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Abstract

In this thesis, we address the problem of 3D reconstruction from a sequence of cali-

brated street-level photographs with a simultaneous focus on scalability and the use of

structure priors in Multi-View Stereo (MVS).

While both aspects have been studied broadly, existing scalable MVS approaches do

not handle well the ubiquitous structural regularities, yet simple, of man-made envi-

ronments. On the other hand, structure-aware 3D reconstruction methods are slow and

scale poorly with the size of the input sequences and/or may even require additional

restrictive information. The goal of this thesis is to reconcile scalability and structure-

awareness within common MVS grounds using soft, generic priors which encourage:

(i) piecewise planarity, (ii) alignment of objects boundaries with image gradients and

(iii) with vanishing directions (VDs), and (iv) objects co-planarity. To do so, we present

the novel “Patchwork Stereo” framework which integrates photometric stereo from a

handful of wide-baseline views and a sparse 3D point cloud combining robust 3D plane

extraction and top-down image partitioning from a unified 2D-3D analysis in a princi-

pled Markov Random Field energy minimization.

We evaluate our contributions quantitatively and qualitatively on challenging urban

datasets and illustrate results which are at least on par with state-of-the-art methods in

terms of geometric structure, but achieved in several orders of magnitude faster paving

the way for photo-realistic city-scale modeling.

Keywords: Multi-View Stereo, Structure Priors, 3D Reconstruction, Image-Based Mod-

eling, Scalability, Top-Down Image Segmentation, Urban Modeling.
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Résumé étendu de la Thèse

Résumé général.

Nous étudions dans cette thèse le problème de reconstruction 3D multi-vue à partir

d’une séquence d’images au sol acquises dans des environnements urbains ainsi que la

prise en compte d’a priori permettant la preservation de la structure sous-jacente de la

géométrie 3D observée, ainsi que le passage à l’échelle de tels processus de reconstruc-

tion qui est intrinsèquement délicat dans le contexte de l’imagerie urbaine.

Bien que ces deux axes aient été traités de manière extensive dans la littérature,

les méthodes de reconstruction 3D structurée souffrent d’une complexité en temps de

calculs restreignant significativement leur intérêt. D’autre part, les méthodes de recon-

struction 3D large échelle produisent généralement une géométrie approchée, omettant

ainsi des éléments de structure qui sont importants dans le contexte urbain. L’objectif de

cette thèse est de concilier les avantages des techniques de reconstruction 3D structurée

à ceux des méthodes passant à l’échelle. Pour ce faire, nous présentons “Patchwork

Stereo”, un système qui combine stéréoscopie photométrique à partir d’une poignée

d’images issues de points de vue éloignés et d’un nuage de points épars. Notre méth-

ode intègre une analyse simultanée 2D-3D réalisant une extraction robuste de plans 3D

ainsi qu’une segmentation d’images top-down structurée et repose sur une optimisation

par champs de Markov aléatoires.

Les contributions présentées sont évaluées via des expériences quantitatives et qual-

itatives sur des données d’imagerie urbaine complexes illustrant des performances tant

quant à la fidélité structurelle des reconstructions 3D que du passage à l’échelle.

Mots clés: Stéréoscopie Multi-Vue, A priori de Structure, Reconstruction 3D, Modélisa-

tion Basée Image, Passage à l’échelle, Segmentation Top-Down d’Images, Modélisation

Urbaine.
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Contexte.

Face à la demande grandissante de modèles 3D d’environnements créés par l’Homme,

telles que les scènes d’extérieurs ou d’intérieurs de bâtiments, de nombreux efforts ont

été réalisés afin de générer des modèles réalistes ou de restituer le plus fidèlement pos-

sible des scènes existantes.

Cet intérêt est illustré par de très nombreuses applications comme par exemple

venant des industries du jeu vidéo et du cinéma pour ce qui est de la génération de mod-

èles réalistes, où l’enjeu principal est d’obtenir des représentations visuellement crédi-

bles, avec un niveau de détails adapté aux contraintes éventuelles de stockage en mé-

moire ou de temps de calculs des rendus des scènes. Une autre catégorie d’applications

s’intérêsse à la numérisation de villes ou de bâtiments existants afin de reconstruire

une représentation digitale servant de support pour des processus d’aide à la décision

comme l’analyse de performances énergétiques de bâtiments ou d’autres calculs liés à

la plannification, la vie ou la destruction d’un ou de plusieurs bâtiments.

Pour résoudre le problème de numérisation de scènes régulières existantes,

l’intérêt des méthodes de reconstruction 3D traditionnelles est limité en raison de

leur coût en temps de calculs et stockage mémoire ainsi que pour la complexité

des maillages qu’elles produisent contrastant paradoxalement avec la simplicité

structurelle des scènes urbaines ou d’intérieurs. Par ailleurs, les méthodes passant

à l’échelle génèrent typiquement une géométrie approchée qui ne prend pas en

compte des aspects structurels qui sont indispensables dans le cas de nombreux

scénarii applicatifs. Nous proposons de concilier les avantages des méthodes de

reconstruction approchée, à base de patches, ainsi que les méthodes intégrant

des a priori de structure qui raisonnent au niveau du pixel et dont le passage

à l’échelle est donc initialement limité. Les deux axes d’intérêt de notre étude

concernent donc d’une part (i) la prise en compte d’a priori de structure preser-

vant la régularité ainsi que la simplicité des scènes observées et (ii) le passage à l’échelle.

Aperçu des contributions.

Nous proposons un système de reconstruction 3D basé images prenant en entrées une

séquence d’images au sol calibrées décrivant une scène urbaine (des bâtiments) ainsi

qu’un nuage de points épars et bruité obtenu – par exemple – à partir de la procédure

de calibrage des caméras. L’une des images est considérée comme référence, le reste

comme étant des images de reprojection. La sortie de notre système est une reconstruc-
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tion 3D dans le repère de l’image de référence sous forme d’une carte de profondeur

et d’un maillage associé, en favorisant des principes de structure géométrique que nous

définissons comme suit : (i) planarité par morceaux alignement des contours des prin-

cipaux éléments de la scène selon (ii) les principaux gradients dans le domaine image

ainsi qu’avec (iii) les lignes de fuite dominantes de la scène et (iv) la co-planarité des

éléments considérés (simplicité géométrique).

Le système de reconstruction que nous proposons dans cette thèse, appelé “Patch-

work Stereo” s’articule selon les étapes suivantes. Dans un premier temps, l’image de

référence est segmentée et des hypothèses de plans 3D dominants sont extraits à partir

du nuage de points épars associé à la scène.

Notre méthode passe d’abord par la détection de directions principales (points de

fuites) présentes dans la scène en exploitant des indices visuels basés images (segments)

via une approche gloutonne et s’en suit une détection des lignes de fuite principales

par une approche de balayage de faisceaux de lignes à travers les pixels de l’image

de référence issus de chacun des points de fuite détectés. L’arrangement complets de

ces lignes de fuite génère un partitionnement de l’image en superpixels top-down (car

exploitant des attributs structurels de haut niveau, par opposition à des superpixels

bottom-up engendrés par un assemblage de pixels voisins partageant des similarités

d’apparence ou de textures). Intuitivement, l’attrait des lignes de fuite dans le partition-

nement de l’image réside principalement dans le fait que ces dernières sont adaptées à

la structure géométrique de scènes régulières telles que les façades de bâtiments et les

scènes d’intérieurs.

Afin de consolider la qualité des détections de lignes de fuites structurelles ainsi que

des hypothèses de plans 3D, mais également afin d’établir une compatibilité entre les

hypothèses 2D (superpixels) et 3D (plans), nous proposons une phase d’analyse conjoin-

tement en 2D/3D en procédant par balayage de faisceaux dans le domaine image, en

construisant une fonction de score pour extraire des lignes et plans 3D supplémentaires

et compatibles.

Enfin, nous proposons une énergie globale par champs de Markov sur la topolo-

gie induite par le partitionnement top-down de l’image de référence en formalisant le

problème de reconstruction 3D comme un problème d’étiquetage discret de chaque su-

perpixel par une hypothèse planaire, en encourageant des combinaisons compatibles

entre des patches voisins dans le plan image. Ces relations de compatibilités binaires
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favorisent la continuité planaire et les jonctions le long de lignes de fuite structurelles

au détriment d’autres configurations beaucoup moins probables en pratique.

En somme, les contributions que nous présentons dans cette thèse peuvent se ré-

sumer de la manière suivante :

1. Une extraction robuste d’hypothèses de plans 3D à partir d’un nuage de point

épars et bruité, typiquement acquis lors d’une phrase de Structure-from-Motion

(SfM).

2. Une analyse conjointe 2D/3D afin d’établir un partitionnement d’image top-down,

respectant la structure globale de scènes créées par l’Homme, tels que les environ-

nements urbains.

3. Un schéma de reconstruction 3D par champs de Markov combinant les éléments

sus-mentionnés dans une énergie globale et résolue via graph-cuts.

4. Les principales contributions avancées dans cette thèse ont fait l’objet d’une com-

munication internationale en Vision par Ordinateur (WACV 2017).

Conclusions et perspectives.

Nous avons proposé des solutions qui s’inscrivent dans le traitement de la

problématique de reconstruction 3D multi-vue (Multi-View Stereo, MVS) de scènes

“créées par l’Homme”, qui sont typiquement régulières en termes de structure

géométrique. Nous avons simultanément orienté notre étude selon deux axes que sont

la préservation de la régularité structurelle des objets et scènes observés, ainsi que le

passage à l’échelle du processus de reconstruction 3D.

En termes de limites et éléments perfectibles des travaux proposés, nous évoquons les

points suivants :

(i) Expériences et données.

La première limite du travail présenté dans ce manuscrit tient dans le manque de

richesse en termes de variété et du nombre de scènes considérées dans nos expériences

afin d’illustrer les performances de nos méthodes. En particulier nous n’avons pas

évalué nos méthodes sur des scènes créées par l’Homme comprenant plus de 3 points

de fuite, bien que le système que nous proposons soit tout à fait capable de traiter des

scènes plus complexes, sans que cela ne nécessite de réaliser de modifications.
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Trouver de telles scènes est particulièrement difficile dans la mesure où la vaste

majorité des scènes urbaines comprennent des bâtiments dont la structure ne présentant

le plus souvent que 3 points de fuite.

Une solution possible serait de considérer des scènes synthétiques ou encore des

scènes d’intérieurs qui dérogent plus souvent à une logique structurelle à 3 points de

fuite.

La majorité des travaux traitant de notre problème ne proposent pas de validation

expérimentale de la précision géométrique des modèles 3D reconstruits en raison du

faible nombre de datasets mis à disposition de la communauté scientifique comprenant

à la fois des photos de scènes structurellement régulières, les propriétés de calibrage

des points de vue considérés, un nuage de points épars correspondant par scène, ainsi

qu’un modèle 3D de référence vis à vis duquel la précision géométrique serait mesurée

de manière globale, ou pour un point de vue donnée. Nous avons fait le choix de pallier

ce manque en construisant des datasets à partir d’un nombre très important d’images

par scène décrivant des bâtiments, produisant ainsi des reconstructions 3D sous forme

de maillages fins en utilisant une méthode générique de MVS. Nous confrontons ainsi

la précision de nos reconstructions qui n’utilisent qu’un faible sous-ensemble des

images disponibles (jursqu’à 9 fois moins) au modèle 3D de référence sur les portions

de géométries jugées pertinantes en termes de structure géométrique.

(ii) Applicabilité et robustesse des méthodes proposées.

Notre méthode de reconstruction 3D repose sur une segmentation top-down d’une

image de référence qui elle même, dépend de la détection préalable des principaux

points de fuite de la scène dans l’image en question en combinant des indices visuels

du domaine image ainsi que d’informations 3D éparse et bruitées issues d’un nuage de

point SfM. Notre reconstruction mêle ainsi ces indices dans un schéma d’optimisation

mathématique globale pour produire des reconstructions structurées en sortie.

L’architecture séquentielle de notre système induit donc intrinsèquement une relative

fragilité dans la mesure où chaque étape dépend de la qualité de celles qui la précèdent.

Bien que cette fragilité relative ne soit que théorique, une piste d’amélioration pourrait

être de combiner toutes les données dans une unique optimisation et qui améliorerait

chaque étape du système en fonction de tous les indices en présence, en les liens de

précédences entre ces étapes intermédiaires.
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(iii) Complétude vs. Structure.

Notre méthode de reconstruction 3D reposant sur un raisonnement dans le repère

image, le maillage généré peut potentiellement présenter des artefacts liés aux

points de vue, menant à des trous dans les modèles 3D (par exemple en raison

d’auto-occultations). Bien qu’il existe des techniques afin de fusionner des cartes de

profondeur en un modèle 3D global, ces approches ne tiennent pas en compte les

régularités structurelles par vue. Ainsi, une stratégie spécifique pourrait être mise en

oeuvre à cet effet.

Nous proposons également trois principales perspectives d’extensions de ce travail :

(i) Selection automatique de vues et segmentation conjointe de nuage de points.

Cette première piste vise à permettre un traitement totalement automatisé du début

(acquisition des données) à la fin de la chaîne de traitement (production d’un

maillage 3D structuré). Les enjeux sont de sélectionner les images pertinentes pour la

reconstruction (images de références ainsi que les images de reprojection associées),

en minimisant (voire en supprimant) le recouvrement des vues dans l’espace modèle.

Pour ce faire, la prise en compte de la géométrie 3D (points et/ou triangles) dans le

processus de sélection doit se faire simultanément.

(ii) Analyse de régularités 2D/3D.

La tâche la plus coûteuse en termes de temps de calcul dans notre système “Patchwork

Stereo” réside dans les calculs de coûts de photo-consistence. Afin de soustraire cet

élément à notre système ainsi que pour consolider la régularité structurelle (notamment

en prenant en compte des co-planarités non locales de patches alignés selon des

lignes de fuites communes), l’analyse conjointe de régularités en 2D et en 3D sont

des notions complémentaires et mutuellement informatives qui pourraient refondre

notre approche actuelle en un processus de reconstruction qui ne nécessiterait qu’une

seule image et une source d’informations 3D éparse (ou dense) où les régularités 2D/3D.

(iii) Raisonnement sémantique.

L’intérêt d’une telle perspective est double. D’une part, pour améliorer la qualité

structurelle des reconstructions 3D en utilisant le fait que sémantique et géométrie

soient des notions mutuellement informatives. D’autre part, de nombreuses

applications nécessitent la présence de l’information sémantique en plus d’une
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géométrie 3D structurée, dans l’optique de produire une maquette numérique complète

de bâtiment.
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4 Chapter 1. Introduction

In this introductory chapter, we first examine the importance of 3D models in urban

environments by discussing a range of related applications in section 1.1. Next, we

present the different 3D representations which can be produced as abstraction models

for buildings in section 1.2 and highlight the main challenges involved in the context

of urban modeling in section 1.3. We then define the scope of our work in section 1.4

and provide an overview of our main contributions in section 1.5. Last, we provide a

succinct overview of how the remainder of this thesis is organized in section 1.6.

1.1 The Need of 3D Models for Urban Scenes

In the ever growing pursuit of digitizing the world in 3D, the automatic generation of 3D

building mock-ups is receiving more and more attention from the scientific and indus-

trial worlds. The study of various methods to produce 3D representations of buildings

is a particularly active topic in the fields of building architecture, Computer Graphics,

Photogrammetry and Computer Vision with a wide range of mushrooming applications.

To mention only the most common ones, we will develop how 3D building models have

become a pivotal notion in the following contexts, to only name a few: the entertainment

industry, building construction & simulation, navigation & mapping, and advertising.

1.1.1 Applications for 3D Building Models

1.1.1.1 Entertainment

One of the most popular and mainstream applications which require 3D models in gen-

eral, particularly of urban environments, come from the entertainment industry through

movies and video games.

With the democratization of powerful hardware in gaming consoles and computers

(especially in terms of CPUs and graphics cards), consumer applications and video

games produce more and more impressive 3D representations of the world, reaching

unprecedented levels of visual and structural realism, to the point where it is hard to

distinguish between synthetic images and photographs (Figure 1.1).

In order to achieve such a prowess, studios can spend up to several man-years in

manual 3D design, animation and rendering in order to produce 1 to 2 hours of pure

synthesis footage. To this end, most of the efforts aim at recovering the maximum detail-

level of the depicted parts of the scene with a potential trade-off when run-time or mem-
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Figure 1.1: Example illustrations from the video game Final Fantasy XV, currently the
latest iteration of the japanese role-playing game franchise, which has been famous over
the years for its fine 3D graphics. Top: The imaginary city of “Insomnia”, from a pre-
computed 3D footage. Bottom: An example of in-game, gameplay animation, including
a dynamic seamless environment [22]. Images are courtesy of Square Enix Co.
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ory storage constraints are involved. To limit the tedious manual creation of 3D contents

and in order to generate realistic and faithful reproduction of existing buildings and

cities, the use of automatic Procedural Modeling softwares (PM), e.g., Esri CityEngine,

has been increasingly used in the entertainment industry. In a nutshell, PM is a tool

of massive generation of plausible 3D models that combines highly-parametrizable pre-

defined elements (e.g., buildings, architectural styles, objects) under user-defined rules

as illustrated in Figure 1.2. PM for generating plausible cities in 3D has not only success-

fully been applied in game development (Figure 1.3) and films, but also in other visual-

ization applications, urban planning, Geographic Information Systems (GIS), archeology

or even cultural heritage [105].

For such applications, the structure of 3D buildings is a key factor for visual realism,

while the simplicity of their underlying geometry is required to minimize the memory

storage and allow reasonable (even feasible) rendering time.

Figure 1.2: Example of a procedural generation of 3D buildings with the Esri CityEngine
software using default Parisian looks and feels by specifying only a few parameters.
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Figure 1.3: Need for Speed is a car racing game developed by Electronic Arts studios, taking
place in 3D urban environments which are generated automatically using Procedural
Modeling [105].

1.1.1.2 Building Construction & Simulation

Major application domains which use extensively the notion of virtual representations of

buildings are building architecture, construction and the several engineering branches

whose aim is to support decisions made on virtual simulations for performance en-

hancement, management and planning.

Several dedicated formalisms have been developed to unify the different levels of

information which are required for such purposes, allowing compact and centralized

representations of their 3D geometry and semantic description. For the ends of our

study, we first describe the two dominant, standardized approaches which – depend-

ing on the application context – can either be seen as alternative or complementary tools.

Additional information on these dedicated formalisms for urban modeling can be

found in the comprehensive Ph.D. thesis of Filip Biljecki on this subject [6].

• Building Information Modeling (BIM)

Building Information Modeling (BIM) is a process which aims at modeling, im-

proving and centralizing information on buildings in terms of fine grained 3D

geometry and semantics which encompasses contextual and technical character-
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istics such as the name, dimensions and functional properties of every elements

(e.g., acoustics, energy performance or life-cycle analyses) of a building or its di-

rect environment (e.g., trees, furniture).

The core objective of the BIM philosophy is to allow for multiple views which de-

scribe the same building to co-exist within a common data representation in order

to improve collaboration, sharing, factorization of efforts, and minimize the loss

and redundancy of data, costs and time involved in the design. It has an extremely

rich database of element structural and functional properties.Its open file exchange

format is the Industry Foundation Classes (IFC) which has been standardized by

BuildingSmart (the former International Alliance for Interoperability).

• 3D GIS – OGC CityGML Level of Detail (LoD)

The City Geography Markup Language (CityGML, currently in version 2.0) is an

open data model for the exchange of virtual 3D city models, standardized by the

Open Geospatial Consortium (OGC) with the initial intent of serving the Geo-

graphic Information Systems (GIS), i.e., to capture, store, manipulate, analyze and

manage spatial data. It is also an information model for buildings, describing their

3D geometry and multiple levels of semantic information [36]. One of the main

concepts that OGC CityGML introduces is its multi-scale “Level of Detail” (LoD),

which corresponds to discrete descriptions of the quantity and richness of geomet-

ric and semantic characteristics of the model providing an adjustable granularity

depending on the application needs.

The different LoDs are specified as follows:

LoDs 1 to 4 are commonly used for city modeling (Figure 1.4).

– LoD0 – 2.5D flat terrain model (typically restricted to GIS-oriented applica-

tions).

– LoD1 – Block model without roof structures.

– LoD2 – Textured, with differentiated roofs.

– LoD3 – Detailed envelope model of the building, with openings (e.g., win-

dows and doors).

– LoD4 – Highly detailed model including interiors.
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Figure 1.4: Illustration of the 5 different CityGML Levels of Detail (LoDs) from LoD0
(less detailed) to LoD4 (the more detailed). Please refer to the text for details on each
level. Top image is courtesy of Filip Biljecki [6], bottom illustration is courtesy of the
Karlsruhe Institute of Technology [62].

• BIM/IFC vs. CityGML LoD

The way 3D geometry is stored in BIM/IFC is an element-oriented volumetric

model, while CityGML/LoD stores it as a surface-oriented ensemble (Figure 1.5).

The BIM philosophy has been thought as a bottom-up modeling process: The

building is first a concept, then a set of 2D plans, then a full BIM/IFC model,

then an actual constructed building until it is destroyed. On the other hand,

CityGML/LoD has been intended as an implementation of GIS and is hence a

top-down modeling paradigm focusing on the city-scale with a global, adjustable

multi-level of granularity in geometry and semantics, i.e., "Level of Detail (LoD)".

Despite these differences, both standards share several goals and properties, such

as: unifying between indoor and outdoor modeling as well as data view in general,
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cost reduction and factorization of the efforts made in design, increased analysis

and decision-making at the building and urban levels.

Figure 1.5: Geometric and semantic representations in BIM/IFC vs LoD – Left: In IFC,
Geometry is expressed as a set of boolean operations on volumetric primitives, making
it well-suited for generative design processes. On the right: In CityGML, the represen-
tation of 3D boundaries is an aggregate of observable surfaces of topographic features
making it more suitable for modeling observed existing objects. Illustration is courtesy
of T.H. Kolbe.

Applications of BIM and 3D GIS (CityGML).

The construction of a building is – in essence – the result of a complex, iterative, mul-

tidisciplinary collaboration between many different actors such as architects, engineers,

designers and managers. The outcome of this combined effort is a unique, yet complex,

building.

Throughout this process and even beyond the conception phase once the building is

constructed, each actor works on a local digital representation as a tool for planning and

decision-making resulting in a significant time spent in re-designing redundant infor-

mation which can also be inconsistent with other versions. As a result, minimizing these

additional delays and costs in the life cycle of buildings has inspired the advent of Build-

ing Information Modeling (BIM) as a common way to design and share information as

well as a project management tool.

The main industrial companies who develop software technologies for architects are

implementing and investing in the BIM philosophy, e.g., Autodesk (Autocad solutions,
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Figure 1.6: Representation of how BIM methodology allowed to a large-scale construc-
tion project of 28 buildings to achieve completion in only 4 years. Images are courtesy
of East China Architectural Design & Research Institute.
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Revit), Graphisoft (Archicad). Following this yet precursory initiative, a few major con-

struction companies like Bouygues Construction have already endorsed this centralized

tool and use it for their most emblematic projects. Figure 1.9 shows an example of

rendering using a BIM model for visualization purposes.

Despite the growing interest around the world in BIM, the majority of architect

agencies – who are the first chain link in the genesis of buildings – are still in the

middle of what appears to be a slow transition towards the adoption of BIM-oriented

tools which represents and requires a drastic cultural change in their work routines.

Another important line of applications require Information Models (BIM/IFC or 3D

GIS/CityGML) for purposes which go beyond visualization use cases, for environmental

simulations and decision support [7].

As an illustration of an end-to-end project using BIM in Figure 1.6, 28 buildings

were delivered in only 4 years in a construction project in Shanghai thanks to BIM

methodology implemented throughout the project∗. This also resulted in smart design

choices expected to reduce energy consumption by a spectacular 18% and global time

and costs gain of about 5%. At an even larger scale, the ecoDistrict of Washington DC

has been using BIM modeling extensively for various needs such as to optimize energy

consumption, and urban sustainability (Figure 1.8).

Among the countless applications to simulation which use 3D urban models, e.g.,

CityGML LoD2 or LoD3, we can mention:

• Energy demand estimation and thermal reasoning which can help decide when

and where to rehabilitate buildings for global energy performance optimization

and reducing costs related to energy loss (Figure 1.7).

• A simple representation at the district-level, using LoD2 can be a meaningful sup-

port for simulation, e.g., estimation of shadow cast at a city-level, or analyzing the

level of noise pollution, also shown in Figure 1.7.

1.1.1.3 Navigation & Mapping

3D urban models are an essential set of tools for building 3D cadastre databases, map-

ping for visualization or navigation (Google Earth, Google Maps, Apple Maps, Microsoft

BING. . . ).

∗https://www.autodesk.com/solutions/bim/hub/2016-entry-119
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Figure 1.7: How CityGML LoD2 building models can help in energy performance anal-
ysis (top) and noise pollution management (bottom).
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Figure 1.8: Integration of BIM for simulation – Sustainability in downtown Washington
DC ecoDistrict using the BIM-compatible software solution Autodesk InfraWorks360.

Figure 1.9: The industrial giant Bouygues Construction has adopted the BIM/IFC philos-
ophy and uses it for many of their key construction projects throughout the life-cycle of
their buildings for decision-making processes as well as for advertising purposes (e.g.,
to sell apartments to future prospects). Image is courtesy of Groupe Bouygues.
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The availability of highly accurate open 3D maps of cities is currently paving the

way for autonomous driving by only using a bunch of cameras [87]. This technology,

provided by AutoX, a start-up company from Silicon Valley, is in pole position to win

the race of full autonomy in this field. Similarly, maps are also being used for drone au-

tonomous flying, bringing autonomous delivery within reach. In this vein, Amazon has

already tested their Prime Air service in late 2016. Other companies such as the United

States Postal Service (USPS) are also preparing for this game-changing service. This will

open unprecedented perspectives once the service will be fully deployed, where people

would receive their orders and mail in less than an hour.

Figure 1.10: Indoor modeling for advertising – Matterport is a Silicon Valley start-up
company which uses 3D cameras to scan virtual tours of existing indoor scenes such as
real estate, hotels, retail. . .

1.1.1.4 Advertising

The 3D representation of buildings are also vastly utilized for advertising and marketing

purposes, for printing 2D renderings of future constructions, like Bouygues Construction

who uses their BIM models to sell apartments to future prospects (Figure 1.9). Alter-

natively, applications for virtual visits of already existing buildings are also very well

established (Figure 1.10).
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Figure 1.11: Generic 3D reconstruction workflow. From a input sequence of images, the
system first estimates the camera poses in 3D and reconstructs a sparse 3D point cloud.
The next step is the dense reconstruction, commonly known as Multi-View Stereo which
usually produces a dense point cloud which is finally meshed and colorized. Illustration
is courtesy of Hernández et al. [39].

All of the aforementioned applications which use 3D models of buildings for visual-

ization or non-visualization purposes have in common the following needs: structurally

accurate or plausible geometry, and its scalable, compact representation.

1.2 From Images to 3D Geometry

As a preamble to our discussion on the challenges in Urban Modeling in section 1.3,

we first describe the structure of a typical, generic 3D reconstruction pipeline (as illus-

trated in Figure 1.11) and give a high-level explanation for each step involved. Next, we

elaborate on the various 3D representations which can be used as an abstraction of the

underlying 3D geometry of buildings.

• Input Pre-processing.

The optional pre-processing may consist in various steps (see Figure 1.11).
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First, the input image sequence or video stream is broken down into a subset of

selected keyframes. This step not only aims at reducing the computational burden

and input redundancy, but it also aims at enhancing the quality of subsequent

procedures (camera pose estimations, and 3D reconstruction per se), and limitting

the impact of noise [21].

Color correction can reduce the effect of drastic viewpoint and illumination

changes which affect the radiometric consistency across images. Image distortion

on the other hand, can be very common in urban imagery because of the use of

wide viewing angle (i.e., with short focal length) settings. This is in order to

capture as much information per image and reduce the scene fragmentation.

Correcting such distortion artifacts improves the results in later steps but also

enhances the visual structure of buildings by preserving linear features and

alignments of objects.

Other frequent pre-processings in urban modeling are: image clustering which

consists in the splitting of the input frames into multiple slightly overlapping clus-

ters which can be processed in parallel and merged in order to improve the time

and memory consumption [30], image masking, e.g., removing specific parts of

the image from specific semantic categories like clutter objects, vegetation or sky

pixels.

• Sparse 3D Reconstruction.

Sparse 3D reconstruction is achieved through either Structure-from-Motion (SfM)

or Visual-Simultaneous Localization and Mapping (V-SLAM). Both of these ap-

proaches basically infer the spatial poses of cameras as well as the underlying

sparse 3D representation of the geometry by triangulating matched key-feature

points at the image level. The main distinction between SfM and V-SLAM resides

in the (near) real-time runtime constraints and potentially restricted hardware for

the latter (e.g., on a mobile robot).

• Dense 3D Reconstruction.

Typical methods for dense 3D reconstruction take as input a set of images, along

with their corresponding poses (extrinsic calibration) and the sparse point cloud

which is produced by the preceding sparse reconstruction step. Out of these input

information, traditional dense reconstruction methods – a.k.a Multi-View Stereo

(MVS) approaches – either do (i) densify the sparse point cloud in a global opti-
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mization / reconstruction [32, 61], or (ii) create an intermediate 2.5D reconstructed

depthmap for each image and then produce a global dense point cloud by apply-

ing a computationally expensive (yet highly parallelizable) depthmap fusion pro-

cedure [35, 84].

Two comprehensive comparative studies of state-of-art dense reconstruction meth-

ods have recently been published by Knapitsch et al. [44] and Schöps et al. [85], as

well as a concise tutorial on mainstream MVS approaches by Furukawa et al. [31].

• Surface Reconstruction.

Once a dense point cloud is obtained by MVS, a surface (e.g., polygonal mesh) can

be reconstructed as a full digital representation of the observed scene by taking

into account the 3D geometry of the point cloud [5] and/or information from the

2D image domain [28].

• Surface Texturing.

As a final optional step, image-based texture can be applied on every entity in

the reconstructed 3D surface (e.g., triangles in the case of a triangle mesh). While

this step is relatively computationally expensive, it is required for visualization

purposes where photorealism is as important as structural fidelity of the 3D ge-

ometry [2].

1.2.1 3D Geometry as an Abstraction Model

The following 3D representations are presented from lower to higher level of detail and

abstraction.

• Sparse Point Clouds.

Sparse point clouds are typically produced during a camera (extrinsic) calibration

process via Structure-from-Motion (SfM) or Visual Simultaneous Localization and

Mapping (V-SLAM) (which both boil down to simultaneous camera pose estima-

tion and sparse point cloud reconstruction by triangulation).

While they are easy to produce and scale well, their intrinsically sparse and noisy

natures make them poorly suited for many applications requiring higher level of

geometric abstraction, accuracy and completeness.

• Dense Point Clouds.

Dense point clouds are provided by either: (i) Dense 3D photogrammetric recon-

struction (a.k.a Multi-View Stereo (MVS)) which follows SfM or V-SLAM, (ii) An
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active sensor such as a LIDAR scanner, or motion sensing devices (such as Microsoft

Kinect), or (iii) by sampling 3D points along continuous surface representations.

Depending on the acquisition mode, they provide a higher level of abstraction,

but are sparsely structured and scale poorly because of the important number of

required points in order to describe even simple, e.g., planar 3D regions which are

ubiquitous in urban environments.

• Oriented Rectangular Patches.

This is an intermediate representation between dense point clouds and polygonal

meshes which mostly presents the same characteristics as meshes, even though

the produced geometry is less complete and less smooth when using the rect-

angular patches produced by semi-dense stereo methods [32, 61] (illustrated in

Figure 1.12).

Figure 1.12: Left: Sparse point-cloud obtained through Structure-from-Motion. Right: A
dense set of oriented rectangular patches generated by a patch-based Multi-View Stereo
method [61]. Illustration is courtesy of Alex Locher [61].

• Polygonal Meshes.

From an initial 3D point cloud, meshing techniques such as Delaunay-

Triangulation-based approaches [14] construct a set of vertices (which is a subset

of the initial 3D points), edges and faces that define a polyhedral shape of the

observed object.

This representation is by far the most popular trade-off between compactness

and structural geometric accuracy and allows flexible post-processing. Most of

meshing techniques also have the interesting property of cleaning-up certain

categories of point-cloud artifacts which are typically induced by the acquisition

process (e.g., due to view redundancy, clutter and self-occluding surfaces,
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texture-less areas and specularity). We refer the interested reader to the

comprehensive review on surface reconstruction from point clouds by Berger et

al. [5] and references therein.

• Parametric Surfaces.

Parametric surfaces can be seen as an extension of polygonal meshes, by assum-

ing a scene to be a composition of pre-defined 3D geometric primitives like cones,

planes, cuboids or cylinders that are usually fitted to an intermediate 3D point

cloud [5, 58].

The advantage of such representation lies in the geometric accuracy and complete-

ness, and it also allows a compact memory storage. Nevertheless, the primitive fit-

ting process as well as exploiting and post-processing such models (e.g., adjusting

the detail level for rendering/visualization at a large scale) are computationally

expensive.

1.3 Challenges in 3D Urban Modeling

The challenges that are specifically inherent to the 3D modeling of urban scenes are

of multiple natures which we summarize in this section. For a broader view on the

numerous challenges in 3D urban modeling, we refer the reader to the comprehensive

survey by Musialski et al. [75].

1.3.1 Acquisition Modes

Depending on the acquisition modes, the challenges as well as the benefits from using

them vary.

• Street-level vs. Airborne Acquisitions.

Taking images from street-level viewpoints (e.g., from standing height, or using

a mounted vehicle with sensors) is the better option for capturing the maximum

detail-level of building façades, as well as the low-altitude objects in the urban en-

vironments (e.g., urban furniture, vehicles). However, this does not allow to cap-

ture mid-to-high elevation details in the case to skyscrapers as well as the build-

ings’ roofs which are meaningful LoD3 features depending on the applications.

Street-level imagery (whether it is acquired from an active or passive sensor) is

typically noisy because of omnipresent clutter objects, cars, pedestrians or vegeta-

tion.
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On the other hand, aerial imagery (e.g., acquired by drones) allows to retrieve im-

portant LoD2-4 details like building roofs, higher parts of tall buildings, and large

terrain information which can not be seen from the ground and inaccessible court-

yards. Façade details however, are difficult to depict due to challenging viewing

angles.

Both of these modes can hence be combined in order to achieve a full acquisition of

an urban scenery by incorporation top views and all the sides of visible buildings.

• Passive vs. Active Sensors.

Active sensors such as LIDAR scanners give very high-resolution 3D point clouds

by emitting a pulsed laser light and measuring the reflected pulses with a sensor

at one or multiple wavelength(s). This 3D scan can also be coupled with color in-

formation and/or images. Nonetheless, LIDARs are ordinarily slower, less flexible

(in terms of mobility) to use and extremely expensive w.r.t using passive imagery.

On the other hand, such active sensors provide a much more accurate estimate of

depth.

In contrast to active sensors, passive sensors (i.e., consumer cameras) are a cheap,

yet reliable means to do 3D reconstruction by using one of the rich available pho-

togrammetry softwares†, but the results are more prone to noise and less complete

w.r.t using active depth sensors.

1.3.2 Images & Acquisition Process

Exploiting pictures of urban scenery is prone to many challenges. Illumination condi-

tions can influence drastically the quality of photographs which can translate into blur,

noise, and other detrimental artifacts. Changes of illumination conditions from one

view to another can also confuse the early steps of camera calibration (e.g., detection

and matching of key features points). This can be due to many uncontrollable factors

such as the time of the day, weather, outdoor artificial illumination, dynamic lighting

(e.g., from vehicles).

The drastic changes in viewpoint and/or lack of image overlap (whether the images

are taken from the ground or from an aerial viewpoint) can cause local or complete

failures at different steps of the 3D reconstruction process. Also, the camera trajec-

tory can have a negative influence on the process, e.g., motion blur due to fast camera

†Such as Pix4D, Acute3D ContextCapture or Agisoft PhotoScan.
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displacements, capturing dynamic changes (e.g., moving objects), viewpoint-dependent

self-occlusions.

Wide textureless and homogeneous areas, like walls, can result in a lack of geometric

cues which are necessary to estimate spatial poses of cameras. Additionally, repetitive

patterns or objects and specular surfaces (e.g., windows or glass structures) are ubiq-

uitous in man-made environments and are very challenging for the feature matching

procedure as they typically can induce false correspondences.

In such environments, wide angle cameras (i.e., with short focal length) are com-

monly used to capture the maximum amount of information per image. However, this

choice translates into potentially significant image distortion artifacts.

1.3.3 Structure and Appearance of Buildings

Buildings come into a multitude of very different sizes, number of stories, shapes, colors,

and architectural styles and composing elements. A fully automatic strategy which

would cope with all the possible variations of a building’s appearance is not realistic

(Figure 1.13) and would require (i) focusing on a restricted subset of buildings (e.g.,

Haussmannian architecture), or (ii) adopting a generic set of priors with the objective to

address correctly a significant proportion of input buildings.

1.3.4 Level of Detail vs. Scale

Urban places are very dense and very large by design. As a consequence, the quantity

(complexity) of 3D details for modeling a small number of buildings (and hence memory

and time consumption to compute and store them) is a trade-off to put into perspective

of the problem scale, and how many buildings to address, from a single one to a full

city scale.

1.3.5 Full Automation

3D urban modeling tools which are used in the industry and bureaus nowadays all use

some sort of manual user intervention in their workflows. This is mainly due to the

complex and rich variety of parameters which influence the quality of the input data

and the lack of reliable priors to describe the specificities of the depicted urban scene.

To cope with the unpractical variability, manual intervention is used to adapt the tools

and settings to each scene or each portion of it. Fully automatic 3D urban modeling
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Figure 1.13: A unique architectural style... – “Building 32” at MIT, Boston, MA. It is also
known as the Stata Center designed by Frank Gehry, world-renowned architect.
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pipelines are still a very active research topic which already provide solutions to real-

life problems.

1.4 Scope – Towards Structured, Scalable 3D Urban Modeling

In section 1.1.1, we have enumerated examples of industrial applications which require

3D models of buildings. For the majority of such applications a tedious manual mod-

eling step is necessary in order to produce such 3D models. Alternatively, automatic

approaches can output plausible city-scale 3D models from simple parametric rules.

Yet, these methods suffer from a crucial drawback. Their expressive power is limited by

the need of pre-designed rules and by hard-coded libraries of atomic elements which

are combined and parametrized. They can not reproduce any building with any archi-

tectural style, shape, material or color.

Additionally, as previously discussed, many applications need information models

such as BIM or CityGML of already existing/constructed buildings in order to run

analyses and for decision support (e.g., for rehabilitation and/or energy performance

optimization by measuring the proportion of glass surface per building façade, which

is a widely used quantitative indicator). The automatic acquisition of such models

(especially with LoD3-equivalent details) from existing buildings will help realize

the full potential of the initial promise of Information Models (BIM/IFC and OGC

CityGML LoD, especially LoD3). As a common bottleneck to the aforementioned needs

in the industry, we propose to address the automatic Urban Modeling from street-level

imagery, aiming at a geometric granularity comparable to LoD3. In this section, we

specify the scope of our work in terms of contextual use-case scenarios, building

architectural styles, and terminology.

Use-case Scenarios.

We will consider two typical use-case scenarios in the context of which we will provide

algorithmic solutions.

In both scenarios, we propose to use the following inputs:

• a sequence of street-level photographs for which the camera poses are supposed a

given,

• a sparse point cloud which is typically reconstructed along with the camera esti-

mation of poses during a camera calibration step through Structure-from-Motion.
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Such a point cloud can either be reconstructed by using the complete sequence of

images, or only a local subset of considered support for structured 3D reconstruc-

tion.

Architectural Structure.

The main objective of our work is to preserve the structure of buildings through the 3D

reconstruction process without emphasizing a specific architectural style, using soft,

generic priors/assumptions. However, not all building structures can reasonably be

addressed with weak (generic) a priori knowledge.

We consider highly regular buildings, i.e., which are made of a composition of

multiple Manhattan World‡ models. This suggests that a finite set of dominant

Vanishing Directions (VDs) can be extracted in images and describe the overall building

layout. As an example, such architectural regularity can be found in the vast majority

of constructions in France during the “Thirty Glorious” (“Les Trente Glorieuses” in

french). This epoch refers to the thirty years between 1945 and 1975 following the sec-

ond World War in France when constructed buildings were mostly slabs and tour blocks.

Goal of this Thesis.

We propose to investigate scalable, automatic ways to reconstruct the structured

3D geometry of the envelopes (outside parts, equivalent to CityGML LoD3) of

existing buildings from street-level, calibrated photographs using only simple, generic

structural priors (which are not limited to a particular architectural style).

Specific Terminology.

Urban Modeling. Through the remainder of this manuscript, we will refer interchange-

ably to “3D Urban Modeling” or “Urban Modeling”, for “3D reconstruction of the en-

velope of buildings from multiple images” as a shortcut terminology. This term will

only include 3D geometry and we will leave the incorporation of semantic information

as future work, beyond the scope of this manuscript.

Structure. We define the notion of 3D geometric structure as follows:

(i) Piecewise-planarity, (ii) alignment of the boundaries of the 3D elements with their

‡The Manhattan World Assumption states that a scene is made by a composition of boxes where 3D
plane orientations are pairwisely, mutually orthogonal or parallel. Hence, in such a context, 3 mutually
orthogonal normal orientations of all boxes suffice to “explain” the scene as a whole.
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corresponding 2D image gradients and (iii) with principal vanishing directions (VDs),

and (iv) co-planarity of elements, and (v) global geometric simplicity.

1.5 Overview of the Main Contributions

• Robust Extraction of 3D Planar Hypotheses from a Sparse and Noisy Point

Cloud

Piecewise-planarity is an essential structural trait in urban modeling as well as

in man-made environments in general. In order to encode this as an assumption

in a reconstruction process, we consider the prior detection of relevant 3D planar

hypotheses from available data is necessary.

Extracting dominant planes can be done very robustly using straight-forward

methods by analyzing a dense 3D point cloud which is generally acquired us-

ing an active sensor (e.g., LIDAR scanner which is expensive and not flexible), or

through an MVS reconstruction (which is time and memory consuming). How-

ever, extracting such information from a sparse 3D point cloud (e.g., acquired

through Structure-from-Motion (SfM)), or from the image domain is significantly

more challenging.

In this work, our first contribution lies in a robust method which detects 3D planes

in a sparse 3D point cloud which is typically obtained during a pre-processing

SfM step. To do so, we simultaneously take into consideration information from

the image domain: dominant contours as well as dominant Vanishing Directions

(VDs) which are strong structural cues in urban scenes. The resulting approach

is fast, scalable, and combines information from the mutually informative 2D and

3D domains without additional restrictive assumptions or inputs.

• Joint 2D/3D Reasoning for Top-down Image Partitioning

Image segmentation has been used in the past for scalability as piecewise-planarity

priors in MVS. Methods which made such assumptions for the purposes of 3D rea-

soning and reconstruction typically use bottom-up, unsupervised partitioning of

pixels in the image domain. While this allows to handle bigger scenes (in both

image resolution and number of considered views) and also, for the contours of

the reconstructed objects, to follow dominant image gradients, such segmentation

approaches are completely agnostic of the scene’s structure. This translates into
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blatant visual artifacts, noise, and overly complex 3D surfaces in the final recon-

structed models.

As a second contribution to our work, we address this issue by introducing a

robust joint 2D/3D reasoning which generates a top-down, structured image par-

titioning into an irregular lattice topology. This is achieved by combining a set of

3D planar hypotheses which are likely to explain the underlying geometry of a

man-made environment, as well as image contours and VDs. The output of the

method is a top-down image partitioning and an enriched set of planar hypotheses

which are mutually consistent with respect to a given reference camera viewpoint.

• The Patchwork Stereo Framework

Next, we introduce a novel energy formulation in order to reconstruct a piecewise-

planar, compact depth map and a mesh which are aligned with the scene’s dom-

inant structure using only a handful of wide-baseline views. The method lever-

ages our first two contributions and addresses the problem as a revisit of patch-

based stereo reconstruction by using top-down image partition priors. Experi-

ments show that the approach not only reaches similar levels of accuracy with

respect to state-of-the-art pixel-based methods while using much fewer images,

but also produces much more compact, structure-aware depth map and mesh in a

considerably shorter runtime by several of orders of magnitude.

• Publication

The main contributions we propose in this manuscript have been published and

presented at an international conference in Computer Vision and Machine Learn-

ing.

1.6 Structure of the Thesis

The remainder of this manuscript is organized as follows.

• In chapter 2, we discuss the most related lines of work on automatic 3D recon-

struction of urban scenes from a sequence of street-level images with a specific

focus on structure priors and scalability.

• In chapter 3, we present our “Patchwork Stereo”, which gathers our main contri-

butions.
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• In chapter 4, we conclude by giving a summary of our work and discuss its main

limitations, perspectives and the potential future lines of research.
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In this chapter, we present an overview of the most related work in the literature

which address the problem of Multi-View Urban Modeling from street-level images. To

do so, we first briefly introduce the fundamental topics involved in Urban Modeling, the

inputs and outputs of such systems, and will also expose the methodology on which we

will structure our survey in section 2.1. In section 2.2, we initiate the discussion by first

addressing the general-purpose Multi-View Stereo (MVS) methods. Next, in section 2.3

we turn our focus to the axes of work dealing with ways to cope with scalability which

is an intrinsically inherent component of urban environments. We then discuss in sec-

tion 2.4, how priors are integrated in MVS in order to retrieve the structure of buildings

such as the alignment of objects’ boundaries and their 3D planar support, and surface

compactness. We conclude the chapter with section 2.5 by summarizing the positioning

of prior work w.r.t Urban Modeling and the breaches it leaves open for the contributions

we propose in this thesis on the aforementioned topics.

2.1 Introduction

Throughout this literature review on Urban Modeling, we will focus on the most related

techniques which are used in Multi-View Stereo to produce a dense 3D representation of

a scene from a sequence of input images or a video footage with known camera spatial

poses. This dense representation, which mainly takes the form of point clouds, polyg-

onal meshes or depthmaps, allows to capture a high-level abstraction of the geometric

structure of buildings.

We structure our discussion around three principal axes. Here are the dominant

methodological choices we make for each of the three main parts of our literature review.

General-purpose MVS.

We organize this section by presenting a brief overview of the existing groups of

approaches and their usability in the urban context by considering them by output and

scene representation. The methods we consider in this category are scene and structure

agnostic, and are applicable to a wide range of objects and environments beyond urban

modeling and street-level imagery. Our objective is to discuss only the most related

research in this category – which is extremely vast – and refer the interested reader

to the broad overviews of general-purpose MVS available in [31, 88], and the recent

comparative analyses of state-of-the-art pipelines in [44, 85].
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Scalable MVS.

Next, we select the various strategies which have been used in order to cope with larger

inputs in terms of image number, resolution, and output size and resolution. This

includes methods which divide or cluster the input images and/or geometry, but also

approximate modeling techniques.

Structure-preserving MVS.

Last, we span the dominant works which take into account the scene’s structure in MVS.

To this end, we include the approaches which leverage structure at the image level,

i.e., by integrating piecewise-planarity, alignments of objects boundaries with dominant

image gradient and with linear features or main Vanishing Directions of the scene (VDs),

co-planarity of visually similar regions, and top-down / procedural / grammar-based

methods.

2.2 General-purpose Multi-View Stereo (MVS)

The early stages of Multi-View Stereo (MVS) can be related to the pioneering work of

Marr et al. [64] in the 70’s, marking the first attempt at formalizing a computational

approach for modeling the human stereo vision. This seminal work has paved the way

for what has become one of the fundamental problems of modern Computer Vision.

Stereo-vision through two-view, or its natural multi-view extension is still one of the

most active research topics to this day [88], along with semantic recognition and seg-

mentation [63]∗. Yet, the most rudimentary form of general-purpose MVS is achieved by

inferring pixel correspondences across images by comparing pixel appearances through

photometric consistency measures (photo-consistency in short) [41].

From images to depthmaps.

Photometric pixel matching has been leveraged by a first series of approaches that work

on pairs of images which are first rectified, i.e., re-projected on a common image plane.

The stereo reconstruction task is then posed as an optimization problem where each

pixel from the left image is labeled with a discrete disparity value (inversely propor-

tional to the depth from the optical center) which associates it with a pixel from the

second image. The most basic method to retrieve such a disparity-map for all pixels

is through the “winner-takes-all” strategy, i.e., by computing all the possible disparities

∗Or, as they are respectively refered to by Malik et al., “Reconstruction, Recognition and Re-
organization”.
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along a horizontal scan-line (making use of the image rectification) at each pixel (or by

considering a small neighborhood centered on the pixel of interest, for robustness) and

assigning the one with the lowest matching cost. In practice, this only gives a coarse ge-

ometry because such costs are usually relatively noisy due to several challenging factors,

such as: inaccuracies in camera pose estimations, wide baseline between views, illumi-

nation changes or occlusions; hence, the uniqueness of matching points in a pair of

images is not guaranteed. More sophisticated variants are more robust to these sources

of noise by taking into account a first order [46], or second order [106] smoothness on

pixel neighbors in an MRF discrete labeling.

The produced depthmaps are view-dependent representations of the 3D reconstruc-

tion and require multiple neighboring views to compute a single depthmap. Given, the

pixel-based nature of the photoconsistency computation, even by considering a small

square window around each pixel for an increased robustness, such methods are lim-

ited to relatively narrow baselines between views. Even though dedicated descriptors

have been proposed to limit the sensitivity to wide baseline in matching [96], their appli-

cability remains relatively limited in the context of street-level imagery where changes

in viewpoints are typically very strong [75].

Reconstruction of point clouds and oriented patches.

PMVS [32] is one of the most prominent MVS method and among the most popular

ones. The method takes as input a set of calibrated images and produces a set of oriented

rectangular patches in three steps. A first sparse set of patches is extracted by leveraging

2D features correspondences between views. Then, an expansion step densifies the

sparse cloud by iteratively estimating the patch geometry by optimizing a photometric

score. The final step filters out outliers. The main limitations of the approach lies in

the computationally expensive expansion step which relies on photo-consistency and

its high sensitivity to texture-less areas and specular surfaces. Its applicability to urban

scenes remains restricted to moderate sized scenes with sufficient texture.

Other state-of-the-art methods first compute dense depthmaps and fuse them to a

unified, global 3D point-cloud reconstruction [35, 84]. Even though these methods yield

state-of-the-art pixelwise accuracy [44, 85], they scale poorly despite the use of GPU

acceleration [84] and efficient parallelization [35]. Additionally, point clouds are not

suited for urban modeling for a range of applications, and the fusion strategy which

allows to obtain them does not handle structure [18].
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Volumetric MVS.

Volumetric methods either reason in terms of voxels, or cells in a cell complex. Voxels

are entities which represent a value in a three-dimensional regular grid. On the other

hand, a cell complex is produced by the full arrangement of 3D primitives, e.g., planes.

The Shape-from-Silhouette framework assumes a 3D parametrization into

a voxel space [26, 54, 55]. Each contributing image is segmented into a binary

front-ground/back-ground mask indicating the “silhouette” of the object of interest.

Then, the 3D volumetric space lying at the intersection of all the silhouette-induced

visual cones from each image is considered for the final reconstruction. Iteratively, for

each image, every 3D voxel (i.e., the spatial coordinate of its centroid) not reprojecting

into the silhouette of a given view is carved away. The final reconstruction lies in the

sett of all the remaining points and the volumetric representation allows to further

generate a point cloud and/or a mesh from the output geometry [18]. Since this

seminal work, many extension have been published using, MRF graph-cut resolution

using photoconsistency [101], or using the visual hull as a constraint in a deformable

model formulation [23].

Shape-from-Silhouette-based methods have several limitations though, with respect

to our purpose of modeling urban scenes. First, they require a large density of cameras

spreaded around the object of interest in order to yield sufficient visual constraints. In

an outdoor scene, this would limit their applicability to isolated buildings surrounded

by narrow-baseline views with narrow fields of view. In a street-level scenario though,

these approaches have limited suitability. Next, they are not suited to preserve geomet-

rically concave details and they are sensitive to the accuracy of the silhouette extractions

as well as to the resolution of the voxel space. And last, the method would require an

additional post-processing in order to implement our desiderata in terms of structure,

which would be to the expense of an additional computational burden.

Using a volumetric representation on a Delaunay Tetrahedralization (DT) computed

on a quasi-dense point cloud, Labatut et al. [51] leverage the volumetric arrangement

into an MRF graph topology and formulate the surface reconstruction problem as an

energy function based on the surface parameters and visibility information. The global

energy is solved using graph-cuts [47]. The method takes a few minutes to compute 300

input images but requires a computationally expensive quasi-dense point cloud and it

still produces an overly complex geometry for man-made scenes. Similarly, Chauve et

al. [15] exploit an MRF topology on the full arrangement (i.e., the cell complex) made of
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3D planar hypotheses which are extracted from an input dense point cloud and retrieve

a piecewise-planar geometry. However, the method requires a dense point cloud which

is in itself, already the result of an end-to-end MVS pipeline. Consequently, the quality

of the reconstruction highly depends on the quality of the input point cloud which

production has its own limitations.

2.3 Scalability

Urban scenes are partly characterized by the fact that they are large and dense. In

order to compute, store and represent the 3D geometry of buildings at a street, district

or even city scale, standard and straightforward 3D reconstruction methods quickly

become intractable and require specific attention [75]. In this section, we focus on the

strategies that have been utilized in the literature to make efficient and compact MVS

reconstruction feasible, for the purpose of modeling urban scenes.

Scalable MVS methods primarily aim at reducing the computational burden and

memory consumption implied during the reconstruction process which, as a by product,

allows to handle larger inputs in terms of number of considered views, or even in image

resolution [40]. Such strategies can be roughly categorized into three groups of methods.

A first group of works tackle the efficiency aspects in standard MVS methods. In

terms of parametrization of the 3D model space, adopting view-dependent representa-

tion, i.e., depthmaps is much less computationally expensive alternative to volumetric

representation, e.g., into voxels (the 3D extension of pixels), or using a 3D cell com-

plex (which also model 3D volumes through cells formed by the intersection of a full

arrangement of 3D primitives). Reasoning on depthmap, even as an intermediate step,

allows a straight-forward parallel computation. On the other hand, several state-of-the-

art pipelines [35, 84] separate the global MVS task as a sequence of view-dependent

depthmap representations and then, apply a fusion strategy (e.g., TSDF-like fusion [18]

which merges depthmaps into an intermediate voxel volume which can be further used

to produce detailed 3D surface meshes and point clouds). This procedure aims at mini-

mizing the geometric inconsistencies between independent views but also to reduce the

impact of noise and clutter.

A specific attention has also been given to efficiency in large-scale optimization tech-

niques which are commonly used in MVS [86].
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A very recent work focuses on “progressive MVS” [60, 61]. By building upon

oriented patch-based MVS [32], the geometry gradually expands and its completeness

progressively increases, the longer the algorithm is given time to compute by imposing

a priority per-patch, hence, inducing an algorithmic trade-off between structure

completeness and computational runtime.

The second group clusters the sequence of input views into smaller overlapping

batches, yielding smaller manageable, independent sub-problems [3, 30, 66]. These

methods however, exploit the overlap between views which results into geometric

redundancy. This geometry redundancy is a means to increase the quality of

reconstruction in both accuracy and robustness around the cluster junctions, but also

produces geometric redundancy which spoils the structural aspect of the merged

models. To address this particular issue, other works jointly address the camera

clustering problem along the one of geometry clustering. Zhang et al. [113] first

reconstruct a coarse mesh from an input SfM point cloud and jointly cluster the input

views and the corresponding mesh in a constrained energy minimization by optimizing

per mesh-face criteria such as: smoothness, size, and coverage in terms of camera

visibility.

The third category of approaches improves scalability to the expense of the structural

accuracy of the produced geometry. Such approximate modeling techniques include

model-based methods which represent building façades as a composition of planes: one

per façade [4], 2.5D heightmaps [79], n-layermaps [34] or by exploiting the orientation of

buildings with respect to the ground plane [16, 78]. Another popular method to produce

an approximate geometry in man-made environments is through superpixel-modeling

techniques [11, 68, 69]. These approximate modeling methods are intrisically linked to

structure priors, hence we discuss such works in more details in the next section.

2.4 Structure Priors

In this section, we review the most prominent lines of research that address the

priors which encourage or enforce the following notions of structure in MVS, i.e., (i)

piecewise-planarity, (ii) alignment of the boundaries of the 3D elements with their

corresponding 2D image gradients and (iii) with principal vanishing directions (VDs),
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(iv) co-planarity of elements, and (v) global geometric simplicity.

The assumption of a piecewise-planar 3D geometry has become a very popular prior

in the MVS literature [29, 33, 50, 68, 69, 91] for several reasons. First, it encodes a

significant part of the structure present in man-made environments such as, for example,

indoor and urban scenes which are mainly composed of planar elements. Secondly, this

simplifying assumption on the scene’s geometry allows to reconstruct regions where

data is either missing or noisy, by propagating the existing reliable information along

planar structures, making the prior applicable even to non-planar scenes [50]. Thirdly,

the local smoothness in pixel assignment to similar planar structure enforces the global

simplicity of the underlying geometry.

Since the seminal work of Wang et al. [104] on layered motion models which have

laid the foundation of piecewise-planarity in stereo vision, several authors have further

generalized their model to rigid MVS [8, 94]. In this trend, the scene is modeled as a

collection of primitives across views in the presence of discontinuities (i.e., occlusion

boundaries) by iterating between an image partitioning step and the assignment of

each segment with a refined planar hypothesis. Nevertheless, the pairwise relationship

between spatial neighboring entities is not taken into account, thus limiting their

applicability to very simple scenes.

MRF pixel-based modeling.

Markov Random Field (MRF) optimization is an elegant and theoretically principled

tool to model the local spatial relationships between objects in the image domain (e.g.,

between pixels or superpixels). Additionally, many top-performing methods in the Mid-

dlebury stereo challenge are based on MRF optimization [83, 88]. However, initial meth-

ods like [46] consider a first-order smoothness prior between pairs of neighboring pixels

in an image by assuming fronto-parallel surfaces in the final depthmaps, hence, limiting

the quality of piecewise-planar geometric transitions.

Woodford et al. [106] propose to integrate a second order smoothness prior, i.e.,

modeling the interaction between triplets of pixels instead of pairs as in traditional meth-

ods, in order to overcome the limiting assumption of fronto-parallel surfaces. However,

the second order smoothness leads to a more challenging optimization and the au-

thors propose a sophisticated inference scheme to reconstruct the final piecewise-planar

depthmap based on fusion moves [56].
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Figure 2.1: Manhattan World Stereo [29] – Their pixel-based method takes a dense point
cloud [32] and a collection of calibrated images and reconstruct a structured, piecewise-
planar depthmap using an energy minimization which favors geometric planar transi-
tions which are aligned with Manhattan frames. In the reconstructed meshes, each pixel
is split into 2 triangles.

Furukawa et al. [29] assume a Manhattan World Scene† and greedily extract a set of

3D planes (oriented along the considered Manhattan VDs) from a dense point cloud ac-

quired by a general-purpose MVS method [32]. Then, they assign a planar hypothesis to

each image pixel by encouraging Manhattan transitions along strong image-based gra-

dients and edges pointing towards one of the three dominant Manhattan VDs (Fig. 2.1).

†i.e., that the environment can be fully explained geometrically using only 3 mutually orthogonal normal
orientations.



38 Chapter 2. Survey of Multi-View Urban Modeling

The method is a, effective tool to “inpaint” the missing 3D information of the input

dense point clouds in flat, textureless or specular areas by propagating the available

evidence along the Manhattan directions.

Sinha et al. [91] extend this reasoning beyond the limiting Manhattan World As-

sumption and only require a sparse SfM point cloud alongside the input images to

operate (Fig. 2.2). This is done by first extracting and fusing multiple VDs from nearby

views (w.r.t the given reference view for which the depthmap is reconstructed) and

recovering 3D planar hypotheses by conjointly using reconstructed 3D vanishing lines,

plane fitting to the sparse SfM data and additionally, by creating hypotheses which form

crease junctions along dominant VD-alined edges from the reference image’s viewpoint.

Their optimization combines pixel-wise photoconsistency, and the available sparse 3D

information through geometric and visibility consistencies. The smoothness term they

propose favors plane continuity and crease edges allowing discontinuities along strong

line segments and vanishing lines.

Figure 2.2: Sinha et al. [91] – Overview of their pixel-based approach. Multiple planar
hypotheses are extracted from SfM points and lines and piecewise-planar depthmaps are
reconstructed by encouraging planar transitions to lie along dominant image gradients
and VDs.

In order to seamlessly handle piecewise-planar and non-planar geometry, Gallup

et al. [33] leverage the classification of pixel appearance and pixel depth from dense

depthmaps acquired from temporal stereo in order to label image pixels in street-level

imagery of residential areas into planar and non-planar (which mostly consists in veg-

etation). This labeling is then incorporated as a binary prior to respectively switch be-

tween a piecewise-planar reconstruction by approximating such regions by planes, and

the rough output from the initial depthmaps. The method works well when sufficient

narrow-baseline views are available and when the parsed scene has low appearance

variation.
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In summary, the structure-aware pixel-based methods we discussed have

successfully been used to model structure. They are mostly bottom-up methods,

and the addition of top-down primitives such as lines and VDs [29, 91] allow to

model the alignment of objects boundaries in the image plane as well as with VDs.

However, reasoning at the pixel level is computationally expensive and unscalable,

lacks robustness against strong viewpoint and illumination changes and the absence of

texture. For these reasons, such methods rely on an overwhelming regularization in

their global energy minimization.

Model-based reconstruction.

In a different vein, several works which focus on the reconstruction of buildings have

leveraged the 3D orientation of building façades and the supporting ground. Pollefeys

et al. [78] first detect the up gravity vector of the scene and project SfM points on the

ground plane and estimate the 2D rotation parameters around the up vector. Once the

two main orientations characterizing the building are retrieved, they compute dense

depthmaps using a “Plane Sweep Stereo” approach on GPU, i.e., by computing dense

photoconsistency on all the pixels by assuming plane-induced homographies by varying

3D planes (i.e., that are “swept”) along the discretized set of normals through a discrete

range of plane offsets which is set using the sparse SfM information. They finally fuse

the depthmaps of nearby views using visibility constraints. Cornelis et al. [16] assume

a canyon-like urban representation from street-side imagery with a planar ground and

vertical surfaces for façades, allowing real-time modeling. Also assuming one vertical

plane per building façade for fast modeling, Barinova et al. [4] consider vertical vanish-

ing lines in a single image as candidates for façade/planar junctions. Similarly, Gallup et

al. [34] assume a n-layer heightmap to model buildings, whereas Pylvanainen et al. [79]

simplify the geometry even more, to a 2.5D heightmap.

These methods provide an interesting speed-up w.r.t purely pixel-based methods,

but the over-simplification in terms of geometric structure, discards significant

structural details in the final reconstructions, limiting their suitability to very simple

scenes and/or when running nearly in real time is a requirement.

Superpixel Modeling.

Superpixel modeling techniques not only speed up the reconstruction process by con-

sidering fewer entities per image than pixels, but they also offer the benefits of an in-
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Figure 2.3: Zebedin et al. [111] – The method takes a binary mask indicating the building
shape, a dense depthmap, and an image and segments the latter into a 2D rectangular
grid using an arrangement of structural lines and produces a structured depthmap by
fitting planes and surfaces of revolution to the image segments. Top row, from left to
right: the segmented input depthmap; the region labeling after complete inference of
the model; final textured result. Middle and bottom rows: additional results.
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crease in robustness in the challenging urban context [75], i.e., due to strong changes

in viewpoint and illumination, lack or even absence of image texture, or in presence

of repetitive patterns (e.g., bricks or windows, which confuse conventional low-level

feature matching).

In their seminal work, Birchfield and Tomasi [8] assume the scene to present slanted

surfaces and alternate greedily between image partitioning and an affine parameter

fitting step on each image segment. After convergence of the algorithm, the result is

a segmented piecewise-planar depthmap, explaining the scene with a low number of

planar elements.

More recently, Zebedin et al. [111] have successfully combined dense depthmaps and

an image partitioning which leverages 3D line matches into an irregular 2D grid, and

assign 3D primitives to the induced 2D superpixels (i.e., planar primitives and surfaces

of revolution, Fig. 2.3). Their global energy formulation produces impressive digital

elevation models of buildings from aerial images, but restrictively requires inputs like

an accurate delineation mask for each considered individual building as well as dense

depthmaps.

Mičušík and Košecká [68, 69] introduce the “Superpixel Stereo” framework which

uses a conventional image partitioning into bottom-up superpixels using a graph-based

segmentation method [24]. Then, they design an energy formulation to reconstruct each

of such superpixels in 3D using plane-sweeping stereo along with a 3D orientation prior

(assuming a Manhattan World Scene) which reasons on the 2D shape of superpixels

w.r.t vanishing points [17] (illustrated in Fig. 2.4). The final optimization uses a first

order smoothness between nearby superpixels by encouraging neighboring superpixels

to touch in 3D and to share a similar surface orientation. Even though the method allows

to cope with large-scale urban scenes by producing a coarse, piecewise-planar geometry

which can be sufficient for fast approximate modeling for visualization purposes, the

initial over-segmentation is agnostic of essential structural alignments such as vanishing

directions, which are ubiquitous in the urban environment.

Bódis-Szomorú, Riemenschneider and Van Gool [10] extend this principle by also

using bottom-up segmentations [1], but through a multi-image model where all the

considered views are segmented in 2D, and produce a dense, piecewise-planar approx-

imation of street-level scenes. They do so by propagating sparse visibility information

in a simultaneous multi-view plane assignment problem where they solve jointly for

the superpixels across all views, avoiding expensive photoconsistency computations.
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Figure 2.4: Superpixel Stereo [68, 69] – The method combines a computationally ex-
pensive plane-sweep stereo, constrained by the Manhattan World Assumption with a
regularization which encourages superpixels to touch in 3D and the share the same
orientation. Top row: reconstruction of the GMU-building dataset [67] with sky pixels
manually masked out by the authors. The method relies on a bottom-up superpixel
segmentation [24] which is detrimental to the building’s alignment with VDs. Bottom
row: a large-scale approximate modeling of streets.
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However, computing correspondences between superpixels, and the use of bottom-up

superpixels [1] which tend to produce hexagonal shaped regions in textureless areas,

are detrimental to the final structure.

Figure 2.5: Left column: The method [11] takes a single view and a corresponding SfM
point cloud, segments the image into superpixels [24] and adapt them to the sparse
point cloud by penalizing surface curvature. Top row: results of [11], bottom row:
reconstruction by PMVS-2 [32].

The same authors [11] introduce an alternative to plane-sweeps [69], multi-view

plane fitting [10], and to the use of dense (or semi-dense) 3D inputs [29, 100, 111], in

superpixel modeling. They approach the problem by using an unsupervised image par-

titioning (e.g., [24]) and treat the reconstruction problem as a joint single-view segmen-

tation and a plane fitting one over SfM points and adapt the 3D shape of the superpixels

by penalizing surface curvature of the reconstructed regions(as illustrated in Fig. 2.5).

The method is very fast and the bottom-up superpixels are mostly aligned with domi-

nant image gradients, generating a compact geometry. Nevertheless, important features

such as the planarity of superpixels as well as their co-planarity and alignments, and

the notion of vanishing directions are not taken into account.
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In a very recent work, Verleysen and De Vleeschouwer [100] use a single pair of

wide-baseline images and a dense, yet unsructured and noisy depthmap computed from

the initial pair. One view serves as a reference image for the structured depthmap com-

putation and is segmented using a color-based over-segmentation method [98, 99]. Next,

the authors pose the problem of piecewise-planar reconstruction with a segmentation

prior as a multi-model fitting in the iterative PEaRL MRF-based framework [19]. The

method iteratively solves multi-label planar assignments with an explicit MDL prior

(i.e., minimum-description length, penalizing the complexity of the inferred solution)

and updates the pool of considered planar hypotheses by re-estimating them on the set

of the superpixels which were labeled as co-planar. The approach is well suited for ap-

plications such as image-based rendering and works with a single pair of wide-baseline

views but requires a dense depth-map and uses of a regularization which only encour-

ages planar continuity, ignoring important structural features, such as crease transitions.

All of the aforementioned superpixel modeling techniques provide an interesting

speed-up in the reconstruction process, a global increase of robustness and favor

piecewise-planarity and geometrically simple solutions. However, they suffer from a

two-fold drawback regarding structure: (i) the intra-superpixel planar homogeneity

assumption is often broken in practice, and (ii) the alignment of boundaries with

structurally meaningful contours such as VDs is totally absent from the segmentation

criteria in unsupervised bottom-up methods (e.g., [1, 24]) which are widely used by

superpixel modeling methods [68, 68, 100].

Procedural rules and grammars.

Another trend in the literature uses a set of hard-coded rules or grammars to process

the input by successively applying corresponding procedures in a top-down fashion.

Figure 2.6: Vanegas et al. [97] – Left: one of the input images and the polygonal footprint
of the building of interest along with the footprint sweeping. Middle: final volumetric,
watertight reconstruction views. Right: Textured results.
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Vanegas et al. [97] propose to reconstruct skylines from aerial oblique imagery using

three simple, hard-coded Manhattan rewriting grammar rules, encoding: L-shape, U-

shape and push-back geometric transitions. They leverage the appropriate rule while

sweeping the 2D polygon which represents the building footprint from the ground up,

and analyzing the changes in the 1D image-based signal. The final reconstruction is a

closed-surface, watertight geometry.

Addressing street-side imagery using top-down image segmentation into irregular

grids, Xiao et al. [110] exploit contours and line segments in the image domain to re-

cursively subdivide every façade into rectangular units from street-level imagery and

optimize the depth of every cell through an MRF formulation using SfM cues. However,

in order to cope with robustness issues, the authors make use of manual intervention

during the segmentation process.

Müller et al. [74] also perform a top-down image partitioning but use it on a single

rectified façade image. This is done in three steps by first detecting the dominant

split lines which, once combined, yield a top-down partitioning of the façade into

rectangular irreducible tiles. Next, they group tile elements by symmetry and further

subdivide the tiles similar to [73]. The methods generates impressive, structured

façades but is limited in terms of inputs, to highly regular, mono-planar façades

which present a single dominant grid of aligned architectural elements. In turn, the

seminal work of Müller et al. [74] has been followed by many other extensions, e.g., to

cope with more complex façades by splitting the input into several layer-maps where

symmetry is maximized per layer [112]; or to handle even non-planar façades and

architectural elements [42].

Semantic inverse procedural modeling.

Inverse procedural modeling techniques assume an ortho-rectified façade image as in-

put and instantiate the parameters of grammar rules which best suit the data to retrieve

the full structure as well as semantic labels of a façade [49, 95]. Simon et al. [90] extend

this to multi-view by introducing a 3D grammar for Haussmannian building architec-

ture. This grammar-based inference typically leads to complex and computationally

expensive optimization and the required hand-written rules are hard-coded for a spe-

cific architectural style (mostly Haussmannian architecture) and it is not trivially exten-

sible to any other building architecture. Alternative methods, e.g., [65] avoid the use

of explicit grammar rules in a more bottom-up fashion by using generic architectural
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principles which still limit the categories of building structure it can handle, e.g., mostly

flat façades for which plausible 3D parameters can easily be suggested.

2.5 Conclusion

In this chapter we have presented the most prominent lines of work which address the

Multi-View Stereo problem with a specific interest on structure-awareness and scala-

bility with an emphasis on urban modeling applications. From this discussion, a few

conclusions arise.

First, the MRF framework and view-dependent modeling (i.e., representing 3D

through depthmaps) have been widely and successfully applied to structure-aware

reconstruction, even though the merging strategy between per-view reconstructions is

not trivial, as standard procedures such as standard TSDF-based depthmap fusion [18]

are agnostic of the scene’s structure. However, most of such structure-aware methods

are pixel-based [29, 33, 91, 106] and hence, suffer from a lack of robustness to

wide-baseline set-ups, strong illumination changes, surface specularity, and hence,

they rely on an overwhelming regularization. Additionally, they scale poorly in image

number and size.

Superpixel modeling techniques are – on the other hand – very scalable and robust to

the inherant challenges in street-level views [10, 68]. They allow to produce a scalable,

piecewise-planar approximate geometry but lack some structural features which are

key in man-made scenes such as the alignment of objects’ boundaries with each other

and with dominant VDs. Additionally, such methods mostly rely on bottom-up over-

segmentation methods which are structure-agnostic [1, 24] and as a consequence, the

planar homogeneity assumption per superpixel often breaks using such approaches.

Procedural methods and grammar-based approaches are very well suited for gener-

ating a plausible structured representation of buildings, but such methods either con-

sider only simple, mostly flat, building façades [74], or they make other very specific

assumptions on the scenes they address [97], making them unsuitable for most street-

level scenarios. Other grammar-based approaches rely on hard-coded grammars [90]

and can only address a small fraction of existing building structures.

In the next chapter, we introduce the main contributions of this manuscript by study-

ing how to combine the advantages of MRF structure-aware pixel-based methods such

as, e.g, [29, 91] and superpixel modeling, e.g., [11, 69, 100, 111], while considering a
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more suitable top-down image partitioning than bottom-up segmentations [1, 24] that

are used in such methods to model structured, man-made scenes.
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Figure 3.1: Our method takes a few calibrated images and an SfM point cloud to re-
construct a compact, piecewise-planar mesh aligned with the dominant structure of the
scene.

In this chapter, we address the problem of Multi-View Stereo (MVS) reconstruction

of highly regular man-made scenes from calibrated, wide-baseline views and a sparse

Structure-from-Motion (SfM) point cloud. We introduce a novel patch-based formula-

tion via energy minimization which combines top-down segmentation hypotheses using

appearance and vanishing line detections, as well as an arrangement of creased planar

structures which are extracted automatically through a robust analysis of available SfM

points and image features. The method produces a compact piecewise-planar depth

map and a mesh which are aligned with the scene’s structure. Experiments show that

our approach not only reaches similar levels of accuracy w.r.t state-of-the-art pixel-based

methods while using much fewer images, but also produces a much more compact,

structure-aware mesh in a considerably shorter runtime by several of orders of magni-

tude.
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3.1 Introduction

Over the last decade, structure-from-motion (SfM) and dense multi-view stereo (MVS)

reconstruction have benefited from constant progress in feature detection and matching,

and camera calibration, leading to mature systems, e.g, Bundler [92, 93], VisualSfM [107,

108], openMVG [70–72], PMVS-2 [32], CMP-MVS [43], including consumer products

such as Acute3D ContextCapture and Agisoft PhotoScan.

Current state-of-the-art methods are now able to produce impressive 3D reconstruc-

tions for many scene categories with a rich level of detail, assuming there are enough

input images and the scene is sufficiently textured.

However in highly-regular environments such as indoor and outdoor man-made

scenes, the complexity of the produced geometry (dense point clouds or meshes) is

often detrimental to the structure of reconstructed objects. In such scenes the geome-

try ubiquitously presents: (i) piecewise planarity, (ii) alignment of objects boundaries

with image gradients and (iii) with vanishing directions (VDs), and (iv) surface sim-

plicity, which globally induces planar alignments. This structure is even more difficult

to retrieve when only few wide-apart views are considered or available, with broad

textureless and specular areas which, altogether, form the typical use-case scenario in

urban street-level imagery.

Moreover, the usability of traditional MVS approaches is also limited due to their

insufficient computational-and-storage scalability as they consider exhaustive or signif-

icant multi-view photoconsistency at the pixel level. Typical runtimes can reach several

hours to model a single street, resulting in several millions of polygons and contradict-

ing the paradoxical simplicity of the depicted scenes.

Alternative approaches tackle these issues separately. Superpixel modeling tech-

niques first establish an image partitioning using unsupervised methods [10, 11, 68, 69]

to address the problems of robustness and scalability, but fail at respecting structure.

Structure-aware reconstruction methods [29, 91] on the other hand propagate sparse

2D dominant edge detections and 3D information under heavy regularization and ex-

pensive pixelwise computations. A number of restrictive assumptions have been used

to simplify the problem, such as a Manhattan-world assumption (MWA) [29, 97], se-

mantic information [52], building footprints [97], hard-coded grammar rules [97] or the

additional availability of dense point clouds from laser scans [59, 89].

In this chapter, we address the multi-view reconstruction of structured depth maps

from a few images (typically 2-5 wide-baseline images with one reference view) and
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a sparse SfM point cloud (typically obtained together with image calibration) using a

scalable, region-based formulation. In contrast to existing region-based stereo methods,

ours does not rely on a bottom-up image partitioning. Rather, we combine vanish-

ing directions, image contours and sparse 3D data to generate top-down segmentation

hypotheses, on which we define a Markov Random Field (MRF) topology. The final,

structured depth map is retrieved by minimizing a global energy which groups neigh-

boring image patches by enforcing plausible structure-aware connectivities, resulting in

a "patchwork" solution.

We demonstrate pixelwise accuracy results on par with state-of-the-art dense MVS

pipelines [43] while utilizing much fewer reprojection images and gaining several orders

of magnitude in runtime and memory consumption. These improvements are achieved

thanks to both our patch-based representation and our robust hypothesis extraction

from already-available SfM data. The resulting mesh is compact, and aligned with

scenes’ structure and image gradients by design, which is achieved with no need of

later 3D geometry simplification [80], nor additional complex mesh refinement [103], or

tedious primitive fitting steps [53].

Our main contributions are as follows:

• We propose a novel region-based stereo formulation which incorporates structure

priors in a principled MRF energy minimization framework where the global en-

ergy is amenable to graph-cut inference [13].

• We define a robust joint 2D-3D method for extracting structurally-relevant 2D

line and 3D plane hypotheses from principal VDs, image contours and already-

available sparse SfM data. It generates top-down superpixels whose boundaries

are aligned with VDs.

• We present an end-to-end pipeline which treats high-resolution images (16MP)

within a few seconds or minutes per building with Matlab code, paving the way

for large-scale, compact, structure-aware urban modeling.

3.2 Related Work

Pixel-level MVS. A number of top-performing general MVS algorithms assume a

Delaunay tetrahedralization of an initial 3D point cloud, whose cells are labeled with

a discrete occupancy state according to visibility and photometric constraints; the

reconstructed surface lies at the interface between empty and non-empty cells [43, 103].
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Despite mesh refinement, the resulting surface remains a jagged approximation of a

locally-smooth geometry, which may then require expensive post-processing to achieve

a compact representation, e.g., by fitting 3D geometric primitives [45, 53]. The situation

is even worse with voxel-based approaches [37, 81]. Pixel-based stereo techniques,

which build disparity maps, have seen a tremendous increase in performance since

early approaches [46] and their later extensions using second order smoothness

priors [76, 106], color models [9] or semantic classification [52]. This category of

approaches has been well established for narrow-baseline stereo problems as reported

in the Middlebury challenge [83], but it scales poorly in image number and image size;

besides, it is sensitive to wider baselines.

Superpixel modeling. Patch-based stereo approaches, e.g., [10, 68, 69], infer

piecewise-planar depth maps for superpixels whose surface is assumed uniform. These

superpixels are obtained with unsupervised bottom-up methods, that tend to randomly

oversegment highly-textured regions [24] or to produce hexagonal shapes in large

homogeneous areas [1]. These methods, in comparison to pixel-based and volumetric

approaches, are more scalable and are less sensitive to appearance, viewpoint changes

and textureless areas. They are however completely agnostic of the structure of the

scene beyond the simple alignment of objects boundaries with image gradients,

which translates into many blatant visual artifacts. Bodis-Szomoru et al. [10] build a

multi-image graph over superpixels and reconstruct a approximate model which is

very well suited for large-scale modeling. However, patch-to-patch stereo matching

adds up to the lack of structured boundaries and alignments. It also assumes there are

enough SfM points, even in visually homogeneous patches, which often does not hold.

Structure priors. Another line of work models weak structure priors [29, 91]

by enforcing piecewise-planarity transitions to lie at both strong image gradients

and along edges aligned with vanishing directions. However, these are pixelwise

approaches and suffer from robustness and scalability issues which restricts their

usage to scenes of low complexity and low image resolution (≤ 3MP). In contrast, our

patch-based formulation allows to handle 16MP images with a much lower runtime by

several orders of magnitude, without assuming Manhattan scenes [29].

Top-down superpixels. Fouhey et al. [27] use a scene representation relying

on multiple top-down partitions of an image. They intersect sets of 2D rays cast

from pairs of vanishing points, defining projective rectilinear superpixels/patches

whose boundaries reflects their 3D orientation. The authors use this intermediate
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representation to estimate the orientation membership of each pixel in a monocular

indoor Manhattan-world scene, as well as inter-patch spatial relationships. In contrast,

our approach makes use simultaneously (vs. sequentially) of image edge detections,

vanishing directions and 3D cues from sparse SfM data to help extract more subtle

lines in a robust line-sweep stage.

Mesh alignment. Yet another line of work constructs a mesh in the image domain,

and then reconstructs vertices in 3D. Saxena et al. [82] use supervised learning to

correlate image region appearance with depth information and are able to retrieve

a plausible 3D mesh from a single calibrated image for scenes that present a low

variation of aspect and structure. Bodis-Szomoru et al. [11] address the problem

of 3D reconstruction from a single image with sparse SfM data by triangulating

superpixels [24] in the image domain, and then fitting triangles onto SfM points by

penalizing surface curvature. The depth information of triangles with no sparse

3D information is linearly interpolated. This simplifying assumption is made at

the expense of geometric accuracy. The rendered reconstructions can be visually

satisfactory at a coarse level for nearly flat objects and buildings (e.g., Haussmannian

architecture), but cannot model more complex yet ubiquitous elements such as

protruding balconies and loggia recesses, especially for patches with low point density.

In contrast, our method benefits from sparse SfM cues (where available) and multi-view

photoconsistency; it propagates structurally plausible surface associations by favoring

planar continuity and crease junctions.

3.3 Overview

Inputs/Outputs. Our method takes a collection of unordered calibrated images (one

serving as reference, I , the others for reprojection) and a sparse SfM point cloud S
(given together with calibration information). It produces a structured depth map and a

corresponding structured mesh for each reference image. Our notion of structure refers

to the following properties w.r.t. the expected output geometry: (i) piecewise-planarity,

(ii)+(iii) alignment of object boundaries with strong image gradients and main vanishing

directions, (iv) non-local planar and boundary alignments.

Top-down segmentation and 3D plane hypotheses. Our method first computes the

dominant VDs visible in I via a greedy procedure. Top-down superpixels are then gen-

erated by creating in I an arrangement of dominant vanishing lines (VLs). Intuitively,

VLs play a key role in capturing the layout of a regular scene as they are plausible in-
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dicators of geometric transitions. In order to extract plane candidates consistent with

patch boundaries, i.e., to favor crease planar transitions in 3D, VLs and dominant planes

must be mutually consistent and aligned. To this end, we extract the 3D hypotheses in

a robust vanishing-line-sweeping stage which simultaneously takes into account image

features along VLs and sparse 3D data (cf. Section 3.4).

MRF-Energy minimization. Our energy combines all patches in 3D by enforcing

structurally-sound associations in accordance with multi-view patch-wise photoconsis-

tency and SfM cues. It is minimized efficiently (cf. Section 3.5).

Compact, structured mesh generation. Once the final depth map is recovered, we

generate a polygonal mesh for each planar region. This is carried out in the image do-

main with a 2D Constrained Delaunay Triangulation (CDT) which is then reprojected to

3D (cf. Section 3.6).

3.4 2D Segmentation and 3D Plane Hypotheses

In this section, we describe in detail the different elements of our pre-processing.

3.4.1 Estimating Vanishing Directions

As a first step, we extract dominant VDs visible in reference view I . Contrary to [91], we

do not merge or cluster them from different images as it would introduce inaccuracies

due to calibration imprecision. It could also introduce directions which are irrelevant in

the image of interest. We proceed as follows, without MWA, as opposed to [29, 69]:

First, we detect line segments, using LSD [102], and keep the segments with the best

scores (lowest − log(NFA)). In our experiments, by keeping the top 2500 segments of

sufficient length (40 pixels), we get enough cues for detecting vanishing points (VPs)

with negligible outliers.

Second, we estimate VDs. We use the VP detector of Lezama et al. [57], which han-

dles both Manhattan and non-Manhattan cases. As most non-Manhattan architectures

may also include 3 Manhattan directions, we first use the Manhattan prior and seek 3

initial Manhattan VDs. We then greedily detect new VDs without the Manhattan prior,

putting aside associated lines at each iteration and discarding VDs too close from previ-

ous ones (≤ 5 deg), until no more VD is detected. This strategy allows to better retrieve

VDs that have subtle sets of supporting evidence. It may yield more than 3 VDs, which

may or may not be orthogonal.
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3.4.2 Dominant Planes

We extract plane hypotheses in two stages. First, dominant planes are detected from

both the VPs and the point cloud S . Next, more subtle planes associated to creases and

fine structural details are detected (e.g., window frames).

Concretely, we first discretize the set of plane orientations by considering VP pairs
#»v i,

#»v j and the associated plane normal #»n ij, given the intrinsic calibration matrix K [38]:

(3.1)#»n ij =
K> #»v i × #»v j

||K> #»v i × #»v j||
Then, for each #»n ij, we look for associated plane offsets (signed distance to the camera)

that correspond to dominant planes. For this, each point s∈S votes in a 1D weighted

histogram (specific to #»n ij) in the bin associated to its offset. The weight is | #»n ij.
#»n s|

where #»n s is the normal of a plane estimated by PCA analysis from points in a local

neighborhood N(s). To limit quantization issues in presence of sparse regions in S , we

define N(s) as the ball whose radius is half the distance to the k-th nearest neighbor

of s [77]. (In our experiments, k = 50.) The size of a bin is defined as:

(3.2)g = min
ij

(medians∈S (mij(s)))

where mij(s) is the median of the offsets of points in N(s) along the normal #»n ij. In our

experience, g provides a stable granularity scale throughout all the considered datasets;

all dominant planes are retrieved as the maxima of the histogram, unless data is missing,

e.g., due to the lack of texture.

3.4.3 Dominant Vanishing Lines

We extract dominant VLs in I as lines with strong and consistent edge information, in

the following way.

We first reduce texture sensitivity by applying a bilateral filter (with a range param-

eter σr = 130, and a spatial parameter σd = 3 in all experiments). We then filter the image

using a Canny-Deriche edge detector [20] with double hysteresis thresholding (with

fixed thresholds 0.05 and 0.15 throughout experiments), resulting in a binary image Γ.

To retrieve more subtle contours, we actually extract edges at multiple image scales (0.5,

0.75, 1 in our implementation) and merge in Γ the resulting edge maps with a logical-or.

Then, for each VP, we sweep a VL l on the binary edge map Γ through every pixel

x along l within the image frame. The fixed angular deviation between two successive

VLs is the smallest angle among the 4 angles corresponding to 1 pixel of deviation at
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Figure 3.2: VLs swept from each VP (top row). Pixels sup-porting dominant VLs (bottom
row), based on gradient features.

the 4 image corners. This ensures an adaptive and high density sweeping throughout

the image. For each swept VL l, we consider the rasterized chain of binary pixels

Γ(x, l) it contains. For robustness, we initially apply a 1D Gaussian (with σ = 1), re-

binarizing the line (with threshold 0.8). For consistency, we only consider as meaningful

in Γ, continuous chains of pixels that are long enough (of length of at least 40 in our

experiments). Resulting segments are illustrated on Fig. 3.2. Finally, dominant VLs are

defined as the local maxima of the following score when l varies along the swept lines:

(3.3)domVL(l) =
1
|l| ∑x∈l

Γ(x, l)
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3.4.4 Secondary Lines and Planes

Leveraging on dominant planes and VL information, we extract more subtle lines and

planes. We consider the following three additional cues, based on creaseness.

For each dominant plane Πij with normal #»n ij, for each VP #»v k other than #»v i,
#»v j, and

for each VL l swept from #»v i (then symmetrically from #»v j), we consider a hypothetical

plane Πikl defined by the normal #»n ik and the offset s.t. Πikl and Πij intersect in 3D on a

line L which reprojects as l. To assess this hypothesis, we measure the following cues:

• ridgeijk(l) is the number of points in S that lie in the slice of space at distance at

most g of Πikl . It is illustrated as the stripe between the green lines in Fig. 3.3. As

we only want to assess the crease hypothesis at l, each point in the slice contributes

to the global score (denoted creaseijk(l) below) according to its 1D distance d to L,

with weight exp(−d(s, L)/(40g)). Formally:

(3.4)ridjeijk(l) = ∑
s∈S , d(s, Πikl)≤g

exp(−d(s, L)/(40g))

• volumij(l) is the number of “volumic” points in S that lie in a cylinder at distance at

most g of L. It is illustrated as the disk inside the red circle in Fig. 3.3. “Volumic”

points are considered not to lie on a line or plane, which would not correspond to

a crease. The dimensionality of a point s∈S is given by PCA analysis of neigh-

borhood N(s). It is “volumic” if the 3 largest eigenvalues e1, e2, e3 (e1 ≥ e2 ≥ e3) are

comparable: 0.35 e1≤ e2, e3.

• junctijk(l) is the number of points lying in a rectangular cuboid centered on L with

length 8g along #»v j and width 2g along #»v k. It is illustrated as the area inside

the purple rectangle in Fig. 3.3. It tells whether dominant plane Πij could have a

junction with Πikl at L.

Last, if junctijk(l) ≥ 2, we consider the following score:

(3.5)creaseijk(l) = domVL(l) ridgeijk(l) volumij(l)

The local maxima of creaseijk(l) indicate secondary planes Πijk and vanishing lines l.
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Figure 3.3: 2D-3D VL sweeping to extract secondary lines and planes (left). Top view of
SfM point cloud (right) with regions to measure ridge cues (green), volumic points (red)
and plane junctions (purple). Please see text for details.

3.4.5 Segmentation into Patches

The “patchwork”, i.e., the final top-down segmentation into patches p ∈ P , is the 2D ar-

rangement made from dominant and secondary VLs, from which we discard peripheral

patches. We only keep patches in the intersection of regions inside the two extreme VLs

extracted for each VP. The fact is that peripheral patches often consist of sky, vegetation,

ground or clutter pixels, which are not planar. Besides, as not all vanishing orientations
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are represented at the periphery (in terms of patch boundaries), it could disfavor certain

planes during inference, which could propagate by local regularization, altering proper

plane assignment.

This simple region clipping automatically restrains the focus of the reconstruction

on the main objects of interest (e.g., Fig. 3.5, top right). It generally defines a convex

hull (unless a VP lies in the image). When a piecewise-planar structure with a convex

silouhette is observed, this strategy yields a meaningful segmentation, not requiring

manual masking [69] nor semantic or planarity classifiers [33]. When it forms a concave

region, our assumption still restricts possible detrimental behaviors to the patches that

constitute the concave fraction. Our method is however little sensitive to noise and

outliers.

3.5 Patch-based Stereo Revisited

We define a pairwise MRF over the graph G = (P ,N ) where P is the set of patches in

Sect. 3.4.5 andN is the neighborhood system of pairs of patches sharing a boundary. Let

L = {( #»n 1, d1), . . . , ( #»n N , dN)} be the label space of random variables (yp)p∈P = y; ( #»n p, dp)

represents a plane, uniquely characterized by its normal #»n p and signed offset dp to the

main camera center, i.e., camera of the reference image I .

Our goal is to infer for all patches p∈P the plane assignment yp with the lowest en-

ergy. The energy E(y) encourages planar continuity and crease junctions, over structure

disruptions and implausible planar compositions (regularization). It also favors photo-

consistency between views at patch level and adherence to the sparse SfM points (data

terms). It is defined as follows:

(3.6)E(y) = ∑
p∈P

wp (ΦPhoto
p (yp) + Φ3D

p (yp))︸ ︷︷ ︸
Data terms

+ λ ∑
(p,q)∈N

wpq ΨConnectivity
pq (yp, yq)︸ ︷︷ ︸

Regularization term

where λ balances the contribution of the unary and pairwise potentials, and wp, wpq are

adaptive normalizing weights respectively proportional to the patch area and the length

of the common linear boundary between neighboring patches; both expressed in pixels.

This allows to adaptively scale the relative contribution between unary and pairwise

terms in the global energy, reducing the sensitivity of the parameter λ. The adaptive

weights are defined as follows:

(3.7)wp = areaI (p). exp
(
−

σ(Sp)
0.1

)



3.5. Patch-based Stereo Revisited 61

where areaI (p) is the area of patch p, and σ(Sp) is the surface variation of the 3D points

reprojecting in p, as defined in [77]. This value ranges between 0 (totally planar) and

1/3 (isotropically distributed points) and plays a role of indicating whether the point

distribution within a patch p is likely to be planar or not.

(3.8)wpq = |p u q|. max

(
0.01,

1
|p u q| ∑

x∈puq
µ(x)

)
where |p u q| is the length of the common edge boundary between p and q, and µ(x)

is the edge magnitude at pixel x (i.e., the pixel intensity, between 0 and 1). We cap

the pairwise regularization in the definition of wpq by allowing a minimum weight of

0.01 for robustness. This is to avoid a complete disconnection of neighboring nodes in

the graph topology along strong edge boundaries. The different potential functions are

detailed below.

3.5.1 Data Terms

Multi-View photoconsistency. ΦPhoto
p (yp) penalizes appearance dissimilarities between

a patch p and its reprojection πv(p) in other views v∈V , assuming plane-induced ho-

mographies [38]. For regions not reprojecting entirely within v, the penalty is a constant.

This function is subdivided into an intra-patch photoconsistency and a boundary edge

consistency operating on patch boundary pixels Bp and their reprojection πv(Bp).

(3.9)ΦPhoto
p (yp) = 1

|V| ∑
v∈V
{α∆(p, πv(p)) + βA(Bp, πv(Bp))}

where α, β are model parameters, and A(., .) measures the proportion of boundary

pixels agreeing on the presence of image gradient across views. ∆(., .) is a dissimilarity

function between two image regions related by homography. We consider the zero-mean

normalized cross-correlation zncc with exponential normalization for robustness:

(3.10)∆(p, πv(p)) = 1− exp{−δ2

0.8
}

where
(3.11)δ = 1−max{0, zncc(p, πv(p))}

3D point consistency. We use the sparse 3D cues to encourage surfaces to fit onto SfM

points that reproject within p:

(3.12)Φ3D
p (yp) = 1− exp{−φ2

0.3
}

where
(3.13)φ =

γ

τ.|Sp| ∑
s∈Sp

min(τ,
D(s, yp)

g
)
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where γ is a model parameter, Sp is the subset of SfM points reprojecting within p, τ is a

distance threshold (measured in g units), and D(s, yp) is the point-to-plane 3D distance.

a) Planar continuity c) Plausible Occlusion (1)

b) Crease junction d) Plausible Occlusion (2)

Figure 3.4: The four pairwise associations modeled by our regularization term. Surface
hypotheses are represented with boundaries aligned with vanishing directions defining
their 3D orientation. Best viewed in color.

3.5.2 Regularization

Representing 3D orientations by using vanishing points (Eq. (3.1)) suggests that two

planar surfaces oriented resp. towards #»n ij and #»n ij′ are likely to intersect in the image

plane at a crease edge #»e pq (in orange in Figure 3.4) aligned with the common vanishing

direction #»v i. Our pairwise regularization prior ΨConnectivity
pq (yp, yq) relies on this assump-
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tion by reasoning on the connectivity of neighboring patches and imposing a preference

over the possible configurations:

(3.14)ΨConnectivity
pq (yp, yq) =



0 : if (yp, yq) ∈ Tcontinuity else

λ1 : if (yp, yq) ∈ Tcrease else

λ2 : if (yp, yq) ∈ Tocclusion1 else

λ3 : if (yp, yq) ∈ Tocclusion2 else

λ4 : otherwise

where 0 ≤ λ1 ≤ λ2 ≤ λ3 ≤ λ4 are the respective costs for neighboring patches, and

(yp, yq)∈ Tcontinuity lie on the same plane, i.e., yp = yq (case (a) in Fig. 3.4), (yp, yq)∈ Tcrease

form a crease junction (case (b) in Fig 3.4), (yp, yq)∈ Tocclusion1 lie at a depth discontinuity

where #»e pq is consistent with the orientations of both p and q (case (c) in Fig 3.4), and

(yp, yq)∈ Tocclusion2 are such that #»e pq is consistent only with the occluding (fronting)

patch (case (d) in Fig 3.4). All other configurations are given a prohibitive penalty λ4.

3.5.3 Inference and Theoretical Details

Depending on how the penalties λ1..4 are set in Eq. 3.14, the smoothness function

can either be a metric, or a semi-metric. The metric case allows a more efficient

inference as it guarantees the solution to be at a known factor from the global

optimum, but it is more restrictive in its expressive power [48]. In all our

experiments, we adopt the semi-metric case by setting the parameters to respectively

{α, β, γ, λ, λ1, λ2, λ3, λ4} = {1, 0.5, 0.4, 30, 0, 0.6, 3.8, 50}. The final energy can hence

be optimized using, e.g., swap-based graph-cut moves [48]. In practice, we found

the alpha-expansion [47] inference to give better results even in the semi-metric case

although there is no theoretical guarantee to be close the optimum, and adopt it

throughout our experiments.
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We now provide additional details on the connectivity term in Eq. 3.14. Formally,

the connectivity term can be defined as follows:

(3.15)ΨConnectivity
pq (yp, yq) =



0 : if yp = yq else

λ1 : if θpq(yp, yq) ∧ χ3D
pq (yp, yq) ∧ # »np 6= #»nq else

λ2 : if θpq(yp, yq) ∧ χ3D
pq (yp, yq) else

λ3 : if θpq(yp, yq) ∧ χ3D
pq (yp, yq) ∧ φpq(yp, yq) else

λ4 : otherwise

where θpq is a 3D tightness predicate which is true when the patches touch in 3D

along the whole common linear boundary, up to an ε = 10−5.

χ3D
pq means # »np and #»nq share a common vanishing point (i.e., relate to some # »nij and #  »nij′ ,

hence such oriented surfaces could form a junction pointing towards #»vi which they

have in common). φpq indicates whether the orientation of the common boundary, #  »epq,

belongs to the hypothesis of the fronting reconstructed 3D patch which is a case of

plausible occlusion.

The top bar notation designates predicate negation.

θpq(yp, yq) = J max{ ρ(
#  »

e1
pq, yp, yq), ρ(

#  »

e2
pq, yp, yq) } ≤ ε K (3.16)

where
#  »

e1
pq and

#  »

e2
pq refer to the two vertices at both ends of the common edge boundary

between neighbor patches∗. ρ is the relative 3D reconstruction error of a pixel x w.r.t

planar hypotheses yp and yq:

(3.17)ρ(x, yp, yq) =
||X(x, yp)− X(x, yq)||

2 max{ ||X(x, yp)||, ||X(x, yq)|| }

where X(x, yp) (resp. X(x, yq)) is the reconstructed 3D point lying at the intersection

of the infinite ray going from the camera center of I , through pixel x and the 3D plane

defined by the plane label yp (resp. yq).

(3.18)φpq(yp, yq) = J ( #  »epq ∈ {i, j} ∧ ||Xp1 ||< ||Xq1 || ∧ ||Xp2 ||< ||Xq2 ||)
∨ ( #  »epq ∈ {i′, j′} ∧ ||Xp1 ||> ||Xq1 || ∧ ||Xp2 ||> ||Xq2 ||) K

where Xp1 (resp. Xp2 , Xq1 , Xq2) is a shortcut notation to designate the 3D reconstruction

of pixel #  »epq
1 (resp. #  »epq

2) via yp (resp. yq)), and where i, j, (resp. i′, j′) are line directions

corresponding to vanishing points #»v i,
#»v j (resp. #»v i′ ,

#»v j′).

∗J K stand for the Iverson bracket.
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3.6 Structure-aware Mesh Generation

After inferring a plane for each patch, our structured planemap representation contains

a number of polygons per reconstructed plane. For each plane, we merge all associated

polygons, producing larger but fewer polygons, possibly with holes. By construction,

patches are either adjacent one to another or disjoint, which simplifies merging. By

construction also, the polygon boundaries are aligned with VDs and image gradients. A

2D triangle mesh for these merged polygons can be then produced using a constrained

Delaunay Triangulation, and then lifted to 3D.

3.7 Evaluation

We evaluate our approach on 4 challenging datasets of individual buildings presenting

textureless areas and repetitive patterns, for which we use only a few wide-baseline

images. Statistics for each dataset are given in Table 3.1. All experiments use the same

parameters: α = 1, β = 0.4, γ = 0.5, λ = 30, λ1 = 0, λ2 = 0.6, λ3 = 3.8, λ4 = 50.

Quantitative results. We quantify pixelwise accuracy of our reconstructions w.r.t.

a reference mesh built with CMP-MVS [43] and two point clouds built using PMVS-2

with and without Poisson surface reconstruction [32]. For these baselines, we use all of

the available images of each scene.

Fig. 3.5, 3.6, 3.7 and 3.8 show, for each dataset, the reference image of each dataset,

the corresponding top-down segmentation, a qualitative view of the output 3D model

and the corresponding quantitative results per scene. For each method, in the right

column, we vary the tolerated error as a fraction of the scene’s depth range and

accumulate the proportion of correctly reconstructed pixels (up to the given tolerance)

w.r.t. the reference mesh; the higher the curve, the better the performance. We compare

our results against the reference mesh only on manually annotated regions of interest

per view, i.e., on a mask that specifies the building pixels in the image. The figures

show the following: (i) The sparse PMVS-2 method has poor overall accuracy due to

the lack of reconstructed points in wide textureless areas. (ii) Its dense counterpart

(PMVS-2+Poisson) performs better than our method (PWS) and its ablated versions for

AugusteC and Hameau, which is explained by the significant amount of additional

images. (iii) For the GMU dataset, PWS has a higher curve, which is due to the lack of

images for CMP-MVS and PMVS-2+Poisson (only 5). (iv) In Bry2, the performance of
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PWS is on par with the baseline.

Although using only a small subset of wide-baseline views, our method (PWS)

achieves comparable accuracy results while providing a much more compact

geometry which respects the structural regularity of the scene in a fraction of

the runtime (as discussed below).

Ablative study. Fig. 3.5, 3.6, 3.7 and 3.8 also show results with ablated

variants of our data terms, to assess their importance. (When canceling a term, we

make sure the relative weights of the data and regularization terms stay the same.)

Keeping only the SfM term Φ3D
p (yp) sometimes leads to severe errors. This robustness

issue corresponds to a few anomalous planes due to point could sparsity. Apart from

SfM, PWS is comparable to its ablated models, sometimes slightly better in terms of

pixelwise accuracy. However, it is difficult to see quantitatively the difference because

of the relative lack of accuracy of the CMP-MVS reference. Still, a qualitative analysis,

as illustrated in Fig. 3.9, shows that the full PWS model presents a much more regular,

structured appearance and is visually more pleasing. This also shows the limits of using

CMP-MVS [43] as a reference to quantitatively assess the quality of the reconstructions.

Indicative runtime. Our CPU implementation is a mixture of pure vectorized Matlab

/ Mex / C++. The two main computational bottlenecks of our method are the multi-

view photoconsistency, which is computed for all patches through all planar hypotheses,

and the pairwise costs. Both of these tasks are written in vectorized pure Matlab, and

the photoconsistency could benefit from significant speed-ups.

Photoconsistency runs in roughly 1s per 16MP image per plane candidate on a mod-

est laptop with an Intel Core2Duo 2.40Ghz, 4GB RAM. Other running times are negligi-

ble.

Comparison to related work. [11] provides quantitative results on scenes for which

our VD-based segmentation does not make sense, e.g. arches and columns of Herz-Jesu.

Only scenes of streets M, P, Z of Mirbel (low-resolution, <1MP images) are relevant

to us, but are unknown subsets of the ETHZ RueMonge 2014 dataset. The reference

(high-resolution) mesh is unavailable anyway. Still, we ran our method, with only 2

reprojection views, on a RueMonge facade looking like Fig. 1,3 and 6 in [11]. Our recon-

struction (cf. Fig. 3.11) is better aligned with the structure: window and balcony edges

are straighter and sharper. Besides, we have much less triangles per image (<680 vs
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Figure 3.5: Bry2 dataset. From left to right and top to bottom: (i) reference view, (ii) our
segmentation, (iii) our 3D reconstruction, (iv) semi-log-scale accuracy w.r.t CMP-MVS
reference mesh. We plot the proportion of pixels whose depth is correct up to a given
error tolerance, expressed as a fraction of the scene’s thickness (labeled Error %). We
compare with PMVS-2 [32], with and without poisson surface completion, and different
ablations of our data terms. PWS: our complete model (PWS), then using different data
terms in the energy, SfM only: using only the SfM 3D point consistency from Eq. 3.12,
Photo only: using the photo-consistency part from Eq. 3.9), Photo+Edge: using photo
and edge consistency (Eq. 3.9), and Photo+SfM: Eq. 3.9+Eq. 3.12. Best viewed in color.
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Figure 3.6: GMU [68] dataset. From left to right and top to bottom: (i) reference view,
(ii) our segmentation, (iii) & (v) views of our 3D reconstruction, (iv), top view showing
the compactness of the model and its alignments to VDs, (vi) semi-log-scale accuracy
w.r.t CMP-MVS reference mesh. We plot the proportion of pixels whose depth is correct
up to a given error tolerance, expressed as a fraction of the scene’s thickness (labeled
Error %). We compare with PMVS-2 [32], with and without poisson surface completion,
and different ablations of our data terms. PWS: our complete model (PWS), then using
different data terms in the energy, SfM only: using only the SfM 3D point consistency
from Eq. 3.12, Photo only: using the photo-consistency part from Eq. 3.9), Photo+Edge:
using photo and edge consistency (Eq. 3.9), and Photo+SfM: Eq. 3.9+Eq. 3.12. Best
viewed in color.
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Figure 3.7: AugusteC dataset. From left to right and top to bottom: (i) reference view,
(ii) our segmentation, (iii) our 3D reconstruction, (iv) semi-log-scale accuracy w.r.t CMP-
MVS reference mesh. We plot the proportion of pixels whose depth is correct up to a
given error tolerance, expressed as a fraction of the scene’s thickness (labeled Error
%). We compare with PMVS-2 [32], with and without poisson surface completion, and
different ablations of our data terms. PWS: our complete model (PWS), then using
different data terms in the energy, SfM only: using only the SfM 3D point consistency
from Eq. 3.12, Photo only: using the photo-consistency part from Eq. 3.9), Photo+Edge:
using photo and edge consistency (Eq. 3.9), and Photo+SfM: Eq. 3.9+Eq. 3.12. Best
viewed in color.
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Figure 3.9: Qualitative comparison of different ablations of our data terms. From left
to right and top to bottom: (i) our full model, (ii) Photo+SfM, (iii) Photo only, (iv)
Photo+Edge, (v) SfM only. Even though the global pixelwise accuracy may be compa-
rable between different truncated versions of our model (cf. Fig. 3.5, 3.6, 3.7 and 3.8),
removing data terms translates into noticeable artifacts which degrade the 3D structure
through erroneous depth or even surface orientations. Best viewed in color.
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15k). [29, 69, 91] do not provide any quantitative evaluation of accuracy; in any case,

they do not address both structure and scalability, as we do. Comparing with [69], our

result is much better, as illustrated on Fig. 3.10. Our junctions form perfect creases. Our

misreconstructed patches correspond either to the sky or to regions occluded in other

views. All our patches are perfectly aligned with VDs in contrast to patches in [69]

which form arbitrary shapes and do not touch in 3D.

As for speed, [11] processes on average 1 view of 1MP per 2s and a facade in Rue-

Monge is seen by about 10 views, yielding a rate of about 20s/MP/facade. With Mat-

lab, we process 1 plane hypothesis for a 16MP image in about 1s; assuming 80-plane

scenes with 3 reprojection views per facade, our rate is 80*3*1/16 = 15s/MP/facade,

comparable to [11]. Likewise, [29] takes more than 300s/MP/facade and [91] takes

60s/MP/image for scenes with 11-61 images. [69] does not provide complete time in-

formation.

3.8 Conclusion

In this chapter, we have presented a novel approach for automatic multi-view recon-

struction of structured depth maps from only a few, wide-baseline high-resolution pho-

tographs. Our method produces compact meshes which are aligned with the dominant

structural traits of the scene (vanishing directions and edges). We have shown how

top-down segmentation hypotheses and sparse 3D data can capture most of non-local

planar alignments which are typical of man-made scenes. Working at the patch-level

allows significant improvements in robustness and scalability without any loss of infor-

mation w.r.t working on individual pixels. Regarding pixel-wise accuracy, we are on par

with dense reconstruction methods, although we use up to 9 times less images. This

paves the way for large-scale structure-aware urban modeling with plausible, visually

pleasing digital rendering.
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Figure 3.11: Top row: Segments and corresponding edge-map of Haussmanian façade,
considering 3 VDs. Bottom row: reconstructed planes with our method.



76
Chapter 3. Patchwork Stereo - Scalable, Structure-aware 3D Reconstruction in

Man-made Environments

Figure 3.12: Additional qualitative results. Comparison between the baseline PMVS-
2 [32] in the first row and our method in the second row (coloured) and in third row
(uncoloured) on the Bry2 dataset.



3.8. Conclusion 77

Figure 3.13: Additional qualitative results. Comparison between the baseline PMVS-
2 [32] in the first row and our method in the second row (coloured) and in third row
(uncoloured) on the Bry2 dataset.
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Figure 3.14: Additional qualitative results. Comparison between the baseline PMVS-
2 [32] in the first row and our method in the second row (coloured) and in third row
(uncoloured) on the Bry2 dataset.
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4.1 Summary of the Thesis and Contributions

In this thesis, we have studied the challenging problem of Urban Modeling, i.e.,

Image-based Modeling applied to street-level imagery, assuming the camera poses and

a corresponding sparse 3D point cloud to be available. We have focused our study

on two aspects in Multi-View Stereo (MVS) reconstruction, scalability and structure

priors. By “structure”, we intend the following principles regarding the produced 3D

geometry: (i) piecewise-planarity, (ii) alignment of the boundaries of the 3D elements

with their corresponding 2D image gradients and (iii) with principal vanishing

directions (VDs), (iv) co-planarity of elements, and (v) global geometric simplicity.

The main contributions of this thesis can be summarized as follows.

• Robust Extraction of 3D Planar Hypotheses from a Sparse and Noisy Point

Cloud.

3D planes are key in the piecewise-planar representation of man-made scenes.

While 3D planar hypotheses can be detected from a dense point cloud using stan-

dard robust techniques [25], extracting them from a sparse and noisy point cloud,

typically acquired through SfM is a much more challenging task. To address this

task, in section 3.4.2, we jointly consider information from the image domain,

i.e., dominant contours as well as dominant Vanishing Directions (VDs) which are

strong structural cues in man-made scenes. The resulting approach is fast and

robust, scalable, and combines information from the mutually informative 2D and

3D domains without any additional restrictive assumptions or inputs.

• Joint 2D/3D Reasoning for Top-down Image Partitioning.

In sections 3.4.3 and 3.4.4, we also propose a method that produces a top-down

image partitioning by exploiting VDs and strong gradient information in the image

domain, using a robust, adaptive line sweeping algorithm.

The method jointly reasons in 3D on the basis of an SfM point cloud as well

as in the 2D image domain and produces an image segmentation into polygonal

patches and a set of planar hypotheses which are consistent with the segmentation.

Dominant Vanishing Lines (VLs) and strong planar supports in the point cloud are

jointly leveraged to generate mutually consistent 3D planar crease hypotheses and

2D VLs which could not have been detected using a single support (2D or 3D)

alone.
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The final combination of the retained VLs in a 2D line arrangement constitutes

a structurally principled partitioning for top-down superpixel-based stereo, and

the supporting 3D planar hypotheses for this segmentation presents a significant

number of planar crease candidates which are compatible with the extracted VLs

in the final image over-segmentation.

• The Patchwork Stereo Framework.

We introduce a novel energy formulation which leverages the top-down over-

segmentation we have proposed as well as the robust extraction of planar hy-

potheses, and reconstructs a piecewise-planar, compact depth map and a mesh

which are aligned with the scene’s dominant structure using only a handful of

wide-baseline views.

The method poses the problem as an efficient and robust revisit of patch-based

stereo reconstruction, e.g., [67–69], by using top-down image partition priors in

contrast to bottom-up, structure-agnostic superpixels, e.g., [24]. We show through

qualitative and quantitative experiments that our approach not only reaches com-

parable levels of pixel-wise accuracy with respect to state-of-the-art pixel-based

methods, but also produces much more compact, structure-aware depthmaps and

meshes in a considerably shorter run-time by several of orders of magnitude and

by using up to 9 times fewer images.

• Publication.

A part of the work which is presented in chapter 3 has been published and pre-

sented at an international conference in Computer Vision [12].

4.2 Shortcomings and Limitations

Experimentation and Datasets.

A first shortcoming of the work we present in this manuscript comes from the lack of

variety and quantity in the datasets we consider in our experiments. In particular, we

did not evaluate our approach on man-made scenes comprising more than 3 VDs even

though our method can handle more complex scenes in this regard. Finding such scenes

in outdoor environments is challenging, but this could be addressed by considering

indoor scenes depicting a composition of Manhattan frames, as this set-up is much

more commonly found indoors.
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Despite our direct comparisons to state-of-the-art baselines such as Superpixel

Stereo [67–69] in terms of piecewise-planar and patch-based MVS and to competitive

pixel-based approaches [32], there are other very related works, particularly in

handling structure. Those approaches could not be considered as baselines in our

experiments due to the lack of publicly available implementations of Manhattan-World

Stereo [29], the work of Sinha et al. [91], and both approaches of Bódis-Szomorú,

Riemenschneider and Van Gool [10, 11]. To the best of our knowledge, each of these

papers lack significant details in their descriptions to allow us to reproduce them and

support a fair experimental comparison with our results.

Even though many top-performing patch-based and structure-aware MVS methods

do not publish quantitative evaluation on pixel-based accuracy performances [10, 29, 69,

91], we have done so in section 3.7. To this end, our strategy was the following. We

have used considerably more images per dataset than we have considered to run our

method (up to 9 times less), and built a reference mesh using a state-of-the-art mesh re-

construction pipeline [43]. We have also used a manually-edited binary mask to delimit

the regions of interest (which mainly depict buildings) in measuring the quantitative

performance scores for each of our baselines. However, the reference mesh is not an

ideal ground truth, as the produced geometry can still be overly complex, non-planar

and relatively noisy despite the important number of considered views. There is room

for improvement in using a better suited ground truth or datasets. Such datasets should

be compatible with our use-case scenarios and allow, for example, to retrieve dominant

VDs.

Applicability and Robustness of our Methods.

Our Patchwork Stereo framework relies on a top-down segmentation of reference im-

ages, which relies on a vanishing point detector, e.g., [57]. While such state-of-the-art

approaches can consistently provide robust vanishing point detections, this still limits

the use case scenarios of our framework to scenes that present strong visual cues (linear

features) to support the detection of vanishing points.

Additionally, our optimization combines 2D and 3D cues to produce the final re-

construction results in a principled energy-driven inference. However, as our approach

implements a pipeline, some steps are done by making early decisions which – in theory

– can not be recovered in case of failure, even though we have not experienced many

such cases in practice. This is the case for our segmentation which is fixed once and for

all, as well as for the extraction of planar hypotheses at the time of inference, once all
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information is put together. Segmentation, plane detection and MVS could be solved

jointly, by iterating between these steps or in a unified global energy.

Scene Completeness vs. Structure.

The 3D that we generate is view-dependent and the meshes we produce are computed

in 2D and lifted to 3D in order to allow a fast and scalable computation. As a result, our

final geometry is prone to holes in the scene parts which are not depicted in reference

images. A straightforward approach to handle this problem in the context of using

unstructured depthmaps would be to compute the depthmaps with overlaps between

reference images and then exploit this redundancy in geometry to cope with the missing

parts using a volumetric fusion schemes [18]. However, since we produce structured

reconstructions, such fusion strategies are not seamlessly applicable.

4.3 Future Work

Simultaneous Automatic View Selection and Point Cloud Segmentation.

One of the key aspects to address in order to design an end-to-end fully automatic

pipeline for reconstructing street-level scenes with a view-dependent reconstruction ap-

proach goes through the automatic view selection scheme which would minimize the

number of necessary views to explain the scene, and forbid or minimize overlap between

cameras in terms of 3D geometry. To jointly consider these criteria, such a method must

simultaneously cluster the 3D model which here, is the sparse SfM point cloud or alter-

natively, its coarse mesh in the vein of [113].

Joint 2D/3D Regularity Mining for Structured Reconstruction.

In terms of scalability, the main computational bottlenecks of our Patchwork Stereo

lie in the photo-consistency reprojection costs which is however linear in the number

of patches and planar hypotheses. The problem could be posed as a single-view 2D

patch to 3D plane fitting using our top-down segmentation and an SfM point cloud

where the sparse and noisy natures of such point clouds, in addition to the potential

absence of points reprojecting within textureless superpixels. Hence, to adopt such

an approach and remove altogether photoconsistency considerations from our model,

one should exploit the available sparse 3D cues differently by encoding a behavior for

point-less patches. One way to do so elegantly is by leveraging regularities in 2D (patch
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appearance in the image domain) as well as in 3D (patch co-planarity). Leveraging

2D regularities in reconstruction has already been considered successfully [109] but at

the pixel level. By exploiting the observation that, on a building façade, rectilinear

patches which are aligned along one VD are likely to be co-planar the more they are

photometrically similar. This simple assumption can help in propagating the existing

sparse 3D information in a pure single-view reconstruction scenario using superpixels

and sparse SfM.

Extension to Joint Semantic Modeling.

The natural extension of our contributions in the context of urban scenes is to integrate

semantic reasoning. A first straightforward way to do so would be by adding a unary

term to the energy which would account for the semantic part of the updated label space,

and by changing the definition of our connectivity pairwise regularization to allow only

certain plane-and-semantic transitions (e.g., favoring the co-planarity of semantic labels

which are naturally lying on a common plane such as “wall” and “window” classes, or

reasoning on crease transitions). The label-space in such variant would be the cartesian

product between planar labels and object classes.
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