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Abstract

Small language models like T5 excel in gen-001
erating high-quality text for data-to-text tasks,002
offering adaptability and cost-efficiency com-003
pared to Large Language Models (LLMs).004
However, they frequently miss keywords,005
which is considered one of the most severe and006
common errors in this task.007

In this work, we explore the potential of using008
feedback systems to enhance semantic fidelity009
in smaller language models for data-to-text gen-010
eration tasks, through our Verification and Cor-011
rection Prompting (VCP) approach.012

In the inference stage, our approach involves a013
multi-step process, including generation, ver-014
ification, and regeneration stages. During the015
verification stage, we implement a simple rule016
to check for the presence of every keyword in017
the prediction. Recognizing that this rule can018
be inaccurate, we have developed a carefully019
designed training procedure, which enabling020
the model to incorporate feedback from the021
error-indication prompt effectively, despite its022
potential inaccuracies.023

The VCP approach effectively reduces the Se-024
mantic Error Rate (SER) while maintaining the025
text’s quality.026

1 Introduction027
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Abstract
The uptake of deep learning in natural lan-
guage generation (NLG) led to the release of
both small and relatively large parallel corpora
for training neural models. The existing data-
to-text datasets are, however, aimed at task-
oriented dialogue systems, and often thus lim-
ited in diversity and versatility. They are typ-
ically crowdsourced, with much of the noise
left in them. Moreover, current neural NLG
models do not take full advantage of large
training data, and due to their strong gener-
alizing properties produce sentences that look
template-like regardless. We therefore present
a new corpus of 7K samples, which (1) is clean
despite being crowdsourced, (2) has utterances
of 9 generalizable and conversational dialogue
act types, making it more suitable for open-
domain dialogue systems, and (3) explores the
domain of video games, which is new to dia-
logue systems despite having excellent poten-
tial for supporting rich conversations.

1 Introduction

The recent adoption of deep learning methods in
natural language generation (NLG) for dialogue
systems resulted in an explosion of neural data-
to-text generation models, which depend on large
training data. These are typically trained on one
of the few parallel corpora publicly available, in
particular the E2E (Novikova et al., 2017) and the
WebNLG (Gardent et al., 2017) datasets. Crowd-
sourcing large NLG datasets tends to be a costly
and time-consuming process, making it impracti-
cal outside of task-oriented dialogue systems. At
the same time, current neural NLG models strug-
gle to replicate the high language diversity of the
training sentences present in these large datasets,
and instead they learn to produce the same generic
type of sentences as with considerably less train-
ing data (Deriu and Cieliebak, 2018; Juraska and
Walker, 2018; Dušek et al., 2019).

give opinion(NAME [SpellForce 3], RATING [poor],
GENRES [real-time strategy, role-playing], PLAY-
ER PERSPECTIVE [bird view])

I think that SpellForce 3 is one of the worst games I’ve
ever played. Trying to combine the real-time strategy
and role-playing genres just doesn’t work, and the bird’s
eye view makes it near impossible to play.

verify attribute(NAME [Little Big Adventure], RAT-
ING [average], HAS MULTIPLAYER [no], PLATFORMS
[PlayStation])

I recall that you were not that fond of Little Big Ad-
venture. Does single-player gaming on the PlayStation
quickly get boring for you?

Table 1: Examples of MRs and corresponding refer-
ence utterances in the ViGGO dataset. The DA of the
MRs is indicated in italics, and the slots in small caps.
The slot mentions in the utterances are bolded.

Motivated by the rising interest in open-domain
dialogue systems and conversational agents, we
present ViGGO – a smaller but more comprehen-
sive dataset in the video game domain, introducing
several generalizable dialogue acts (DAs), mak-
ing it more suitable for training versatile and more
conversational NLG models.1 The dataset pro-
vides almost 7K pairs of structured meaning repre-
sentations (MRs) and crowdsourced reference ut-
terances about more than 100 video games. Ta-
ble 1 lists three examples.

Video games are a vast entertainment topic that
can naturally be discussed in a casual conversa-
tion, similar to movies and music, yet in the dia-
logue systems community it does not enjoy pop-
ularity anywhere close to that of the latter two
topics (Fazel-Zarandi et al., 2017; Li et al., 2017;
Moghe et al., 2018; Shah et al., 2018; Khatri et al.,
2018). Restaurants have served as the go-to topic
in data-to-text NLG for decades, as they offer a
sufficiently large set of various attributes and cor-

1The ViGGO corpus is available for download at:
https://nlds.soe.ucsc.edu/viggo

Figure 1: The ViGGO dataset (Juraska et al., 2019).

Data-to-text generation aims to convert struc-028

tured data into coherent, human-readable text, as029

shown in Figure 1. It has a broad range of practi-030

cal applications, including report generation, auto-031

mated journalism, data visualization, and dialogue 032

systems, or it can be used as intermediate steps 033

in large projects. In these applications, the input 034

can consist of various types of data, such as ta- 035

bles, graphs, or raw data. It is worth noting that 036

data-to-text generation is a controlled form of text 037

generation, where the output must be coherent with 038

the input and maintain semantic accuracy. 039

Fine-tuning pre-trained small models, such as 040

T5 (Raffel et al., 2020), which are more efficient 041

compared to LLMs, is often sufficient for many 042

data-to-text generation tasks, as these tasks do not 043

require strong reasoning skills. The main challenge 044

lies in ensuring adherence to instructions and ac- 045

curately replicating specific text styles. One of the 046

most severe and frequent problems is omissions, 047

the absence of crucial keywords (Yin and Wan, 048

2022). For instance, in the first example from Fig- 049

ure 1, if the prediction omits the name ’SpellForce 050

3’, then the prediction has one slot error. In this pa- 051

per, we introduce the ’slot error rate (SER),’ which 052

quantifies the rate of missing keywords. 053

Several research works aim to reduce the SER, 054

including the copy mechanism (Rebuffel et al., 055

2019; Puduppully et al., 2019), template-based 056

generation (Kale and Rastogi, 2020; Mehta et al., 057

2022), planning-then-generate (Xu et al., 2021; 058

Su et al., 2021; Kasner and Dusek, 2022), and 059

post-editing (Jolly et al., 2022; Balachandran et al., 060

2022). These methods often rely on strict rules and 061

can effectively reduce SER but may sacrifice text 062

fluency. Techniques such as those by (Juraska and 063

Walker, 2021; Seifossadat and Sameti, 2023) guide 064

attention behavior, leading the model to make more 065

accurate generations. Such methods are flexible, 066

thus reducing SER while maintaining text fluency. 067

Regeneration according to feedback (Madaan 068

et al., 2023; Xue et al., 2023) has recently gained 069

popularity, predominantly in LLMs. This approach 070

requires an accurate feedback system to gener- 071

ate natural language feedback prompts. However, 072
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smaller language models, focused on efficiency,073

may not interpret these feedback prompts accu-074

rately and often lack a precise verifier. Employing075

an accurate verifier, such as an LLM or meticu-076

lously handcrafted rules, would contradict the orig-077

inal goal of prioritizing efficiency. We aim to ex-078

plore the feasibility of using a feedback system079

with a trivial verifier to enhance the semantic accu-080

racy of a smaller model in data-to-text generation.081

Inspired by previous works, we propose a082

prompt-based, test-time correction pipeline, VCP,083

designed to encourage the model to include missed084

slots identified by a slot error checker while main-085

taining text quality. The overall inference process086

is illustrated in Figure 2. Initially, the fine-tuned T5087

model receives the input slots and generates initial088

predictions. The slot error checker then verifies089

whether any slots are missing from the output. If090

a slot is missing, we label the corresponding error-091

correcting prompts along with the missed input092

value. During the regeneration process, these error-093

correcting prompts guide the fine-tuned T5 model094

to include the omitted slot value in its subsequent095

prediction. An example of this is provided in Table096

1.097

To enable the aforementioned error-correcting098

regeneration process, it is necessary to train error-099

correcting prompts that encourage the model to in-100

clude slots it previously missed. Since the slot error101

checker relies on trivial rules, the trained prompts102

must guide the T5 model in such a way that it does103

not alter its prediction when the prompt is misla-104

beled. The training process for these prompts is105

outlined in the training section of Figure 2. Specifi-106

cally, in the Data Generation process, a data gener-107

ator is used to create unseen prompted inputs along108

with their corresponding ground truths. This serves109

to construct both the prompt initialization training110

dataset and the prompt training dataset. During111

training, we first train the prompt initialization and112

then fine-tune the prompt embedding based on the113

initialized prompt. These error-correcting prompts114

are designed to direct the fine-tuned T5 model to in-115

clude the labeled slot values it previously missed in116

its predictions. During training, the model and the117

prompts are exposed to scenarios where slots are118

mislabeled by error-correcting prompts, teaching119

them to disregard inaccurate labels.120

Our method achieves a lower SER while main-121

taining competitive text fluency compared to other122

methods.123

2 Related Works and Comparative 124

Analysis 125

In data-to-text generation tasks, the omission of 126

keywords (slot error) is identified as the most se- 127

vere and frequent error (Yin and Wan, 2022). 128

Several strategies have been developed to ad- 129

dress this issue, each falling into distinct categories. 130

The first strategy involves using a strict genera- 131

tion process to ensure the inclusion of keywords. 132

This includes methods such as the copy mech- 133

anism (Rebuffel et al., 2019; Puduppully et al., 134

2019), template-based generation methods (Kale 135

and Rastogi, 2020; Mehta et al., 2022), and plan- 136

then-generate approaches (Xu et al., 2021; Su et al., 137

2021; Kasner and Dusek, 2022). These methods en- 138

force a model’s generation to strictly adhere to the 139

input structure. While they effectively minimize 140

slot errors, they suffer from reduced text fluency 141

due to their inherent inflexibility. 142

The second strategy involves using a post-editing 143

approach. (Jolly et al., 2022) search for missing 144

keywords and find the best position to insert the 145

phrase containing these keywords. This approach 146

is not directly comparable to our method because 147

they only conducted experiments in a few-shot set- 148

ting. (Balachandran et al., 2022) adversarially train 149

an error correction network to correct factual errors 150

in summarizing tasks. The error correction training 151

dataset is constructed by replacing correct factual 152

words with incorrect ones. In data-to-text gener- 153

ation, missing even one keyword can disrupt the 154

entire sentence, thus this method cannot be directly 155

applied to data-to-text generation. 156

The third strategy involves guiding the attention 157

behavior. (Juraska and Walker, 2021) manually 158

identified three attention patterns associated with 159

semantic errors. They created a script to automat- 160

ically adjust the beam search scores according to 161

these three attention patterns during inference. By 162

adding a dynamic memory module to the attention- 163

based network, DM-NLG (Seifossadat and Sameti, 164

2023) can store previously generated words, thus 165

better guiding the generation process to include key 166

information. These two approaches reduce SER 167

while maintaining the quality of text generation. 168

There have been increasing works utilizing feed- 169

back systems for generating better predictions 170

(Madaan et al., 2023; Xue et al., 2023; Peng et al., 171

2023; Shridhar et al., 2023b,a). They are mostly 172

used for reasoning tasks and have an inference pro- 173

cess similar to our work. These feedback systems 174
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Step1: Initial Prediction
Input recommand(name(Tom Clancy], release_year[1999], has_linux_release[yes])
T5 predictions Since you’re into Linux games, you heard of Tom Clancy?
Step2: Verification
Find slot errors 1999 ×, Tom Clancy, Linux
Label missing slots recommand(release_year[<token1><token2><token3>1999], name(Tom

Clancy], has_linux_release[no])
Step3: Regeneration
Prompted Input recommand(release_year[<token1><token2><token3>1999], name(Tom

Clancy], has_linux_release[no])
Send to T5 to gener-
ate prediction

Since you’re into Linux games, have you heard of Tom Clancy which is released
in 1999?

Table 1: The inference process comprises three steps: 1. We utilize the fine-tuned T5 model to generate an initial
prediction. 2. The slot error checker is then deployed to ascertain the presence of any slot errors. If such errors
are detected, we label the error-correcting prompts to highlight the location of potential slot errors. 3. Lastly, we
reintroduce the prompted input to the fine-tuned T5 model for regeneration. The tokens(error-correcting prompts)
have the capacity to alter the regenerated outputs, ensuring the inclusion of previously missed slots.

often use a Large Language Model (LLM), a prior175

knowledge base, or some rules to verify if there are176

mistakes in the initial generation. An LLM will177

then read the instructions returned by the verifier178

and regenerate the output accordingly.179

Our approach is distinct from previous feedback180

systems in that: 1. Our verification process is ef-181

ficient and trivial. It does not require prior knowl-182

edge or a LLM. 2. Our prompt feedback can guide183

smaller models that are not capable of responding184

to natural language feedback. 3. The prompt is185

capable of handling inaccurate feedback. 4. Our186

VCP can maintain text generation styles. Our work187

differs from previous post-editing models in that188

instead of applying a post-editing model to mod-189

ify the details of the initial output, we use error-190

indicating prompts to guide the model in regener-191

ating the output. Regenerating the entire output192

allows the model to reorder the sentence structure193

or infill the missing prompts in a flexible way ac-194

cording to the previously missed slot, resulting in195

more fluent and consistent text output.196

3 Methodology197

Figure 2 provides a comprehensive illustration of198

our method, detailing both the inference and train-199

ing stages involved in the process.200

3.1 Inference201

An inference example is presented in Table 1, en-202

compassing three steps: initial generation, verifica-203

tion, and regeneration. Initially, we input the test-204

ing samples into the fine-tuned T5 model, which205

was trained with the original training dataset, to 206

generate the initial prediction. During the veri- 207

fication step, the Slot Error Checker, employing 208

simple rules, examines whether any slots from the 209

input are missing in the output, thereby identify- 210

ing slot errors. If any potential errors are detected, 211

we introduce error-correcting prompts adjacent to 212

the positions of the unmentioned slots in the in- 213

put. Lastly, in the regeneration step, the prompted 214

inputs are fed back into the fine-tuned T5 model. 215

These error-correcting prompts guide the T5 model 216

to incorporate the previously omitted slots during 217

the regeneration process. 218

3.2 Slot Error Checking 219

The Slot Error Checker verifies the presence of 220

slot errors. For non-boolean slot value, we sim- 221

ply verify that all slot values are included in the 222

prediction. For boolean slot value pairs, we do 223

not examine whether the actual slot value, that 224

is, yes or no, is present in the prediction. In- 225

stead, we focus on whether the noun part of the 226

slot names, identified by part-of-speech (POS) 227

tagging—such as linux from has_linux_released, 228

mac from has_mac_released, or steam from avail- 229

able_on_steam, is mentioned in the predictions. To 230

determine if the slot-value pairs are boolean, we 231

check whether the slot value is yes or no. The 232

checking process is straightforward, and we have 233

not implemented any domain-specific knowledge 234

in the slot error checkers. 235
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Figure 2: The workflow is comprised of train section and inference section. When training, we first fine tune a T5
model, then use data generator to generate prompt training dataset. Lastly use prompt tuning to teach error-correcting
prompts how to improve the semantic coverage in T5’s prediction. The inference section illustrates the overview of
the initial prediction, verification, and regeneration process. Please refer to Table 1 for more detailed insights.

Name: Tom Clancy, RollerCoaster Tycoon 
….
Release year: 1999, 2001 ….
Has linux release: yes, no……

: :                  : :
: :                  : :

recommand(name(Tom Clancy], release_year[1999], has_linux_release[yes])

recommand(name(RollerCoaster Tycoon], release_year[2001], has_linux_release[no])

Create Slot value 
dictionary

Input

Slot value dictionary

Do you recommend me playing rollercoaster tycoon game that is not available on linux?
Do you recommend me playing roller coaster tycoon game which released in 2001 and is not available on linux?
Do you recommend me playing roller coaster tycoon game which released in 2001 and is available on linux?

Use beam search to generate 10 outputs

❌

✅

Initial prediction
Do you recommend me playing rollercoaster tycoon game that is not available on linux?

Slot error checking: 2001 is not mentioned

Label prompt to locate slot error
recommand(name(RollerCoaster Tycoon], release_yeart [<token1> <token2> <token3> 2001], has_linux_release[no])

T5

T5: beam search or sampling

❌

Create Prompt Training Dataset 

recommand(name(RollerCoaster Tycoon], release_year[<token1> <token2> <token3> 2001], has_linux_release[no])
Do you recommend me playing roller coaster tycoon game which released in 2001 and is not available on linux?

Swap Slot value using the dictionary

Data GeneratorCreate unseen Input

Label input with prompt

Generate target

Create training data

Collection of initial input 

Initial inputs

unseen inputs

Pair labeled inputs and targets 
w

ith no sem
antic error

Figure 3: The workflow for generating datasets for training error-correcting prompts.

3.3 Training236

The training procedure, as illustrated in Figure237

2, begins by fine-tuning a T5 model using the238

original training dataset. This step establishes239

a well-initialized base model. Subsequently, a240

prompt training dataset is created for learning error-241

correcting prompts. Finally, while keeping the 242

fine-tuned T5 model frozen, the error-correcting 243

prompts are trained on the prompt training dataset 244

to enhance their ability to guide the language 245

model in integrating slot values that were previ- 246

ously missed. 247
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Data Generation: Since the training data has248

already been exposed to the T5 model during the249

initial fine-tuning, we cannot use the same dataset250

to learn the error-correction prompts. Therefore,251

a new training set is generated for prompt learn-252

ing, as depicted in Figure 3. Specifically, the data253

generation process (data generator) creates input-254

output pairs. The candidate input is generated255

by replacing the slot values in an input from the256

original training set with other values randomly257

sampled from the possible values for each slot.258

For example, "recommend(name[Tom Clancy], re-259

lease_year[1999], has_linux_release[yes])" com-260

prises the intention "recommend", slot names "re-261

lease_year, name, and has_linux_release", and slot262

values "1999, Tom Clancy, and yes." We use a slot263

value dictionary, created from grouping all unique264

values corresponding to the same slot name in the265

training set, for this replacement. After slot value266

replacement, we could generate an unseen input267

like "recommend(name[RollerCoaster Tycoon], re-268

lease_year[2001], has_linux_release[no])." These269

candidate inputs are then fed into the fine-tuned270

T5 model to generate initial predictions. The Slot271

Error Checker is applied to identify the parts of272

the inputs with slot errors, which are subsequently273

marked with an error-correcting prompt.274

Then, ground-truth output for these prompted un-275

seen inputs needs to be generated. We pass the col-276

lected prompted unseen inputs into the fine-tuned277

T5 model to produce 10 predictions using beam278

search. These predictions are then subjected to Slot279

error checking. The prediction that is free of slot280

errors is selected as the ground truth. In scenarios281

where multiple outputs from beam search are free282

of slot errors, the output with the highest probabil-283

ity, as determined by the beam search, is chosen as284

the ground truth.285

Prompt Tuning. Once sufficient input-output286

pairs are generated, we fine-tune the error-287

correcting prompts while keeping the T5 model288

fixed. The training process is designed to learn289

error-correcting prompts that guide the T5 model290

to produce outputs without missing slot values. As291

the prompt training dataset contains examples that292

are correctly or wrongly labeled, the prompts learn293

how to handle these situations during training. For294

instance, the slot ’RATING [poor]’ is tagged with295

an error indication prompt because it does not align296

with the reference ’one of the worst games.’ How-297

ever, these error indication prompts do not affect298

the prediction during regeneration. This character-299

istic makes our method more robust compared to 300

previous post-editing methods that rely on strict 301

rules. 302

In our design, we train deep prompts (P-Tuning 303

v2 (Liu et al., 2022)). Specifically, we use 3 304

error-correcting prompts for T5-base and 6 error- 305

correcting prompts for T5-small. The trainable 306

prompts are added to each layer in T5, encompass- 307

ing the word embeddings of the error-correcting 308

prompts and the key-value embeddings in every 309

layer. 310

Prompt Initialization In addition to the work- 311

flow shown in Figure 2, our ablation study finds the 312

advantages of introducing a prompt initialization 313

phase. This phase trains a robust initial embedding, 314

ensuring that text generation quality is unaffected 315

by prompt insertion. More details are described in 316

the appendix. 317

4 Experiment 318

We compare our VCP method with various other 319

approaches on the E2E (Novikova et al., 2017) 320

and ViGGO (Juraska et al., 2019) datasets. Our 321

primary comparison is with the two methods that 322

guide attention behavior, SEA-GUIDE (Juraska 323

and Walker, 2021) and DM-NLG (Seifossadat and 324

Sameti, 2023), because they perform the best. The 325

other methods included in our comparison are 326

K&M (Kedzie and McKeown, 2020), which uti- 327

lizes data augmentation, and DT (Harkous et al., 328

2020), which employs a generation-reranking ap- 329

proach. S2S (Juraska et al., 2019) is the baseline 330

mentioned in the original ViGGO dataset paper. 331

4.1 Dataset and Evaluation Metrics 332

The experiments are conducted on the E2E and 333

ViGGO datasets. The E2E dataset (Novikova et al., 334

2017), specifically designed for the restaurant do- 335

main, offers a data-driven approach for end-to-end 336

natural language generation system training. The 337

ViGGO dataset (Juraska et al., 2019) targets open- 338

domain dialogue systems in video game topics, 339

covering 9 generalizable and conversational dia- 340

logue act types. 341

Our system’s performance is assessed using a 342

comprehensive set of metrics. For non-semantic 343

error evaluation, we use BLEU (Papineni et al., 344

2002), METEOR (Lavie and Agarwal, 2007), 345

ROUGE (Lin, 2004), CIDEr (Vedantam et al., 346

2015), which are assessed using the E2E evaluation 347
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Model BLEU MET. ROUGE CIDEr SER ↓ SLSER
T5-smallbeamsearch baseline 53.2± 0.54 0.392 0.637 2.652 0.89± 0.096% 3%
T5-basebeamsearch baseline 53.1± 0.28 0.393 0.635 2.655 0.60± 0.13% 2%
S2S(Juraska et al., 2019) 51.9 0.388 0.631 2.531 2.55% -
DT(Harkous et al., 2020) 53.6 0.394 0.640 2.700 1.68% -
K&M(Kedzie and McKeown, 2020) 48.5 0.380 0.592 2.454 0.46% -
SEA-GUIDET5−small(Juraska and Walker, 2021) 53.2± 0.53 0.392 0.637 2.693 0.7± 0.097% 2.0%
SEA-GUIDET5−base(Juraska and Walker, 2021) 53.2± 0.30 0.393 0.635 2.658 0.51± 0.10% 1.7%
VCPT5−small 52.6± 0.51 0.392 0.632 2.628 0.41 ± 0.085% 1.4%
VCPT5−base 52.4± 0.19 0.391 0.627 2.620 0.33 ± 0.19% 1.2%

Table 2: Comparing of our approach, VCP, to other methods and T5 baseline on ViGGO dataset. SLSER represents
how many percentage of the sentences contains slot error. We mainly compare SER and BLEU. The subscript of
each method represents the base model the method is using.

Model BLEU MET. ROUGE. SER ↓ SLSER
T5-smallgreedysearch baseline 67.0 0.454 0.692 1.60% 9.9%
T5-smallbeamsearch baseline 66.7 0.453 0.694 2.85% 11.6%
T5-basegreedysearch baseline 66.8 0.459 2.282 1.85% -
T5-basebeamsearch baseline 66.7 0.453 0.697 3.94% -
S2S(Juraska et al., 2019) 66.2 0.445 0.677 0.91% -
K&M(Kedzie and McKeown, 2020) 66.3 0.453 0.693 0 -
SEA-GUIDET5−small (Juraska and Walker, 2021) 67.5 0.453 0.690 0.04% 0.25%
SEA-GUIDET5−base(Juraska and Walker, 2021) 68.2 0.454 0.691 0.05% 0.32%
DM-NLG no postprocess(Seifossadat and Sameti, 2023) 66.7 0.456 0.691 0.03% -
DM-NLG postprocess: GPT-2(Seifossadat and Sameti, 2023) 68.6 0.482 0.713 0.03% -
VCPT5−small 67.0± 0.18 0.451 0.690 0.002% 0.015%

Table 3: Comparison of our method VCP to T5 baseline and other methods on E2E dataset. SLSER represents how
many percentage of the sentences contains slot error. We mainly compare SER and BLEU. The subscript of each
method represents the base model the method is using.

script1. For semantic error evaluation, we use the348

SER which measures the error rate of slot values349

in the generated text. We apply the same auto slot350

evaluation script used in the SEA-GUIDE project2,351

encompassing hundreds of evaluation rules. The352

auto evaluation script exhibits a 94% agreement353

rate aligning with human judgment.354

The Slot Error Rate (SER) is calculated by divid-355

ing the number of slot errors by the total number356

of slots. For instance, if a sentence contains 1 slot357

error but has a total of 8 slots, the slot error rate for358

this incorrect sentence would be 12.5% rather than359

100%. People unfamiliar with SER might underes-360

timate the severity of a low SER rate. Therefore,361

we introduce the Sentence-Level Semantic Error362

Rate (SLSER), which counts the percentage of sen-363

tences with semantic errors. This analysis was364

conducted manually to highlight the severity of the365

slot errors. We primarily use SER to measure slot366

errors, as this is the common metric used in other367

research.368

1https://github.com/tuetschek/e2e-metrics
2https://github.com/jjuraska/data2text-nlg

4.2 Setup 369

We observed a substantial variance in the SER of 370

the T5 baseline, SEA-GUIDE, and our method 371

when applied to the ViGGO dataset. To ensure a 372

fair comparison, we trained 5 instances each of the 373

T5-small and T5-base models, each for 20 epochs. 374

We also ran SEA-GUIDE and our VCP 5 times 375

for T5-base and T5-small, calculating the mean 376

and variance. All optimized models were selected 377

based on validation loss. In the VCP project, we 378

used a batch size of 10 and a maximum sentence 379

length of 300 tokens. All tests were conducted on 380

a single RTX 3090 GPU, with a linear learning 381

rate scheduler. More comprehensive information 382

regarding the prompt training hyperparameters is 383

provided in the Appendix. For the E2E datasets, we 384

followed the same procedure. The experimental re- 385

sults for other methods, where standard deviations 386

are not reported, are as presented in Tables 2 and 387

3, and have been taken directly from the original 388

papers. 389
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BLEU SER
T5-smallbeamsearch baseline 53.2 0.89%
VCPT5small 52.6 0.41%
GPT3.5 examples 25.1 7.3%
GPT3.5 selected examples 22.3 6.72%
GPT4 examples 30.7 0.90%
GPT4 selected examples 27.4 0

Table 4: Performance comparison between large lan-
guage models, T5 baseline and our method

4.3 Performance Comparison390

As demonstrated in Table 2, we contrast our391

methodology, VCP, with the T5 baseline and other392

methods using the ViGGO dataset. Our method393

exhibits a notable advantage in terms of reducing394

the Slot Error Rate (SER) while maintaining com-395

parable non-SER scores to the T5 baseline. The396

SER result reported by K&M cannot be directly397

compared with our method, given that we employ398

different methodologies for calculating SER. Our399

VCP method reduces SER from 0.89% to 0.41%400

on T5-small and from 0.60% to 0.33% on T5-base.401

As shown in Table 3, for the E2E dataset, our402

VCP method not only retains text generation qual-403

ity on non-SER evaluation metrics but also reduces404

SER from over 2.5% for the T5 beam search base-405

line to almost 0. This is lower than other methods,406

except for K&M. Although K&M performs well on407

the E2E dataset, it struggles to maintain text gener-408

ation quality, achieving a 48.5 BLEU score on the409

ViGGO dataset. DM-NLG (Seifossadat and Sameti,410

2023), with post-processing using GPT-2, reduces411

SER to 0.03% and improves text fluency on non-412

SER evaluation metrics. However, their method413

incorporates a post-processing stage that employs414

a significantly larger language model, GPT-2, to415

enhance the fluency of the initial prediction. This416

makes the text quality comparison with our method417

somewhat unfair. Our method achieves a higher418

BLEU score compared to DM-NLG without post-419

processing, while reaching a lower SER score.420

4.4 Comparing to LLMs421

The findings are summarized in Table 4, where we422

evaluate GPT3.5 and GPT4. It is critical to note423

that the performance of GPT3.5, when given five in-424

context examples of the input intent type (as shown425

in Appendix-Prompt with One Example for Each426

Intent), significantly underperforms compared to427

the T5 baseline in terms of the BLEU score. This428

BLEU SER
T5-smallbeamsearch baseline 53.2 0.89%
VCPT5small 52.6 0.41%
Remove position information 52.4 0.72%
Fine-tune T5(not use prompt) 51.4 0.70%
No prompt initilization 52.6 0.65%
Directly sampling the output 50.6 0.62%

Table 5: Ablation study on ViGGO dataset

underperformance is also evident when GPT3.5 is 429

given one in-context example for every intent from 430

the ViGGO dataset (details in Appendix-Prompt 431

with Selected Examples). The same prompting 432

strategy was applied to GPT4. Although GPT4 433

does not achieve a high BLEU score, it attains con- 434

siderably lower SER scores. Remarkably, GPT4 435

achieved a 0% SER with selected in-context ex- 436

amples, showcasing its exceptional capability to 437

accurately follow instructions. 438

We believe the lower prediction quality gener- 439

ated by GPT3.5 and GPT4 is primarily due to 440

the complexities involved in expressing the rela- 441

tionship between the input and output through in- 442

context examples and prompts. For instance, de- 443

spite being provided with five distinct request at- 444

tribute examples and clear prompt explanations 445

(as detailed in Appendix-Prompt with Selected Ex- 446

amples), GPT3.5 falls short in accurately replicat- 447

ing the desired tone and often misconstrues the 448

intended meaning of the request attribute intent in 449

the input data. For example, in the data shown in 450

Appendix-Prompt with Selected Examples, the in- 451

tent of the request attribute suggests that the user is 452

seeking to ascertain whether their feelings are aver- 453

age. GPT3.5 misinterprets this, inferring that the 454

input data is attempting to verify all available infor- 455

mation. There are myriad ways to interpret how an 456

AI model should convert input data into text. How- 457

ever, the true relationship can be more effectively 458

understood through training a language model on 459

thousands of examples, rather than presenting it 460

with a limited number of in-context examples and 461

descriptions. Consequently, supervised training 462

continues to play an essential role in data-to-text 463

generation models. 464

5 Ablation Study 465

In Table 5, we conduct an ablation study using the 466

T5-small model on the ViGGO dataset. 467
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5.1 Removing Position Information468

In this experiment, we evaluate the importance of469

placing error-correcting prompts adjacent to the470

slot errors. To this end, we remove the slot er-471

ror position information by always positioning the472

error-correcting prompts at the front of the inputs.473

Table 5 illustrates that slot error rates rise when we474

remove information regarding error locations, un-475

derscoring the advantage of highlighting the proba-476

ble sites of errors.477

5.2 Fine-tuning the Entire Model (T5 no478

prompt)479

In this experiment, we assess whether using error-480

correcting prompts results in better performance481

than fine-tuning the entire model on the generated482

training data. After training a T5 model on the483

training dataset, we further fine-tune it with a learn-484

ing rate of 5ê-3 for 10 epochs using the prompt485

training dataset (with error-correcting prompts re-486

moved) created in the Data Generation section. We487

compare its performance to VCP, which only trains488

error-correcting prompts. As shown in Table 5, the489

BLEU score and SER generated by ’Fine-tune T5’490

are noticeably lower than those achieved by prompt491

tuning methods, demonstrating the importance of492

using prompts. The reason lies in the fact that493

prompts not only label the error locations but also494

allow the original model to remain frozen. The orig-495

inal model, trained on ground-truth data labeled by496

humans (unlike ground-truth in the prompt training497

datasets created by T5 models which may contain498

errors), excels at producing high-quality texts. Uti-499

lizing prompts enables the minimally affected well-500

trained T5 model, thereby yielding better-quality501

text outputs (high BLEU score) and learning a more502

generalizable ability to guide language models in503

reducing slot errors.504

5.3 Remove the prompt initialization training505

process506

During the training process, we first train prompt507

initialization and then fine-tune the initialization508

embedding, as opposed to directly fine-tuning a ran-509

domly initialized embedding. In this experiment,510

we aim to evaluate the significance of prompt ini-511

tialization by comparing the performance of VCP512

before and after using the prompt initialization step513

(Not initial.). As shown in Table 5, there is a de-514

cline in the BLEU score and an increase in the SER515

score after the removal of prompt initialization,516

thereby emphasizing its vital role in maintaining 517

the quality of text generation. 518

5.4 Sampling the best prediction directly 519

In our project, we use error-correcting prompts to 520

guide fine-tuned T5 models in correcting their slot 521

errors. We compare our method to directly sam- 522

pling 10 outputs and selecting the best prediction 523

using an SER score. The results demonstrate that 524

while the direct sampling method reduces the SER, 525

the quality of the generated texts diminishes com- 526

pared to the prompt-based method. 527

The main reason for this is that the slot error 528

checker does not always accurately recognize when 529

generated texts use different words to mention slot 530

information. This can result in the original pre- 531

diction being incorrectly identified as having er- 532

rors, leading to the selection of alternative predic- 533

tions which may have lower text fluency. Error- 534

correcting prompts, on the other hand, can learn 535

generalizable knowledge during training, allowing 536

them to guide the T5 model beyond the sampling 537

search range and perform more natural predictions. 538

6 Discussion and Conclusion 539

By utilizing a feedback system pipeline, our 540

method achieves the lowest SER compared to other 541

methods, while still maintaining a comparable level 542

of text generation quality. 543

Our approach attains a lower SER and maintains 544

text quality primarily because it does not overly 545

rely on predefined rules, which can be inaccurate 546

in complex scenarios. Our specialized training 547

method enables accurate regeneration even with 548

imprecise feedback. Additionally, our feedback 549

system not only informs the model about the cor- 550

rectness of its output but also indicates where the 551

errors are located. 552

Our method is particularly suitable for smaller 553

models that are incapable of reasoning based on 554

natural language feedback. To preserve the effi- 555

ciency advantage of such models, we use a basic 556

verifier. While this verifier is not highly accurate, 557

it is both easy to implement and fast, making it an 558

efficient choice. 559

We hope VCP can be adapted for other appli- 560

cations that require a feedback system, especially 561

in scenarios where providing accurate feedback or 562

understanding feedback is challenging. Potential 563

applications include text-to-image generation, story 564

summarization, and text-to-SQL generation. 565
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7 Limitations566

Our method effectively reduces slot errors; how-567

ever, it also slightly decreases text fluency. This568

decrease in fluency occurs because we train the569

prompt tokens using ground truth data generated570

by the fine-tuned language model itself, which may571

sometimes be inaccurate or sound unnatural. To572

improve text fluency, the introduction of a filter573

to eliminate low-quality text or the use of post-574

processing tools might be beneficial.575

Additionally, it’s important to note that our ap-576

proach has been specifically tested on data-to-text577

generation tasks. We have not yet explored the578

potential of applying this method to other types of579

tasks. Future research may investigate its applica-580

bility and effectiveness in different domains or for581

various natural language processing challenges.582
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A Prompt with Selected Examples 730

We demonstrate an example of the prompt we use 731

for GPT3.5. We demonstrate the prompt for ran- 732

dom select the example from training dataset with 733

the intent that is the same as the intent in the test 734

example (request attribute). 735

PROMPT: 736

please perform data-to-text generation for me. 737

Domain is video game. The words before the 738

bracket are intentions. 739

For example, when the intention is give opinion, 740

then the output should be a sentence that asks for 741

opinion. 742

when the intention is verify attribute, then the 743

output should be a sentence that try to verify the 744

attribute. 745

Example: Input: request attribute(esrb[]) Output: 746

Are there any ESRB content ratings which you give 747

preference to when picking a game to play? 748

Input: request attribute(release year[]) Output: 749

Can you think of a year, in which video games were 750

particularly good? 751

Input: request attribute(esrb[]) Output: Are there 752

any ESRB content ratings which you give prefer- 753

ence to when picking a game to play? 754

Input: request attribute(esrb[]) Output: Are there 755

any ESRB content ratings which you give prefer- 756

ence to when picking a game to play? 757

Input: request attribute(developer[]) Output: 758

Which game developer do you think is the best? 759

Question: Input: verify attribute(name[little big 760

adventure], rating[average], has multiplayer[no], 761

platforms[playstation]) 762

Output: 763

Answer by GPT3.5: Can you confirm that Little 764

Big Adventure has an average rating and does not 765

have multiplayer? Also, is it available on PlaySta- 766

tion? 767

GroundTruth: [’I remember you saying you 768

found Little Big Adventure to be average. Are 769

you not usually that into single-player games on 770

PlayStation?’, "Earlier, you stated that you didn’t 771

have strong feelings about PlayStation’s Little Big 772

Adventure. Is your opinion true for all games which 773

don’t have multiplayer?", ’I recall that you were 774

not that fond of Little Big Adventure. Does single- 775

player gaming on the PlayStation quickly get bor- 776

ing for you?’] 777
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B Prompt with One Example for Each778

Intent779

We demonstrate an example of the prompt we use780

for GPT3.5. In the example in the Appendix-781

Prompt with One Example for Each Intent, we782

demonstrate the prompt we use for all of the test783

cases. The prompt include one example for each784

intent.785

PROMPT:786

please perform data-to-text generation for me.787

Domain is video game. the words before the788

bracket are intentions. For example, when the in-789

tention is give opinion, then the output should be790

a sentence that asks for opinion. when the inten-791

tion is verify attribute, then the output should be a792

sentence that try to verify the attribute.793

Example for each intention: Input: give opin-794

ion(NAME [SpellForce 3], RATING [poor], GEN-795

RES [real-time strategy, role-playing], PLAYER796

PERSPECTIVE [bird view]) Output: I think that797

SpellForce 3 is one of the worst games I’ve ever798

played. Trying to combine the real-time strategy799

and role-playing genres just doesn’t work, and the800

bird’s eye view makes it near impossible to play.801

Input: verify attribute(NAME [Little Big Adven-802

ture], RATING [average], HAS MULTIPLAYER803

[no], PLATFORMS [PlayStation]) Output: I recall804

that you were not that fond of Little Big Adven-805

ture. Does single-player gaming on the PlayStation806

quickly get boring for you?807

Input: confirm(NAME [Hellblade: Senua’s Sac-808

rifice], RELEASE YEAR [2017], DEVELOPER809

[Ninja Theory]) Output: Oh, do you mean the 2017810

game from Ninja Theory, Hellblade: Senua’s Sac-811

rifice?812

Input: request(SPECIFIER [interesting]) Output:813

Have you played any interesting games lately?814

Input: suggest(NAME [Half-Life 2], GENRES815

[shooter], PLAYER PERSPECTIVE [first person])816

Output: Do you also enjoy playing first-person817

shooters, such as Half-Life 2?818

Input: request explanation(RATING [poor],819

HAS MAC RELEASE [yes]) Output: What is it820

about Mac games that you find so disappointing?821

Input: inform(NAME [Max Payne 3], RE-822

LEASE YEAR [2012], GENRES [action-823

adventure; shooter], MULTIPLAYER [yes])824

Output: Max Payne 3 is a multiplayer action-825

adventure shooter from 2012.826

Input: request attribute(AVAILABLE ON827

STEAM []) Output: Do you prefer playing games828

Model initial. lr train. lr epochs prompt token num
VCPT5−small 0.01 0.005 5 6
VCPT5−base 0.01 0.01 2 3

Table 6: The following details pertain to the training pro-
cess of our VCP method for experiments on the ViGGO
datasets. ’Initial. lr’ stands for the initial learning rate
used for prompt initialization, while ’Train. lr’ repre-
sents the learning rate used for prompt tuning. ’Epochs’
refers to the number of epochs for prompt tuning.

Model initial. lr train. lr epochs prompt token num
VCPT5−small 0.01 0.01 10 6

Table 7: The following details pertain to the training
process of our VCP method for experiments on the E2E
datasets. ’Initial. lr’ stands for the initial learning rate
used for prompt initialization, while ’Train. lr’ repre-
sents the learning rate used for prompt tuning. ’Epochs’
refers to the number of epochs for prompt tuning.

that you can get on Steam? 829

Question: Input: YOUR INPUT QUESTION 830

Output: 831

C Slot Error Checking Examples 832

For instance, has_linux_released[yes], the first step 833

is to see if linux appears in the prediction. If it 834

does not, error-correcting prompts are positioned 835

beside the slot value. If it does appear, we em- 836

ploy simple dependency parsing rules and POS 837

tags to ascertain if any negation words are linked 838

to linux. If negation words are found, the slot value 839

is marked with a error-correcting prompts. If no 840

negation words are present, we infer that there are 841

no slot errors concerning has_linux_released[yes]. 842

Conversely, if the slot value is no, such as in 843

has_linux_released[no], the initial step is to check 844

for the mention of linux in the prediction. If linux 845

is not mentioned, it is assumed that no slot errors 846

exist. However, if linux is mentioned, we look for 847

any associated negation words. If none are found, 848

error-correcting prompts are placed beside the no 849

slot value, indicating a potential slot error. If nega- 850

tion words are present, we presume the absence of 851

slot errors. 852

D Training parameters 853

We use the learning rate begins at 0.01 and reduces 854

gradually over 20 epochs for prompt embedding 855

initialization. We use 3 error-correcting prompts 856

for T5-base and 6 error-correcting prompts for T5- 857

small. More details can be seen in Table 6 and 858

7. 859

11



E Experiment details860

On the ViGGO dataset, we run the T5 baseline,861

SEA-GUIDE project, and our VCP for 5 times.862

We report the mean and variance in Table 2 and863

reproduce the experiment results of S2S, DT, and864

K&M from the SEA-GUIDE paper. We also run865

the ablation study once and report the results in866

Tables 4 and 5.867

For the E2E dataset, we run our VCP and re-868

ported the mean and variance. We report the ex-869

periment results from the DM-NLG paper and the870

SEA-GUIDE paper in Table 3.871

We use the SER auto-evaluation script from the872

SEA-GUIDE Github project to evaluate SER on873

both the ViGGO and E2E datasets. However, when874

evaluating the model on the E2E dataset, the SER875

evaluation script is not accurate. As a result, we876

manually check every prediction labeled as having877

slot errors by the SER evaluation script. When878

applying GPT3.5 and GPT4 to the ViGGO dataset,879

we also manually check every prediction labeled as880

incorrect by the SER evaluation script.881

F Prompt Initialization Details882

To achieve this, we train error-correction prompts883

such that inserting them does not alter the output of884

the fine-tuned T5 model. Specifically, we remove885

the prompts from the unseen prompted input, then886

forward these inputs to the fine-tuned T5 model887

for prediction. We use these predictions as our888

training targets and the unseen prompted inputs as889

training input. We train the error correction prompt890

tokens while remain fine-tuned T5 model frozen.891

Performing prompt tuning on such a initialized892

prompt instead of the random initialized prompt is893

demonstrated to have better performance as shown894

in the prompt initialization ablation study.895
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