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Abstract

Bayesian neural networks (BNNs) have made significant contributions in improving the ro-
bustness and uncertainty quantification of deep neural networks but suffer from problematic
priors for network weights. We propose a new kind of indirect functional BNNs (IFBNN)
by building a Wasserstein bridge, which consists of a 2-Wasserstein distance between the
approximate posterior and a bridging distribution of network weights, and a 1-Wasserstein
distance between the bridging distribution over functions induced by weight distributions
and a functional GP prior. It can avoid the potential risks of invalid or infinite functional
KL divergence commonly used by most existing functional BNNs. We demonstrate the
improved extrapolation and predictive performances of the proposed IFBNN empirically
on both synthetic and real-world datasets.

1. Introduction

Bayesian neural networks (BNNs) (Blundell et al., 2015; Gal and Ghahramani, 2016; Gal,
2016) are able to merge the strong predictive capability of deep neural networks (DNNs)
with the uncertainty modeling ability of Bayesian inference. Despite its merits, BNNs
still suffer from some weight prior issues: i) The widely used Gaussian priors for network
parameters are not always applicable due to their possible pathological features, such as
prior samples tend to be horizontally linear for deep nets (Duvenaud et al., 2014; Matthews
et al., 2018; Tran et al., 2020); ii) The effects of the given priors on posterior inference
for weights and further on the resulting distributions over model outputs in function space
are unclear and hard to control owing to the complex architecture and nonlinear nature of
BNNs (Ma and Hernández-Lobato, 2021; Fortuin et al., 2021; Wild et al., 2022).

To resolve these issues, there have been increasing attention to the analysis of BNNs
in function space instead of weight space (Ma et al., 2019; Rudner et al., 2020, 2022). In
such formulation, the distributions over function mappings from BNNs are regarded as
probability measures in function space induced by the distribution over network weights,
that is, stochastic processes. Also, the prior distributions can be constructed in function
space more informatively, such as the popular functional priors Gaussian Processes (GPs)
(see Appendix A). A major advantage of GP priors is that they are able to easily encode
prior knowledge about properties of unknown functions (e.g. periodicity and smoothness)
through different kernel functions. In order to approximate posterior distributions over
functions, existing functional BNNs directly build and minimize the Kullback–Leibler (KL)
divergence between BNN posterior and GP prior (Sun et al., 2019). However, such infinite-
dimensional KL divergence may be invalid due to the assumption of the existence of Radon-
Nikodym derivatives between the prior and the variational approximate posterior (Matthews
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et al., 2016; Burt et al., 2020), such as the KL divergence between two BNNs with different
structures can be infinite (Ma and Hernández-Lobato, 2021).

In this work, we propose a new kind of indirect functional BNNs based on a Wasser-
stein bridge. Specifically, the Wasserstein bridge consists of a 2-Wasserstein distance be-
tween the approximate posterior and a bridging distribution over network weights, and a
1-Wasserstein distance between the bridging distribution over network functions (induced
by the distribution over network weights) and the prior over functions, like GP. Instead
of directly regularizing the variational BNN posterior using the KL divergence with GP
prior by most functional BNNs, our indirect functional BNNs can avoid the limitations of
infinite-dimensional KL divergence through the proposed Wasserstein bridge.

2. Preliminaries

Given a dataset D = {(xi, yi)}ni=1 = {X ,Y}, a (deep) neural network defines and learns a
function mapping y = f(x;w) between input x ∈ Rd and output y ∈ Rc, where w ∈ Rp

denotes the network weights. A Bayesian neural network further assigns prior p0(w) for the
network weights and learns its posterior p(w|D) together with defined likelihood p(D|w).

Weight-space view for BNNs Since the marginal integration required in solving the
posterior is intractable for any practical dimensions, the main goal of the variational in-
ference for BNNs is to fit a tractable approximate posterior q(w;θq) by maximizing the
evidence lower bound (ELBO), where θq denotes the distribution parameters. Bayes By
Backprop (BBB) proposed by Blundell et al. (2015) is one of the most representative mean-
field variational inference algorithms in weight space

Lq(w;θq) := Eq(w;θq) [log p(D | w;θq)]−KL[q(w;θq)∥p0(w)], (1)

where the common treatment paradigm for p0(w) is i.i.d. Gaussians.

Function-space view for BNNs Suppose p0(f) is a functional prior for BNNs defined on
a probability space (Ω,F , P ) (separable metric and complete Polish space). The objective
of functional BNNs is to maximize the functional ELBO to infer the approximate posterior
processes q(f ;θq) over functions induced by distributions over network weights

Lq(f ;θq) := Eq(f ;θq) [log p(D | f ;θq)]−KL[q(f ;θq)∥p0(f)], (2)

where KL[q(f ;θq)∥p0(f)] is an infinite-dimensional KL divergence and its estimation is
difficult but achievable because there is a link with its marginal KL divergence on finite
measurement set as demonstrated by Theorem 1 in (Sun et al., 2019) that is KL[P∥Q] =
supn∈N ,X∈Xn KL[PX∥QX ] where P and Q are two stochastic processes, but this KL diver-
gence is sometimes problematic as discussed in the Introduction.

3. Indirect functional Bayesian neural networks

In this section, we propose Wasserstein distance-based functional Bayesian neural networks.
We firstly transform the GP functional prior to a weight space prior by matching it with
a bridging distribution that is used to replace the i.i.d Gaussian prior (Section 3.1), and
then an integrated strategy is proposed to jointly optimize the bridging distribution and
the variational posterior (Section 3.2).
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3.1. GP-induced functional BNNs

For function mapping f : Rd → Rc of BNNs, let p(fnn;θp) be a BNN-based bridging distri-
bution over functions induced by the distribution over weights p(w;θp), which also depends
on certain network architecture (e.g., depth, width, activation). The GP prior is denoted by
p0(fgp) ∼ GP(m,K). Since it is challenging to directly use GP prior to regularize the BNN
posterior (Wild et al., 2022), we firstly transform the GP prior to a BNN-based bridging
distribution through optimizing the 1-Wasserstein distance (See Appendix A for more de-
tails) between the bridging distribution p(fnn;θp) and GP prior p0(fgp) (Tran et al., 2022).
Considering the infinite-dimensional nature of stochastic processes, we will use their corre-
sponding (random) marginal distributions, specifically, solving the 1-Wasserstein distance
(in its dual form) between p(fnn;θp) and p0(fgp) on finite randomly sampled measurement

points XM
det
= [x1, . . . ,xM ]T. The specific form is as follows

W1 (p(fnn;θp), p0(fgp)) = EXM

[
Epϕ(f

M
nn )− Ep0ϕ(f

M
gp )
]

(3)

where fMnn and fMgp are corresponding function values evaluated at XM, respectively. It
can be seen that this approximated computation procedure is based entirely on sampling,
so it can still be performed smoothly even without the closed form of p(fnn;θp). We can
obtain a GP-induced optimal bridging distribution over weights p(w;θp

∗) where θp
∗ =

argminθp W1 (p(fnn;θp), p0(fgp)).
With the p(w;θp

∗) in hand, we can conduct a more reasonable posterior variational
inference based on the 2-Wasserstein distance between the approximate posterior q(w;θq)
and p(w;θp

∗) with the ELBO denoted by

Lq(w;θq) := Eq(w;θq) [log p(D | w;θq)]− λW2(q(w;θq), p(w;θp
∗)), (4)

where λ is a hyperparameter and W2 has an analytical solution for two Gaussians as

W2(q(w;θq), p(w;θp
∗)) =

∥∥mq −m∗
p

∥∥2
2
+ trace

(
Cq + C∗

p − 2
(
C1/2
q C∗

pC
1/2
q

)1/2)
, (5)

where θq := {mq, Cq},θp∗ := {m∗
p, C

∗
p} are respective mean and covariance matrices. We

call this improved variational inference approach based on the matching between bridging
distribution and GP prior as the GP-induced FBNNs (GPi-FBNN).

3.2. Indirect functional BNNs based on a Wasserstein bridge

The two-step optimization of Equation (3) and Equation (4) in above GPi-FBNN may lead
to suboptimal of p(w;θp

∗) and high variance due to the isotropy of 1-Wasserstein distance.
Hence, we further consider treating θp = {µ, σ} based on the Gaussian reparameterization
trick in bridging distribution as parameters need to be optimized together with variational
posterior parameters.

Based on the bridging distribution, we propose a new kind of indirect functional BNNs
(IFBNN) by building a Wasserstein bridge with the generalized loss as

L := −E [log p(D | w;θp,θq)] + λ1W2(q(w;θq), p(w;θp)) + λ2W1 (p(fnn;θp), p0(fgp))︸ ︷︷ ︸
Wasserstein bridge

, (6)
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Algorithm 1: Indirect Functional Bayesian Neural Networks (IFBNN)

Input: Dataset D, GP prior p0(fgp);
Initialization: θp ∼ N (0, 1), θq ∼ N (0, 1);
while θp, θq not converged do

draw measurement set XM randomly;
draw GP functions fMgp ∼ p0(fgp) at XM;

draw bridging distribution functions fMnn ∼ p(fnn;θp) at XM;
calculate log p(D | w;θp,θq), W2(q(w;θq), p(w;θp)), W1(p(fnn;θp), p0(fgp)) using
Equation (3) and Equation (5);

θp, θq ← Optimizer(θp, θq, L);
end

where θq and θp are respective stochastic parameters of approximate variational posterior
and bridging distribution which would be optimized jointly; λ1 and λ2 are two hyperparam-
eters. Different from most functional BNNs which perform variational inference directly
on approximate posterior over functions, the proposed IFBNN treats bridging distribution
over network functions induced by distributions over weights as an intermediate variable
to link the BNN posterior and GP prior. It could obtain approximate posterior of weights
indirectly. Specifically, it performs distribution matching between p(fnn;θp) induced by
p(w;θp) and a GP prior through 1-Wasserstein distance and minimizing 2-Wasserstein
distance between variational posterior q(w;θq) and p(w;θp) simultaneously. The main ad-
vantages of IFBNN are that: i) Compared with the common i.i.d Gaussian assumption, it
can place a more interpretable and informative prior by a GP; ii) It can obtain approximate
posterior of weights through the Wasserstein bridge, which can also circumvent the limita-
tion of functional KL divergence in most posterior inference processes of existing functional
BNNs. Note that Wild et al. (2022) also proposed a generalized variational inference in
function space based on the 2-Wasserstein distance, but they only use a GP with deep
neural network-based mean function as the variational posterior rather than a BNN, which
eases the computation but limits its ability on uncertainty modeling. The pseudocode of
IFBNN is presented in Algorithm 1.

4. Experimental evaluation

Following the literature, we evaluate the extrapolation and predictive ability of our proposed
IFBNN on two toy examples and benchmark UCI regression tasks.

4.1. Extrapolation illustrative examples

Learning periodic structure Consider an illustrative periodic function: y = 2∗sin(4x)+
ϵ with noise ϵ ∼ N (0, 0.01). 20 training points are randomly sampled from [−2,−0.5] ∪
[0.5, 2]. We compare our method with two weight-space variational inference approaches:
BBB (Blundell et al., 2015) with KL divergence denoted by KLBNN and a 2-Wasserstein
distance alternative version called WBNN. We also compare with functional BNNs (FBNN)
(Sun et al., 2019). For both IFBNN and FBNN, we use GP priors with RBF kernel mul-
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Figure 1: Learning periodic structure. The green line is the ground true function and blue lines
correspond to mean approximate posterior predictions. Black dots denote 20 training points, and
we also use 40 inducing points for the sampling of random marginal measurement points in IFBNN
and FBNN. Shadow areas represent the predictive standard deviations. The leftmost column shows
two weight-space BNNs, and the other three columns are the results of functional approaches under
GP priors with three different kernels. For more details, see Appendix B.

tiplied by a periodic kernel, Matern kernel and linear kernel. As shown in Figure 1, the
two parametric methods fail to fit the target function. For IFBNN and FBNN, (f ) and (g)
show that IFBNN matching GP priors incorporated periodic information is able to recover
the periodic pattern in observation areas and capture periodicity in non-observation areas.
And due to the linear kernel, (h) on the other hand, reflects a certain linear trend, which
indicates that the functional prior matching term of IFBNN can play a significant role in the
inference process. In contrast, FBNN fits less well under the corresponding kernel functions,
and is less responsive to different kernel information and to uncertainty in observations and
non-observations. We also provide results from GPi-FBNN in Appendix C.1.

Learning gap structure Consider a toy polynomial function y(x) = sin(x) + 0.1x2 + ϵ
with segmented interval observations, where ϵ ∼ N (0, 0.5). 20 observations are sampled
from [−7.5,−2.5] ∪ [5, 7.5]. From Figure 2, it is obvious to see that IFBNN has stronger
capacity to recover the key characteristics of the truly function based on prior knowledge
from appropriate RBF kernel and Matern kernel. Moreover, the posterior predictive vari-
ance is significantly larger in three separate non-observed regions compared to data sampled
intervals, which illustrates the superior uncertainty quantification ability of our method.

4.2. Evaluation of predictive performance

We also evaluate our method on benchmark UCI regression tasks compared with: KLBNN,
WBNN, FBNN and Gaussian Wasserstein Inference (GWI) (Wild et al., 2022). Table 1
shows the average results of root mean square error (RMSE). All three functional BNNs
or functional inference methods provide better results than weight-space approaches, which
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Figure 2: Learning gap structure. For prior GP, we consider three kernel functions: RBF, Matern
and Linear. The marginal measurement set for IFBNN and FBNN is randomly sampled from all
observations together with 40 inducing points randomly sampled from [-10, 10].

Table 1: The table shows the average RMSE on several UCI regression tasks. We split each dataset
randomly into 90% of training data and 10% of test data. This process is repeated 10 times to
ensure validity. In each iteration, we randomly sample 40 points from training data to form marginal
measurement set. See Appendix C.2 for results about test negative log-likelihood (NLL).

Dataset IFBNN GWI FBNN WBNN KLBNN

Yacht 1.249±0.090 2.198 ± 0.083 1.523 ± 0.075 2.328 ± 0.091 2.131 ± 0.085
Boston 1.439±0.087 1.742 ± 0.046 1.683 ± 0.122 2.306 ± 0.102 1.919 ± 0.074
Concrete 1.072±0.068 1.297 ± 0.053 1.274 ± 0.049 2.131 ± 0.068 1.784 ± 0.063
Wine 1.209±0.054 1.680 ± 0.064 1.528 ± 0.053 2.253 ± 0.071 1.857 ± 0.069
Kin8nm 1.119±0.019 1.188 ± 0.015 1.447 ± 0.069 2.134 ± 0.029 1.787 ± 0.027
Protein 1.158±0.008 1.333 ± 0.007 1.503 ± 0.025 2.188 ± 0.012 1.795 ± 0.010

could reflect the contributions of functional BNNs. And our IFBNN outperforms all other
functional methods.

5. Conclusion and future work

We have proposed an indirect functional Bayesian neural network (IFBNN) based on a
novel Wasserstein bridge, which could avoid the limitations of possible problematic KL
divergence between distributions over functions and place a more reasonable prior over
network weights unlike most existing functional BNNs. We have demonstrated improved
performances of our IFBNN on several benchmark tasks. Our ongoing work focuses on
the theoretical properties of IFBNN, such as the proof of the objective function is a lower
bound of the model evidence, and on more tasks such as contextual bandit and imagine
classification.
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Appendix A. Further background

Gaussian Processes The measurable mapping g : Ω × T → R defined on probability
space (Ω,G, P ) with compact index set T is a Gaussian process (GP) if and only if random
vector g(T ) = ((g(t1), g(t2), ..., g(tn)) is multivariate Gaussian for marginals over any finite
index sets T = {ti}ni=1 ⊂ T . A GP is entirely governed by its mean function m(t) = E[g(t)]
and covariance (kernel) function k(t, t′) = E[(g(t) − m(t))(g(t′) − m(t′))] denoted by g ∼
GP(m, k), t, t′ ∈ T (Rasmussen and Williams, 2006).

Wasserstein distance The p-Wasserstein is defined as

Wp(µ, ν) =

(
inf

γ∈Γ(µ,ν)

∫
P×P

∥x− y∥p dγ(x, y)

)1/p

, (7)

where (P, ∥ · ∥) is a Polish space, µ, ν ∈ (P, ∥ · ∥) are two probability measures, Γ(µ, ν) is
the set of joint measures or coupling γ with marginals µ and ν on P × P. It is a rigorous
defined distance metric on probability measures satisfying non-negativity, symmetry and
triangular inequality (Panaretos and Zemel, 2019). Wild et al. (2022) proposed a functional
variational inference method based on the 2-Wasserstein distance between two Gaussian
measures. Tran et al. (2022) proposed an algorithm to match a functional prior with a
target GP prior using the dual representation of 1-Wasserstein distance as

W1(µ, ν) = sup
∥ϕ∥≤1

Ex∼µϕ(x)− Ey∼νϕ(y), (8)

where ϕ(·) : P → R is a 1-Lipschitz continuous function.

Periodic kernel * RBF kernel

kPeriodic * RBF

(
x,x′) = exp

−2sin2
(
π
p (|x− x′|)

)
lp

 ∗ σ2
r exp

(
−(x− x′)2

2l2r

)
(9)

where p is the period length parameter, σr is the scaling factor, lp and lr are lengthscale
parameters.

Appendix B. Experimental details

For the periodic experiment, we used a 2 × 500 fully-connected networks and trained for
20000 epochs for all models. For the gap toy example, we used a 2 × 100 fully-connected
networks and iterated 10000 epochs. For UCI regression, we used 2 hidden layers of 10
hidden units BNNs and trained for 2000 epochs. In all experiments, we first pre-train GP
hyperparameters for 100 epochs on the uniformly sampled test data set for methods which
use GP priors. For all experiments we used tanh activation and Adam optimizer. We
tuned λ1 and λ2 from (0, 10]. The convergence processes of 1-Wasserstein distance and 2-
Wasserstein of IFBNN in two toy examples are shown in Figure 3 and Figure 4, respectively.
And the intuition of the jointly learnt bridging distribution and the GP prior of IFBNN are
shown in Figure 5.
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Figure 3: Convergence of Wasserstein distances in the training of IFBNN for periodic example.
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Figure 4: Convergence of Wasserstein distances in the training of IFBNN for polynomial example.
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Figure 5: Comparison of the bridging distribution learnt from the joint optimization of IFBNN with
the GP prior for two toy examples.
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Figure 6: Periodic structure learning results of GPi-FBNN based on three GP priors with different
kernel for three columns. Top row are the results for functional distribution matching. Green line is
the ground true function, blue line is the pre-trained GP prior, yellow line is the optimal bridging
distribution. Bottom row are approximate posteriors based on the optimal functional priors via
variational inference in parameter space.
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Figure 7: Gap structure learning results of GPi-FBNN . The experimental setup and the arrangement
of the results are the same as the periodic example described above.

Appendix C. Further results

C.1. Toy results of GPi-FBNN

Figure 6 presents periodic structure learning results of GPi-FBNN based on three GP priors
with Periodic*RBF kernel, Matern kernel and linear kernel, respectively. GP priors are pre-
trained on 1000 uniformly sampled test points. Marginal measurement points are sampled
from 20 training data and 40 randomly sampled inducing points. It can be seen that with
appropriate Periodic*RBF kernel and Matern kernel, optimal bridging distribution and
further obtained approximate posterior are well-fitted and are able to recover the periodic
trend in the data region. However, it cannot capture the periodic features away data points
as IFBNN dose, which further illustrates the advantage of IFBNN where jointly optimize
bridging distribution and variational posterior. We also provide gap structure learning
results of GPi-FBNN in Figure 7.

C.2. Further results for UCI regressions

Table 2 shows the average test NLL on UCI regression tasks. IFBNN still shows competitive
performance compared to other weight-space and functional methods.
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Table 2: The table shows the average test NLL on several UCI regression tasks. We split each
dataset randomly into 90% of training data and 10% of test data. This process is repeated 10 times
to ensure validity. In each iteration, we randomly sample 40 points from training data to form
marginal measurement set.

Dataset IFBNN GWI FBNN WBNN KLBNN

Yacht -1.249±1.214 0.112 ± 0.757 -0.770 ± 0.869 2.856 ± 0.186 2.512 ± 0.161
Boston 0.324 ± 0.304 -1.043 ± 0.681 -1.193±0.763 2.656 ± 0.179 2.066 ± 0.115
Concrete -0.394 ± 0.335 -0.684 ± 0.492 -1.001±0.520 2.838 ± 0.152 2.614 ± 0.166
Wine 0.259±0.151 0.700 ± 0.159 0.524 ± 0.137 2.843 ± 0.147 2.148 ± 0.125
Kin8nm -1.014 ± 0.139 -2.604±0.237 -2.445 ± 0.622 2.823 ± 0.066 2.614 ± 0.071
Protein -2.126±0.340 -1.575 ± 0.229 -1.486 ± 0.238 2.744 ± 0.026 2.222 ± 0.020
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