured sentences (i.e. D = {s1, s2, s3, .., sm}). The
knowledge graph, denoted as K, is a collection of triples t = (ei, rj , ek), where ei ∈ E and ek ∈ E
are the head entity and the tail entity respectively, and rj ∈ V is the relation between ei and ek. Here
we denote coarse-domain KG as Kc and fine-domain KG as Kf .

In a typical scenario of KG domain adaptation, we will have an existing coarse-domain KG and a
large amount of unlabeled text in the fine domain. For example, when constructing the oncology KG,
we can utilize the existing biomedical KG and collect oncology-related literature as unlabeled text.
KG constructed from the fine domain data would then include overlapping triples with the coarse-
domain KG and new triples representing domain-specific knowledge. Specifically, the fine-domain
KG contains the following three types of triples:
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• Overlapping triples TO: Triples that also existed in the coarse-domain KG, indicating
knowledge overlapping between the coarse and fine domains.

• Triples of new relations but overlapping entities TR: Triples with both entity pairs ex-
isting in the coarse-domain KG but no indicated relationships between these entity pairs.

• Triples of new entities TE : Triples with at least one entity not existing in the coarse-
domain KG. Consequently, the relationship is also unknown in the coarse domain.

Both TR and TE belong to the specific knowledge of the fine domain. The goal of the coarse-
to-fine KGDA task is to adapt the KG from the coarse domain to the fine domain and leverage
the knowledge from the coarse domain to guide the mining of new knowledge specific to the fine
domain. Finally, we will keep the definition of entity types and relation types from coarse-domain
KG when constructing the fine-domain KG.

3.2 ITERATIVE TRAINING FRAMEWORK

While it is trivial to identify the overlapping entities EO and triples TO by distant supervision, if
the NER and RE models are trained on the entire corpus, they will not be able to recognize the fine
domain-specific named entities and triples (TR and TE). Because the distant-supervision labels are
generated by matching Kc. Thus we introduce an iterative training strategy to construct TR and TE

from the text and adapt the knowledge from Kc to Kf .

The overall framework of the iterative training scheme is shown in Fig. 1, and the detailed pseudo
code can be found in Algorithm 1. Rather than performing distant-supervision training on the whole
unlabeled text corpus, the core mechanism of the proposed iterative training is to split the whole un-
labeled dataset into n sub-datasets without intersection. Before building distant-supervision corpus,
the trained model is used to predict the text corpus for getting specific knowledge of fine-domain,
which is conducive to mining TR and TE of the fine-domain.

As shown in Figure 1, firstly, it is necessary to preprocess the acquired text corpus in the fine do-
main. Preprocessing operations include: handling special characters, word segmentation, filtering
sentences using human-defined rules (such as sentence length), etc. Then, our framework involves
two neural network models: NER model and RE model. We replace the PLM’s output layer with
a classifier head as NER model modelN and fine-tune it by minimizing the cross-entropy loss on
distant-supervision NER corpus. Additionally, we apply the BIO scheme Li et al. (2012) to gen-
erate NER sequence labels. For the RE task, we use the template to generate distant-supervision
samples. The template we adopted is ”[CLS] head entity (head entity type) [SEP] tail entity
(tail entity type) [SEP] sentence”. The RE model modeR is defined as a PLM with a fully con-
nected layer as a relation classifier. The feature of special token [CLS] fed into this fully connected
layer and fine-tune modeR by minimizing the cross-entropy loss on distant-supervision RE corpus.

We summarize the steps to achieve KGDA in Algorithm 1. For the first parts of the text corpus
D1, the distant-supervision method is applied to construct the NER training corpus corpN and RE
training corpus corpR , and the NER model modelN and RE model modeR are trained based on
corpus corpN and corpR, respectively. For other part of the text corpus Di, we apply the previously
trained modelN and modeR to extract the entities and triples in the fine-domain, and select the
high confidence entities Econf and high confidence triples Tconf as the specific knowledge of the
fine-domain (line 7). Then, we take Kc, Econf , and Tconf as the external knowledge base for
constructing distant-supervision corpN and corpR (line 8). Finally, we use overlapping triples TO

and high-confidence triples Tconf to construct a knowledge graph of fine domains (line 17).

Next, we show the details of get distant corpus in Algorithm 2 and get specific knowledge in Al-
gorithm 3.

3.3 CONSTRUCTING DISTANTLY-SUPERVISED CORPUS

Through distant-supervision, we can only match entity pairs that have a relationship and use them as
positive samples. We then construct negative samples with NULL relationship by the following two
schemes: 1) randomly sampling two entities which have no relationship as defined in the coarse-
domain; 2) randomly sampling a word from out-of-domain words (i.e., a word that is not an entity
as defined in the coarse domain) WO as one of the entities. The parameter ration controls the ratio
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Algorithm 1 Iterative training KGDA framework
Input: Text corpus D = {D1,D2, ...,Dn}, coarse-domain KG Kc, out-of-domain words WO

Parameter: Initialized NER model modelN , initialized RE model modelR
Output: fine-domain kg Kf

1: Let new entities Enew = {} , new entities with high confidence Econf = {} , new triples
Tnew = {} , new triples with high confidence Tconf = {} .

2: corpN , corpR, EO, TO= build distant corpus( D1, Kc, Econf , Tconf , WO )
3: train NER(modelN , corpN )
4: train RE(modelR, corpR)
5: i = 2
6: while i <= n do
7: Enew, Econf , Tnew, Tconf = get specific knowledge(Di, Kc, Enew, Econf , Tnew, Tconf )
8: corp

′

N , corp
′

R, E′

O, T′

O= get distant corpus( Di, Kc, Econf , Tconf , WO)
9: corpN = corpN ∪ corp

′

N

10: corpR = corpR ∪ corp
′

R

11: EO = EO ∪ E′

O

12: TO = TO ∪ T′

O
13: train NER(modelN , corpN )
14: train RE(modelR, corpR)
15: i = i+ 1
16: end while
17: Kf = build kg(TO , Tconf )
18: return Kf

Algorithm 2 Constructing distantly-supervised corpus
Input: A part of text corpus text corpus Di, coarse-domain KG Kc, new entities with high confidence
Econf , new triples with high confidence Tconf , out-of-domain words WO

Parameter: negative sample ratio ration , out-of-domain sample ratio ratioo
Output: Distant-supervision NER corpus corpN , distant-supervision RE corpus corpR, overlapping
entities EO, overlapping triples TO

1: Let corpE = {}, corpR = {}, EO = {}, TO = {}.
2: sentence num = len( Di)
3: j = 1
4: while j<=sentence num do
5: entities = entity matching( Dj

i , Kc, Econf )
6: EO = EO ∪ entities
7: corpN = corpN∪ build NER sample( Dj

i , entities)
8: triplesk,triplesc = entity pair matching( Dj

i , Kc, Tconf )
9: triples = triplesk ∪ triplesc

10: triplesn = get negative triples( Dj
i , WO, triples, ration, ratioo)

11: corpR = corpR∪ get samples(triples)
12: corpR = corpR∪ get samples(triplesn)
13: TO = TO ∪ triplesk
14: j = j + 1
15: end while
16: return corpN , corpR, EO, TO

of negative samples (constructed by either schemes) to the total sample size. The parameter ratioo
controls the ratio of entity pairs constructed by the second scheme (i.e., via sampling the words
outside the domain) to the size of negative samples, respectively.

In addition to the Kc in the source domain, we use both Kc, Econf , and Tconf as knowledge bases
for constructing the remotely supervised corpus. This would ensure that the NER and RE models
can identify the overlapping knowledge between Kc and Kf , while at the same time be guided to
discover the new knowledge specific to the fine domain.
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Algorithm 3 Discovering fine-domain specific knowledge
Input: A part of text corpus text corpus Di, coarse-domain KG Kc, new entities Enew , new entities
with high confidence Econf , new triples Tnew , new triples with high confidence Tconf

Parameter: NER model modelN , RE model modelR, probability threshold of the entity thpe,
frequency threshold of the entity thfe, probability threshold of the triple thpt, frequency threshold
of the triple thft

Output: Enew, Econf , Tnew, Tconf

1: Let corpE = {}, corpR = {}, EO = {}, TO = {}.
2: sentence num = len( Di)
3: j = 1
4: while j <= sentence num do
5: entities = NER prediction( Dj

i , modelN )
6: entities = get new entities( entities, Kc)
7: Enew = merge entity( Enew, entities)
8: j = j + 1
9: end while

10: Econf = get confidence entity( Enew, thpe, thfe)
11: j = 1
12: while j <= sentence num do
13: entities = entity matching( Dj

i , Kc, Econf )
14: pairs = enumerate pairs( entities )
15: pairs = get new pairs( pairs, Kc )
16: triples = RE prediction( Dj

i , pairs , modelR)
17: Tnew = merge triple( Tnew, triples )
18: j = j + 1
19: end while
20: Tconf = get confidence triple( Tnew, thpt, thpt )
21: return Enew, Econf , Tnew, Tconf

As shown in Algorithm 2, for building the distantly-supervised NER corpus corpN , the sentence Dj
i

is firstly string-matched with the knowledge bases Kc and Econf to extract the entities in the sentence
(line 5). Afterward, the matched entities are merged into overlapping entities EO, and the NER label
sequences are generated through the BIO strategy to merge into corpN (line 6 and 7). For building
the distantly-supervised RE corpus corpR, we firstly take Kc and Tconf as knowledge bases and
use entity pair matching to match the triples triplesk based on Kc and the triples triplesc based on
Tconf appearing in the sentence Dj

i (line 8). We then build negative triples with parameters ration
and ratioo (line 10). Finally, we construct the RE corpus based on the triples triples, triplesn and
corresponding sentences through a pre-defined relationship sample template (line 11 and 12).

3.4 DISCOVERING FINE-DOMAIN SPECIFIC KNOWLEDGE

Recall that in the proposed iterative training framework, the whole unlabeled dataset is divided into
n sub-dataset Di, i = 1...n, the fine-domain specific knowledge discovery will be performed on each
sub-dataset except the first one Di, i = 2...n (line 5 to 16 in Algorithm 1). For each new sub-dataset
Di, i = 2...n, we will use the previously-updated models modelN and modelR to predict the new
entities and triples. Afterward, the sub-dataset will be used for updating modelN and modelR via
distantly-supervised training. As noisy or incorrect entities and triples could be discovered during
this procedure, we developed a filtering mechanism only to keep the entities and triples with higher
confidence. Specifically, we design the rules for filtering the discovered entities and triples by: 1)
probability of the new entities and triples predicted by the corresponding models should be greater
than pre-defined thresholds thpe and thpt, respectively; 2) cumulative frequency of the new entities
and triples discovered from datasets D2 to Di should be greater than the pre-defined thresholds thfe

and thft, respectively.

As shown in Algorithm 3, for discovering new entities Enew, we will apply the trained modelN on
dataset Di and obtain entities that are disjoint with Kc (line 5 and 6). Then, we will merge entities
with the previously-discovered entity set Enew (line 7). Finally, we will select the ”high-confident”
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entity as Econf based on the mechanism above by the prediction probability and cumulative fre-
quency (line 10). For the discovery of new triples Tnew, we will enumerate entity pairs that are
disjoint with the Kc (line 13 - 15). We will then use the trained RE model and the predefined sam-
ple template to predict the relationship of the entity pairs and delete the triples whose predicted
relationship is NULL (line 16). Other processing is similar to the discovery of new entities.

After Algorithm 3, discovered entities specific to the fine domain are stored in Econf . Discov-
ered triples TR (new relation, overlapping entity) and TE (new relation, new entity) are stored in
Tconf . In the next iteration, Algorithm 2 will then use the updated Econf and Tconf for building
distant-supervision corpus. Such iterative design can facilitate the interoperability between the two
competing tasks based on a fixed number of unannotated data samples in the fine target domain:
distantly-supervised training of the NER and RE models versus the discovery of new knowledge
using the trained NER and RE models, thus improve the efficiency of performing KG domain adap-
tation and construction without any annotation.

4 EXPERIMENTS

In this work, we used the adaptation of KG from the biomedical domain (coarse) to the oncology
domain (fine) as an example to demonstrate the workflow of the KGDA framework, as well as to
evaluate its effectiveness in practice. Implementation details of the experiment are also provided,
along with the publicly-available data and the containerized environment in the released source code,
for easy replication of the experiment and the development of other KG methods.

4.1 DATASET

We downloaded papers from 12 international journals (journal details can be found in the supple-
mental materials) in the oncology domain. PDF files of the papers were cleaned and converted to
sentences. In total, we included nearly 240,000 sentences as the unlabeled text corpus of the on-
cology domain D. The coarse-domain KG Kc used in this work is the biomedical KG1, defines
18 entity types and 19 relationship types, including 5.2 million English entities and 7.34 million
triples. The lists of entity types and relationship types can be found in the supplementary materials.

4.2 EVALUATION

Similar to the previous works Mintz et al. (2009), we evaluate our method in two schemes: held-out
evaluation and manual evaluation. For the held-out evaluation, we reserved a part of the text corpus
of D as the test set. During the testing, we then compared the prediction results of the NER and RE
models with the labels matched with Kc, and calculated the precision, recall, and F1 of the held-out
dataset. Specifically, we use seqvel2 to evaluate the micro average precision, recall, F1 of NER.
When evaluating the RE model, we perform relation classification prediction on the triples existing
in Kc and corresponding entity pairs appearing in the held-out corpus. Finally, weighted average
precision, recall, and F1 from the held-out evaluation will be reported.

As the labels of testing samples in the held-out evaluation are all inferred by distant supervision
from the coarse domain, such scheme can only evaluate whether the trained model can capture
the knowledge in the coarse domain, but cannot evaluate the ability of the models to discover new
knowledge in the fine-domain. Therefore, we also adopted the manual evaluation scheme, consisting
of the evaluations of: 1) the entities specific to fine domain Econf , which are not presented in Kc;
2) the triples of new relations TR; 3) the triples of new entities TE . We randomly sampled 50 cases
of Econf , TR, and TE respectively, then asked one physician to manually label them for whether
the entities and triples are correct. As the number of name entities and triples instances that are
expressed in the corpus is unknown, we cannot estimate the recall of fine-domain KG. Therefore,
we only show the precision of Econf , TR, and TE . We fully recognize that the discovery of new
knowledge in the fine-domain is an indispensable task for this work and we are recruiting more
medical experts to conduct human reader study and performance evaluation for the proposed model.

1https://idea.edu.cn/bios.html
2https://github.com/chakki-works/seqeval
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4.3 IMPLEMENTATION SETTINGS

We divide the corpus D into six equal subsets, and each subset contains around 40,000 sentences.
We used D1 to D5 for model training and KG construction. We reserved D6 for held-out evalu-
ation. We tested BERT Kenton & Toutanova (2019), Bio ClinicalBERT Alsentzer et al. (2019),
biomed RoBERTa Gururangan et al. (2020) for initializing NER and RE models. Our experi-
ments were run on an Ubuntu system computer with three NVIDIA 1080Ti graphics cards. The
learning rate, batch size, and epochs are set as 2E-05, 20, and 4, respectively. Hyperparameters
thfe,thpe,thft,thpt are set as 2, 0.95, 3, 0.97. The parameters ration and ratioo that control nega-
tive sampling are set to 0.2 and 0.3.

4.4 HELD-OUT EVALUATION

Table 1: Held-out evaluation of NER model.

models precision recall F1
BERT 0.878 0.859 0.868
Bio ClinicalBERT 0.877 0.853 0.865
biomed RoBERTa 0.871 0.848 0.859

Table 2: Held-out evaluation of RE model.

models precision recall F1
BERT 0.977 0.912 0.943
Bio ClinicalBERT 0.976 0.923 0.948
biomed RoBERTa 0.973 0.932 0.952

The results of the NER and RE models evaluated by the held-out dataset are shown in Table 1
and Table 2, respectively. The KGDA frameworks initialized by the three pre-trained language
models (BERT, Bio ClinicalBERT, and biomed RoBERTa) all show good performance in held-out
evaluations, demonstrating the robustness of our framework.

4.5 MANUAL EVALUATION

models #EO #TO #Econf #TR #TE

BERT 69587 20615 1631 24580 905
Bio ClinicalBERT 70055 20611 1936 25312 1195
biomed RoBERTa 69497 20495 1625 23183 1071

Table 3: The number of entities and triples.

The number of all discovered entities (EO), triples (TO), new entities with high confidence (Econf ),
triples representing new relations with overlapping entities (TR), and triples representing new re-
lations with new entities (TE) are shown in Table 3, with each row belonging to one pre-trained
language models used. Numbers of EO and TO have minor differences among different pre-trained
language models, possibly due to the conflicts in strings matching of knowledge bases. Econf , TR,
and TE represent specific knowledge of the fine domain. We sampled 50 cases from Econf , TR, and
TE for manual evaluation, and the results are shown in Table 4.

4.6 KNOWLEDGE GRAPH CONSTRUCTION IN THE FINE DOMAIN

As our ultimate goal, we can construct the KG in the fine domain by combining TO, TR, and TE .
We selected biomed RoBERTa as the backbone language model for KGDA and constructed the
knowledge graph correspondingly. An example of the KG we built are shown in the supplementary
material.

4.7 ABLATION STUDY

We investigated the impact of 3 techniques employed by KGDA on its held-out experiment perfor-
mance by removing the corresponding component from the framework:

w/o (cumulative): When using corpus Di to train NER and RE models, the cumulative corpus is
not used. i.e. delete lines 9 and 10 in Algorithm 1 and mark corp

′

N and corp
′

R in line 8 as corpN
and corpR respectively.

w/o (iter): Remove the iterative training strategy and only use KC as an external knowledge base.

8



Under review as a conference paper at ICLR 2023

w/o (iter, type): Remove the iterative training strategy and delete the entity type in the template of
RE. In, this method, the template is ”[CLS] head entity [SEP] tail entity [SEP] sentence”.

The results of the ablation analysis are shown in Table 5. Compared to the complete framework with
w/o (cumulative), it can be seen that the using of accumulated data through iterations is beneficial
for improving the generalization ability of NER and RE models. The held-out performances of the
model without iteration indicates that the iterative training strategy can not only discover the specific
knowledge in the fine domain, but also maintain the ability to discover overlapping knowledge
between coarse and fine domain. The RE performance of w/o (iter) is slightly better than that of
w/o (iter, type), indicating that specifying the entity type of the entities is helpful for improving the
performance of the RE task.

Table 4: Results of manual evaluations.

models Econf TR TE

BERT 0.78 0.50 0.66
Bio ClinicalBERT 0.92 0.60 0.56
biomed RoBERTa 0.92 0.70 0.72

Table 5: Results of ablation study.

NER RE
models precision precision
BERT 0.878 0.977
w/o (cumulative) 0.845 0.970
w/o (iter) 0.857 0.967
w/o (iter, type) 0.857 0.967
Bio ClinicalBERT 0.877 0.976
w/o (cumulative) 0.847 0.971
w/o (iter) 0.860 0.972
w/o (iter, type) 0.860 0.970
biomed RoBERTa 0.871 0.973
w/o (cumulative) 0.822 0.967
w/o (iter) 0.858 0.971
w/o (iter, type) 0.857 0.968

5 CONCLUSION AND DISCUSSION

In this paper, we propose an integrated, end-to-end framework for knowledge graph domain adapta-
tion using distant supervision, which can be used to construct KG from fully unlabeled raw text data
with the guidance of an existing KG. To deal with the potential challenges in distant supervision,
which might limit the knowledge discovered from the new domain, we propose an iterative train-
ing strategy, which divides an unlabeled corpus into multiple corpuses. For each new corpus to the
model, we then combine the knowledge in the coarse domain with the knowledge identified from the
previous corpuses for distantly-supervised training. By adopting the iterative training strategy, our
proposed KGDA framework can discover not only knowledge that overlaps with the coarse domain,
but also knowledge specific to the fine domain and unknown to the coarse domain, thus enabling
coarse-to-fine domain adaptation. We implemented the adaptation from biomedical KG to the on-
cology domain in our experiments and verified the effectiveness of the KGDA framework through
held-out and manual evaluation.

Several limitations and challenges remain beyond the current work for more effective and accurate
KG construction: Firstly, more thorough evaluation with human reader study is needed to validate
that new knowledge relevant (not only correct) to the target domain can be discovered by KGDA.
Secondly, it has been recognized by the field that distant supervision will inevitably introduce noisy
labels Liang et al. (2020); Zhang et al. (2021b), thus the denoising step is usually needed but not
implemented in the current version of KGDA. Thirdly, there has been existing KG constructed in
the related domains of oncology and cancer research. We will investigate the scheme to allow
adaption from multiple sources (not only the coarse domain) to leverage this existing knowledge
better. Another type of crucial prior information for this work is clinical ontology, where we will
integrate the relationships defined in ontology and entity description to enhance the model. Fourthly,
an essential premise of the KGDA is that we assume the source and target domains share the same set
of entity types and relation types, which can limit the knowledge discovered from the fine domain.
We will investigate data mining techniques to adaptively add/remove entity and relation types in the
fine domain. Finally, there have been many new large-scale pre-trained language models developed
such as GPT-3 in recent years. While our model uses variations of BERT (BiomedRoBERTa and
BioClinicalBERT) as backbone networks, we can easily adapt KGDA to other language models.
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Suchin Gururangan, Ana Marasović, Swabha Swayamdipta, Kyle Lo, Iz Beltagy, Doug Downey,
and Noah A Smith. Don’t stop pretraining: Adapt language models to domains and tasks. In
Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp.
8342–8360, 2020.

Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural computation, 9(8):
1735–1780, 1997.

Chen Jia, Yuefeng Shi, Qinrong Yang, and Yue Zhang. Entity enhanced bert pre-training for chi-
nese ner. In Proceedings of the 2020 Conference on Empirical Methods in Natural Language
Processing (EMNLP), pp. 6384–6396, 2020.

Xuhui Jiang, Yinghan Shen, Yuanzhuo Wang, Xiaolong Jin, and Xueqi Cheng. Bakgrastec: A back-
ground knowledge graph based method for short text classification. In 2020 IEEE International
Conference on Knowledge Graph (ICKG), pp. 360–366. IEEE, 2020.

Jacob Devlin Ming-Wei Chang Kenton and Lee Kristina Toutanova. Bert: Pre-training of deep
bidirectional transformers for language understanding. In Proceedings of NAACL-HLT, pp. 4171–
4186, 2019.

Natthawut Kertkeidkachorn and Ryutaro Ichise. T2kg: An end-to-end system for creating knowl-
edge graph from unstructured text. In Workshops at the Thirty-First AAAI Conference on Artificial
Intelligence, 2017.

Da Li, Ming Yi, and Yukai He. Lp-bert: Multi-task pre-training knowledge graph bert for link
prediction. arXiv preprint arXiv:2201.04843, 2022a.

Nan Li, Qiang Shen, Rui Song, Yang Chi, and Hao Xu. Medukg: A deep-learning-based approach
for multi-modal educational knowledge graph construction. Information, 13(2):91, 2022b.

Qi Li, Haibo Li, Heng Ji, Wen Wang, Jing Zheng, and Fei Huang. Joint bilingual name tagging for
parallel corpora. In Proceedings of the 21st ACM international conference on Information and
knowledge management, pp. 1727–1731, 2012.

Chen Liang, Yue Yu, Haoming Jiang, Siawpeng Er, Ruijia Wang, Tuo Zhao, and Chao Zhang. Bond:
Bert-assisted open-domain named entity recognition with distant supervision. In Proceedings of
the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pp.
1054–1064, 2020.

Weijie Liu, Peng Zhou, Zhe Zhao, Zhiruo Wang, Qi Ju, Haotang Deng, and Ping Wang. K-bert:
Enabling language representation with knowledge graph. In Proceedings of the AAAI Conference
on Artificial Intelligence, volume 34, pp. 2901–2908, 2020.

10



Under review as a conference paper at ICLR 2023

Christopher D Manning, Mihai Surdeanu, John Bauer, Jenny Rose Finkel, Steven Bethard, and
David McClosky. The stanford corenlp natural language processing toolkit. In Proceedings of
52nd annual meeting of the association for computational linguistics: system demonstrations, pp.
55–60, 2014.

Aman Mehta, Aashay Singhal, and Kamalakar Karlapalem. Scalable knowledge graph construction
over text using deep learning based predicate mapping. In Companion Proceedings of The 2019
World Wide Web Conference, pp. 705–713, 2019.

Mike Mintz, Steven Bills, Rion Snow, and Dan Jurafsky. Distant supervision for relation extraction
without labeled data. In Proceedings of the Joint Conference of the 47th Annual Meeting of the
ACL and the 4th International Joint Conference on Natural Language Processing of the AFNLP,
pp. 1003–1011, 2009.

Anderson Rossanez, Julio Cesar Dos Reis, Ricardo da Silva Torres, and Hélène de Ribaupierre.
Kgen: a knowledge graph generator from biomedical scientific literature. BMC medical infor-
matics and decision making, 20(4):1–24, 2020.

Arpita Roy and Shimei Pan. Incorporating medical knowledge in bert for clinical relation extraction.
In Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing,
pp. 5357–5366, 2021.

Apoorv Saxena, Aditay Tripathi, and Partha Talukdar. Improving multi-hop question answering
over knowledge graphs using knowledge base embeddings. In Proceedings of the 58th annual
meeting of the association for computational linguistics, pp. 4498–4507, 2020.

Michael Schmitz, Stephen Soderland, Robert Bart, Oren Etzioni, et al. Open language learning
for information extraction. In Proceedings of the 2012 joint conference on empirical methods in
natural language processing and computational natural language learning, pp. 523–534, 2012.
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