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Abstract

Small language models like T5 excel in gen-
erating high-quality text for data-to-text tasks,
offering adaptability and cost-efficiency com-
pared to Large Language Models (LLMs).
However, they frequently miss keywords,
which is considered one of the most severe and
common errors in this task.

In this work, we explore the potential of using
feedback systems to enhance semantic fidelity
in smaller language models for data-to-text gen-
eration tasks, through our Verification and Cor-
rection Prompting (VCP) approach.

In the inference stage, our approach involves a
multi-step process, including generation, ver-
ification, and regeneration stages. During the
verification stage, we implement a simple rule
to check for the presence of every keyword in
the prediction. Recognizing that this rule can
be inaccurate, we have developed a carefully
designed training procedure, which enabling
the model to incorporate feedback from the
error-indication prompt effectively, despite its
potential inaccuracies.

The VCP approach effectively reduces the Se-
mantic Error Rate (SER) while maintaining the
text’s quality.

1 Introduction

give_opinion(NAME [SpellForce 3],
GENRES [real-time strategy, role-playing],
ER_PERSPECTIVE [bird view])

RATING [poor],
PLAY-

I think that SpellForce 3 is one of the worst games I’ve
ever played. Trying to combine the real-time strategy
and role-playing genres just doesn’t work, and the bird’s
eye view makes it near impossible to play.

Figure 1: The ViGGO dataset (Juraska et al., 2019).

Data-to-text generation aims to convert struc-
tured data into coherent, human-readable text, as
shown in Figure 1. It has a broad range of practi-
cal applications, including report generation, auto-

mated journalism, data visualization, and dialogue
systems, or it can be used as intermediate steps
in large projects. In these applications, the input
can consist of various types of data, such as ta-
bles, graphs, or raw data. It is worth noting that
data-to-text generation is a controlled form of text
generation, where the output must be coherent with
the input and maintain semantic accuracy.

Fine-tuning pre-trained small models, such as
T5 (Raffel et al., 2020), which are more efficient
compared to LLMs, is often sufficient for many
data-to-text generation tasks, as these tasks do not
require strong reasoning skills. The main challenge
lies in ensuring adherence to instructions and ac-
curately replicating specific text styles. One of the
most severe and frequent problems is omissions,
the absence of crucial keywords (Yin and Wan,
2022). For instance, in the first example from Fig-
ure 1, if the prediction omits the name ’SpellForce
3’, then the prediction has one slot error. In this pa-
per, we introduce the ’slot error rate (SER),” which
quantifies the rate of missing keywords.

Several research works aim to reduce the SER,
including the copy mechanism (Rebuffel et al.,
2019; Puduppully et al., 2019), template-based
generation (Kale and Rastogi, 2020; Mehta et al.,
2022), planning-then-generate (Xu et al., 2021;
Su et al., 2021; Kasner and Dusek, 2022), and
post-editing (Jolly et al., 2022; Balachandran et al.,
2022). These methods often rely on strict rules and
can effectively reduce SER but may sacrifice text
fluency. Techniques such as those by (Juraska and
Walker, 2021; Seifossadat and Sameti, 2023) guide
attention behavior, leading the model to make more
accurate generations. Such methods are flexible,
thus reducing SER while maintaining text fluency.

Regeneration according to feedback (Madaan
et al., 2023; Xue et al., 2023) has recently gained
popularity, predominantly in LLMs. This approach
requires an accurate feedback system to gener-
ate natural language feedback prompts. However,



smaller language models, focused on efficiency,
may not interpret these feedback prompts accu-
rately and often lack a precise verifier. Employing
an accurate verifier, such as an LLM or meticu-
lously handcrafted rules, would contradict the orig-
inal goal of prioritizing efficiency. We aim to ex-
plore the feasibility of using a feedback system
with a trivial verifier to enhance the semantic accu-
racy of a smaller model in data-to-text generation.

Inspired by previous works, we propose a
prompt-based, test-time correction pipeline, VCP,
designed to encourage the model to include missed
slots identified by a slot error checker while main-
taining text quality. The overall inference process
is illustrated in Figure 2. Initially, the fine-tuned TS
model receives the input slots and generates initial
predictions. The slot error checker then verifies
whether any slots are missing from the output. If
a slot is missing, we label the corresponding error-
correcting prompts along with the missed input
value. During the regeneration process, these error-
correcting prompts guide the fine-tuned T5 model
to include the omitted slot value in its subsequent
prediction. An example of this is provided in Table
1.

To enable the aforementioned error-correcting
regeneration process, it is necessary to train error-
correcting prompts that encourage the model to in-
clude slots it previously missed. Since the slot error
checker relies on trivial rules, the trained prompts
must guide the T5 model in such a way that it does
not alter its prediction when the prompt is misla-
beled. The training process for these prompts is
outlined in the training section of Figure 2. Specifi-
cally, in the Data Generation process, a data gener-
ator is used to create unseen prompted inputs along
with their corresponding ground truths. This serves
to construct both the prompt initialization training
dataset and the prompt training dataset. During
training, we first train the prompt initialization and
then fine-tune the prompt embedding based on the
initialized prompt. These error-correcting prompts
are designed to direct the fine-tuned TS model to in-
clude the labeled slot values it previously missed in
its predictions. During training, the model and the
prompts are exposed to scenarios where slots are
mislabeled by error-correcting prompts, teaching
them to disregard inaccurate labels.

Our method achieves a lower SER while main-
taining competitive text fluency compared to other
methods.

2 Related Works and Comparative
Analysis

In data-to-text generation tasks, the omission of
keywords (slot error) is identified as the most se-
vere and frequent error (Yin and Wan, 2022).

Several strategies have been developed to ad-
dress this issue, each falling into distinct categories.

The first strategy involves using a strict genera-
tion process to ensure the inclusion of keywords.
This includes methods such as the copy mech-
anism (Rebuffel et al., 2019; Puduppully et al.,
2019), template-based generation methods (Kale
and Rastogi, 2020; Mehta et al., 2022), and plan-
then-generate approaches (Xu et al., 2021; Su et al.,
2021; Kasner and Dusek, 2022). These methods en-
force a model’s generation to strictly adhere to the
input structure. While they effectively minimize
slot errors, they suffer from reduced text fluency
due to their inherent inflexibility.

The second strategy involves using a post-editing
approach. (Jolly et al., 2022) search for missing
keywords and find the best position to insert the
phrase containing these keywords. This approach
is not directly comparable to our method because
they only conducted experiments in a few-shot set-
ting. (Balachandran et al., 2022) adversarially train
an error correction network to correct factual errors
in summarizing tasks. The error correction training
dataset is constructed by replacing correct factual
words with incorrect ones. In data-to-text gener-
ation, missing even one keyword can disrupt the
entire sentence, thus this method cannot be directly
applied to data-to-text generation.

The third strategy involves guiding the attention
behavior. (Juraska and Walker, 2021) manually
identified three attention patterns associated with
semantic errors. They created a script to automat-
ically adjust the beam search scores according to
these three attention patterns during inference. By
adding a dynamic memory module to the attention-
based network, DM-NLG (Seifossadat and Sameti,
2023) can store previously generated words, thus
better guiding the generation process to include key
information. These two approaches reduce SER
while maintaining the quality of text generation.

There have been increasing works utilizing feed-
back systems for generating better predictions
(Madaan et al., 2023; Xue et al., 2023; Peng et al.,
2023; Shridhar et al., 2023b,a). They are mostly
used for reasoning tasks and have an inference pro-
cess similar to our work. These feedback systems



Step1: Initial Prediction

Input

recommand(name(Tom Clancy], release_year[1999], has_linux_release[yes])

TS5 predictions

Since you’re into Linux games, you heard of Tom Clancy?

Step2: Verification

Find slot errors

1999 x, Tom Clancy, Linux

Label missing slots | recommand(release_year[<tokenl><token2><token3>1999], name(Tom
Clancy], has_linux_release[no])

Step3: Regeneration

Prompted Input recommand(release_year[<token1><token2><token3>1999], name(Tom

Clancy], has_linux_release[no])

Send to TS to gener-
ate prediction

in 19997

Since you’re into Linux games, have you heard of Tom Clancy which is released

Table 1: The inference process comprises three steps: 1. We utilize the fine-tuned TS5 model to generate an initial
prediction. 2. The slot error checker is then deployed to ascertain the presence of any slot errors. If such errors
are detected, we label the error-correcting prompts to highlight the location of potential slot errors. 3. Lastly, we
reintroduce the prompted input to the fine-tuned TS5 model for regeneration. The tokens(error-correcting prompts)
have the capacity to alter the regenerated outputs, ensuring the inclusion of previously missed slots.

often use a Large Language Model (LLM), a prior
knowledge base, or some rules to verify if there are
mistakes in the initial generation. An LLM will
then read the instructions returned by the verifier
and regenerate the output accordingly.

Our approach is distinct from previous feedback
systems in that: 1. Our verification process is ef-
ficient and trivial. It does not require prior knowl-
edge or a LLM. 2. Our prompt feedback can guide
smaller models that are not capable of responding
to natural language feedback. 3. The prompt is
capable of handling inaccurate feedback. 4. Our
VCP can maintain text generation styles. Our work
differs from previous post-editing models in that
instead of applying a post-editing model to mod-
ify the details of the initial output, we use error-
indicating prompts to guide the model in regener-
ating the output. Regenerating the entire output
allows the model to reorder the sentence structure
or infill the missing prompts in a flexible way ac-
cording to the previously missed slot, resulting in
more fluent and consistent text output.

3 Methodology

Figure 2 provides a comprehensive illustration of
our method, detailing both the inference and train-
ing stages involved in the process.

3.1 Inference

An inference example is presented in Table 1, en-
compassing three steps: initial generation, verifica-
tion, and regeneration. Initially, we input the test-
ing samples into the fine-tuned TS model, which

was trained with the original training dataset, to
generate the initial prediction. During the veri-
fication step, the Slot Error Checker, employing
simple rules, examines whether any slots from the
input are missing in the output, thereby identify-
ing slot errors. If any potential errors are detected,
we introduce error-correcting prompts adjacent to
the positions of the unmentioned slots in the in-
put. Lastly, in the regeneration step, the prompted
inputs are fed back into the fine-tuned TS model.
These error-correcting prompts guide the TS model
to incorporate the previously omitted slots during
the regeneration process.

3.2 Slot Error Checking

The Slot Error Checker verifies the presence of
slot errors. For non-boolean slot value, we sim-
ply verify that all slot values are included in the
prediction. For boolean slot value pairs, we do
not examine whether the actual slot value, that
is, yes or no, is present in the prediction. In-
stead, we focus on whether the noun part of the
slot names, identified by part-of-speech (POS)
tagging—such as linux from has_linux_released,
mac from has_mac_released, or steam from avail-
able_on_steam, is mentioned in the predictions. To
determine if the slot-value pairs are boolean, we
check whether the slot value is yes or no. The
checking process is straightforward, and we have
not implemented any domain-specific knowledge
in the slot error checkers.
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Figure 2: The workflow is comprised of train section and inference section. When training, we first fine tune a T5
model, then use data generator to generate prompt training dataset. Lastly use prompt tuning to teach error-correcting
prompts how to improve the semantic coverage in T5’s prediction. The inference section illustrates the overview of
the initial prediction, verification, and regeneration process. Please refer to Table 1 for more detailed insights.

~

Create unseen Input Name: Tom Clancy, RollerCoaster Tycoon Data Generator
Create Slot value

dictionary Release year: 1999, 2001 ....
Has linux release: yes. no......

;

-

Collection of initial input Slot value dictionary W
Initial inputs @

recommand(name(Tom Clancy], release_year[1999], has_linux_release[yes])

e\

=
5

Swap Slot value using the dictionary @
unseen inputs

recommand(name(RollerCoaster Tycoon], release_year[2001], has_linux_release[no]) ‘

G
Label input with prompt Initial prediction
l Do you recommend me playing rollercoaster tycoon game that is not available on linux? ‘

Slot error checking: 2001 is not mentioned @

Label prompt to locate slot error
l recommand(name(RollerCoaster Tycoon], release_yeart [<token1> <token2> <token3> 2001], has_linux_release[no]) }—

El)

T5: beam search or sampling @ EE

=3~

o o

Generate target Use beam search to generate 10 outputs 22

. . . . 2 e

oyourecommend.me playing rollercoaster tycoon game that is not available on linux?__ __ __ __ __ _2 X B g

(Do you recommend me playing roller coaste tycoon game which released in 2001 and is not available on linux? &4 7|52

Do you recommend me playing roller coaster tycoon game which released in 2001 and is available on linux? X g §

S a

Create training data Create Prompt Training Dataset 5

recommand(name(RollerCoaster Tycoon], release _year[<tokenl> <token2> <token3> 2001], has_linux_release[no]) v
Do you recommend me playing roller coaster tycoon game which released in 2001 and is not available on linux?

~
NS

Figure 3: The workflow for generating datasets for training error-correcting prompts.

3.3 Training correcting prompts. Finally, while keeping the
fine-tuned T5 model frozen, the error-correcting
prompts are trained on the prompt training dataset
to enhance their ability to guide the language
model in integrating slot values that were previ-
ously missed.

The training procedure, as illustrated in Figure
2, begins by fine-tuning a TS model using the
original training dataset. This step establishes
a well-initialized base model. Subsequently, a
prompt training dataset is created for learning error-



Data Generation: Since the training data has
already been exposed to the T5 model during the
initial fine-tuning, we cannot use the same dataset
to learn the error-correction prompts. Therefore,
a new training set is generated for prompt learn-
ing, as depicted in Figure 3. Specifically, the data
generation process (data generator) creates input-
output pairs. The candidate input is generated
by replacing the slot values in an input from the
original training set with other values randomly
sampled from the possible values for each slot.
For example, "recommend(name[Tom Clancy], re-
lease_year[1999], has_linux_release[yes])" com-
prises the intention "recommend", slot names "re-
lease_year, name, and has_linux_release", and slot
values "1999, Tom Clancy, and yes." We use a slot
value dictionary, created from grouping all unique
values corresponding to the same slot name in the
training set, for this replacement. After slot value
replacement, we could generate an unseen input
like "recommend(name[RollerCoaster Tycoon], re-
lease_year[2001], has_linux_release[no])." These
candidate inputs are then fed into the fine-tuned
T5 model to generate initial predictions. The Slot
Error Checker is applied to identify the parts of
the inputs with slot errors, which are subsequently
marked with an error-correcting prompt.

Then, ground-truth output for these prompted un-
seen inputs needs to be generated. We pass the col-
lected prompted unseen inputs into the fine-tuned
TS5 model to produce 10 predictions using beam
search. These predictions are then subjected to Slot
error checking. The prediction that is free of slot
errors is selected as the ground truth. In scenarios
where multiple outputs from beam search are free
of slot errors, the output with the highest probabil-
ity, as determined by the beam search, is chosen as
the ground truth.

Prompt Tuning. Once sufficient input-output
pairs are generated, we fine-tune the error-
correcting prompts while keeping the TS model
fixed. The training process is designed to learn
error-correcting prompts that guide the TS model
to produce outputs without missing slot values. As
the prompt training dataset contains examples that
are correctly or wrongly labeled, the prompts learn
how to handle these situations during training. For
instance, the slot "RATING [poor]’ is tagged with
an error indication prompt because it does not align
with the reference "one of the worst games.” How-
ever, these error indication prompts do not affect
the prediction during regeneration. This character-

istic makes our method more robust compared to
previous post-editing methods that rely on strict
rules.

In our design, we train deep prompts (P-Tuning
v2 (Liu et al., 2022)). Specifically, we use 3
error-correcting prompts for T5-base and 6 error-
correcting prompts for T5-small. The trainable
prompts are added to each layer in T5, encompass-
ing the word embeddings of the error-correcting
prompts and the key-value embeddings in every
layer.

Prompt Initialization In addition to the work-
flow shown in Figure 2, our ablation study finds the
advantages of introducing a prompt initialization
phase. This phase trains a robust initial embedding,
ensuring that text generation quality is unaffected
by prompt insertion. More details are described in
the appendix.

4 Experiment

We compare our VCP method with various other
approaches on the E2E (Novikova et al., 2017)
and ViGGO (Juraska et al., 2019) datasets. Our
primary comparison is with the two methods that
guide attention behavior, SEA-GUIDE (Juraska
and Walker, 2021) and DM-NLG (Seifossadat and
Sameti, 2023), because they perform the best. The
other methods included in our comparison are
K&M (Kedzie and McKeown, 2020), which uti-
lizes data augmentation, and DT (Harkous et al.,
2020), which employs a generation-reranking ap-
proach. S2S (Juraska et al., 2019) is the baseline
mentioned in the original ViGGO dataset paper.

4.1 Dataset and Evaluation Metrics

The experiments are conducted on the E2E and
ViGGO datasets. The E2E dataset (Novikova et al.,
2017), specifically designed for the restaurant do-
main, offers a data-driven approach for end-to-end
natural language generation system training. The
ViGGO dataset (Juraska et al., 2019) targets open-
domain dialogue systems in video game topics,
covering 9 generalizable and conversational dia-
logue act types.

Our system’s performance is assessed using a
comprehensive set of metrics. For non-semantic
error evaluation, we use BLEU (Papineni et al.,
2002), METEOR (Lavie and Agarwal, 2007),
ROUGE (Lin, 2004), CIDEr (Vedantam et al.,
2015), which are assessed using the E2E evaluation



Model BLEU MET. ROUGE CIDEr SER | SLSER
T5-smallyoamseareh baseline 53.2+£054 0392 0637 2652 0.89+0.096% 3%
T5-basepeamscarch baseline 53.1+£0.28 0393 0.635 2655 0.60+0.13% 2%
S2S(Juraska et al., 2019) 51.9 0388 0.631 2531 2.55% -
DT(Harkous et al., 2020) 53.6 0394 0.640 2700 1.68% -
K&M(Kedzie and McKeown, 2020) 48.5 0380 0592 2454 0.46% -
SEA-GUIDE5_ sman(Juraska and Walker, 2021)  53.2+0.53 0392 0.637  2.693  0.7+£0.097%  2.0%
SEA-GUIDE5_pase(Juraska and Walker, 2021)  53.2+0.30 0393 0.635  2.658 0.51+£0.10% 1.7%
VCPr5_small 52.6 051 0392 0632  2.628 0.41+0.085% 1.4%
VCP 5 pase 52.4+£0.19 0391 0.627 2620 033+£0.19% 12%

Table 2: Comparing of our approach, VCP, to other methods and TS5 baseline on ViGGO dataset. SLSER represents
how many percentage of the sentences contains slot error. We mainly compare SER and BLEU. The subscript of
each method represents the base model the method is using.

Model BLEU MET. ROUGE. SER | SLSER
T5-smallgycedysearch baseline 67.0 0.454 0.692 1.60% 9.9%
T5-smallpeqmsearch baseline 66.7 0.453 0.694 2.85% 11.6%
T5-basegreedysearch baseline 66.8 0.459 2.282 1.85% -
T5-basepeamsearch baseline 66.7 0.453 0.697 3.94% -
S2S(Juraska et al., 2019) 66.2 0.445 0.677 0.91% -
K&M(Kedzie and McKeown, 2020) 66.3 0.453 0.693 0 -
SEA-GUIDE75_ gman (Juraska and Walker, 2021) 67.5 0.453  0.690 0.04% 0.25%
SEA-GUIDE75_p,sc(Juraska and Walker, 2021) 68.2 0.454 0.691 0.05% 0.32%
DM-NLG no postprocess(Seifossadat and Sameti, 2023) 66.7 0.456 0.691 0.03% -
DM-NLG postprocess: GPT-2(Seifossadat and Sameti, 2023) 68.6 0.482 0.713 0.03% -
VCPr15_smail 67.0+0.18 0.451 0.690 0.002% 0.015%

Table 3: Comparison of our method VCP to TS5 baseline and other methods on E2E dataset. SLSER represents how
many percentage of the sentences contains slot error. We mainly compare SER and BLEU. The subscript of each

method represents the base model the method is using.

script'. For semantic error evaluation, we use the
SER which measures the error rate of slot values
in the generated text. We apply the same auto slot
evaluation script used in the SEA-GUIDE project?,
encompassing hundreds of evaluation rules. The
auto evaluation script exhibits a 94% agreement
rate aligning with human judgment.

The Slot Error Rate (SER) is calculated by divid-
ing the number of slot errors by the total number
of slots. For instance, if a sentence contains 1 slot
error but has a total of 8 slots, the slot error rate for
this incorrect sentence would be 12.5% rather than
100%. People unfamiliar with SER might underes-
timate the severity of a low SER rate. Therefore,
we introduce the Sentence-Level Semantic Error
Rate (SLSER), which counts the percentage of sen-
tences with semantic errors. This analysis was
conducted manually to highlight the severity of the
slot errors. We primarily use SER to measure slot
errors, as this is the common metric used in other
research.

"https://github.com/tuetschek/e2e-metrics
2https://github.com/jjuraska/data2text-nlg

4.2 Setup

We observed a substantial variance in the SER of
the TS5 baseline, SEA-GUIDE, and our method
when applied to the ViGGO dataset. To ensure a
fair comparison, we trained 5 instances each of the
T5-small and T5-base models, each for 20 epochs.
We also ran SEA-GUIDE and our VCP 5 times
for T5-base and T5-small, calculating the mean
and variance. All optimized models were selected
based on validation loss. In the VCP project, we
used a batch size of 10 and a maximum sentence
length of 300 tokens. All tests were conducted on
a single RTX 3090 GPU, with a linear learning
rate scheduler. More comprehensive information
regarding the prompt training hyperparameters is
provided in the Appendix. For the E2E datasets, we
followed the same procedure. The experimental re-
sults for other methods, where standard deviations
are not reported, are as presented in Tables 2 and
3, and have been taken directly from the original
papers.


https://github.com/tuetschek/e2e-metrics
https://github.com/jjuraska/data2text-nlg

BLEU SER BLEU SER
T5-smallpegmsearch baseline  53.2 0.89% T5-smallpeqmsearch Daseline 53.2 0.89%
VCPrssmall 52.6 0.41% VCP75small 52.6 0.41%
GPT3.5 examples 25.1 7.3% Remove position information  52.4 0.72%
GPT3.5 selected examples ~ 22.3 6.72% Fine-tune T5(not use prompt) 51.4 0.70%
GPT4 examples 30.7 0.90% No prompt initilization 52.6 0.65%
GPT4 selected examples 27.4 0 Directly sampling the output ~ 50.6 0.62%

Table 4: Performance comparison between large lan-
guage models, TS baseline and our method

4.3 Performance Comparison

As demonstrated in Table 2, we contrast our
methodology, VCP, with the TS5 baseline and other
methods using the ViGGO dataset. Our method
exhibits a notable advantage in terms of reducing
the Slot Error Rate (SER) while maintaining com-
parable non-SER scores to the TS5 baseline. The
SER result reported by K&M cannot be directly
compared with our method, given that we employ
different methodologies for calculating SER. Our
VCP method reduces SER from 0.89% to 0.41%
on T5-small and from 0.60% to 0.33% on T5-base.
As shown in Table 3, for the E2E dataset, our
VCP method not only retains text generation qual-
ity on non-SER evaluation metrics but also reduces
SER from over 2.5% for the TS beam search base-
line to almost 0. This is lower than other methods,
except for K&M. Although K&M performs well on
the E2E dataset, it struggles to maintain text gener-
ation quality, achieving a 48.5 BLEU score on the
ViGGO dataset. DM-NLG (Seifossadat and Sameti,
2023), with post-processing using GPT-2, reduces
SER to 0.03% and improves text fluency on non-
SER evaluation metrics. However, their method
incorporates a post-processing stage that employs
a significantly larger language model, GPT-2, to
enhance the fluency of the initial prediction. This
makes the text quality comparison with our method
somewhat unfair. Our method achieves a higher
BLEU score compared to DM-NLG without post-
processing, while reaching a lower SER score.

4.4 Comparing to LLMs

The findings are summarized in Table 4, where we
evaluate GPT3.5 and GPT4. It is critical to note
that the performance of GPT3.5, when given five in-
context examples of the input intent type (as shown
in Appendix-Prompt with One Example for Each
Intent), significantly underperforms compared to
the TS5 baseline in terms of the BLEU score. This

Table 5: Ablation study on ViGGO dataset

underperformance is also evident when GPT3.5 is
given one in-context example for every intent from
the ViGGO dataset (details in Appendix-Prompt
with Selected Examples). The same prompting
strategy was applied to GPT4. Although GPT4
does not achieve a high BLEU score, it attains con-
siderably lower SER scores. Remarkably, GPT4
achieved a 0% SER with selected in-context ex-
amples, showcasing its exceptional capability to
accurately follow instructions.

We believe the lower prediction quality gener-
ated by GPT3.5 and GPT4 is primarily due to
the complexities involved in expressing the rela-
tionship between the input and output through in-
context examples and prompts. For instance, de-
spite being provided with five distinct request at-
tribute examples and clear prompt explanations
(as detailed in Appendix-Prompt with Selected Ex-
amples), GPT3.5 falls short in accurately replicat-
ing the desired tone and often misconstrues the
intended meaning of the request attribute intent in
the input data. For example, in the data shown in
Appendix-Prompt with Selected Examples, the in-
tent of the request attribute suggests that the user is
seeking to ascertain whether their feelings are aver-
age. GPT3.5 misinterprets this, inferring that the
input data is attempting to verify all available infor-
mation. There are myriad ways to interpret how an
Al model should convert input data into text. How-
ever, the true relationship can be more effectively
understood through training a language model on
thousands of examples, rather than presenting it
with a limited number of in-context examples and
descriptions. Consequently, supervised training
continues to play an essential role in data-to-text
generation models.

S Ablation Study

In Table 5, we conduct an ablation study using the
T5-small model on the ViGGO dataset.



5.1 Removing Position Information

In this experiment, we evaluate the importance of
placing error-correcting prompts adjacent to the
slot errors. To this end, we remove the slot er-
ror position information by always positioning the
error-correcting prompts at the front of the inputs.
Table 5 illustrates that slot error rates rise when we
remove information regarding error locations, un-
derscoring the advantage of highlighting the proba-
ble sites of errors.

5.2 Fine-tuning the Entire Model (TS no
prompt)

In this experiment, we assess whether using error-
correcting prompts results in better performance
than fine-tuning the entire model on the generated
training data. After training a TS5 model on the
training dataset, we further fine-tune it with a learn-
ing rate of 5&-3 for 10 epochs using the prompt
training dataset (with error-correcting prompts re-
moved) created in the Data Generation section. We
compare its performance to VCP, which only trains
error-correcting prompts. As shown in Table 5, the
BLEU score and SER generated by ’Fine-tune T5’
are noticeably lower than those achieved by prompt
tuning methods, demonstrating the importance of
using prompts. The reason lies in the fact that
prompts not only label the error locations but also
allow the original model to remain frozen. The orig-
inal model, trained on ground-truth data labeled by
humans (unlike ground-truth in the prompt training
datasets created by T5 models which may contain
errors), excels at producing high-quality texts. Uti-
lizing prompts enables the minimally affected well-
trained TS5 model, thereby yielding better-quality
text outputs (high BLEU score) and learning a more
generalizable ability to guide language models in
reducing slot errors.

5.3 Remove the prompt initialization training
process

During the training process, we first train prompt
initialization and then fine-tune the initialization
embedding, as opposed to directly fine-tuning a ran-
domly initialized embedding. In this experiment,
we aim to evaluate the significance of prompt ini-
tialization by comparing the performance of VCP
before and after using the prompt initialization step
(Not initial.). As shown in Table 5, there is a de-
cline in the BLEU score and an increase in the SER
score after the removal of prompt initialization,

thereby emphasizing its vital role in maintaining
the quality of text generation.

5.4 Sampling the best prediction directly

In our project, we use error-correcting prompts to
guide fine-tuned TS5 models in correcting their slot
errors. We compare our method to directly sam-
pling 10 outputs and selecting the best prediction
using an SER score. The results demonstrate that
while the direct sampling method reduces the SER,
the quality of the generated texts diminishes com-
pared to the prompt-based method.

The main reason for this is that the slot error
checker does not always accurately recognize when
generated texts use different words to mention slot
information. This can result in the original pre-
diction being incorrectly identified as having er-
rors, leading to the selection of alternative predic-
tions which may have lower text fluency. Error-
correcting prompts, on the other hand, can learn
generalizable knowledge during training, allowing
them to guide the TS5 model beyond the sampling
search range and perform more natural predictions.

6 Discussion and Conclusion

By utilizing a feedback system pipeline, our
method achieves the lowest SER compared to other
methods, while still maintaining a comparable level
of text generation quality.

Our approach attains a lower SER and maintains
text quality primarily because it does not overly
rely on predefined rules, which can be inaccurate
in complex scenarios. Our specialized training
method enables accurate regeneration even with
imprecise feedback. Additionally, our feedback
system not only informs the model about the cor-
rectness of its output but also indicates where the
errors are located.

Our method is particularly suitable for smaller
models that are incapable of reasoning based on
natural language feedback. To preserve the effi-
ciency advantage of such models, we use a basic
verifier. While this verifier is not highly accurate,
it is both easy to implement and fast, making it an
efficient choice.

We hope VCP can be adapted for other appli-
cations that require a feedback system, especially
in scenarios where providing accurate feedback or
understanding feedback is challenging. Potential
applications include text-to-image generation, story
summarization, and text-to-SQL generation.



7 Limitations

Our method effectively reduces slot errors; how-
ever, it also slightly decreases text fluency. This
decrease in fluency occurs because we train the
prompt tokens using ground truth data generated
by the fine-tuned language model itself, which may
sometimes be inaccurate or sound unnatural. To
improve text fluency, the introduction of a filter
to eliminate low-quality text or the use of post-
processing tools might be beneficial.
Additionally, it’s important to note that our ap-
proach has been specifically tested on data-to-text
generation tasks. We have not yet explored the
potential of applying this method to other types of
tasks. Future research may investigate its applica-
bility and effectiveness in different domains or for
various natural language processing challenges.
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A Prompt with Selected Examples

We demonstrate an example of the prompt we use
for GPT3.5. We demonstrate the prompt for ran-
dom select the example from training dataset with
the intent that is the same as the intent in the test
example (request attribute).

PROMPT:

please perform data-to-text generation for me.
Domain is video game. The words before the
bracket are intentions.

For example, when the intention is give opinion,
then the output should be a sentence that asks for
opinion.

when the intention is verify attribute, then the
output should be a sentence that try to verify the
attribute.

Example: Input: request attribute(esrb[]) Output:
Are there any ESRB content ratings which you give
preference to when picking a game to play?

Input: request attribute(release year[]) Output:
Can you think of a year, in which video games were
particularly good?

Input: request attribute(esrb[]) Output: Are there
any ESRB content ratings which you give prefer-
ence to when picking a game to play?

Input: request attribute(esrb[]) Output: Are there
any ESRB content ratings which you give prefer-
ence to when picking a game to play?

Input: request attribute(developer[]) Output:
Which game developer do you think is the best?

Question: Input: verify attribute(namef(little big
adventure], rating[average], has multiplayer[no],
platforms[playstation])

Output:

Answer by GPT3.5: Can you confirm that Little
Big Adventure has an average rating and does not
have multiplayer? Also, is it available on PlaySta-
tion?

GroundTruth: ['I remember you saying you
found Little Big Adventure to be average. Are
you not usually that into single-player games on
PlayStation?’, "Earlier, you stated that you didn’t
have strong feelings about PlayStation’s Little Big
Adventure. Is your opinion true for all games which
don’t have multiplayer?", ’I recall that you were
not that fond of Little Big Adventure. Does single-
player gaming on the PlayStation quickly get bor-
ing for you?’]
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B Prompt with One Example for Each
Intent

We demonstrate an example of the prompt we use
for GPT3.5. In the example in the Appendix-
Prompt with One Example for Each Intent, we
demonstrate the prompt we use for all of the test
cases. The prompt include one example for each
intent.

PROMPT:

please perform data-to-text generation for me.
Domain is video game. the words before the
bracket are intentions. For example, when the in-
tention is give opinion, then the output should be
a sentence that asks for opinion. when the inten-
tion is verify attribute, then the output should be a
sentence that try to verify the attribute.

Example for each intention: Input: give opin-
1on(NAME [SpellForce 3], RATING [poor], GEN-
RES [real-time strategy, role-playing], PLAYER
PERSPECTIVE [bird view]) Output: I think that
SpellForce 3 is one of the worst games I’ve ever
played. Trying to combine the real-time strategy
and role-playing genres just doesn’t work, and the
bird’s eye view makes it near impossible to play.

Input: verify attribute(NAME [Little Big Adven-
ture], RATING [average], HAS MULTIPLAYER
[no], PLATFORMS [PlayStation]) Output: I recall
that you were not that fond of Little Big Adven-
ture. Does single-player gaming on the PlayStation
quickly get boring for you?

Input: confirm(NAME [Hellblade: Senua’s Sac-
rifice], RELEASE YEAR [2017], DEVELOPER
[Ninja Theory]) Output: Oh, do you mean the 2017
game from Ninja Theory, Hellblade: Senua’s Sac-
rifice?

Input: request(SPECIFIER [interesting]) Output:
Have you played any interesting games lately?

Input: suggest(NAME [Half-Life 2], GENRES
[shooter], PLAYER PERSPECTIVE [first person])
Output: Do you also enjoy playing first-person
shooters, such as Half-Life 2?

Input: request explanation(RATING [poor],
HAS MAC RELEASE [yes]) Output: What is it
about Mac games that you find so disappointing?

Input: inform(NAME [Max Payne 3], RE-
LEASE YEAR [2012], GENRES [action-
adventure; shooter], MULTIPLAYER [yes])

Output: Max Payne 3 is a multiplayer action-
adventure shooter from 2012.

Input:  request attribute(AVAILABLE ON
STEAM []) Output: Do you prefer playing games
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Model initial. Ir  train. Ir epochs prompt token num
VCPrs5_sman  0.01 0.005 5 6
VCPr5_pase  0.01 0.01 2 3

Table 6: The following details pertain to the training pro-
cess of our VCP method for experiments on the ViGGO
datasets. ’Initial. Ir’ stands for the initial learning rate
used for prompt initialization, while *Train. 1Ir’ repre-
sents the learning rate used for prompt tuning. *Epochs’
refers to the number of epochs for prompt tuning.

Model initial. Ir  train. Ir  epochs prompt token num
VCPrs5_sman  0.01 0.01 10 6

Table 7: The following details pertain to the training
process of our VCP method for experiments on the E2E
datasets. ’Initial. 1’ stands for the initial learning rate
used for prompt initialization, while ’Train. Ir’ repre-
sents the learning rate used for prompt tuning. *Epochs’
refers to the number of epochs for prompt tuning.

that you can get on Steam?
Question: Input: YOUR INPUT QUESTION
Output:

C Slot Error Checking Examples

For instance, has_linux_released[yes], the first step
is to see if linux appears in the prediction. If it
does not, error-correcting prompts are positioned
beside the slot value. If it does appear, we em-
ploy simple dependency parsing rules and POS
tags to ascertain if any negation words are linked
to linux. If negation words are found, the slot value
is marked with a error-correcting prompts. If no
negation words are present, we infer that there are
no slot errors concerning has_linux_released[yes].
Conversely, if the slot value is no, such as in
has_linux_released[no], the initial step is to check
for the mention of /inux in the prediction. If linux
is not mentioned, it is assumed that no slot errors
exist. However, if linux is mentioned, we look for
any associated negation words. If none are found,
error-correcting prompts are placed beside the no
slot value, indicating a potential slot error. If nega-
tion words are present, we presume the absence of
slot errors.

D Training parameters

We use the learning rate begins at 0.01 and reduces
gradually over 20 epochs for prompt embedding
initialization. We use 3 error-correcting prompts
for T5-base and 6 error-correcting prompts for T5-
small. More details can be seen in Table 6 and
7.



E Experiment details

On the ViGGO dataset, we run the TS baseline,
SEA-GUIDE project, and our VCP for 5 times.
We report the mean and variance in Table 2 and
reproduce the experiment results of S2S, DT, and
K&M from the SEA-GUIDE paper. We also run
the ablation study once and report the results in
Tables 4 and 5.

For the E2E dataset, we run our VCP and re-
ported the mean and variance. We report the ex-
periment results from the DM-NLG paper and the
SEA-GUIDE paper in Table 3.

We use the SER auto-evaluation script from the
SEA-GUIDE Github project to evaluate SER on
both the ViGGO and E2E datasets. However, when
evaluating the model on the E2E dataset, the SER
evaluation script is not accurate. As a result, we
manually check every prediction labeled as having
slot errors by the SER evaluation script. When
applying GPT3.5 and GPT4 to the ViGGO dataset,
we also manually check every prediction labeled as
incorrect by the SER evaluation script.

F Prompt Initialization Details

To achieve this, we train error-correction prompts
such that inserting them does not alter the output of
the fine-tuned TS5 model. Specifically, we remove
the prompts from the unseen prompted input, then
forward these inputs to the fine-tuned TS5 model
for prediction. We use these predictions as our
training targets and the unseen prompted inputs as
training input. We train the error correction prompt
tokens while remain fine-tuned T5 model frozen.
Performing prompt tuning on such a initialized
prompt instead of the random initialized prompt is
demonstrated to have better performance as shown
in the prompt initialization ablation study.
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