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Abstract

Comparing unpaired samples of a distribution or population taken at different points1

in time is a fundamental task in many application domains where measuring pop-2

ulations is destructive and cannot be done repeatedly on the same sample, such as3

in single-cell biology. Optimal transport (OT) can solve this challenge by learning4

an optimal coupling of samples across distributions from unpaired data. However,5

the usual formulation of OT assumes conservation of mass, which is violated in6

unbalanced scenarios in which the population size changes (e.g., cell proliferation7

or death) between measurements. In this work, we introduce NUBOT, a neural un-8

balanced OT formulation that relies on the formalism of semi-couplings to account9

for creation and destruction of mass. To estimate such semi-couplings and general-10

ize out-of-sample, we derive an efficient parameterization based on neural optimal11

transport maps and propose a novel algorithmic scheme through a cycle-consistent12

training procedure. We apply our method to the challenging task of forecasting13

heterogeneous responses of multiple cancer cell lines to various drugs, where we14

observe that by accurately modeling cell proliferation and death, our method yields15

notable improvements over previous neural optimal transport methods.16

1 Introduction17

Modeling change is at the core of various problems in the natural sciences and is ideally done by18

tracking particles over time. However, this is not always possible, as e.g. single-cell measurements19

typically require to destroy the cells in the course of recording, making it impossible to measure20

the same population more than once. In these situations, one must rely on comparing different21

replicas of a population and, absent a natural identification of elements across the populations, infer22

pairwise correspondences from data. Assuming molecular profiles of cells alter incrementally, recent23

approaches have utilized optimal transport (OT) to tackle this problem (Schiebinger et al., 2019;24

Bunne et al., 2022a; Tong et al., 2020). By returning a coupling between two measurements of25

cell states, OT can solve that puzzle and reconstruct these incremental changes in cell states over26

time. Despite these successes, the classic formulation of OT is ill-suited to model processes where27

the population changes in size. This is the case in single-cell biology, where interventions typically28

promote proliferation of certain cells and death of others, violating the assumption of conservation29

of mass that the classic OT problem relies upon. Relaxing this assumption yields a generalized30

formulation, known as the unbalanced OT (UBOT) problem.31

In this work, propose a novel formulation of the unbalanced OT problem, that learns a parameterized32

transport map that models the transformation between distributions (Fig. 1). We apply our proposed33

method to the challenging task of predicting perturbation responses of single cells to multiple cancer34

drugs, where our method successfully predicts cell proliferation and death.35
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Figure 1: a. A semi-coupling pair (γ1, γ2) consists of two couplings that together solve the unbal-
anced OT problem. Intuitively, γ1 describes where mass goes as it leaves from µ, and γ2 where it
comes from as it arrives in ν. b. NUBOT parameterizes the semi-couplings (γ1, γ2) as the composition
of reweighting functions η and ζ and the dual potentials f and g between the then balanced problem.

2 A Neural Unbalanced Optimal Transport Model36

Relevant background on OT and the notation is summarized in Appendix §A. The method we propose37

weaves together a rigorous formulation of the UBOT problem based on semi-couplings (introduced38

below) with a practical and scalable OT mapping estimation method.39

Semi-coupling formulation. To generalize OT for the unbalanced setting, Chizat et al. (2018b)40

introduced semi-couplings to allow for variations of mass, which are generalizations of couplings41

whereby only one of the projections coincides with a prescribed measure. Formally, the set of42

semi-couplings between measures µ and ν is defined as43

Γ (µ, ν)
def.
=

{
(γ0, γ1) ∈

(
M+

(
X 2

))2
: (Proj1)♯ γ0 = µ, (Proj2)♯ γ1 = ν

}
. (1)

Although this formulation lends itself to formal theoretical treatment, it has at least two limitations.44

First, it does not explicitly model a mapping between measures. Second, deriving a computational45

implementation of this problem is challenging by the very nature of the semi-couplings: being46

undetermined along one marginal makes it hard to model the space in (1).47

Rebalancing with proxy measures. To turn the semi-coupling formulation of unbalanced OT into48

a computationally feasible method, we propose to conceptually break the problem into balanced49

and unbalanced subproblems, each tackling a different aspect of the difference between measures:50

feature transformation and mass rescaling. Specifically, we seek proxy measures µ̃ and ν̃ with equal51

mass (i.e., µ(X ) = ν̃(X )) across which to solve a balanced OT problem through a Monge/Brenier52

formulation. To decouple measure scaling from feature transformation, we propose to choose µ̃ and53

ν̃ as rescaled versions of µ and ν. Thus, formally, we seek µ̃, ν̃ ∈M+(X ) and T, S : X → X such54

that55

µ̃ = η · µ, ν̃ = ζ · ν, T♯µ̃ = ν̃, S♯ν̃ = µ̃, (2)
where η, ζ : X → R+ are scalar fields, η·µ denotes the measure with density η(x) dµ(x) (analogously56

for ζ · ν), and T, S are a pair of forward/backward optimal transport maps between µ̃ and ν̃ (Fig. 1b).57

Devising an optimization scheme to find all relevant components in (2) is challenging. In particular,58

it involves solving an OT problem whose marginals are not fixed, but that will change as the59

reweighting functionals η, ζ are updated. We propose an alternating minimization approach, whereby60

we alternative solve for η, ζ (through an approximate scaling update) and T, S (through gradient61

updates on ICNN convex potentials, as described in Section A.1).62

Updating rescaling functions. Given current estimates of η and T , we consider the UBOT problem63

(10) between T♯(η · µ) = T♯µ̃ and ν. Although in general these two measures will not be balanced64

(hence why we need to use UBOT instead of usual OT), our goal is to eventually achieve this. To65

formalize this, let us use the shorthand notation π∗
UB(α, β)

def.
= argminπ UBOT(π;α, β), where UBOT66

is defined in (11). For a fixed T , our goal is to find η such that (Proj1)♯[π
∗
UB(T♯(η ·µ), ν)] = T♯(η ·µ).67

For the discrete setting (finite samples), this corresponds to finding a vector e satisfying:68

m∑
j=1

[Γ]ij = e⊙ u, where Γ = argminUBOT(e⊙ u, T (xi),v,yj). (3)

For a fixed T , the vector e∗ satisfying this system can be found via a fixed-point iteration. In practice,69

we approximate it instead with a single-step update using the solution to the unscaled problem:70

Γ← UBOT(u, T (xi),v,yj); e← Γ1⊘ u;

2
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Identity

Figure 2: Distributional fit of the predicted perturbed cell states to the observed perturbed cell states
for each drug and timestep, measured by a weighted version of kernel MMD on a set of held-out cells.

which empirically provides a good approximation on the optimal e∗ but is significantly more efficient.71

For a given backward map S, we update ζ analogously (§ C). In order to be able to predict mass72

changes for new samples, we will use the discrete e, z to fit continuous versions of η, ζ via functions73

parameterized as neural networks trained to achieve η(xi) ≈ ei∀i ∈ {1, . . . , n} and ζ(yj) ≈ zj ∀j ∈74

{1, . . . ,m}.75

Updating mappings. For a fixed pair of η, ζ, we want T and S to be a pair of optimal OT maps76

between µ̃ and ν̃. Since these are guaranteed to be balanced due to the argument above, we can use a77

usual (balanced) OT formulation to find them. In particular, we use the formulation of (Makkuva78

et al., 2020) to fit them. That is, T = ∇g and S = ∇f for convex potentials f and g, parameterized79

as ICNNs with parameters θf and θg . The corresponding objective for these two potentials is:80

L(f, g) =
∫
X

[
f(∇g(x))− ⟨x,∇g(x)⟩

]
η(x) dµ(x)−

∫
f(y)ζ(y) dν(y).

In the finite sample setting, this objective becomes:81

L(f, g) = 1

n

n∑
i=1

ei [f(∇g(xi))− ⟨xi,∇g(xi)⟩]−
m∑
j=1

zjf(yj). (4)

The optimization procedure is summarized in Algorithm 1.82

3 Evaluation83

Baselines. To put NUBOT’s performance into perspective, we compare it to several baselines:84

CELLOT, UBOT GAN, IDENTITY and OBSERVED. Details can be found in the Appendix §F.2.85

3.1 Single-Cell Perturbation Responses86

Predicting responses of hetereogeneous cell populations to perturbations (e.g. drugs) at the level87

of single cells is a crucial step towards deciphering underlying molecular processes. However,88

single-cell measurements typically require the destruction of cells in the course of recording, resulting89

in unaligned snapshots of cell populations before and after the perturbation. Using NUBOT and the90

considered baselines, we learn a map T that reconstructs how individual cells respond to a treatment.91

As cells can die or proliferate as a response to treatments, this is naturally an unbalanced OT problem.92

The single-cell measurements used for this task were generated using the imaging technology 4i (Gut93

et al., 2018) over the course of 24 hours, resulting in three different unaligned snapshots (t = 0h,94

t = 8h and t = 24h) for 25 drug treatments. The control cells, i.e., the source distribution µ, consists95

of cells taken from a mixture of melanoma cell lines at t = 0h that are exposed to a dimethyl96

sulfoxide (DMSO) as a vehicle control. Futher, we consider two different target populations ν97

capturing the perturbed populations after t = 8h and t = 24h of treatment, respectively. The cancer98

cell lines are characterized by the expression of mutually exclusive protein markers, i.e., one cell line99

strongly expresses a set of proteins detected by an antibody called MelA (MelA+ cell type), while100

the other is characterized by high levels of the protein Sox9 (Sox9+ cell type). As both cancer cell101

lines exhibit different sensitivities to the drugs (Raaijmakers et al., 2015), their proportion (Fig. 11)102

as well as the total cell counts (Fig. 13) vary over the time points. An evaluation of this cell line103

annotation can be found in Fig. 10 (8h) and Fig. 12 (24h). A description of the data can be found104

in § E.2, and details on the network architecture and hyperparameters in § F.3.105
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a.
24 h8 h
b.

MelA Sox9

Ulixertinib

Figure 4: UMAP projections of the control cells for Ulixertinib at a. 8h and b. 24h. Cells are colored
by the observed and predicted protein marker values (Ki67, MelA), and predicted weights. NUBOT
correctly predicts weights ≥ 1 for proliferating cells in the MelA+ population (a. and a., right panel),
and increased levels of cell death in the Sox9+ population after 24h via weights ≤ 1 (b., right panel),
confirmed by the experimental observations (see Fig. 11).
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Figure 3: Given the ground
truth on the known subpopulation
(MelA+ (red) and Sox9+ (blue))
sizes for each drug, we analyze
their level of correlation to our
predicted weights after a. 8h and
b. 24h. With increasing difficulty
of the task and certain drugs com-
pletely removing both or one of
the subpopulations, the level of
correlation reduces from 8 to 24h.

Results. In terms of distributional fit of the predicted perturbed106

to the observed cells, NUBOT outperforms all baselines in almost107

all drug perturbations Fig. 2.108

In the absence of a ground truth and in particular, we are required109

to base further analysis of NUBOT’s predictions on changes in cell110

count for each subpopulation (MelA+, Sox9+). Fig. 11 clearly111

shows that drug treatments lead to substantially different cell num-112

bers for each of the subpopulations compared to control. Weights113

predicted by NUBOT show a high correlation between observed cell114

counts of the two cell types and the sum of the predicted weights of115

the respective cell types after 8h of treatment for all drugs (Fig. 3).116

The data further provides insights into biological processes such as117

apoptosis, a form of programmed cell death induced by enzymes118

called Caspases (ClCasp3). While dead cells become invisible in the119

cell state space, dying cells are still present in the observed perturbed120

sample and can be recognized by high levels of ClCasp3. Conversely,121

the protein Ki67 marks proliferating cells. Analyzing the correlation122

of ClCasp3 and Ki67 intensity with the predicted weights provides an123

additional assessment of the biological meaningfulness of our results.124

For example, upon Ulixertinib treatment, the absolute cell counts125

show an increase in Sox9+ cells, and a decline of MelA+ cells at 24h126

(Fig. 11). Fig. 4 shows UMAP projections of the control cells at both127

time points, colored by the observed and predicted protein marker128

values and the predicted weights. At 8h, NUBOT predicts only little129

change in mass, but a few proliferative cells with high weights in ar-130

eas which are marked by high values of the proliferation marker Ki67.131

At 24h, our model predicts cell death in the Sox9+ (MelA−) cell type,132

and proliferation in the MelA+ cell type, which matches the observed133

changes in cell counts per cell type, seen in Fig. 11 in § D. We iden-134

tify similar results for Trametinib (Fig. 7), Ixazomib (Fig. 8), and Vin-135

desine (Fig. 9) which can be found in § D. These experiments demon-136

strate that NUBOT accurately predicts heterogeneous drug responses137

at the single-cell level, capturing both, cell proliferation and death.138

4 Conclusion139

This work presents a novel formulation of the unbalanced optimal transport problem that bridges140

two previously disjoint perspectives on the topic: a theoretical one based on semi-couplings and141

a practical one based on recent neural estimation of OT maps. The resulting algorithm, NUBOT, is142

scalable, efficient, and robust. Yet, it is effective at modeling processes that involve population growth143

or death. On the challenging single-cell perturbation task, NUBOT is able to successfully predict144

perturbed cell states, while explicitly modeling death and proliferation. This is an unprecedented145

achievement in the field of single-cell biology, which currently relies on the use of markers to146

approximate the survival state of cell population upon drug treatment. Thus, the application of147

NUBOT in the fields of drug discovery and personalized medicine could be of great implications,148

as it allows to identify cellular properties predictive of drug efficacy.149
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APPENDIX294

A Background295

A.1 Optimal Transport296

For two probability measures µ, ν in P(X ) with X = Rd and a real-valued continuous cost function c ∈ C(X 2),297

the optimal transport problem (Kantorovich, 1942) is defined as298

OT(µ, ν) := inf
γ∈Γ(µ,ν)

∫
X2

c(x, y)γ(dx, dy), (5)

where Γ(µ, ν) = {γ ∈ M+(X 2), s.t. (Proj1)♯γ = µ, (Proj2)♯γ = ν} is the set of couplings in the cone of299

nonnegative Radon measuresM+(X 2) with respective marginals µ, ν. When instantiated on finite discrete300

measures, such as µ =
∑n

i=1 uiδxi and ν =
∑m

j=1 vjδyj , with u ∈ Σn,v ∈ Σm this problem translates to301

a linear program, which can be regularized using an entropy term (Peyré & Cuturi, 2019). For ε ≥ 0, set302

OTε(µ, ν) := min
P∈U(u,v)

⟨P, [c(xi,yj)]ij⟩ − εH(P), (6)

where H(P) := −
∑

ij Pij(logPij − 1) and the polytope U(u,v) is the set of matrices303

{P ∈ Rn×m
+ ,P1m = u,P⊤1n = v}. For clarity, we will sometimes write OTε(u,v, {xi}, {yj}).304

Notice that the definition above reduces to (5) when ε = 0. Setting ε > 0 yields a faster and differentiable305

proxy to approximate OT and allows fast numerical approximation via the Sinkhorn algorithm (Cuturi, 2013),306

but introduces a bias, since in general OTε(µ, µ) ̸= 0.307

Neural optimal transport. To parameterize (5) and allow to predict how a measure evolves from µ to ν,308

we introduce an alternative formulation known as the Monge problem (1781) given by309

OTε(µ, ν) = inf
T :T♯µ=ν

∫
X
c(x, T (x))dµ(x), (7)

with pushforward operator ♯ and the optimal solution T ∗ known as the Monge map between µ and ν. When310

cost c is the quadratic Euclidean distance, i.e., c = ∥ · ∥22, Brenier’s theorem (1987) states that this Monge map311

is necessarily the gradient∇ψ of a convex potential ψ : X 7→ R such that∇ψ♯µ = ν, i.e., T ∗(x) = ∇ψ(x).312

This connection has far-reaching impact and is a central component of recent neural optimal transport solvers313

(Makkuva et al., 2020; Bunne et al., 2022c; Alvarez-Melis et al., 2022; Korotin et al., 2020; Bunne et al., 2022b;314

Fan et al., 2021b). Instead of (indirectly) learning the Monge map T (Yang & Uhler, 2019; Fan et al., 2021a), it is315

sufficient to restrict the computational effort to learning a good convex potential∇θ , parameterized via input con-316

vex neural networks (ICNN) (Amos et al., 2017), s.t. ∇θψ♯µ = ν. Alternatively, parameterizations of such maps317

can be carried out via the dual formulation of (5) (Santambrogio, 2015, Proposition 1.11, Theorem 1.39), i.e.,318

OT(µ, ν) := sup
f,g∈C(X )
f⊕g≤c

∫
fdµ+

∫
gdν, (8)

where the dual potentials f, g are continuous functions from X to R, and f ⊕ g 7→ f(x) + g(x). Based on319

Brenier (1987), Makkuva et al. (2020) derive an approximate min-max optimization scheme parameterizing320

the duals f, g via two convex functions. The objective thereby reads321

OTn(µ, ν) = sup
f convex

inf
g convex

1

2
E [∥x∥+ ∥y∥]︸ ︷︷ ︸

Cµ,ν

−Eµ[f(x)]− Eν [⟨y,∇g(y)⟩ − f(∇g(y))]︸ ︷︷ ︸
Vµ,ν(f,g)

. (9)

When paramterizing f and g via a pair of ICNNs with parameters θf and θg , this neural OT scheme then allows322

to predict ν or µ via∇gθg♯µ or∇fθf ♯ν, respectively. We further discuss neural primal (Fan et al., 2021a; Yang323

& Uhler, 2019) and dual approaches (Makkuva et al., 2020; Korotin et al., 2020; Bunne et al., 2021) in §F.2.324

A.2 Unbalanced Optimal Transport325

A major constraint of problem (5) is its restriction to a pair of probability distributions µ and ν of equal mass.326

Unbalanced optimal transport (Benamou, 2003; Liero et al., 2018; Chizat et al., 2018b) lifts this requirement and327

allows a comparison between unnormalized measures, i.e., via328

inf
γ∈M+(X2)

∫
X2

c(x, y)γ(dx, dy) + τ1Df1((Proj1)♯γ | µ) + τ2Df2((Proj2)♯γ | ν), (10)
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with f -divergences Df1 and Df2 induced by f1, f2, and parameters (τ1, τ2) controlling how much mass329

variations are penalized as opposed to transportation of the mass. When introducing an entropy regularization as330

in (6), the unbalanced OT problem between discrete measures u and v, i.e.,331

UBOT(u,v) := min
Γ∈Rn×m

+

⟨Γ, [c(xi, yj)]ij⟩+ τ1Df1(Γ1m | u) + τ2Df2(Γ
⊤
1m | v) − εH(Γ), (11)

can be efficiently solved via generalizations of the Sinkhorn algorithm (Chizat et al., 2018a; Cuturi, 2013;332

Benamou et al., 2015) . We describe alternative formulations of the unbalanced OT problem in detail, review333

recent applications, and provide a broader literature review in the Appendix (§B.1).334

B Related Work335

In the following, we provide further information and review related literature on concepts discussed throughout336

this work.337

B.1 Unbalanced Optimal Transport338

Unbalanced optimal transport is a generalization of the classical OT formulation (5), and as such allows mass339

to be created and destroyed throughout the transport. This relaxation has found recent use cases in various340

domains ranging from biology (Schiebinger et al., 2019; Yang & Uhler, 2019), imaging (Lee et al., 2019), shape341

registration (Bonneel & Coeurjolly, 2019), domain adaption (Fatras et al., 2021), positive-unlabeled learning342

(Chapel et al., 2020), to general machine learning (Janati et al., 2020; Frogner et al., 2015). Problem (10) provides343

a general framework of the unbalanced optimal transport problem, which can recover related notions introduced344

in the literature: Choosing for Df the Kullback-Leibler divergence, one recovers the so-called squared Hellinger345

distance. Alternatively, with Df = ℓ2 norm, we arrive at Benamou (2003), while an ℓ1 norm retrieves a concept346

often referred to as partial OT (Figalli, 2010). The latter comprises approaches which do not rely on a relaxation347

of the marginal constraints as in (10). In particular, some strategies of partial OT expand the original problem by348

adding virtual mass to the marginals (Pele & Werman, 2009; Caffarelli & McCann, 2010; Gramfort et al., 2015),349

or by extending the OT map by dummy rows and columns (Sarlin et al., 2020) onto which excess mass can be trans-350

ported. A further review is provided in (Peyré & Cuturi, 2019, Chapter 10.2). Recent work has furthermore devel-351

oped alternative computational schemes (Chapel et al., 2021; Séjourné et al., 2022) as well as provided a computa-352

tional complexity analysis (Pham et al., 2020) of the generalized Sinkhorn algorithm solving entropic regularized353

unbalanced OT (Chizat et al., 2018a). Besides Yang & Uhler (2019), these approaches do not provide parameteri-354

zations of the unbalanced problem and allow for an out-of-sample generalization which we consider in this work.355

B.2 Cycle-Consistent Learning356

The principle of cycle-consistency has been widely used for learning bi-directional transformations between357

two domains of interest. Cycle-consistency thereby assumes that both the forward and backward mapping358

are roughly inverses of each other. In particular, given unaligned points x ∈ X and y ∈ Y , as well as maps359

g : X 7→ Y and f : Y 7→ X , cycle-consistency reconstruction losses enforce ∥x − f(g(x))∥ as well as360

∥y − g(f(y))∥ using some notion of distance ∥ · ∥, assuming that there exists such a ground truth bijection361

g = f−1 and f = g−1. The advantage of validating good matches by cycling between unpaired samples362

becomes evident through the numerous use cases to which cycle-consistency has been applied: Originally363

introduced within the field of computer vision (Kalal et al., 2010) and applied to image-to-image translation364

tasks (Zhu et al., 2017a), it has been quickly adapted to multi-modal problems (Zhu et al., 2017b), domain365

adaptation (Hoffman et al., 2018), and natural language processing (Shen et al., 2017). The original principle366

has been further generalized to settings requiring a many-to-one or surjective mapping between domains (Guo367

et al., 2021) via conditional variational autoencoders, dynamic notions of cycle-consistency (Zhang et al., 2021),368

or to time-varying applications (Dwibedi et al., 2019). These classical approaches enforce cycle-consistency369

by explicitly composing both maps and penalizing for any deviation from this bijection. In this work, we treat370

cycle-consistency differently. It is enforced implicitly by coupling the two distributions of interest through a371

sequence of reversible transformations: re-weighting, transforming, and re-weighting (Eq. (2) and Fig. 1).372

Similarly to our work, Zhang et al. (2022) and Hur et al. (2021) establish a notion of cycle-consistency373

(reversibility) for a pair of pushforward operators to align two unpaired measures. Both methods rely on the374

Gromov-Monge distance (Mémoli & Needham, 2022), a divergence to compare probability distributions defined375

on different ambient spaces X and Y—a setting not considered in this work. They proceed by defining a376

reversible metric through replacing the single Monge map by a pair of two Monge maps, i.e., f : X 7→ Y and377

g : Y 7→ X , minimizing the objective378

GM(µ, ν) := inf
f :X 7→Y,f♯µ=ν
g:Y7→X ,g♯ν=µ

∆p
X (f ;µ) + ∆p

Y(g; ν) + ∆p
X ,Y(f, g;µ, ν), (12)
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379

∆p
X (f ;µ) =

(
E
[
|cX (x, x′)− cY(f(x), f(x′))|p

]) 1
p

∆p
Y(g; ν) =

(
E
[
|cX (y, y′)− cY(g(y), g(y′))|p

]) 1
p

∆p
X ,Y(f, g;µ, ν) = (E [|cX (x, g(y))− cY(f(x), y)|p])

1
p .

Problem (12) shows similarities to the classical cycle-consistency objective of Zhu et al. (2017a), where cycle-380

consistency is indirectly enforced through ∆p
X ,Y . Zhang et al. (2022) parameterize both Monge maps through381

neural networks in a similar fashion as done in (Yang & Uhler, 2019; Fan et al., 2021a). Our approach differs382

from Zhang et al. (2022); Hur et al. (2021) as we model the problem through a single Monge map with duals f, g,383

allowing us to map back-and-forth between measures µ and ν, and using a different parametrization approach384

(ICNNs). More importantly, the approaches presented by Zhang et al. (2022); Hur et al. (2021) do not generalize385

to the unbalanced case. While Zhang et al. (2022) proposed an unbalanced version of (12) by relaxing the386

marginals as done in Chizat et al. (2018a), they require the unbalanced sample sizes to be known (i.e., n and m387

need to be fixed). In our application of interest, particle counts of the target population are, however, not known388

a priori.389

B.3 Convex Neural Architectures390

Input convex neural networks (Amos et al., 2017) are a class of neural networks that approximate the family of391

convex functions ψ with parameters θ, i.e., whose outputs ψθ(x) are convex w.r.t. an input x. This property is392

realized by placing certain constraints on the networks parameters θ. More specifically, an ICNN is an L-layer393

feed-forward neural network, where each layer l = {0, ..., L− 1} is given by394

zl+1 = σl(W
x
l x+W z

l zl + bl) and ψθ(x) = zL, (13)

where σk are convex non-decreasing activation functions, and θ = {W x
l ,W

z
l , bl}L−1

l=0 is the set of parameters,395

with all entries in W z
l being non-negative and the convention that z0 and W z

0 are 0. As mentioned above and396

through the connection established in § A, convex neural networks have been utilized to approximate Monge397

map T (7) via the convex Brenier potential ψ connected to the primal and dual optimal transport problem. In398

particular, it has been used to model convex dual functions (Makkuva et al., 2020) as well as normalizing flows399

derived from convex potentials (Huang et al., 2021). The expressivity and universal approximation properties400

of ICNNs have been further studied by Chen et al. (2019), who show that any convex function over a compact401

convex domain can be approximated in sup norm by an ICNN. To improve convergence and robustness of ICNNs402

—known to be notoriously difficult to train (Richter-Powell et al., 2021)— different initialization schemes have403

been proposed: Bunne et al. (2022b) derive two initialization schemes ensuring that upon initialization ∇ψ404

mimics an affine Monge map T mapping either the source measure onto itself (identity initialization) or providing405

a map between Gaussian approximations of measures µ and ν (Gaussian initialization). Further, Korotin et al.406

(2020) proposed to use quadratic layers as well as a pre-training pipeline to initialize ICNN parameters to encode407

an identity map.408

B.4 Single-Cell Analysis409

The problem of inferring correspondences across unpaired samples in biology has been traditionally tackled by410

relying on average and aggregate perturbation responses (Green & Pelkmans, 2016; Zhan et al., 2019; Sheldon411

et al., 2007) or by applying mechanistic or linear models (Yuan et al., 2021; Dixit et al., 2016) in, potentially, a412

learned latent space (Lotfollahi et al., 2019). Cellular responses to treatments are, however, highly complex and413

heterogeneous. To effectively predict the drug response and capture such cellular heterogeneity, it is necessary414

to learn nonlinear maps describing such perturbation responses on the level of single cells.415

C Additional Details of NUBOT416

C.1 Algorithmic Details417

The algorithmic scheme used to train NUBOT can be found in Algorithm 1.418

Backward direction UBOT. For a given S, we choose ζ that ensures (Proj2)♯[π
∗
UB(S♯(ζ · ν), µ)] =419

S♯(ζ · ν). For empirical measures, this yields the update:420

Γ← UBOT(v, S(yj),u,xi); z← Γ1⊘ v;

Transforming new samples. After learning f, g, η, ζ, we can use these functions to transform (map and421

rescale) new samples, i.e., beyond those used for optimization. For a given source datapoint x with mass u, we422

transform it as (x, u) 7→ (∇g(x), η(x) · u · ζ(∇g(x))−1). Analogously, target points can be mapped backed to423

the source domain using (y, v) 7→ (∇f(y), ζ(y) · v · η(∇f(y))−1).424
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Algorithm 1 Neural Unbalanced Optimal Transport (NUBOT)
Input: f, g: ICNNs, initialized s.t. ∇g(x) ≈ x and ∇f(y) ≈ y ; η, ζ: NNs

1 for t in epochs do
2 Sample batch {xi}ni=1 ∼ µ and {yj}mj=1 ∼ ν

3 ŷ ← ∇g(x)
4 x̂← ∇f(y)
5 Γ1 ← unbalanced.sinkhorn(ŷ, 1

n1n, y,
1
m1m)

6 ei ←
∑

j Γij∑
ij Γij

· n
7 Γ2 ← unbalanced.sinkhorn(x̂, 1

m1m, y, 1
n1n)

8 zi ←
∑

j Γij∑
ij Γij

·m
9 J(θg, θf ) =

1
n

∑n
i=1 ei [f(∇g(xi))− ⟨xi,∇g(xi)⟩]− 1

m

∑m
j=1 zjf(yj)

10 Lη(θη) = MSE(e, η(x))
11 Lζ(θζ) = MSE(z, ζ(y))
12 Update θg to minimize J , θη to minimize Lη , θζ to minimize Lζ , and θf to maximize J

N
ub

O
T

ub
O

T
 G

A
N

a.

N
ub

O
T

ub
O

T
 G

A
N

b.

N
ub

O
T

ub
O

T
 G

A
N

c.

1.3

1.40.3

1.0

1.00.8

2.1

0.60.3

1.2

0.90.8

0.2

1.04.6

0.8

0.91.4

Figure 5: Unbalanced sample mapping. In all three scenarios (a,b,c), the source (gray) and target
(blue) datasets share structure but have different shifts and per-cluster sampling proportions. Tasked
with mapping from source to target, NUBOT and UBOT GAN predict the locations (middle pane,
red) and weights (right pane) of the transported samples. The number next to the weights denotes
the mean weights per cluster. While both methods map the samples to the correct location, NUBOT
more accurately predicts the weights needed to match the target distribution, creating mass (dark
blue) or destroying it (red) as needed.

C.2 Recovering semi-couplings.425

Let us define Γ̃1
def.
= diag(e−1)⊤Γ1 and Γ̃2

def.
= diag(z−1)⊤Γ2, where Γ1,Γ2 are the solutions of the UBOT426

problems computed in Algorithm 1 (lines 7 and 9, respectively). It is easy to see that (Γ̃1, Γ̃
⊤
2 ) is a valid pair of427

semi-couplings between µ and ν (cf. Eq. 1).428

D Additional Experimental Results429

D.1 Synthetic Data430

Populations are often heterogeneous and consist of different subpopulations. Upon intervention, these sub-431

populations might exhibit heterogeneous responses. To simulate such heterogeneous intervention responses,432

we generate a dataset containing a two-dimensional mixture of Gaussians with three clusters in the source433

distribution µ. The target distribution ν consists of the same three clusters, but with different cluster proportions.434

Further, each particle has undergone a constant shift in space upon intervention. We consider three scenarios435

with increasing imbalance between the three clusters (see Fig. 5a-c). Table 1 shows the shares of the three436

clusters in the source and target distributions. In order to match the target distribution without transporting mass437

across non-corresponding clusters, the clusters have to be re-scaled with the factors presented in column ’True438

Scaling Factor’. The last two columns show the mean weights per cluster obtained by NUBOT and UBOT GAN,439

respectively. We evaluate NUBOT on the task of predicting the distributional shift from source to target, while at440

the same time correctly rescaling the clusters such that no mass is transported across non-corresponding clusters.441

Results. The results (setup, predicted Monge maps and weights) are displayed in Fig. 5. Both NUBOT and442

UBOT GAN correctly map the points to the corresponding target clusters without transporting mass across443

clusters. NUBOT also accurately models the change in cluster sizes by predicting the correct weights for444
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each point. In contrast, UBOT GAN only captures the general trend of cluster growth and shrinkage, but does445

not learn the exact weights required to re-weight the cluster proportions appropriately. The exact setup and446

calculation of weights can be found in the §D (see Table 1). Fig. 6, shows the weighted MMD between the447

source distribution and the target distribution, confirming superior performance of NUBOT.448

Figure 6: Distributional fit of the predicted samples to the target samples on synthetic data, measured
by a weighted version of kernel MMD.

Table 1: Setup of the synthetic mixture of Gaussians dataset, showing the proportions of the three
clusters in source and target distribution in three different settings (a., b., c.) as well as the required
scaling factor per cluster needed to match the target without transporting points to non-corresponding
clusters. The last two columns show the mean weights obtained by NUBOT and UBOT GAN.

Cluster Source Propor-
tions (p)

Target Propor-
tions (q)

True Scaling
Factor (q/p)

Mean Weight
NUBOT

Mean Weight
UBOT GAN

a. 1 0.33 0.45 1.35 1.32 1.02
2 0.33 0.45 1.35 1.36 0.99
3 0.33 0.10 0.30 0.26 0.8

b. 1 0.33 0.70 2.10 2.07 1.18
2 0.33 0.20 0.60 0.64 0.88
3 0.33 0.10 0.30 0.29 0.81

c. 1 0.45 0.10 0.22 0.23 0.79
2 0.45 0.45 1.00 0.98 0.94
3 0.10 0.45 4.50 4.60 1.44

D.2 Single-Cell Perturbation Responses449

As we lack ground truth for the correspondence of control and perturbed cells, we assess the biological450

meaningfulness of our predictions by comparing the weights to ClCasp3 and Ki67 intensity, the apoptosis and451

proliferation markers, respectively. Figures 7, 8 and 9 show UMAP projections computed on control cells for452

the drugs Trametinib, Ixazomib and Vindesine. In Figure 8 c., d., and Figure 9 c., d., regions of low predicted453

weights accurately correspond to regions of increased ClCasp3 intensity. Additionally, we compare predicted454

weights between the two cell types, and contrast them with observed cell counts.455

Trametinib

Figure 7: UMAP projections computed on control cells for Trametinib at t = 24h. High predicted
weights in the MelA+ cell type suggest proliferation, while the Sox9+ population shows higher levels
of cell death. This prediction is confirmed by the relative cell counts, where MelA+ cell counts
increase and Sox9+ counts decrease, demonstrating opposite response behaviors to Trametinib for
each subpopulation, i.e., MelA+ cells show proliferation and Sox9+ cells death.
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a.

24 h

8 h
c.

d.b.

8 h

Ixazomib

8 h

Figure 8: UMAP projections computed on control cells for Ixazomib for t = 8h, and t = 24h,
colored by protein marker intensities a. MelA and b. Sox9, markers for the two subpopulations, as
well as ClCasp3, a marker for cell death, at c. 8h and d. 24h. The UMAPs confirm the measured
relative cell counts of each subpopulation. After 8h a.-c., neither MelA+ nor Sox9+ cells are affected
by the treatment, i.e., we mainly predict weights around 1. d. After 24h, we observe low weights in
regions of high predicted apoptosis marker intensities (ClCasp3), especially at t = 24h, where the
observed cell counts suggest death predominantly in the MelA+ cell cluster.

a.

24 h

8 h
c.

b. d.

Vindesine

8 h

24 h

Figure 9: UMAP projections computed on control cells for Vindesine for t = 8h, and t = 24h,
colored by protein marker intensities a. MelA and b. Sox9, markers for the two subpopulations, as
well as ClCasp3, a marker for cell death, at c. 8h and d. 24h. The predicted weights (left) at c. 8h and
d. 24h match the observed effects on each subpopulation, as initially only Sox9+ cells are affected
by treatment with Vindesine, and only after 24h MelA+ cells show increased cell death.

E Datasets456

We evaluate NUBOT on several tasks including synthetic data as well as perturbation responses of single cells.457

In both settings, we are provided with unpaired measures µ and ν and aim to recover map T which describes458

how source µ transforms into target ν. While in the synthetic data setting we are provided with a ground truth459

matching, this is not the case for the single-cell data as measuring a cell requires destroying it. In the following,460

we describe generation and characteristics of both datasets, as well as introduce additional biological insights461

allowing us to shed light on the learned matching T .462

E.1 Synthetic Data463

To evaluate NUBOT in a simple and low-dimensional setup with known ground-truth, we generate synthetic464

example: We model a source population with clear subpopulation structure through a mixture of Gaussians. Next,465

we generate a second (target) population aligned to the source population. We then simulate an intervention to466

which the subpopulations respond differently, including different levels of growth and death. Specifically, we467

generate batches of 400 samples with three clusters with different proportions before and after the intervention.468

Table 1 shows the proportions of the three clusters in the source and target distribution, as well as the required469

weight-factor and the obtained results from NUBOT and UBOT GAN.470
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Table 2: Overview of all treatments and their inhibition type considered in this work. Abbre-
viations PROTi (Proteasome inhibitor), DNASynthi (DNA synthesis inhibitor), panKi (pan kinase
inhibitor), ImmuneMod. (Immune modulatory compound), MTDisruptor (Microtubule disruptor),
ApopInducer (Apoptosis inducer).

Drug Name Inhibitor Type Drug Name Inhibitor Type

Ixazomib PROTi Olaparib PARPi
Sorafenib RAFi Paclitaxel MTDisruptor
Dabrafenib BRAFi Melphalan Alkylator
Everolimus mTORi Regorafenib panKi
Hydroxyurea DNASynti Vindesine MTDisruptor
Midostaurin panKi Cisplatin Alkalyting
Dexamethasone ImmuneMod. Ulixertinib ERKi
Temozolomide Alkylator Staurosporine ApopInducer
Decitabine DNAMeti Lenalidomide ImmuneMod.
Dasatinib SRCi-ABLi Crizotinib METi
Trametinib MEKi Imatinib KITi-PDGFRi-ABLi
Erlotinib EGFRi Palbociclib CDK4/6i
Dacarbazine Alkylator

E.2 Single-Cell Data471

Biological experiment. The single-cell dataset used in this work was generated by the a multiplexed472

microscopy technology called Iterative Indirect Immunofluorescence Imaging (4i) (Gut et al., 2018), which is473

capable of measuring the abundance and localization of many proteins in cells. By iteratively adding, imaging and474

removing fluorescently tagged antibodies, a multitude of protein markers is captured for each cell. Additionally,475

cellular and morphological characteristics are extracted from microscopical images, such as the cell and nucleus476

area and circularity. This spatially resolved phenotypic dataset is rich in molecular information and provides477

insights into heterogeneous responses of thousands of cells to various drugs. Measuring different morphological478

and signaling features captures pre-existing cell-to-cell variability which might influence perturbation effect,479

resulting in various different responses. Some of these markers are of particular importance, as they provide480

insights into the level of a cell’s growth or death as well as subpopulation identity. We utilized a mixture of481

two melanoma tumor cell lines (M130219 and M130429) at a ratio of 1:1. The cell lines can be differentiated482

by the mutually exclusive expression of marker proteins. The former is positive for Sox9, the latter for a set483

of four proteins which are all recognized by and antibody called MelA (Raaijmakers et al., 2015). Cells were484

seeded in a 384-well plate and incubated at 37C and 5% CO2 overnight. Next, the cells were exposed to multiple485

cancer drugs and Dimethyl sulfoxide (DMSO) as a vehicle control for 8h and 24h after which the cells were486

fixed and six cycles of 4i were performed TissueMAPS and the scikit-image library (Van der Walt et al., 2014)487

were used to process and analyze the acquired images, perform feature extraction and quality control steps using488

semi-supervised random forest classifiers.489

Data generation and processing. Our datasets contain high-dimensional single-cell data of control and490

drug-treated cells measured at two time points (8 and 24 hours). For both the 8h-dataset and the 24h-dataset, we491

normalized the extracted intensity and morphological features by dividing each feature by its 75th percentile,492

computed on the control cells. Additionally, values were transformed by a log1p function (x← log(x+ 1)). In493

total, our datasets consist of 48 features, of which 26 are protein marker intensities and the remaining 22 are494

morphological features. For each treatment, we have measured between 2000 and 3000 cells. For training the495

models, we perform a 80/20 train/test split. We trained all models on control and treated cells for each time step496

and each drug separately. The considered drugs as well as their inhibition type can be found in Table 2.497

Cell type assignment. We assigned M130219 and M130429 cells to the Sox9 and MelA cell types,498

respectively, by first training a two component Gaussian mixture model on the features ’intensity-cell-MelA-499

mean’ and ’intensity-nuclei-Sox9-mean’ of the control cells. Next, we used the aforementioned features and the500

labels provided by the mixture model to train a nearest neighbor classifier, which we then used to predict the501

cell type labels of the drug treated cells. The procedure was performed separately for the 8h- and 24h dataset.502

Results of the classification can be found in Figure 10 and Figure 12 respectively.503
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Figure 10: Classification of cells into cell types (MelA+, Sox9+) based on protein marker intensities
of MelA and Sox9, for all drugs, at t = 8h § E.2. Each tile represents one drug. MelA+ cells colored
in red, Sox9+ in blue.
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Figure 11: Drug treatment-induced change in cell counts in the two cell types compared to the cell
count of the respective cell types in the control condition. a. Cell count change for cell types Sox9+
(top) and MelA+ (bottom) at t = 8h. b. Cell count change for cell types Sox9+ (top) and MelA+

(bottom) at t = 24h.
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Figure 12: Classification of cells into cell types (MelA+, Sox9+) based on protein marker intensities
of MelA and SOX9, for all drugs, at t = 24h § E.2. MelA+ cells colored in red, Sox9+ in blue.
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Figure 13: Observed cell counts of drug-treated cells normalized to control cell counts, per drug and
time point. 8h treatment in light blue, 24h treatment in dark blue.
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F Experimental Details504

NUBOT consists of several modules and its performance is compared against several baselines. In the following,505

we provide additional background on experimental details, including a description of the evaluation metrics506

and baselines considered, as well as further information on the parameterization and hyperparameter choices507

made for NUBOT.508

F.1 Evaluation Metrics509

We evaluate our model by analyzing the distributional similarity between the predicted and observed perturbed510

distribution. For this, we compute the kernel maximum mean discrepancy (MMD) (Gretton et al., 2012). To take511

the mass variation into consideration, we compute a weighted version of MMD, by weighting each predicted512

point by its associated normalized weight.513

F.2 Baselines514

We compare NUBOT against several baselines. First, we consider a balanced neural optimal transport method515

CELLOT (Bunne et al., 2021). Further, we benchmark NUBOT against the current state-of-the-art UBOT516

GAN, an unbalanced OT formulation proposed by Yang & Uhler (2019). Additionally, we consider two naive517

baselines: IDENTITY, simulating the identity matching and modeling cell behavior in absence of a perturbation,518

and OBSERVED, a random permutation of the observed target samples and thus a lower bound when comparing519

predictions to observed cells on the distributional level. In the following, we briefly motivate and introduce each520

baseline.521

CELLOT. By introducing reweighting functions η and ζ, NUBOT recovers a balanced problem parameterized522

by dual potentials f and g. An important ablation study to consider is thus to compare its performance to its523

balanced counterpart. Ignoring the fact that the original problem includes cell death and growth, and thus varying524

cell numbers, we apply ideas developed in Makkuva et al. (2020); Bunne et al. (2021) and learn a balanced OT525

problem via duals f and g. These duals are parameterized by two ICNNs and optimized in objective (9) via an526

alternating min-max scheme.527

UBOT GAN. Using (10), Yang & Uhler (2019) propose to model mass variation in unbalanced OT via a528

relaxation of the marginals. Similar to Fan et al. (2021a), Yang & Uhler (2019) reformulate the constrained529

Monge problem (7) as a saddle point problem with Lagrange multiplier h for the constraint T♯µ = ν, i.e.,530

sup
h

inf
T

∫
X
c(x, T (x))µ(x)dx+

∫
X
h(y) (ν − T♯µ) dy

=

∫
X
[c(x, T (x))− h(T (x))]µ(x)dx+

∫
X
h(y)ν(y)dy,

parameterizing T and h via neural networks. To allow mass to be created and destroyed, Yang & Uhler (2019)531

introduce scaling factor ξ : X → R+, allowing to scale mass of each source point xi. The optimal solution then532

needs to balance the cost of mass and the cost of transport, potentially measured through different cost functions533

c1 : X × Y → R+ (cost of mass transport) and c2 : R+ → R+ (cost of mass variation). Parameterizing the534

transport map Tθ , the scaling factors ξϕ, and the penalty hω with neural networks, the resulting objective is535

l(θ, ϕ, ω) :=
1

n

n∑
i=0

[c1(xi, Tθ(xi))ξϕ(xi) + c2(ξϕ(xi)) + ξϕ(xi)hω(Tθ(xi)−Ψ∗(hω(yi)] ,

with Ψ∗ approximating the divergence term of the relaxed marginal constraints (see (10)), and is optimized via536

alternating gradient updates.537

IDENTITY. A trivial baseline is to compare the predictions to a map which does not model any perturbation538

effect. The IDENTITY baseline thus models an identity map and provides an upper bound on the overall539

performance, also considered in Bunne et al. (2021).540

OBSERVED. In a similar fashion we might ask for a lower bound on the performance. As a ground truth541

matching is not available, we can construct a baseline for a comparison on a distributional level by comprising a542

different set of observed perturbed cells, which only vary from the true predictions up to experimental noise. The543

closer a method can approach the OBSERVED baseline, the more accurate it fits the perturbed cell population.544

F.3 Hyperparameters545

We parameterize the duals f and g using ICNNs with 4 hidden layers, each of size 64, using ReLU as activation546

function between the layers. We choose the identity initialization scheme introduced by Bunne et al. (2022b)547

17



such that ∇g and ∇f resemble the identity function in the first training iteration. As suggested by Makkuva548

et al. (2020), we relax the convexity constraint on ICNN g and instead penalize its negative weights W z
l549

R (θ) = λ
∑

Wz
l
∈θ

∥max (−W z
l , 0)∥2F .

The convexity constraint on ICNN f is enforced after each update by setting the negative weights of allW z
l ∈ θf550

to zero. Duals g and f are trained with an alternating min-max scheme where each model is trained at the same551

frequency. Further, both reweighting functions η and ζ are represented by a multi-layer perceptron (MLP) with552

two hidden layers of size 64 for the single-cell and of size 32 for the synthetic dataset, with ReLU activation553

functions. The final output is further passed through a softplus activation function as we do not assume negative554

weights. For the unbalanced Sinkhorn algorithm, we choose an entropy regularization of ε = 0.005 and a555

marginal relaxation penalty of 0.05. We use both Adam for pairs g and f as well as η and ζ with learning rate556

10−4 and 10−3 as well as β1 = 0.5 and β2 = 0.9, respectively. We parameterize both baselines with networks557

of similar size and follow the implementation proposed by Yang & Uhler (2019) and Bunne et al. (2021).558
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