
A Bit Bayesian Facilitates Efficient Training in Token Classification

Anonymous ACL submission

Abstract

Token classification is a fundamental subject001
in computational linguistics. Token classifica-002
tion models, like other modern deep neural net-003
work models, are usually trained on the entire004
training set in each epoch, while research has005
found the entirety of the training data may not006
be needed in later epochs of training. More-007
over, over-training on data that are properly008
handled may poison the model. Inspired by009
human pedagogy, we propose a teacher-aware010
learning structure for token classification mod-011
els. After each epoch of training, the teacher012
selects data it is uncertain of and data it pre-013
dicts differently from the student, which are014
passed into the structure for training in the015
next epoch. As a proof of concept, we use016
a Bayesian linear classifier as the teacher and017
two commonly used backbone models as the018
student. Experiments show our method re-019
duces the number of training iterations and im-020
proves model performance in most cases.021

1 Introduction022

Token classification tasks, such as Named Entity023

Recognition (NER) and Part-Of-Speech Tagging024

(POS tagging), are essential to the study of lin-025

guistics and natural language processing. In most026

works, token classification models are trained on027

the entire training set, i.e. the entire training set is028

fed forward and backward through the network in029

each epoch. This procedure implies that all data030

are equal, while studies have shown otherwise, that031

some data are well handled in early phases of train-032

ing and induce less shift in weights among later033

epochs (Loshchilov and Hutter, 2015; Katharopou-034

los and Fleuret, 2018). It has been shown that035

over-training on data that have a minimum training036

loss may penalize the model (Fan et al., 2017; Li037

et al., 2021). Thus, it is favorable to design an effi-038

cient training strategy capable of reducing training039

on properly handled data.040

In this work, we propose a teacher-aware struc- 041

ture to facilitate efficient training in token classifi- 042

cation tasks. In human pedagogy, teachers and stu- 043

dents interact with each other: teachers adjust their 044

teaching for different students and students provide 045

feedback for their teachers. This dynamic coopera- 046

tive process can also lead to a half-the-effort-twice- 047

the-result outcome in machine learning (Matiisen 048

et al., 2017; Yuan et al., 2021). In our structure, the 049

teacher interacts with the student via uncertainty 050

sampling: after each training epoch, the teacher 051

goes through the ENTIRE training set and selects 052

data that it is uncertain of1 and data that the student 053

predicts differently, which are passed into the struc- 054

ture for training in the next epoch. Our approach 055

reduces the number of training iterations and fea- 056

tures a dynamic data sampling process, i.e. the 057

teacher selects more data to train on when it is not 058

certain or there is a discrepancy between the pre- 059

dictions from the student. As the teacher becomes 060

confident with more data among the training set 061

with gaining agreement with student’s predictions, 062

the teacher tends to select fewer data to train later 063

on. 064

The key contribution of this work is an efficient 065

training strategy for token classification. As a proof 066

of concept, we use a Bayesian linear classifier as 067

the teacher. We use BERT and Bi-LSTM that are 068

widely used in token classification tasks as the stu- 069

dents, and test on NER and POS tagging. Experi- 070

ments show that our structure is able to reduce the 071

number of training iterations and improves model 072

performance in most cases. 073

2 Related Works 074

State-of-the-art token classification models (Ya- 075

mada et al., 2020; Schweter and Akbik, 2021; 076

Wang et al., 2021) are trained on the entire train- 077

ing set in each epoch. Alternatively, studies have 078

1Unless otherwise specified, uncertainty refers to predic-
tive uncertainty henceforth
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shown that some data are less informative, which079

should be considered less frequently during train-080

ing (Loshchilov and Hutter, 2015; Katharopoulos081

and Fleuret, 2018; Sinha et al., 2020). Moreover,082

continuing training on less informative data may083

affect the model’s performance (Li et al., 2021). A084

straightforward strategy to address this problem is085

to aggregate the largest k training loss (Fan et al.,086

2017). In such a method, k is a fixed value when087

training proceeds; however, k should be dynamic,088

since the extended data that are handled by the089

model vary in different phases of training. Thus,090

we believe that a dynamic efficient training strategy091

is vital for token classification and related learning092

tasks.093

Inspired by human cognition and pedagogy,094

teacher-aware learning is an important strategy in095

curriculum learning (Bengio et al., 2009). Matiisen096

et al. (2017) find that a teacher-student curriculum097

learning framework leads to faster learning in sam-098

pling sub-tasks from a complex task. Yuan et al.099

(2021) propose a teacher-aware learner based on100

gradient optimization that is capable of bringing101

global and local improvements.102

In the structure we proposed, the teacher uses103

uncertainty sampling to dynamically sample data104

from the training set. Uncertainty sampling is an105

effective approach to acquire informative data in106

active learning (Settles, 2009; Yang et al., 2015),107

based on which we implement a slightly different108

strategy, where the consistency between the output109

of the teacher and student is also considered.110

In our work, we are in favor of a teacher model111

that is as simple as possible. Inference through a112

Bayesian neural networks is the principled way to113

obtain uncertainty, and attempts are made to tackle114

the intractable nature of Bayesian neural networks.115

Blundell et al. (2015) introduce Bayes by Back-116

prop, which learns a Bayesian neural network by117

minimizing the Kullback-Leibler (KL) divergence118

between a diagonal Gaussian distribution and the119

true posterior. We train a Bayesian linear classifier120

which takes the output of the penultimate layer of121

the student model as the input, which is inspired by122

the implementation of Last Layer Laplace Approx-123

imation, that a Gaussian approximation to the last124

layer of a ReLU network is sufficient for yielding125

calibrated uncertainty estimations (Kristiadi et al.,126

2020).127

3 Method 128

We train a Bayesian linear classifier as the teacher 129

model to illustrate our points. Given a sequence 130

x = [x1, ..., xn] and its tags y = [y1, ..., yn] where 131

n is the sequence length, it goes through the stu- 132

dent model and weights w is updated by gradient 133

descent (GD). The Bayesian classifier takes the out- 134

put of the penultimate layer of the student model as 135

the input, and it is trained via Bayes by Backprop. 136

After each epoch, we use uncertainty sampling to 137

sample data from the ENTIRE training set, and the 138

selected data are passed into the structure for train- 139

ing in the next epoch. 140

3.1 Bayes by Backprop 141

BAYES BY BACKPROP learns a probability distri- 142

bution on the weights of a neural network (Blun- 143

dell et al., 2015). In our work, it finds the pa- 144

rameter θ = (µ, ρ), defined by a mean µ and a 145

standard deviation parameter ρ, that minimizes the 146

Kullback-Leibler (KL) divergence between a di- 147

agonal Gaussian distribution q(wc|θ) and the true 148

Bayesian posterior of the weights given the training 149

data P (wc|D), where wc denotes the weights of a 150

linear classifier: 151

F(D, θ) = KL[q(wc|θ)||P (wc|D)]. (1) 152

The cost in Eq.1 is approximated using Monte 153

Carlo sampling: 154

F(D, θ) ≈ KL[q(w(i)
c |θ)||P (w(i)

c |D)] (2) 155

where w(i)
c is the ith Monte Carlo sample drawn 156

from q(wc|θ). The approximation in Eq.2 is mini- 157

mized by optimizing the function as follows: 158
159

f(wc, θ) = log q(wc|θ) 160

− logP (wc)P (D|wc). 161

To update θ, a noise factor ε is sampled from 162

N (0, I), and let wc = µ + log(1 + exp(ρ)) ◦ ε, 163

where ◦ is point-wise multiplication. The parame- 164

ters of θ is updated by back-propagation. We follow 165

Blundell et al. (2015), using a scale mixture of two 166

Gaussians as the prior: 167
168

P (wc) =
∏
i

πN (w(i)
c |0, σ2) 169

+ (1− π)N (w(i)
c |0, ϕ2) 170

where σ2 and ϕ2 are the variances of the compo- 171

nent distributions and π is a probability. 172
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3.2 Uncertainty sampling173

UNCERTAINTY SAMPLING samples data using pre-174

dictive uncertainty translated from the uncertainty175

in weights:176

P (ȳ|x∗,D) = EP (wc|D) [P (ȳ|x∗,wc)]177

where x∗ is the output of the penultimate layer of178

a student model given x, and ȳ is a predicted tag.179

After each epoch of training, we select uncertain180

data and data for which the teacher and student181

model predict differently from the ENTIRE train-182

ing set, and feed them into the teacher and student183

model for training in the next epoch. Specifically,184

given a student model M(·), a Bayesian classi-185

fier teacher B(·), a training set D (with length m),186

sample times n, and a frequency threshold t, we187

perform uncertainty sampling as follows:188

Algorithm 1 Uncertainty Sampling

1: inputsM(·),B(·),D, n, t
2: for i = 1, 2, . . . ,m do
3: x← D[i], x∗ ←M∗(x), r ← []
4: for j = 1, 2, . . . , n do
5: ε ∼ N (0, I)
6: wc ← µ+ log(1 + exp(ρ)) ◦ ε
7: r[j]← Bwc(x

∗)
8: end for
9: τ ← the frequency of the mode in r

10: if Bµ(x∗) 6=M(x) or τ < t then
11: yield x
12: end if
13: end for

M∗(·) denotes the first to penultimate layers of the189

student model. We sample wc for n times, which190

gives us n predictions of the teacher (stored in r).191

We find the frequency of the mode of the predic-192

tions τ and use it as the uncertainty estimation. If193

the prediction of the teacher when wc = µ does194

not equal to the prediction of the student model or195

τ is less than a threshold t (a low τ indicates high196

uncertainty), x will be used for training in the next197

epoch.198

4 Experiments199

4.1 Experiment settings200

We use BERT and BiLSTM as the student model201

and experiment on CoNLL2003 (Tjong Kim Sang,202

2002; Sang and De Meulder, 2003) and Penn Tree-203

bank (Marcus et al., 1993). We use the same con-204

figuration for the Bayesian linear classifier teacher205

Figure 1: The training curve, testing loss, and num-
ber of training data in each epoch, trained with BERT
on CoNLL2003 (EN) under different training methods.
Results are averaged across 3 runs.

in all experiments. We set the sample times n to 5. 206

We consider a strict uncertainty sampling strategy, 207

where we set the threshold t to 1, i.e. the teacher 208

must be absolutely certain to an input before it is 209

passed for training in the next epoch. 210

We compare our approach to standard training, 211

i.e. train the student model on the entire training 212

set in each epoch. We experiment on Top-k Loss 213

(Fan et al., 2017) to inspect our method’s capability 214

of reducing the punishment caused by continuing 215

training on properly handled data. We use a mini- 216

batch variant of Top-k Loss, where k∗ indicates 217

the proportion of samples picked from a batch of 218

data. For instance, k∗ = 0.8 means we sample 80% 219

data with the highest loss from a batch, which are 220

used for update. In our experiments, we pick up 221

k∗ values such that the total number of data whose 222

loss is used for update is close to the number of 223

iterations in teacher-aware training. 224

The rest of implementation details can be found 225

in Appendix. 226

4.2 Results 227

Figure 1 shows that the model trained using our 228

method has a slightly faster convergence rate and 229

a lower testing loss compared to other methods. 230

The teacher samples more data in early epochs 231

than late epochs, which suggests that there is more 232

discrepancy between the teacher and student, or 233

the teacher is uncertain of most of the data when 234

training begins; when training proceeds, the teacher 235

and student become more equivocal and the teacher 236

is certain to more data, resulting in less data being 237
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DATASET STUDENT METHOD ITERATIONS TIME F1%

CoNLL2003 (EN)

BERT
teacher-aware 9134±666 1276±64 89.05±0.06
standard training 18740 1573±2 88.84±0.05
Top-k (k∗ = 0.50) 18740 - 88.37±0.08

BiLSTM
teacher-aware 2492±252 307±18 76.70±1.20
standard training 6600 390±0 76.77±0.92
Top-k (k∗ = 0.40) 6600 - 73.59±1.33

CoNLL2003 (ES)

BERT
teacher-aware 7648±81 954±6 88.38±0.11
standard training 10400 878±1 88.28±0.09
Top-k (k∗ = 0.75) 10400 - 88.53±0.64

BiLSTM
teacher-aware 2601±186 250±15 75.90±2.74
standard training 3900 210±0 73.22±5.14
Top-k (k∗ = 0.68) 3900 - 73.26±2.66

CoNLL2003 (NL)

BERT
teacher-aware 10355±329 1402±34 87.73±0.49
standard training 19760 1670±1 85.26±1.11
Top-k (k∗ = 0.50) 19760 - 86.30±1.18

BiLSTM
teacher-aware 2533±674 338±42 67.15±0.40
standard training 7410 420±0 66.13±0.35
Top-k (k∗ = 0.35) 7410 - 63.87±2.84

Penn Treebank

BERT
teacher-aware 36929±1003 4650±90 93.27±0.39
standard training 49790 4219±6 92.56±1.35
Top-k (k∗ = 0.75) 49790 - 93.03±0.23

BiLSTM
teacher-aware 18176±72 1846±4 88.26±1.46
standard training 18690 1125±2 87.63±1.04
Top-k (k∗ = 0.99) 18690 - 87.72±1.89

Table 1: Number of training iterations in student model, training time (second), and test results (F1%) on
CoNLL2003 and Penn Treebank under different student models and training methods. We do not report the train-
ing time of models trained using Top-k Loss, for it does not reduce training iterations. Results are averaged across
3 runs.

selected out for training. Our structure features a238

dynamic sampling process, distinct from methods239

such as Top-k Loss which selects a fixed number240

of data each time.241

Table 1 displays the results of the experiments.242

We only report the number of training iterations243

in student model, since the training of the student244

model costs much more computational power than245

that of the teacher model. Our approach reduces the246

number of training iterations in all runs. In some247

runs, our method reduces more than 60% training248

iterations. Models trained using our approach out-249

perform those using standard training in 6 out of250

8 sets. We also observe a better performance in251

models trained using our approach than those using252

Top-k Loss. The training time of models trained253

using our approach is competitive, which is com-254

posed of 3 parts: the training time of the teacher255

model, the training time of the student model, and256

the sampling time.257

5 Conclusion 258

We propose a teacher-aware structure that is able 259

to facilitate efficient training in token classifica- 260

tion. Such structure is simple yet capable of self- 261

designing the training curriculum by taking ad- 262

vantage of uncertainty data sampling. We used 263

two backbone models that are widely used in state- 264

of-the-art token classification models as the stu- 265

dent, and use a Bayesian linear classifier as the 266

teacher. Among different experiments varied by 267

tasks, source languages, and data-set size; our struc- 268

ture proved to be able to reduce the number of train- 269

ing iterations/training time, with no trade-off in the 270

model’s performance. 271
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A Implementation details363

For experiments with BERT, we use bert-base-364

cased (Devlin et al., 2018) on CoNLL2003 (EN)365

and Penn Treebank, dccuchile/bert-base-spanish-366

wwm-cased (Cañete et al., 2020) on CoNLL2003367

(ES), and GroNLP/bert-base-dutch-cased (de Vries368

et al., 2019) on CoNLL2003 (NL) as the encoder.369

The implementation is based on Hugging-face370

Transformers (Wolf et al., 2020). The model is371

optimized using Adam with a learning rate of 4e-372

5. We set batch size to 8 and train the model 10373

epochs. The model contains 108M parameters.374

For experiments with BiLSTM, we produce de-375

fault word-level embeddings with size 768 and use376

2 BiLSTM layers with hidden size 768. We add a377

dropout layer before the last BiLSTM layer and the378

linear classifier, with a rate of 0.2. The model is379

optimized using Adam with a learning rate of 4e-3,380

and we train the model 30 epochs with a batch size381

of 64. The model contains 28M parameters.382

We do not alter the configuration of the Bayesian383

linear classifier teacher in one and another experi-384

ment. It is optimized using Adam with a learning385

rate of 4e-5. The Bayesian linear classifier contains386

14K parameters. For each piece of training data, it387

samples 2 times to update θ. We use a strict uncer-388

tainty sampling strategy, where we set the threshold389

t to 1.390

All of the experiments are run on Nvidia391

GeForce RTX 3090.392
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