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Abstract

Multi-label classification is a challenging structured prediction task in which a
set of output class labels are predicted for each input. Real-world datasets often
have natural or latent taxonomic relationships between labels, making it desirable
for models to employ label representations capable of capturing such taxonomies.
Most existing multi-label classification methods do not do so, resulting in label
predictions that are inconsistent with the taxonomic constraints, thus failing to accu-
rately represent the fundamentals of problem setting. In this work we introduce the
multi-label box model (MBM), a multi-label classification method that combines
the encoding power of neural networks with the inductive bias and probabilistic
semantics of box embeddings (Vilnis, et al 2018). Box embeddings can be under-
stood as trainable Venn-diagrams based on hyper-rectangles. Representing labels
by boxes rather than vectors, MBM is able to capture taxonomic relations among
labels. Furthermore, since box embeddings allow these relations to be learned
by stochastic gradient descent from data, and to be read as calibrated conditional
probabilities, our model is endowed with a high degree of interpretability. This
interpretability also facilitates the injection of partial information about label-label
relationships into model training, to further improve its consistency. We provide
theoretical grounding for our method and show experimentally the model’s ability
to learn the true latent taxonomic structure from data. Through extensive empirical
evaluations on both small and large-scale multi-label classification datasets, we
show that BBM can significantly improve taxonomic consistency while preserving
or surpassing state-of-the-art predictive performance.

1 Introduction

Multi-label classification is a machine learning task in which an input is associated with multiple
categories. Many real-world multi-label classification data sets in modalities such as text catego-
rization [17], image classification [19, 16], entity typing[20, 22], functional genomics [1, 5], and so
on, have a rich inter-dependent label structure that can be expressed using a taxonomy graph or a
hierarchy. To be useful in practice, a model should produce predictions that are consistent with the
label taxonomy. For example, if a book is classified as drama, it should also be classified as fiction, as
shown by the label taxonomy of book genres in the left-hand side of Figure 1. More formally, given a
label taxonomy in form of a directed acyclic graph G = (L, T ), where the set of node L represents
the labels and an edge (a, b) ∈ T implies that a is the parent of b in the taxonomy, if a model assigns
scores sa and sb to these labels. Then, if sa ≥ sb, these scores are deemed to be consistent with the
taxonomy. In the case of book genre classification example, this implies that sfiction must be greater
than or equal to sdrama, regardless of the input.

The problem of producing consistent predictions for multi-label classification has garnered a lot of
attention in the machine learning literature [30, 12, 20, 3]. Most methods that proposed to improve
the consistency in predictions explicitly require complete label taxonomy either at inference time or
both at training as well as inference time, making these models hard to scale to large label spaces
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Figure 1: On the left we have an example of a label taxonomy that is represented as a DAG. The figure
in the centre shows a possible layout of 2-dimensional box embeddings that capture this taxonomy
accurately. The rightmost figure shows the scores assigned by the box embedding model to each label
for two different inputs X1 and X2.

[12, 30]. This brings forth a question: Can we utilize representation learning to model the label-label
relationships implicitly in the embedding space? Recent advances in non-Euclidean representation
learning suggest optimism.

Vilnis et al. [28] show that probabilistic box embeddings, which represent concepts as high dimen-
sional hyper-rectangles, can embed DAGs efficiently using the explicit information about the edges.
Box embeddings represent edges by box-box containment as shown in Figure 1b. Representing the
input and output labels in the same geometric space of boxes allows the multi-label taxonomy to be
learned without an explicit taxonomic training signal. Moreover, there exists a large space of possible
configurations that represent the same taxonomy, and if the label embeddings in the model gets close
to any such configuration, then the model will always produce classifications that are consistent with
the taxonomy, regardless of the input. We show through empirical evidence this is the case, and
provide a formal proof for latter.

In this work, we propose the multi-label box model (MBM) that utilizes the geometry and probabilistic
semantics of box embeddings to model label-label interactions in multi-label classification. MBM
represents labels as boxes using free parameters and uses deep neural network to embed the input
objects in the same space. We propose a new metric called consistency constrained mean average
precision (CMAP) that combines mean average precision, which measures predictive performance,
with consistency conditions. CMAP can be used to jointly measure the predictive and consistency
performance of a model. Using this metric we show that MBM not only achieves state-of-the-art
predictive performance but it also significantly improves the consistency of predicted scores w.r.t
latent label taxonomy. Our analysis further shows that it is possible to retrieve the latent label-label
relationships solely by analysing the learnt label representations inside the MBM, endowing the
model with high degree of interpretability. Finally, we also present a way to utilize the interpretability
of MBM to inject partial information about label-label relationships into the model thereby improving
the consistency even further.

2 Related Work

Multi-label classification tasks that exhibit strong label space structure in the form of explicit label
taxonomy are termed hierarchical multi-label classification (HMLC) in machine learning literature.
Most approaches for such tasks make use of the complete hierarchy at the training time. These
approaches can be categorized into two buckets [26]: (1) Local approaches that focus on local
information for each label or clusters of labels in the hierarchy and classify them independently
[3, 14], and (2) Global approaches that treat the problem as structured classification task and take
global interactions into account [2]. In the most general setting, however, both local and global
interactions between labels exist. The recent advances in deep learning [29] propose a specialized
neural network architecture called Hierarchical Multi-Label Classification Network (HMCN-R and
HMCN-F) that takes into account both local and global interactions by creating an ensemble of
classifiers that can be trained using end-to-end gradient based training. However, HMCN does
not try to enforce consistency strongly and focuses solely on predictive performance. In order to
improve prediction consistency, recent works employ special loss functions on top of a neural network
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classifier to enforce consistency w.r.t label taxonomy [20, 12]. While effective, these approaches still
use the label taxonomy explicitly, making them difficult to scale to very large label spaces.

The recent advances in representation learning provide various methods to embed large graphs and
taxonomies parsimoniously in non-euclidean spaces [21, 28, 27, 13]. The most prominent of these
embedding methods include hyperbolic embeddings [21, 9, 10] and box embedding [28, 18, 6]. The
use of non-euclidean embeddings for improving the consistency of multi-label classification has
been limited to specific domains like text [4] or specific tasks like entity typing [22]. Moreover,
while both hyperbolic and box embedding can model hierarchical relationships, it has been shown
that the box embedding can also model more general graphs like DAGs much more efficiently than
hyperbolic embeddings [24]. Hence, we propose a model that uses box embedding to capture general
label-label relationships without the explicit use of label taxonomy to improve the consistency of
model predictions.

3 Overview of Box Embeddings

Notations: In the problem of multi-label classification, we are given a set of labels L where
L = |L|, and an instance can be labeled with an element s ∈ {0, 1}L, where projection to the ith
coordinate πi(s) = 1 means that the ith label is true. We call the set of all such labelings S, and the
associated probability space (S,P(S), PS). We use I to denote the set of all finite closed intervals
[µ−, µ+] in Ω ⊂ R plus the empty set, i.e. I := {[µ−, µ+] ⊂ Ω |µ+ ≥ µ−} ∪ ∅, We denote the
smallest σ-algebra containing I as σ(I) and, given a valid finite measure ν, we consider the measure
space (Ω, σ(I), ν). As a high dimensional generalization, Id will denote a d-dimensional Cartesian
product of I.
Definition 1 (Box Embedding [28]). Let B : Id → S be a measurable function such that B−1 ◦
π−1i (1) =

∏d
i [µ
−
i , µ

+
i ] ∈ Id. A box embedding is defined as the function Box : L → Id which maps

a label ` ∈ L to B−1 ◦ π−1` ({1}) ∈ Id.

The definition of box embeddings induces a push-forward measure Q on S such that for any R ⊆ S,
Q(S) = ν ◦ B−1(R). The complete joint probability distribution over the labels can be modeled
using Q as defined above; however, computing B−1(R) requires the use of inclusion-exclusion
principle and hence is intractable for a general R.

In order to avoid local identifiability issues in training, Dasgupta et al. [7] interpret µ−i (resp. µ+
i )

as the location parameters of random variables M−i (resp. M+
i ) that are distributed according to

GumbelMax (resp. GumbelMin) distributions, leading to a meta-probabilistic generalization of box
embedding which they call Gumbel Box Process. Since the GumbelMax (resp. GumbelMin) is
max (resp. min) stable distribution, it enables the computation of the location parameters of the
intersection box as given in the following definition.

Definition 2 (Intersection Box [7]). Let A =
∏d
i=1[a−i , a

+
i ] and B =

∏d
i=1[b−i , b

+
i ] be two gumbel

boxes expressed using their location parameters, then the location parameters of the intersection of
these two gumbel boxes are given as

A∩̃B =

d∏
i=1

[
β lse

(
a−i
β
,
b−i
β

)
, − β lse

(
−a

+
i

β
,−b

+
i

β

)]
, (1)

where lse(x, y) = log(exp(x) + exp(y)).

The expected volume of Gumbel boxes involves the Bessel Function of the Second Kind, however, as
shown in Dasgupta et al. [7], this integral can be reasonably approximated using softplus function
leading to the following definition for approximate bessel volume.

Definition 3 (Approximate Bessel Volume [7]). For a gumbel box B =
∏d
i=1[b−i , b

+
i ] we define the

approximate Bessel volume λ : Id → R+ as

λ(B) :=

d∏
i=1

log

(
1 + exp

(
b+i − b

−
i

β
− 2γ

))
.
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In the next section, we formally demonstrate the suitability of box embeddings for capturing taxo-
nomic label relationships, and for that we first prove a couple of useful facts regarding the Gumbel
intersection and Bessel approximate volume.

Proposition 1. Approximate bessel volume is monotonic with respect to set containment. That is for
two Gumbel boxes A,B,

a−i ≥ b
−
i and a+i ≤ b

+
i , ∀i ∈ {1, . . . , d} ⇐⇒ λ(A) ≤ λ(B). (2)

Proof. Follows from the monotonicity of log(1 + exp(.)).

Proposition 2. For any two Gumbel boxes A,B, λ(A∩̃B) ≤ λ(B).

Proof. The fact that max(x, y) ≤ lse(x, y), and the statement of proposition 1 together imply the
desired result.

Since, λ is neither normalized nor additive, it cannot be used as a probability measure on (Ω, σ(Id)).
However, we can use proposition 1 and 2 to define a conditional probability model as follows.

Corollary 1. For two gumbel boxes A,B, let PBox(A |B) = λ(A∩̃B)
λ(B) , then

(i) For any two gumbel boxes A,B, we have 0 ≤ PBox(A |B) ≤ 1.

(ii) PBox(A |C) ≤ PBox(B |C) for any three gumbel boxes A,B,C, with a−i ≥ b
−
i , a

+
i ≤ b

+
i .

4 Multi-label Box Model

In order to perform the task of multi-label classification we need to model the conditional probabilities
P (Y |X) where Y ∈ S and X is the input. Using definition 1, we define label box embeddings
Boxψ : L → Id as

Boxψ(`i) :=

d∏
j=1

[ψ−i,j , ψ
−
i,j + log(1 + expψ+

i,j)],

where ψ−, ψ+ ∈ RL×d are trainable parameters. The input instance X is encoded into an element of
Id using a parametric instance box embedding Boxθ = Id ◦ Fθ : X → Id, where Fθ : X → Rd is a
neural network with parameters θ and Id : Rd → Id defined as

Id(x) :=

d∏
i=1

[fi(x), fd+i(x)], with fi(x) :=

{
xi − δ, for i ≤ d
xi + δ, for d < i ≤ 2d

,

where δ = 10−5. The conditional probability for Y ∈ S given input X is computed using conditional
probability under the Gumbel box model as

PMBM(Y |X;ψ, θ) =

L∏
i=1

PMBM(Yi|X,ψ, θ) :=

L∏
i=1

PBox(B−1 ◦ π−1i ({Y }) |Boxθ(X))

Using the definition of PBox as stated through corollary 1, we get the following expression for the
conditional probability of Yi under the model

PMBM(Yi = 1|X;ψ, θ) =
λ (Boxψ(`i) ∩̃ Boxθ(X))

λ(Boxθ(X))
,

where the intersection ∩̃ is the Gumbel Intersection and measure λ is Approximate Bessel Volume.
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4.1 Modeling label-space interactions

In Section 1, we alluded to the fact that the inductive bias of MBM allows it to efficiently model
partially specified first-order label interactions. Now we make this remark more concrete. If the
partial specification of label interaction is defined using a taxonomy that can be represented as a
directed acyclic graph (DAG), the following proposition shows that MBM has a strong inductive bias
towards maintaining consistency in its scores.

Proposition 3. Let G = (L, T ) denote a DAG defined over the labels where L is the set of all labels
and T = {(`i, `j) | `i, `j ∈ L, PD(yi = 1 | yj = 1) = 1} is the set of edges. Then there exists some
ψ such that P(ψ,θ)(yi = 1 |x) ≥ P(ψ,θ)(yj = 1 |x), for all x, θ.

Proof. For all (`i, `j) ∈ T , let ψ be such that Boxψ(`j) ⊆ Boxψ(`i). Note that such ψ exists
since for each i ∈ {1, . . . , L}, Boxψ(`i) is defined using only ψi. It follows from corollary 1 that
PBox(Boxψ(`i) |Boxθ(X)) ≥ PBox(Boxψ(`j) |Boxθ(X)) for any X, θ.

4.1.1 Learning

The entire MBM is specified using parameters (ψ, θ) where ψ ∈ R2d×L are the label embed-
ding parameters and θ are the parameters of the instance encoder neural network Fθ. Given data
D = {(x(1), y(1)), . . . , (x(N), y(N))}, the model parameters are learnt by minimizing negative
log-likelihood loss Lnll using ADAM optimizer [15].

Lnll(ψ, θ;D) = −
D∑
i=1

L∑
j=1

logP (y
(i)
j |x

(i);ψ, θ). (3)

In order to empirically verify the intuition behind proposition 3, we also propose the use of label
interaction loss

LG(ψ) = −
∑

(`i,`j)∈T

s(`i, `j) +
∑

(`i,`j)6∈T

s(`i, `j) (4)

that utilizes the geometry of box embeddings to inject partial information about label interactions
specified using a label taxonomy G = (L, T ). For the Box model, label interaction score for a pair
of labels is defined as

sMBM(`i, `j) := logPBox(Boxψ(`i) |Boxψ(`j)). (5)

5 Baselines

Our choice of baselines reflects the focus of this work, i.e., introducing prediction consistency
using suitable representation spaces. To this end, our baselines consist of two models–one a high-
performing neural network that only uses Euclidean vector representations, and other that uses
hyperbolic representations. The base input encoder architecture Fθ in both these models is same as
the one used in MBM.

5.1 Multi-label Vector Model

An input encoder neural network Fθ : X → Rd is used to encode the inputs and a label embedding
matrix ψ is used to represent the labels. The conditional probability of labels given the input is
modeled as

PMVM(yl = 1 |x;ψ, θ) = σ(Fθ(X) · ψl),
where σ is the logistic sigmoid function. The parameters (θ, ψ) are learnt through negative log-
likelihood loss (Eq. 3).

5.2 Multi-label Hyperbolic Model

This model uses the hyperbolic projection Π : Rd → Bd and distance d : Bd × Bd → R+

as defined in Nickel and Kiela [21] to project Euclidean vectors to d-dimensional Poincaré ball
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Bd =
{
x ∈ Rd | ‖x‖ < 1

}
, and to compute distance between two points in Bd.

Π(x) :=
x

1 +
√

1 + ‖x‖22
, d(u, v) := arcosh

(
1 + 2

‖u− v‖
(1− ‖u‖22)(1− ‖v‖22)

)
.

The input is first encoded using Fθ and then projected into Bd. The unnormalized score for each label
is computed as the negative of the distance between the hyperbolic projections of encoded input and
label representation. Since the hyperbolic distance function consists of arcosh, the negative distance
is interpreted as log-probability score

logPMHM(yl = 1 |x) = −d(Π(Fθ(x)),Π(ψl)),

which is used to learn the parameters (ψ, θ) using negative log likelihood loss (Eq. 3). Further the
hyperbolic distance is used to define label interaction scores in the hyperbolic space as

sMHM(li, lj) := d(Π(ψli),Π(ψlj )).

6 Evaluation and Results

In this section we evaluate the performance of MBM using various real-world multi-label classification
datasets.1 The performance on multi-label classification is usually measured with Mean Average
Precision (MAP), that is the mean of the average precision values across instances. MAP, however,
does not take into account inconsistencies in predicted scores w.r.t label taxonomy. For instance,
recalling the earlier example in Figure 1, a consistent model would always assign higher score to
fiction when compared to drama, since a book classified as drama should also be classified as fiction.
Since, MAP is incapable of capturing such consistency conditions, we introduce two new metrics,
namely, Constraint Violation and Constrained Mean Average Precision.

Constrained Mean Average Precision (CMAP) computes MAP after accounting for the scores
violating latent label taxonomy constraints. This is done by modifying the score for each label to
be the minimum of the scores of its ancestor in the taxonomy (including itself) before computing
the MAP. That is, given the taxonomy G, CMAP(s) = MAP(s̃). Here, the modified scores s̃ are
computed as:

s̃
(k)
i = min

lj∈AncG(li)∪{li}
s
(k)
i , (6)

where AncG(l) is the set of ancestors of l in graph G.

Constraint violation measures the extent to which the label scores generated by the model violate
the partial ordering of the latent label taxonomy regardless of true labels for the instances. Hence,
lower value of CV implies higher taxonomic consistency in the predictions. CV is computed as

CV =
1

|D||T |

|D|∑
k=1

∑
(li,lj)∈T

1
(
s
(k)
i − s

(k)
j < 0

)
. (7)

6.1 Task1: Feature based multi-label classification

In order to assess whether the neural network encoder can encode any kind of input well into box
space, we use 7 small-scale multi-label classification datasets spanning across three domains: text,
images [8], and functional genomics [5].2 The characteristics of these datasets are summarized in the
top section of table 1. These datasets are ideal test bed for our model as they explicitly provide label
space taxonomy. Moreover, all the labels of all training and test instances respect the label taxonomy.
The inputs for the datasets are either categorical features or continuous feature vectors. We convert
the categorical features into one-hot feature vectors and standardize all continuous features.

The input encoder Fθ, common for MBM and the baselines, consists of a MLP with 3 layers. We
perform grid search over activations, hidden dimensions, dropout, learning rate and use the best
parameters for each model.

1Links to the sources for all 10 datasets are provided in the Appendix.
2These datasets do not require a licence and are available for public usage.
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Table 1: Summary of the datasets used in experiments. The first section summarizes the feature based
multi-label datasets spanning across 3 domains: functional genomics, image and text. The bottom
section summarizes large scale datasets: Blurb Genre Collection(BGC), RCV1 for multi-label text
classification and TypeNet for entity typing.

Dataset Domain Input/Feature
Type

Label
Taxonomy #Labels #Instances

Train Val Test

Expr Genomics Continuous Forest 500 1636 849 1288
Cellcycle Genomics Continuous Forest 500 1628 848 1281
Derisi Genomics Continuous Forest 500 1608 842 1275
Spo Genomics Continuous Forest 500 1600 837 1266
Diatoms Image Continuous Tree 399 1400 665 1054
Imclef07a Image Continuous Tree 97 7000 3000 1006
Enron Text Binary Tree 57 650 338 600

BGC Text Raw Text Forest 142 58715 14785 18394
RCV1 Text Raw Text DAG 104 13890 9260 781265
TypeNet Text Raw Text Forest 997 295068 16392 16393

Table 2 reports the test set performance of the MBM model along with the baselines. The metric
values reported are averaged across 5 runs with different random seeds, and are accompanied by
standard error interval. We observe that the predictive performance of MBM measured using MAP is
comparable to or better than that of MVM. When consistency constraints are considered along with
the predictive performance (CMAP), MBM consistently outperforms MVM. While, on one extreme
where we have MVM that exhibits good predictive performance but fails to maintain consistency
w.r.t the taxonomy (resulting in higher CV), on the other extreme we have MHM that exhibits lowest
constraint violations but gives inadequate predictive performance. MBM, however, demonstrates
good characteristics on both fronts–predictive performance as well consistency.

6.2 Task 2: Multi-label text classification and entity typing

We evaluate MBM on large-scale multi-label text classification and entity-typing datasets in addition
to small feature-based datasets. All three datasets, TypeNet[20], BGC and RCV1 [17]3 have a rich
input space consisting of raw text and have explicit label taxonomies (c.f. Table 1).

The input text for text classification and entity typing datasets can be split into two parts: main text
xm and auxiliary text xa. While the main text consists of sentences containing entity mentions, text
describing the book and complete news articles; the auxiliary text contains tokens for surface mention,
books’ title and headline of the new articles for TypeNet, BGC and RCV1 respectively. For encoding
x = (xa, xm) we use CNN based encoder described in Murty et al. [20] that is general enough to
encode the inputs for text classification as well as entity typing. The tokens of (xa, xm) are encoded
using GloVe embeddings [25] to produce (ga, gm). A single-layered CNN with tanh non-linearity is
applied to gm, followed by a max-pooling layer to obtain a single vector representation em for the
main input. To generate ea, a mean-pooling layer is applied to ga. The encoded vector representation
of the raw text is obtained by concatenating the two representations (ea, em) and passing it through
2-layer MLP. This encoder setup is common for MBM and the baselines and the best performing
hyper-parameters (activation, dropout, hidden dimensions, and learning rate) for each model are
tuned using grid search.

As shown in Table 2, we observe similar trend with raw text datasets as with the feature based datasets.
While the MVM performs slightly better than MBM comparing MAP, the latter has significantly
lower CV and better CMAP. Hence, it can be concluded that even for larger text datasets, the MBM
model strikes a fine balance between predictive performance and consistency.

3The license for the dataset is acquired.
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Table 2: Performance comparison of MBM models with the baselines for feature based datasets
and large-scale multi-label classification and entity tying datasets. The left section compares the
MVM, MHM and MBM models with the best performing model highlighted in each row. The right
section shows the performance when we include the taxonomy information in training through LG
(MHM-T and MBM-T), where the highlighted cells indicated an improvement in performance w.r.t
the respective non-T version of the model. All the metrics reported are averaged across five runs with
different seeds and includes the standard error interval.

Dataset Metric MVM MHM MBM MHM-T MBM-T

MAP 49.11 ± 0.08 39.44 ± 0.02 48.35 ± 0.08 38.23 ± 0.21 47.88 ± 0.06

CMAP 46.47 ± 0.20 37.54 ± 0.06 48.60 ± 0.08 38.47 ± 0.22 48.13 ± 0.06Expr
CV↓ 2.75 ± 0.10 0.72 ± 0.09 2.21 ± 0.07 1.61 ± 0.17 1.52 ± 0.04

MAP 42.80 ± 0.24 38.68 ± 0.05 44.77 ± 0.24 38.54 ± 0.05 44.91 ± 0.09

CMAP 42.55 ± 0.21 36.94 ± 0.05 44.94 ± 0.23 36.78 ± 0.07 45.07 ± 0.01Cellcycle
CV↓ 1.73 ± 0.08 0.79 ± 0.05 1.57 ± 0.04 0.96 ± 0.05 0.4 ± 0.01

MAP 40.09 ± 0.26 37.96 ± 0.18 40.81 ± 0.03 37.44 ± 0.05 40.67 ± 0.07

CMAP 39.50 ± 0.43 37.25 ± 0.13 40.93 ± 0.02 37.43 ± 0.03 40.72 ± 0.06Derisi
CV↓ 2.01 ± 0.15 0.77 ± 0.05 1.34 ± 0.01 1.23 ± 0.17 0.05 ± 0.01

MAP 40.12 ± 0.52 38.21 ± 0.15 41.35 ± 0.05 37.24 ± 0.05 41.37 ± 0.08

CMAP 40.07 ± 0.46 37.23 ± 0.18 41.51 ± 0.04 37.31 ± 0.04 41.53 ± 0.08Spo
CV↓ 1.42 ± 0.06 0.86 ± 0.05 1.53 ± 0.07 2.68 ± 0.51 1.21 ± 0.02

MAP 83.76 ± 0.16 79.61 ± 0.02 82.08 ± 0.11 79.60 ± 0.01 81.32 ± 0.15

CMAP 75.65 ± 0.57 79.63 ± 0.02 82.12 ± 0.09 79.63 ± 0.04 81.34 ± 0.11Enron
CV↓ 0.79 ± 0.14 0.35 ± 0.01 0.12 ± 0.04 0.48 ± 0.01 0.04 ± 0.02

MAP 78.40 ± 0.35 47.63 ± 0.03 83.47 ± 0.15 47.71 ± 0.03 82.75 ± 0.24

CMAP 71.21 ± 0.54 47.65 ± 0.03 83.55 ± 0.15 47.73 ± 0.03 82.66 ± 0.27Diatoms
CV↓ 7.23 ± 0.21 2.03 ± 0.06 3.48 ± 0.10 1.93 ± 0.17 0.19 ± 0.02

MAP 73.97 ± 0.48 65.16 ± 0.16 74.3 ± 1.32 65.65 ± 0.20 74.94 ± 1.66

CMAP 73.87 ± 0.38 64.78 ± 0.38 74.52 ± 1.3 64.56 ± 0.28 75.14 ± 1.63Imclef07a
CV↓ 2.98 ± 0.3 2.27 ± 0.17 2.92 ± 0.25 2.49 ± 0.22 2.83 ± 0.25

MAP 83.88 ± 0.09 72.44 ± 0.08 83.57 ± 0.16 72.61 ± 0.14 83.53 ± 0.18

CMAP 78.86 ± 0.47 68.55 ± 0.07 83.70 ± 0.14 68.83 ± 0.08 83.54 ± 0.18BGC
CV↓ 16.17 ± 0.45 0.99 ± 0.04 1.64 ± 0.06 1.2 ± 0.01 0.02 ± 0.0

MAP 88.96 ± 0.03 76.19 ± 0.32 87.93 ± 0.08 79.40 ± 0.32 88.23 ± 0.3

CMAP 86.81 ± 0.02 72.09 ± 0.34 87.81 ± 0.08 75.94 ± 0.31 88.11 ± 0.3RCV1
CV↓ 12.65 ± 0.41 2.26 ± 0.16 2.43 ± 0.15 1.19 ± 0.06 1.83 ± 0.11

MAP 88.48 ± 0.03 72.97 ± 0.13 87.84 ± 0.08 73.09 ± 0.07 87.58 ± 0.32

CMAP 81.70 ± 0.93 72.43 ± 0.12 87.93 ± 0.08 72.49 ± 0.06 87.62 ± 0.32TypeNet
CV↓ 6.31 ± 0.35 1.46 ± 0.01 0.41 ± 0.06 1.29 ± 0.08 0.01 ± 0.0

7 Analysis of Learned Label Embeddings

In this section we analyse the geometry of the learned label embeddings, finding that the simple
geometry of box embeddings endows the MBM model with high degree of interpretability. In order
to verify that label box embeddings are producing consistent scores by using inclusion in the box
space, we inject into the model, the taxonomy information through the additional loss term (Eq. 4).
As seen from the two right most columns in Table 2, injecting explicit taxonomic information into
the label embeddings (MBM-T) further reduces the extent of constrain violation in the base MBM.
Thus validating our intuition about the arrangement of label embeddings boxes.

To determine the extent to which the label embeddings capture the latent label taxonomy without it
being explicitly provided, we perform ancestor-descendant classification solely using the learnt label
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Figure 2: Above figure shows the ROC curves for the ancestor-descendant relationship classification
in the label space for the models MBM, MVM and MHM across the large scale datasets: TypeNet,
BGC and RCV1. The plot shows that the MBM outperforms MVM and MHM in capturing the label
space taxonomy.

embeddings of the MBM model. Each pair of labels (li, lj) get a score β(i, j) that is determined
using their corresponding label embeddings ψi, ψj . Since all three models have different geometrical
interpretations, we use different scoring for each.4 Specifically, βMVM(i, j) =

ψi·ψj

‖ψj‖ , βMBM(i, j) =

sMBM(li, lj) and βMHM(i, j) = −(1+α(‖ψi‖−‖ψj‖)sMHM(li, lj). These scores are then compared
to true ancestor-descendant relations in the taxonomy to obtain respective ROC curves as shown in
Figure 2. As seen, MBM captures the true label taxonomy the best (AUC ≥ 0.96) for all datasets.

Table 3: Spearman rank correlation between the number of descendants in the true label taxon-
omy compared with each of the following: embedding magnitude for MVM, negative embedding
magnitude for MHM and box embedding volume for MBM.

Dataset MVM MHM MBM
BGC, RCV1, TypeNet 0.008, 0.12, -0.13 0.58, 0.49, 0.50 0.54, 0.46, 0.49

It is known that for the hyperberbolic space, the magnitude of embeddings relate to the level of
generality in taxonomy[21]. We show that the same observation holds for box embeddings, with
the vector embedding magnitude replaced by box embedding volume. To see this, we compute the
spearman rank correlation between the number of descendants of a node in the true taxonomy and
the embedding magnitude, negative embedding magnitude and embedding volume for MVM, MHM
and MBM, respectively. The correlation values reported in Table 3 confirm our intuition regarding
box embeddings stated above.

8 Conclusion

In this work, we demonstrate that box embeddings can more effectively capture taxonomic relations
present between labels in the multi-label classification setting. This is true both intrinsically, captured
via containment relationships between the box embeddings, and with respect to their labeling
performance, as observed via improved MAP and CMAP metrics. Furthermore, our experiments
validate that graph relationships between labels can be effectively injected via supervision during
training, resulting in a consistent reduction in constraint violations (CV) on every dataset we evaluated
on. Our model is thus an effective choice for multi-label classification both in settings with and
without known taxonomic relations on the labels.

The problem of multi-label classification is very general and is of great practical applicability. Due to
the promising performance of the proposed approach we believe that this work might have a broad
impact. Hence, it is important to consider ethical issue pertaining to this work. Due to the high
interpretability of our model, the most important concern would be regarding fairness, wherein biased
data or taxonomic information can percolate the same into the model predictions. In order to avoid
this, the data must be thoroughly inspected before the application of our method.

4The definition for βMHM is taken from Nickel and Kiela [21], with α = 10−3.
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A Implementation Details

In this section, we describe the implementation details of the input encoder for the text based datasets
(BGC, RCV1 and Typenet), and the details of the training procedure and hyper-parameter search.

A.1 Input encoder

As discussed in section 6.2, the input text for text classification and entity typing can be split into two
parts: main text xm and auxiliary text xa. For the raw text based datasets, we use the input encode
from Murty et al. [20]. The encoder network Fθ consists of GloVe embeddings M ∈ R|V |×h [25], a
single layer CNN with tanh activationsW and a 2-layer MLP P . Both the main and auxiliary inputs
are passed through the embedding layer to get (gm, ga) = (M(xm),M(xa)). The the embeddings
of the main input are then passed through the CNN and max-pooled to obtain em as:

em = max
0≤i≤nm−w+1

tanh

b+

w∑
j=0

W [j]gm[i− bw/2c+ j]

 ,

where nm is the number of tokens in the main text, W ∈ Rh,h is the weight of the CNN filter, b ∈ Rd
is the bias and the width w is set to 5. The embedding of the auxiliary input are simply mean pooled
to get ea, that is,

ea =
1

na

na∑
i=1

ga.

The final vector representation for the input is obtained by concatenating ea and em and passing them
through a 2-layer MLP.

Fθ(x) = P (cat(ea, em)).

Table 4: Example input instances from RCV1, BGC and Typenet datasets.
Dataset main input desc. auxillary input desc. main input example auxillary input example

TypeNet list of
sentences

list of surface mentions
(one for each sentence)

[Henry Ford was an Industrialist,
Ford was known for is pacifism during WW1, ...]

[Henry Ford,
Ford, ...]

BGC description
of the book book’s title The classic science fiction novel that captures and expands on the

vision of Stanley Kubrick’s immortal film... 2001: A Space Odyssey

RCV1 text of news
article headline of the article France’s cabinet met for the first time since the winter recess on Monday,

amid expectations it could approve a decree.... France’s cabinet meets

BGC As seen in Table 4, the main input xm for BGC is the paragraph containing the description of
a book and the auxiliary input xa is the book’s title. Hence, the encoded vector representation for an
input instance is Fθ((xm, xa)).

RCV1 In terms of input structure, RCV1 is identical to BGC with a news article instead of a book
description as the main input, and the headline of the article instead of a book title as the auxiliary
input. Hence, for RCV1, we use the exact same encoder structure as BGC.

Typenet As seen in Table 4, since one input instance for Typenet consists of a list of 10 sen-
tences containing entity mentions (xm,1, xm,2, . . . , xm,10) and the corresponding 10 surface mention
phrases (xa,1, xa,2, . . . , xa,10), the final vector for the input representation is the mean of these i.e.
1/10

∑10
k=1 Fθ ((xm,k, xa,k)).

A.2 Training Details

Frameworks used: We implement all the models described in this work using PyTorch [23]. We
also make use of NLP specific abstractions over PyTorch provided by AllenNLP [11].

Data pre-processing: The datasets were pre-processed to remove noisy characters, fix encoding
issues, tokenize text input using SpaCy tokenizer and map the labels to binary one hot encoding label
vector.

13



Training: The learning algorithm used for training is minibatch gradient descent with a fixed batch
size of 64. The ADAM [15] optimizer was used during training, along with ReduceLROnPlateau
learning rate scheduler with early stopping.5 Since the naive implementation of the label interaction
loss described in Eq. 4 is too expensive to compute at each mini-batch step, we approximate it by
randomly sampling (without replacement), at each mini-batch step, a subset of edges T̃ ∼ T . The
size of the sampled set is a hyper-parameter (last column in Table 5).

Hyper-parameter search: All the results are reported using the best hyper-parameters found using
grid search. Table 5 summarizes the search ranges used. The following hyper-parameters were
searched based on the models used: optimizer learning rate, each feed forward layer’s hidden
dimensions and activation functions, dropout probabilities, label space dimensions/box space dimen-
sions(half of hidden dimensions), weight and sampling percentage for the labels for computing the
label interaction loss(LG) for the MHM-T and MBM-T models. All the best model configurations
are included in the code folder.

Table 5: Summary of the hyper-parameter search ranges for each dataset and model. The best
hyper-parameters for each model and dataset combination were picked using grid search using MAP
on the validation set. Except for the LG weight and label sample percent, which are only applicable
to the MBM-T and MHM-T models, the rest of the parameters are present across all models.
Datasets lr hidden dimensions linear layers activation dropout LG weight label sample percent

Feature based datasets 1e-5, 1e-4, 1e-2 250, 500, 1000, 1750 3 sigmoid, relu, tanh 0.0, 0.3, 0.5, 0.7 1e-3, 1e-5, 1e-7 5,10,20
BGC & RCV1 1e-3, 1e-4, 1e-5 150, 300 2 sigmoid, relu, tanh 0, 0.3, 0.5 1e-3, 1e-5, 1e-7 5,10,20
TypeNet 1e-3, 1e-4, 1e-5 310, 620 2 sigmoid, relu, tanh 0, 0.3, 0.5 1e-3, 1e-5, 1e-7 5,10,20

Compute: All the models were trained using Titanx GPUs. It takes less than an hour to train any of
the reported models on feature-based datasets. For training any of the reported models on RCV1,
BGC, and TypeNet, it takes approximately 2 hours, 4 hours and 22 hours, respectively.

A.3 Code

Completely anonymized and executable code with detailed instructions is provided using Anonymous
Github.6 The instructions cover all the use cases, i.e., obtaining the pre-processed datasets, training a
new model from scratch (MBM or any baseline), evaluating a pre-trained model on test set, directly
downloading the pre-trained models for larger datasets, and reproducing the graphs reported in the
analysis section.

B Datasets

Table 6: The table provides the links to download the data from original source.
Dataset(s) Download Links

Imclef07a, Enron, Diatoms http://kt.ijs.si/DragiKocev/PhD/resources/doku.php?id=hmc_classification
Expr, Spo, Derisi, Cellcycle (FUN) https://dtai.cs.kuleuven.be/clus/hmcdatasets/
TypeNet https://github.com/iesl/TypeNet
BGC https://www.inf.uni-hamburg.de/en/inst/ab/lt/resources/data/blurb-genre-collection.html
RCV1 (License required) http://www.ai.mit.edu/projects/jmlr/papers/volume5/lewis04a/lyrl2004_rcv1v2_README.htm

5https://pytorch.org/docs/stable/optim.html#torch.optim.lr_scheduler.
ReduceLROnPlateau

6The anonymized code is available at https://anonymous.4open.science/r/
modeling-label-space-interactions-in-multi-label-classification-using-box-embeddings/
README.md
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