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Abstract

Early on during a pandemic, vaccine availability is limited, requiring prioritisation
of different population groups. Evaluating vaccination allocation is therefore a
crucial element of pandemics response. In the present work, we develop a model
to retrospectively evaluate age-dependent counterfactual vaccine allocation strate-
gies against the COVID-19 pandemic. To estimate the effect of allocation on
the expected severe-case incidence, we employ a simulation-assisted causal mod-
elling approach which combines a compartmental infection-dynamics simulation,
a coarse-grained, data-driven causal model and literature estimates for immunity
waning. We compare Israel’s implemented vaccine allocation strategy in 2021 to
counterfactual strategies such as no prioritisation, prioritisation of younger age
groups or a strict risk-ranked approach; we find that Israel’s implemented strategy
was indeed highly effective. We also study the marginal impact of increasing vac-
cine uptake for a given age group and find that increasing vaccinations in the elderly
is most effective at preventing severe cases, whereas additional vaccinations for
middle-aged groups reduce infections most effectively. Due to its modular structure,
our model can easily be adapted to study future pandemics. We demonstrate this
flexibility by investigating vaccine allocation strategies for a pandemic with charac-
teristics of the Spanish Flu. Our approach thus helps evaluate vaccination strategies
under the complex interplay of core epidemic factors, including age-dependent risk
profiles, immunity waning, vaccine availability and spreading rates.1

1 Introduction

The COVID-19 pandemic posed significant challenges to societies and decision makers around the
world. Many governments implemented non-pharmaceutical interventions (NPIs) to limit the spread
of infections and reduce the number of severe cases [2, 5]. The development of efficient vaccines has
provided another key control measure to combat the COVID-19 pandemic [21]. However, vaccine
supply can fail to meet demand, and vaccine uptake can fall short of expectations. Under these
conditions, governments have to find rational strategies to allocate vaccines to minimise harm. It is
therefore important to understand how to evaluate and compare different vaccine allocation strategies.

Given an observed evolution of infections and severe cases, we seek to answer central policy
questions: Given limited vaccine availability, should one have prioritised first vaccinations of the

1Link to source code: https://github.com/akekic/covid-vaccine-evaluation

A causal view on dynamical systems workshop at the 36th Conference on Neural Information Processing Systems
(NeurIPS 2022).
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Figure 1: Method overview. Our goal is to compute the weekly severe-case incidence (bottom right)
under counterfactual vaccine allocation strategies (in the example shown here: YoungFirst, top right). To
compute this counterfactual scenario, we provide an estimate of the severity mechanism Pπ̃(S=1|V,A, T,W )
for all combinations of (V,A, T,W ) through the proposed factorisation (2). The other conditionals in the
causal graph are directly estimated from data (factual strategy, top centre) or are intervened upon according
to the counterfactual strategy. The risk factors g(V,A) and the time dependence f0(T ) are estimated from
data after accounting for immunity waning hV (W ) derived from literature estimates (top left). An SEIR-like
infection dynamics model is fit to the factual infections and subsequently used to simulate infections under the
counterfactual strategy. The simulation output is used to compute the correction factors f1

π̃(A, T ) accounting for
the age-specific change in probability of being infected. Only three of nine age groups are shown for simplicity.

young or booster shots for the elderly? Which age groups should have been targeted preferentially
to increase vaccine uptake? How would a different age-dependent risk profile have impacted the
outcome of a vaccination policy? Answering such questions requires computing the effects of
hypothetical interventions on a complex dynamical system (given observations of the same system
under different conditions). Such What if?-scenarios lie at the heart of causal inference and relate
to counterfactual reasoning: that is, reasoning about how events would have turned out had some
circumstances been altered, all else being equal [22, 26].

The gold standard for inferring average causal effects are randomised controlled trials (RCTs) [8].
However, to compare full vaccine allocation strategies at the country level, running an RCT is
infeasible in practice (there is only one copy of each country), mirroring similar challenges in the
empirical estimation of individualised treatment effects [16, 27]. Moreover, it would be ethically
unacceptable to implement vaccine allocation strategies that are expected to be suboptimal for the
population. Here, modelling approaches provide an important tool to fill this gap.

To capture the effects of changes in vaccine allocation strategy, we have to model their impact
on spread and hospitalisation. Furthermore, we need to consider aspects such as vaccine efficacy,
immunity waning, age-dependent risk profiles and contact structures. Two established modelling
paradigms are compartmental differential equation models and machine learning (ML) approaches.
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In principle, compartmental models like the susceptible-infectious-recovered (SIR) model (and its
extensions) can be used to answer the types of questions we are interested in—provided that all
relevant parameters are known sufficiently well [29, 31, 10, 15, 1]. However, this is typically not
the case. Thus, a framework combining inference of parameters and prediction is necessary. To
jointly model infections and severe cases, compartmental models require a large state space, whose
parameters can be difficult to estimate from data without overfitting [24].

ML methods excel at fitting data and making predictions based on statistical associations, but are
generally unable to answer causal questions. Moreover, they are unreliable when the underlying data
distribution changes. Yet, we are precisely interested in how our system behaves under distribution
shifts: we want to know how the expected severe-case incidence would have changed had we
implemented different vaccine allocation strategies.

Causal models occupy a middle ground between the two paradigms and are better-suited for our
purpose since they are modular and interventional. Modularity refers to a model being composed of
autonomous components or subsystems and allows for combining different sources of knowledge. In-
terventions are naturally supported by causal models since they explicitly capture the data-generating
mechanisms rather than mere statistical associations. Causal models can thus answer counterfactual
questions while clearly expressing the underlying assumptions [22, 23]. However, using them to
describe time-varying systems and modelling the dynamics of epidemic spread may be cumbersome.

Since neither compartmental nor ML nor causal models on their own are fully suited for our task,
we resort to a hybrid modelling approach involving a modular combination thereof. We propose
a coarse-grained causal model in which most components are estimated from data, but where
additionally one of the modules is a compartmental model and another one is derived from literature
estimates. In particular, we use a susceptible-exposed-infectious-recovered (SEIR) model for the
infection dynamics—but not for severe cases—and rely on literature estimates of immunity waning, as
illustrated in Fig. 1. The SEIR-like infection-dynamics model can be fit more easily to data compared
to a joint model of severe cases and infections. For severe cases, given a set of qualitative causal
assumptions, fitting the causal model reduces to the problem of statistical estimation of conditional
probabilities. This combines the strengths of the two approaches: the data-driven nature of causal
models and the expressivity of compartmental models.

As a case study, we apply our method to a comprehensive dataset collected in Israel [19]. Specifically,
we compare several counterfactual age-dependent vaccine allocation strategies to the factual strategy,
assuming a fixed number of administered doses and fixed vaccine uptake rate per age group. We also
simulate the effect of campaigning for vaccine uptake in a given age group by increasing vaccine
uptake rate in one group and computing the effect on the severe-case incidence across all age groups.
To showcase the capability of our model to change and examine the influence of individual modules,
we consider a different type of disease whose age-dependent risk profile is based on the Spanish Flu.

2 Simulation-assisted causal modelling

2.1 Causal model

We use a causal graphical model [22], as shown in Fig. 1 (middle right), to describe an individual’s
probability of developing severe COVID-19 S ∈ {0, 1} where 1 indicates a severe case and 0
indicates a mild case or no infection at all. We assume the severe-case probability depends on
the following variables: the vaccination status V ∈ {0, 1, 2, 3} indicating the number of vaccine
doses a person has received; their age group A ∈ {0-19, 20-29, . . . , 80-89, 90+}; the current week
T ∈ {1, . . . ,M}; and the time since the last dose was received W ∈ {1, . . . ,M}. The variables V
and W are functions of the weeks in which the respective doses were received Ti ∈ {1, . . . ,M+1}
for i ∈ {1, 2, 3} and the current week T .

We want to estimate the causal effect of changing the distribution of vaccination times for different
age groups A on the expected severe-case probability:

E[S|do(T1, T2, T3 ∼ P̃ (T1, T2, T3|A))] (1)

where we denote the distributions of vaccination times pre- and post-intervention as π =
P (T1, T2, T3|A) and π̃ = P̃ (T1, T2, T3|A), respectively.
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Figure 2: Factors contributing to the severe-case probability. (a) Estimated time dependence f0(T )
approximately following the two infection waves in Israel in 2021. (b) The waning curve hV (W ) with
increasing risk over time as the immunity wanes. The waning curve is computed based on results from [30]. (c)
Estimated age-dependent correction factors f1

π̃(A, T ) accounting for the change in population-level infection
dynamics. The correction factors shown here correspond to the scenario with increased vaccine uptake rate by
2%, leading to a relative decrease in the number of infections. (d) Risk factor g(V,A) estimates indicating the
relative risk of having a severe case by age A and vaccination status V .

There are three challenges we have to address: (i) In the publicly available data by Israel’s Ministry of
Health [19] severe outcomes are not registered as a function of time since the last dose was received.
We only have access to the marginal distribution P (S|V,A, T ) =

∑
w P (S|V,A, T, w)P (w|V,A, T ).

(ii) Computing the post-intervention severity (1) can involve evaluating the conditional P (S|V,A, T )
for combinations (V,A, T ) for which there are no observations. In particular, due to the implemented
age-ranked vaccine allocation strategy in Israel, there may not have been any vaccinated subjects in
certain younger age groups for some of the early weeks. (iii) Changing the vaccine allocation strategy
influences the probability of having a severe case in two ways: firstly, by changing the probability of
having immunity through vaccination and secondly, through impacting the infection dynamics on the
population level. Such changes in infection dynamics are not captured by the causal model alone.

To address these challenges, we propose a factorisation of the severity mechanism

Pπ̃(S=1|V,A, T,W ) = f0(T ) g(V,A) hV (W ) f1
π̃(A, T ). (2)

The waning of the immunity against infection is described by hV (W ); it can be derived from
literature estimates for the vaccine efficacy against infection as a function of time since the last
dose was administered [30]. The observed aggregate time dependence of the probability of having
a severe case is captured by f0(T ). The factor g(V,A) describes the age- and vaccination-status
dependent relative risk factor of having a severe case. f0(T ) and g(V,A) can be estimated from
data after correcting for the influence of waning. f1

π̃(A, T ) is a correction factor that depends on
the post-intervention vaccination distribution and accounts for the change in infection dynamics.
The correction factor couples the causal model and the infection dynamics simulation.

The factorisation (2) resolves the challenges above by allowing us to (i) incorporate literature
knowledge about immunity waning into our causal model, (ii) estimate P (S=1|V,A, T,W ) for all
values in the conditioning set by transferring knowledge between vaccination states, age groups and
weeks, and (iii) take into account the population level impact on the infection dynamics.

2.2 Estimating the severity mechanism factors

Risk factors for the unvaccinated. Estimating the factorisation (2) is ill-posed because the
overall scale of the factors g, hV and f0 is not well-defined.1 We remove this ambiguity by
setting g(V=0, a∗)=1 for the age group a∗=60-69. Note that there is no waning for V=0, hence
P (S=1|V=0, A, T,W ) = P (S=1|V=0, A, T ). We can then estimate the other risk factors of the
unvaccinated by

ĝ(0, a) =
ET [P (S=1|V=0, A=a, T )]

ET [P (S=1|V=0, A=a∗, T )]
. (3)

1We can double f0 and halve g and end up with the same value for the severity mechanism.
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Immunity waning curve. The vaccine efficacy against infection as a function of time since the
administration of the second dose of the BionTech vaccine is reported in [30]. Let VEv(w) be
the vaccine efficacy w weeks after receiving the vth dose. The waning curve hv is given by (full
derivation is shown in App. A)

hv(w) =
1−VEv(w)

1−VEv(0)
. (4)

Risk factors for the vaccinated. In the data [19] we can only observe P (S=1|V,A, T ) since we
do not have data on severe outcomes as a function of the time since the last dose W . However, we
do have data on the distribution of times since the last dose was received P (W |V,A, T ). This allows
us to use the waning function (4) to estimate the risk factors for V=v > 0 since

P (S=1|v, a, t) =
∑
w

P (S=1|v, a, t, w)P (w|v, a, t) = f(t)g(v, a)
∑
w

hv(w)P (w|v, a, t). (5)

This motivates the following estimator:

ĝ(v, a) =
ET

[
P (S=1|V=v,A=a, T )EW |V=v,A=a,T [h

v(W )]−1
]

ET [P (S=1|V=0, A=a, T )]
ĝ(0, a), (6)

i.e., we correct for the waning that occurred in the population to estimate the risk factor under full
immunity.

Time dependence. After correcting for immunity waning and differences in risk factors, we can
estimate the overall time dependence:

f̂(t) = EV,A|T=t

[
P (S=1|V,A, T=t)

ĝ(V,A)EW |V,A,T=t[hV (W )]

]
. (7)

Infection dynamics correction factor. It can be shown (see App. B) that the correction factor
f1
π̃(A, T ) under the counterfactual vaccine allocation strategy is given by the relative change in

weekly infection probability for each age group

f1
π̃(A, T ) =

Pπ̃(I=1|V,A, T,W )

Pπ(I=1|V,A, T,W )
. (8)

Estimated factors are shown in Fig. 2.

2.3 Infection dynamics simulation

To estimate the effect of changing the vaccine allocation strategy on the infection dynamics
(Pπ̃(I=1|V,A, T,W )) we first infer the parameters of a Bayesian SEIR-like model under the factual
strategy π. For each age group a, we fit a time-dependent base reproduction number (Fig. 3 left),
i.e. the reproduction number in a hypothetical non-immune population. From this base reproduction
number, we calculate the effective reproduction number Reff,a(tday) which includes the vaccination
effect. With this we can model the infection dynamics with a discrete renewal process [11, 9, 2]:

Ea(tday) =

9∑
a′=1

√
Reff,a(tday)Ca,a′

√
Reff,a′(tday)

10∑
τ=0

Ea′(tday − 1− τ)g̃(τ),+ha(tday), (9)

Sa(tday) = Sa(tday − 1)− Ea(tday − 1), (10)
g̃(τ) = Gamma(τ ;µ=4, σ=1.5). (11)

Here Ea(tday) is the number of newly exposed individuals on day tday, who will later become
infectious; It is implicitly modelled by the latent kernel g̃. The infections from one age group to
another are encoded by a contact matrix C. Sa(tday) is the number of susceptible people and ha(tday)
is an external influx due to travellers entering Israel.

By delaying the number of exposed people, we estimate the number of cases, and define a likelihood
function by comparing them with the observed cases. By defining all the necessary prior distribution
(see App. C) we can infer the parameters of the model including the time-dependent reproduction
numbers in Bayesian manner with Monte-Carlo methods.

With the inferred reproduction number we rerun the model with a counterfactual strategy π̃ to obtain
an estimate of the number of infections in the counterfactual scenario. The ratio of the number of
infections under the factual and counterfactual scenario then defines the correction factor (eq. 8).
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Figure 3: Plot (a) shows the base reproduction numbers inferred by the SEIR-like infection dynamics model.
The base reproduction numbers describe the contribution of each age group to infection spread after accounting
for the effect of vaccination. Bar plots show the cumulative incidences of infections (b, c) and severe cases (d, e)
for the two infection waves in 2021 under the factual and counterfactual vaccine allocation strategies. For the third
and fourth wave we sum all cases from 2020-12-20 to 2021-04-11 and 2021-06-20 to 2021-11-07, respectively.

3 Results

3.1 Counterfactual vaccine allocation strategies

We compare four age-dependent vaccine allocation strategies: the factual and three counterfactual
ones. (i) Factual: The vaccine allocation strategy implemented in Israel generally prioritised the
elderly (starting with all aged 60 and over), but also prioritised nursing home residents, patients with
pre-existing medical conditions, and front-line health care workers [25]. (ii) Uniform: All age groups
are vaccinated at the same rate. (iii) ElderlyFirst: We prioritise age groups in descending order,
starting with the oldest. This strategy differs from the factual strategy in that it strictly prioritises
by age and does not consider other factors. (iv) YoungFirst: The opposite of ElderlyFirst.

Infections. During the third wave, YoungFirst leads to the lowest infection incidence (Fig. 3 (b)).
The most effective strategy in preventing infections is determined by which age group is contributing
most to infection spread. As shown in Fig. 3(a), during the third wave, the base reproduction numbers
tended to be higher among the young and middle age groups and lower for the elderly, pointing to
differences in behaviour and average number of contacts. Therefore, strategies that prioritise young
and middle age groups are most effective at preventing infections. In the fourth wave, the relative
effectiveness of strategies at preventing infections is reversed and ElderlyFirst leads to the lowest
infection incidence (Fig. 3 (c)). This is due to changes in the base reproduction numbers per age
group: For the first half of the wave, the base reproduction numbers in the youngest age group,
accounting for roughly a third of the population, tend to be lower than for the other age groups due
to the school summer break. Conversely, the base reproduction numbers for the middle-aged and
elderly tend to be higher. Therefore, prioritising these age groups is a more effective measure for
preventing infection spread at that point in time.

Severe cases. The ElderlyFirst strategy leads to the lowest cumulative severe case incidence;
slightly lower than for the Factual strategy for both waves (Fig. 3 (d,e)). The Uniform and
YoungFirst strategies lead to the highest severe-case incidence. The severe-case risk is lowest for
the youngest age groups (Fig. 2(d)). Hence, prioritising the younger age groups leaves the older age
groups (which are at higher risk) less protected against severe cases. While the YoungFirst strategy
reduces the severe-case incidence in the youngest age group, this reduction is far outweighed by the
increase in the other age groups. We find the opposite effect for the ElderlyFirst scenario: we
have a reduction of the severe-case incidence in the elderly and an increase in the younger age groups.

Our results suggest that under the ElderlyFirst strategy, the cumulative severe-case incidence could
have been reduced had this strategy been implemented in Israel (177 vs. 184 and 84 vs. 126 per 100k
in the third and fourth waves, respectively). However, our counterfactual vaccine allocation strategies
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Figure 4: Impact of increasing vaccine uptake rate (UR) in a given age group. In each scenario, the
vaccine uptake rate is increased in a given age group by a fixed number corresponding to 0.6% of the population
(N=55, 746 doses) being motivated to get vaccinated. We assume that the change comes from originally
unvaccinated individuals who are persuaded to receive three doses. All other age groups follow the factual
vaccine allocation strategy. The additional doses are spread over the entire time period by scaling the weekly
administered doses by a constant factor. The plots show the impact on cumulative infections (left) and severe
cases (right) in the entire population—not just in the age group in which the UR was increased. We consider
cases from 2020-12-20 to 2021-12-25.

make some simplifying assumptions that are difficult to implement in practice. We assume that it
is possible to vaccinate all willing patients of an age group before moving on to the next age group
without delays. In practice, this is difficult to accomplish, given how hard it can be to reach the elderly
in particular. Therefore, no realistic vaccine allocation strategy can be as strict as the protocol followed
in ElderlyFirst and will have some overlap between age groups. Hence, from our counterfactual
results and these observations, we conclude that the Factual strategy may have been close to optimal.

3.2 Impact of increasing vaccine uptake

We simulate the effect of increasing the vaccine uptake in a single age group. Limited vaccine
uptake is a factor that prolongs the necessity of non-pharmaceutical interventions [21]. One possible
intervention governments have at their disposal is to encourage vaccinations through advertisement
campaigns, which can be targeted at specific age groups. Our method allows us to estimate the impact
of increasing vaccine uptake on the expected incidence of severe outcomes.

Increasing vaccine uptake in the oldest age groups is most effective in decreasing the severe-case
incidence in the total population (Fig. 4 (right)). On the other hand, increasing vaccine uptake in the
middle age groups is most effective in decreasing the infection incidence in the total population. There
are two effects of an increase in vaccine uptake. Firstly, there is a larger number of individuals who
are better protected against infections and severe cases through vaccine-induced immunity. This effect
can be explained by the risk factors shown in Fig. 2(d): by increasing the vaccine uptake rate in a given
age group, we effectively move an additional part of this population from vaccination status 0 (unvac-
cinated) to 3 (boostered). We find the largest effect for the elderly, since they have the largest absolute
difference in risk factors between vaccination states 0 and 3. Secondly, there is a population level
effect: by influencing the infection dynamics, the total number of infections is reduced (Fig. 4 (left)).
Since the base reproduction number tends to be higher for the middle age groups (Fig. 3 (a)) they have
a larger impact on the number of infections when their vaccine uptake rate is increased. However,
when considering the severe-case incidence, this effect on infections is not large enough to outweigh
the differences in risk factors (Fig. 4 (right)). In summary, even when taking the effect on infection dy-
namics into account, it would have been most beneficial to increase vaccine uptake rate in the elderly.

3.3 Simulating other disease types

To investigate if one can generalise the recommendation to first vaccinate age groups with the highest
severe-case risk, we simulate different types of diseases. The explicit factorisation of the severity
mechanism (2) allows us to dissect the different contributing factors that determine the expected
severe-case incidence. One of those factors is the age- and vaccination-dependent risk profile of
Covid-19. We can ask: How would a disease with a different risk profile behave? We compare
three disease types (Fig. 5 (left)): (i) COVID-19, (ii) Spanish Flu: We use age-specific excess
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Figure 5: Comparison of disease types. The left column (a-c) shows the age-specific risk factors for the
unvaccinated for three considered disease types. The vaccine efficacy is assumed to be independent of age and
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of severe cases under the Uniform strategy. The other plots show the cumulative incidences of infections (c) and
severe cases (d) under different vaccine allocation strategies between 2020-12-20 and 2021-04-11 (third wave).

respiratory death rates associated with the Spanish Flu pandemic in Kentucky 1918-1919 [32] as
an approximation for the risk factors g(0, A) for the Spanish Flu. Age groups 20-29 and 30-39
experience the highest severe-case risk. To obtain the other risk factors g(V >0, A), we assume a
constant vaccine efficacy for all age groups. The other factors of the severity factorisation (2) are
assumed to be the same as for COVID-19 (shown in Fig. 2). (iii) Flat Risk2: All age groups have the
same severe-case risk.

Besides the vaccine allocation strategies shown in Sec. 3.1 we consider two additional strategies that
take the altered risk profiles into account: (i) RiskRanked: We prioritise age groups in descending
order of the risk factors. (ii) RiskRankedReversed: The opposite of RiskRanked.

There are no differences between diseases regarding the cumulative infection incidence under the
four initial vaccine allocation strategies, i.e. Factual, Uniform, ElderlyFirst and YoungFirst.
Of those, the strategies that prioritise young and middle age groups are most effective at preventing
infection spread during the third wave, as discussed in Sec. 3.1. For COVID-19, the RiskRanked
and RiskRankedReversed strategies are most similar to the Factual and YoungFirst strate-
gies, respectively, and lead to similar infection incidences. For the Flat Risk, RiskRanked and
RiskRankedReversed are identical to the Uniform strategy and lead to the same infection outcome.
For the Spanish Flu, the most effective strategy for preventing infection spread is RiskRanked as it
prioritises age groups 20-29 and 30-39 which tend to have the highest base reproduction numbers
during the third wave (see Fig. 3(a)); Conversely, RiskRankedReversed is the least effective.

For COVID-19, the severe-case incidence is lowest for strategies that prioritise high-risk age groups
and lowest for strategies that do the reverse, as discussed in Sec. 3.1. The same can be said for the
Spanish Flu, however, the adversarial strategy RiskRankedReversed leads to even worse outcomes.
For COVID-19, younger and middle age groups have high base reproduction numbers during the
third wave and the elderly had high severe-case risk. For the Spanish Flu, however, the age groups
with high severe-case risk and high base reproduction numbers are the same (20-29 and 30-39).
Therefore, the RiskRankedReversed strategy is adversarial in two ways: it both leads to a high
infection and severe-case incidence.

2The factual vaccine uptake rate is influenced by the age-specific risk structure of COVID-19. Since the
elderly are at higher risk of severe case and death, they have more incentive to get vaccinated. To remove this
bias from the simulation set-up, we assume a flat vaccine uptake rate of 90% willingness to receive all three
vaccine doses across all age groups for the Flat and Spanish Flu risk profiles.
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In summary, this simulation shows that, even when taking infection dynamics into account, following
a strategy in which people most at risk are vaccinated first leads to the lowest severe-case incidence.

4 Discussion and related work

Previous work that retrospectively evaluated vaccination campaigns focused mainly on the overall
success by modelling counterfactual scenarios with fewer or no vaccinations [33, 14]. In addition,
there have been simulation studies conducted before the start of the vaccination campaign that,
similar to our work, evaluate different age-dependent vaccine allocation strategies [3, 18, 10]. The
forward-looking studies find that in general, the middle age groups have the biggest impact on
infection incidence (e.g. Fig. 1 in [3], for demographics corresponding to the United States), which
is in agreement with our findings (see Fig. 4 (left)). However, in these studies, such differences in
contribution to spread stem from assumptions on the contact matrix [3, 10] or prior knowledge of sus-
ceptibility [3, 18, 10], whereas in our method, we estimate the age-dependent reproduction numbers
directly from infection data. The agreement suggests that both approaches lead to qualitatively similar
results. Other studies investigating age-dependent transmission inferred from observed cases [4] or
seropositivity data [28] also find that middle age groups have the largest impact on transmission. In
the present work, by retrospectively taking observed infection data into account, we were additionally
able to show that the timing of the vaccination campaign relative to non-pharmaceutical interventions
is crucial. In the third wave for instance, with partially open schools in Israel, vaccinating the young
would have been most effective at preventing infections; whereas, in the fourth wave, with school
holidays during the start of the wave, this strategy would have been among the least effective (see
Fig. 3). Nevertheless, when it comes to minimising severe cases, all studies agree that (under realistic
parameter settings [18]) prioritising the elderly is most effective due to the large difference in the
infection-fatality ratio [3, 18, 10] (see Figs. 3 and 4 (right)).

While we were able to include many factors relevant to severe cases and infections, our method
has some limitations. Our approach relies on assumptions, which are only approximately correct
and difficult to test in practice. We assume causal sufficiency [22] for the variables in our causal
model, which rules out confounding between the variables we intervene on (vaccination times) and
the outcome (severe cases). However, we do expect some confounding in practice: at-risk groups like
healthcare workers or patients with pre-existing conditions may have a higher incentive to get vac-
cinated [20]. This could break the assumption of homogeneous subgroups based on age, vaccination
status and waning time and lead to overestimated risk factors for the vaccinated g(V >0, A).

In our study, we do not model behavioural or policy responses explicitly. A high infection incidence
increases perceived risk in the population and prompts voluntary health-protective behaviour [6].
Governments also react to changes in infection incidence through NPIs. Both effects tend to reduce
(increase) the effective reproduction number during high (low) incidence periods. Therefore, we
expect that our infection and severe-case incidences are overestimated for high-incidence periods
and underestimated for low-incidence periods. Our results should be interpreted as counterfactual
vaccine allocation scenarios while keeping behavioural and government responses fixed.

Besides approaching the problem of evaluating counterfactual vaccine allocation strategies, this study
illustrates a more general problem in causal inference. Causal models typically require joint obser-
vations of all relevant variables in order to evaluate counterfactual statements. However, in realistic
settings, data is often a limiting factor. In the present study, two crucial parts were not observed:
waning times of the severely ill and latent factors related to infection dynamics (e.g. base reproduction
numbers). By assuming a factorisation for the severity mechanism (2) and incorporating an SEIR-like
model together with literature estimates for waning, we were able to address these limitations. In
our case, we leveraged domain expertise to merge the different sources of knowledge—namely data,
dynamics simulation and literature estimates—into one model. Yet, despite some first steps in this
direction [12, 13, 7, 17], merging information from different sources or datasets into a single causal
model without strong assumptions stemming from domain knowledge is still an open problem.

Through our simulation-assisted causal model, we show how interactions between different elements
of a pandemic such as vaccinations, immunity waning, age-dependent infection spread and risk can
be effectively captured. While we have applied our method retrospectively, with parameter inference
on observational data, this does not limit its applicability. Each of the sub-modules can be replaced
with appropriate assumptions on parts of the system which are yet unknown, as shown in Sec. 3.3. For
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example, when COVID-19 vaccines were approved initially, it was not yet clear how long immunity
against infection or severe course would last. Thus, besides informing the rollout of COVID-19
vaccination campaigns, we hope that our method can help in future pandemics where the relevant
factors may not yet be jointly measured or known from the literature.
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A Immunity waning curve

The vaccine efficacy against infection as a function of time since the administration of the second
dose of the BionTech vaccine is reported in [30] for discrete time periods up to 6 months. To this
data, we fit a logistic curve that tends towards zero efficacy as time increases. For the waning curves
after 1 and 3 doses, we assume the same functional relationship as for the second dose, but scale the
function such that under full protection the efficacy is 75% and 95%, respectively (efficacy under full
protection is around 90% after two doses).

We can use this to derive the waning function hV (W ). Let VEv(w) be the vaccine efficacy w weeks
after receiving the vth dose:

VEv(w) = 1− P (I=1|V=v,A=a, T,W=w)

P (I=1|V=0, A=a, T,W=w)
(12)

where we assume that the efficacy against infection is the same for all age groups and constant over
time T . First, we observe that the severe-case probability can be separated into two processes:

Pπ̃(S=1|V,A, T,W ) = Pπ̃(I=1|V,A, T,W ) P (S=1|V,A, I=1) (13)

(a) the probability of being infected and (b) the probability of having a severe case once infected. We
assume that the probability of having a severe case once infected only depends on V and A and the
immunity against severe courses does not wane over time, as reported in [30]. Then note

P (S=1|V=v, a, t, w)

P (S=1|V=0, a, t, w)
=

P (S=1|V=v, a, I=1)

P (S=1|V=0, a, I=1)

P (I=1|V=v, a, t, w)

P (I=1|V=0, a, t, w)︸ ︷︷ ︸
1−VEv(w)

(14)

=
f(t)g(v, a)hv(w)

f(t)g(0, a)
=

g(v, a)

g(0, a)
hv(w) (15)

⇒hv(w) =
g(0, a)

g(v, a)

P (S=1|V=v, a, I=1)

P (S=1|V=0, a, I=1)
(1−VEv(w)). (16)

By definition we have hv(0) = 1 and combining the above expression for W = w ≥ 0 and W = 0
we get

hv(w)

hv(0)
=

1−VEv(w)

1−VEv(0)
⇒ hv(w) =

1−VEv(w)

1−VEv(0)
. (17)

B Estimating the infection dynamics correction factor

For the estimation of f1
π̃(A, T ), we consider the following: let Pπ(S=1|V,A, T,W ) be the severity

mechanism under the observed vaccine allocation strategy π and Pπ̃(S=1|V,A, T,W ) under the
post-intervention vaccine allocation strategy π̃. Then, using eq. (13),

Pπ̃(S=1|V,A, T,W )

Pπ(S=1|V,A, T,W )
=

Pπ̃(I=1|V,A, T,W ) P (S=1|V,A, I=1)

Pπ(I=1|V,A, T,W ) P (S=1|V,A, I=1)
=

Pπ̃(I=1|V,A, T,W )

Pπ(I=1|V,A, T,W )
(18)

where we have used that the process of going from infected to severely ill (??) does not depend
on the vaccine allocation strategy. From the factorisation of the severity mechanism (2) and using
f1
π(A, T )=1 it follows that

Pπ̃(S=1|V,A, T,W )

Pπ(S=1|V,A, T,W )
= f1

π̃(A, T ). (19)

The assumption that f1 only depends on A and T means we assume that the change in infection
probability due to the infection dynamics is independent of V and W . Hence, the correction factor
is the relative change in weekly infection probability for each age group under the counterfactual
vaccine allocation strategy:

f1
π̃(A, T ) =

Pπ̃(I=1|V,A, T,W )

Pπ(I=1|V,A, T,W )
. (20)
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Figure 6: Overview of the infection dynamics model. The dynamics model infers the effective Reff and
base reproduction number as a function of time given the factual vaccine allocation strategy and the number of
observed cases Ca. After inference, the model is used to predict the number of cases under a counterfactual
strategy. The right side corresponds to equation (21).

C Modelling infection dynamics

To estimate the effect of changing the vaccine allocation strategy on the infection dynamics
(Pπ̃(I=1|V,A, T,W )) we first infer the parameters of a Bayesian SEIR-like model under the ob-
served strategy π. Then we rerun the model with the inferred reproduction numbers under the
counterfactual strategy π̃ to obtain an estimate of the number of infections and the correction factor
f1
π̃(A, T ).

C.1 The SEIR-like dynamics

In our model each age group a has its own compartment, and the dynamics follows a discrete renewal
process [11, 9, 2] determined by the reproduction number Reff,a(tday). These dynamics are discretized
with a one-day step, to allow for enough resolution to model the generation interval. The data is only
available on a weekly basis, which will require later to sum the cases over one week. We fit one
reproduction number per age group. The infections from one age group to another are encoded by a
contact matrix C. The latent period is modelled by a kernel g(τ) which is normalized to 1:

Ea(tday) =

9∑
a′=1

√
Reff,a(tday)Ca,a′

√
Reff,a′(tday)

10∑
τ=0

Ea′(tday − 1− τ)g̃(τ),+ha(tday), (21)

Sa(tday) = Sa(tday − 1)− Ea(tday − 1), (22)
g̃(τ) = Gamma(τ ;µ=4, σ=1.5). (23)

Ea(tday) is the number of newly exposed people on day tday, who will later become infectious; It is
implicitly modelled by the latent kernel g̃. Sa(tday) is the number of susceptible people and ha(tday)
is an external influx (see below).

We assume that changes in the reproduction number symmetrically affect both the infectiousness
and infectiability. This is achieved by multiplying the square-root of the reproduction number to the
contact matrix from both sides in equation (21).

C.2 The contact matrix

The contact matrix models the amount of contacts between age groups. There are two extreme cases:

1. There are no contacts between age groups. In this case, the contact matrix would simply be
the identitiy matrix: C = 1.
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2. The contact between different age groups is the same as within age groups: all-to-all
connectivity. Let D(A=a) be the population of age group a and D =

∑
a D

(A=a) be

the total population. Then, in this case, contact matrix would be C = ρ⃗ · 1⃗
T

, where
1⃗T = (1, 1, . . . , 1) and ρ⃗T = (ρ1, ρ2, . . . ) =

(
D(A=1)

D , D(A=2)

D , . . .
)

is the vector of the
population share in each age group.

The reality lies somewhere between these two cases. A reasonable interpolation between these
extremes should ensure that the largest eigenvector of the contact matrix stays ρ⃗ and that the largest
eigenvalue is 1. This ensures that under a reproduction number of 1 the case numbers are constant
and proportional to the relative population ρ⃗ of each age group. These requirements are met by the
following matrix:

C = (1− γ)1+ γρ⃗ · 1⃗
T

=


γρ1 + (1− γ) γρ1 γρ1 . . .

γρ2 γρ2 + (1− γ) γρ2 . . .
γρ3 γρ3 γρ3 + (1− γ) . . .

...
...

...
. . .

 (24)

The parameter γ determines the mixing between age group: at 1 we have all-to-all connectivity, at 0
ther is no contact between age groups.

C.3 The external influx

To account for some infections occurring due to infected travellers entering Israel, we add a random
number of infections distributed over each week:

ha(tday) = h∗
a(t = kweek(tday))/7, (25)

h∗
a(t) ∼ Weibull

(
λ = 0.1 · popa/10

6, k = 0.3
)

∀a,∀t, (26)

where t is indexing the weeks included in our analysis, kweek(tday) is mapping a day tday to the
corresponding week t. We chose a Weibull distribution because the long tails allow the occurrence of
eventual mass spreading events. The parameters of the Weibull distribution are chosen such that on
average 0.1 infections per million inhabitants per day occur from external influx. This is about a fifth
of the lowest incidence during the analysis period. The median of the distribution is only at 0.003
infections per million inhabitants per day because of the long tails of the distribution.

C.4 The effective reproduction number

The effective reproduction number Reff,a(tday) depends on (1) a base reproduction number
Rbase,a(tday), which encodes the amount of social-distancing at time tday and (2) on an infectia-
bility term Infectabilitya(tday) which encodes the acquired immunity of the susceptible population of
age group a.

Reff,a(tday) = Rbase,a(tday) · Infectabilitya(tday) (27)

C.5 The infectability

The Infectabilitya is the fraction of reduced spread because of the acquired immunity in age group
a. It is 1 in a completely non-immune population and reduces with vaccination. Concretely, it is
modelled as:

Infectabilitya(tday) = Unva(t) + Vacc1a(t) (1− µ1,aW1eff,a (t))

+ Vacc2a(t) (1− µ2,aW2eff,a (t))

+ Vacc3a(t) (1− µ3,aW3eff,a (t)) (28)
with t = kweek(tday), (29)

where Unva(t), Vacc1a(t), Vacc2a(t) and Vacc3a(t) are the fractions of unvaccinated, once-, twice-
and three-times-vaccinated, respectively, for each age group. Here t is the week corresponding to the
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day tday. µ denotes the corresponding protection against infection (0 < µ < 1, µ = 0 corresponds to
no protection). These vaccination fractions are modelled in a weekly manner, because the data is only
available on a weekly basis. W·,eff,a(t) denotes the effective group-wide waning of the immunity, it
is 1 if the whole age group had been vaccinated a few days ago and decreases with time.

The waning immunity is calculated by averaging over time the newly vaccinated people and the factor
by which their immunity became reduced:

W1eff,a(t) =

∑t
τ=0 n_Vacc1a,t(τ)W1(t− τ)∑t

τ=0 n_Vacc1a,t(τ)
(30)

. . . , (31)

where n_Vacc1a,t(τ) are newly vaccinated people at time τ which have not received more than one
vaccination by time t. The waning for the other vaccination stages are modelled similarly.

C.6 The base reproduction number

The base reproduction number Rbase,a(tday) is assumed to be a slowly changing factor as a function
of time. It is modelled as a superposition of logistic change points γ(tday) every 10 days, which are
parameterised by the transient length of the change points l, the date of the change point d and the
effect of the change point ∆γ∗. The subscripts n denote the discrete enumeration of the change
points:

Rbase,a(tday) = R0,a exp

(∑
n

γn(tday)

)
(32)

R0,a ∼ LogNormal (µ = 1, σ = 1) ∀a (33)

γn,a(tday) =
1

1 + e−4/ln,a·(t−dn,a)
·∆γn,a (34)

∆γn,a ∼ N (∆γn−1,a, σ∆γa) ∀n, ∀a with ∆γ0,a = logR0,a (35)
σ∆γ,a ∼ HalfCauchy (0.5) ∀a (36)

ln,a = log
(
1 + exp(l†n,a)

)
(37)

l†n,a ∼ N (4, 1) ∀n, ∀a (unit is days) (38)

dn,a = 10th January 2021 + 21 · n+∆dn,a for n = 0, . . . , 9 (39)
∆dna ∼ N (0, 3.5) ∀n,∀a (unit is days). (40)

C.7 The likelihood

Next, we want to define the goodness of fit of our model to the sample data. For that, the number
of newly exposed people is delayed by 6 days and summed over one week because the case data is
available on a weekly basis. The likelihood of that is modelled by a Student-t distribution, which
allows for some outliers because of its heavier tails compared to a normal distribution (green box
in Fig. 6). The error of the Student-t distribution is proportional to the square root of the number of
cases, which corresponds to the scaling of the errors in a Poisson or Negative Binomial distribution:

Ĉa(t) =

13∑
tday=6

E
(
k−1

week (t)− tday
)

(41)

Ca(t) ∼ StudentTν=4

(
µ = Ĉa(t), σ = κ

√
Ĉa(t) + 1

)
with (42)

κ ∼ HalfCauchy(σ = 30). (43)

Here Ca(t) is the measured number of weekly cases in the population of age a as reported by the
health authorities, whereas Ĉa(t) is the modelled number of cases on week t. k−1

week(t) transforms the
week t to the first day of the week.
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D Generating vaccine allocation strategies

D.1 Factual strategy

In the available dataset [19] the vaccination times for first, second and third doses are given for each
age group, i.e.

P (Ti|A) for i = 1, 2, 3. (44)
However, this alone does not uniquely determine the distribution of waning times. To fully specify
required joint distributions P (T1, T2|A) and P (T3|T2, A) we employ a greedy algorithm to

1. Maximise the number of vaccine recipients that receive their second dose 3 weeks after their
initial dose (or as close to 3 weeks as possible, but not sooner).

2. Have a minimum gap of 12 weeks between second and third dose (constraint).
3. Satisfy (44) (constraint).

D.2 Uniform strategy

For all counterfactual strategies we require the number of first, second and third doses to match the
factual—but not in each age group. In other words,

P̃ (Ti) = P (Ti) for i = 1, 2, 3. (45)

where the tilde indicates probabilities in the counterfactual scenario. For the Uniform strategy, we
require all age groups to have the same vaccination time distributions:

P̃ (T1, T2|A) = P̃ (T1, T2) and P̃ (T3|T2, A) = P̃ (T3|T2). (46)

In summary, the greedy algorithm to determine P̃ (T1, T2|A) and P̃ (T3|T2, A) is adapted as follows:

1. Maximise the number of vaccine recipients that receive their second dose 3 weeks after their
initial dose (or as close to 3 weeks as possible, but not sooner).

2. Have a minimum gap of 12 weeks between second and third dose (constraint).
3. Satisfy (45) (constraint).
4. Satisfy (46) (constraint).

D.3 Ranked strategies

In the ranked strategies ElderlyFirst, YoungFirst, RiskRanked and RiskRankedReversed all
age groups are ranked and vaccinations are assigned to the highest-ranked age group its vaccine
uptake rate is reached. The counterfactual vaccine uptake rate per age group is the factual one for the
first and second doses, i.e.

M∑
ti=1

P̃ (ti|a) =
M∑

ti=1

P (ti|a) for i = 1, 2 and ∀a. (47)

The vaccine uptake rate for booster shots is slightly relaxed by 2.5% to meet other consistency
constraints:

M∑
t3=1

P̃ (t3|a) = 0.025 +

M∑
t3=1

P (t3|a) ∀a. (48)

The greedy algorithm is adapted to

1. Prioritise age groups according to ranking.
2. Maximise the number of vaccine recipients that receive their second dose 3 weeks after their

initial dose (or as close to 3 weeks as possible, but not sooner).
3. Have a minimum gap of 12 weeks between second and third dose (constraint).
4. Satisfy (45) (constraint).
5. Satisfy (47) and (48) (constraint).
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E Target function

Our goal is to compute the expected number of severe cases after intervening on the distribution of
vaccination times:

s(π̃ = P̃ (T1, T2, T3|A)) :=MDE[S|do(T1, T2, T3 ∼ P̃ (T1, T2, T3|A))] (49)

where P̃ (T1, T2, T3|A) is the distribution of vaccination times in the counterfactual scenario. Using
results for stochastic policies from [22], repeated application of the law of total probabilities (TP)
and exploiting conditional independences (CI) implied by the causal graph (see Fig. 1) we can derive
an expression for (49) in terms of known conditional probabilities:

s(π̃ = P̃ (T1, T2, T3|A))

:= MD E[S|do(T1, T2, T3 ∼ P̃ (T1, T2, T3|A))] (50)

= MD P
(
S=1|do(T1, T2, T3 ∼ P̃ (T1, T2, T3|A))

)
(51)

[22, Ch. 4.2]
= MD

∑
a

P (a)
M+1∑

t1,t2,t3=1

P̃ (t1, t2, t3|a)P (S=1|do(t1, t2, t3), a) (52)

TP
= MD

∑
a

P (a)

M+1∑
t1,t2,t3=1

P̃ (t1, t2, t3|a)
M∑
t=1

P (t|do(t1, t2, t3), a)︸ ︷︷ ︸
CI
=P (t)

P (S=1|do(t1, t2, t3), a, t) (53)

TP
= MD

∑
a

P (a)

M∑
t=1

P (t)︸︷︷︸
=1/M

M+1∑
t1,t2,t3=1

P̃ (t1, t2, t3|a)

M∑
w=1

P (w|do(t1, t2, t3), a, t)︸ ︷︷ ︸
CI
=P (w|do(t1,t2,t3),t)

P (S=1|do(t1, t2, t3), a, t, w) (54)

TP
= D

∑
a

P (a)

M∑
t=1

M+1∑
t1,t2,t3=1

P̃ (t1, t2, t3|a)
M∑

w=1

P (w|do(t1, t2, t3), t)

3∑
v=0

P (v|do(t1, t2, t3), a, t, w)︸ ︷︷ ︸
CI
=P (v|do(t1,t2,t3),t)

P (S=1|do(t1, t2, t3), v, a, t, w)︸ ︷︷ ︸
CI
=P (S=1|v,a,t,w)

(55)

= D
∑
a

P (a)

M∑
t=1

M+1∑
t1,t2,t3=1

P̃ (t1, t2, t3|a)

M∑
w=1

P (w|do(t1, t2, t3), t)
3∑

v=0

P (v|do(t1, t2, t3), t) P (S=1|v, a, t, w) (56)

= D
∑
a

P (a)

M∑
t=1

M+1∑
t1,t2,t3=1

P̃ (t1, t2, t3|a)

M∑
w=1

P (w|t1, t2, t3, t)
3∑

v=0

P (v|t1, t2, t3, t) P (S=1|v, a, t, w). (57)

In the last step we use that since {T1, T2, T3, T} are the parents of V and W we can replace the
do-operators by conditional probabilities [22]. Also note that for notational convenience, we set the
vaccination time ti = M + 1 for a patient who has not received the ith dose during the considered
time window t ∈ {1, . . . ,M}.
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The waning time w (number of weeks since the last dose was received) depends deterministically on
the vaccination times t1, t2, t3:

P (w|t1, t2, t3, t) =
{
1 if w = maxi∈{1,2,3}[t− ti]

+,

0 else,
where [x]+ =

{
x if x ≥ 0,

0 else.
(58)

The vaccination status v also depends deterministically on the vaccination times t1, t2, t3:

P (v|t1, t2, t3, t) =
{
1 if v = maxi∈{0,1,2,3} (i · sgn(t− ti + 1)) ,

0 else,
(59)

where sgn is the sign function. These deterministic relationships can be used to eliminate the
corresponding conditionals from the target function:

s(π̃ = P̃ (T1, T2, T3|A))

= D
∑
a

P (a)

M∑
t=1

×

[
M+1∑

t1=t+1

M+1∑
t2=t+1

M+1∑
t3=t+1

P̃ (t1, t2, t3|a) P (S=1|t, a, v=0, w=0)

+

t∑
t1=1

M+1∑
t2=t+1

M+1∑
t3=t+1

P̃ (t1, t2, t3|a) P (S=1|t, a, v=1, w=(t− t1))

+

t∑
t1=1

t∑
t2=1

M+1∑
t3=t+1

P̃ (t1, t2, t3|a) P (S=1|t, a, v=2, w=(t− t2))

+

t∑
t1=1

t∑
t2=1

t∑
t3=1

P̃ (t1, t2, t3|a) P (S=1|t, a, v=3, w=(t− t3))

]
. (60)

Substituting the factorisation for the severity mechanism P (S=1|v, a, t, w) we get:

s(π̃ = P̃ (T1, T2, T3|A))

= D
∑
a

P (a)

M∑
t=1

f0(t)f1
π̃(a, t)

×

[
M+1∑

t1=t+1

M+1∑
t2=t+1

M+1∑
t3=t+1

P̃ (t1, t2, t3|a) g(0, a)

+

t∑
t1=1

M+1∑
t2=t+1

M+1∑
t3=t+1

P̃ (t1, t2, t3|a) g(1, a)h1(t− t1)

+

t∑
t1=1

t∑
t2=1

M+1∑
t3=t+1

P̃ (t1, t2, t3|a) g(2, a)h2(t− t2)

+

t∑
t1=1

t∑
t2=1

t∑
t3=1

P̃ (t1, t2, t3|a) g(3, a)h3(t− t3)

]
. (61)
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F Severe-case incidence over time
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Figure 7: Expected weekly number of severe-case incidence for the entire population (left) and in each age
group (right) for the factual and counterfactual vaccine allocation strategies. The right panels show the trade-offs
in severe-case incidence between age groups under different vaccine allocation strategies.
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