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ABSTRACT

Normalizing flow is a class of deep generative models for efficient sampling and
density estimation. In practice, the flow often appears as a chain of invertible neural
network blocks. To facilitate training, past works have regularized flow trajectories
and designed special network architectures. The current paper develops a neural
ODE flow network inspired by the Jordan-Kinderleherer-Otto (JKO) scheme, which
allows an efficient block-wise training procedure: as the JKO scheme unfolds the
dynamic of gradient flow, the proposed model naturally stacks residual network
blocks one-by-one and reduces the memory load as well as the difficulty of training
deep networks. We also develop an adaptive time-reparametrization of the flow
network with a progressive refinement of the trajectory in probability space, which
improves the optimization efficiency and model accuracy in practice. On high-
dimensional generative tasks for tabular data, JKO-iFlow can process larger data
batches and perform competitively as or better than continuous and discrete flow
models, using 10X less number of iterations (e.g., batches) and significantly less
time per iteration.

1 INTRODUCTION

(a) JKO-iFlow (b) Generic Flow

Figure 1: Comparison of JKO-iFlow
(proposed) and other flow models.
The JKO scheme approximates the
transport of a diffusion process and
the ResNet is trained block-wise.

Generative models have been widely studied in statistics and
machine learning to infer data-generating distributions and
sample from the estimated distributions (Ronquist et al., 2012;
Goodfellow et al., 2014; Kingma & Welling, 2014; Johnson
& Zhang, 2019). The normalizing flow has recently been a
very popular generative framework. In short, a flow-based
model learns the data distribution via an invertible mapping
F between data density pX(X), X ∈ Rd and the target stan-
dard multivariate Gaussian density pX(Z), Z ∼ N (0, Id)
(Kobyzev et al., 2020). Benefits of the approach include effi-
cient sampling and explicit likelihood computation. To make
flow models practically useful, past works have made great
efforts to develop flow models that facilitate training (e.g., in
terms of loss objectives and computational techniques) and
induce smooth trajectories (Dinh et al., 2017; Grathwohl et al.,
2019; Onken et al., 2021).

Among flow models, continuous normalizing flow (CNF) trans-
ports the data density to that of the target through continuous
dynamics (e.g, Neural ODE (Chen et al., 2018)). CNF mod-
els have shown promising performance on generative tasks
Kobyzev et al. (2020). However, a known computational chal-
lenge of CNF models is model regularization, primarily due
to the non-uniqueness of the flow transport. To regularize the
flow model and guarantee invertibility, Behrmann et al. (2019) adopted spectral normalization of
block weights that leads to additional computation. Meanwhile, (Liutkus et al., 2019) proposed the
sliced-Wasserstein distance, Finlay et al. (2020); Onken et al. (2021) utilized optimal-transport costs,
and (Xu et al., 2022) proposed Wasserstein-2 regularization. Although regularization is important to
maintain invertibility for general-form flow models and improves performance in practice, merely
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using regularization does not resolve non-uniqueness of the flow and there remains variation in
the trained flow depending on initialization. Besides unresolved challenges in regularization, there
remain several practical difficulties when training such models. In many settings, flows consist of
stacked blocks, each of which can be arbitrarily complex. Training such deep models often places
high demand on computational resources, numerical accuracy, and memory consumption. In addition,
determining the flow depth (e.g., number of blocks) is also unclear.

In this work, we propose JKO-iFlow, a normalizing flow network which unfolds the Wasserstein
gradient flow via a neural ODE invertible network, inspired by the JKO-scheme Jordan et al. (1998).
The JKO scheme, cf. (5), can be viewed as a proximal step to unfold the Wasserstein gradient flow
to minimize the KL divergence (relative entropy) between the current density and the equilibrium.
Each block in the flow model implements one step in the JKO-scheme can be trained given the
previous blocks. As the JKO scheme pushes forwards the density to approximate the solution of
Fokker-Planck equation of a diffusion process with small step-size, the trained flow model induces
a smooth trajectory of density evolution, as shown in Figure 1. The theoretical assumption does
not incur a restriction in practice when training, whereby one can use larger step sizes coupled with
numerical integration techniques. The proposed JKO-iFlow model can be viewed as trained to learn
the unique transport map following the Fokker-Planck equation.

Unlike most CNF models where all the residual blocks are initialized together and trained end-to-end,
the proposed model allows a block-wise training which reduces memory and computational load. We
further introduce time reparametrization with progressive refinement in computing the flow network,
where each block corresponds to a point on the density evolution trajectory in the space of probability
measures. Algorithmically, one can thus determine the number of blocks adaptively and refine the
trajectory determined by existing blocks. Empirically, such procedures yield competitive performance
as other CNF models with significantly less computation.

The JKO Flow approach proposed in this work also suggests a potential constructive approximation
analysis of deep flow model. Method-wise, the proposed model differs from other recent JKO deep
models. We refer to Section 1.1 for more details. In summary, the contribution includes
•We propose a neural ODE model where each residual block computes a JKO step and the training

objective can be computed from integrating the ODE on data samples. The network has general form
and invertibility can be satisfied due to the regularity of the optimal pushforward map that minimizes
the objective in each JKO step.
•We develop an block-wise procedure to train the invertible JKO-iFlow network, which determines

the number of blocks adaptively. We also propose a technique to reparametrize and refine an existing
JKO-iFlow probability trajectory. Doing so removes unnecessary blocks and increases the overall
accuracy.
• Experiment wise, JKO-iFlow greatly reduces memory consumption and the amount of computa-

tion, with competitive/better performance as several existing continuous and discrete flow models.

1.1 RELATED WORKS

For deep generative models, popular approaches include generative adversarial networks (GAN)
(Goodfellow et al., 2014; Gulrajani et al., 2017; Isola et al., 2017) and variational auto-encoder
(VAE)(Kingma & Welling, 2014; 2019). Apart from known training difficulties (e.g., mode collapse
(Salimans et al., 2016) and posterior collapse (Lucas et al., 2019)), these models do not provide
likelihood or inference of data density. The normalizing flow framework (Kobyzev et al., 2020) has
been extensively developed, including continuous flow (Grathwohl et al., 2019), Monge-Ampere flow
(Zhang et al., 2018), discrete flow (Chen et al., 2019), graph flow (Liu et al., 2019), etc. Efforts have
been made to develop novel invertible mapping structures (Dinh et al., 2017; Papamakarios et al.,
2017), regularize the flow trajectories (Finlay et al., 2020; Onken et al., 2021), and extend the use
to non-Euclidean data (Mathieu & Nickel, 2020; Xu et al., 2022). Despite such efforts, the model
and computational challenges of normalizing flow models include regularization and the large model
size when using a large number of residual blocks, which cannot be determined a priori, and the
associated memory and computational load.

In parallel to continuous normalizing flow which are neural ODE models, neural SDE models become
an emerging tool for generative tasks. Diffusion process and Langevin dynamics in deep generative
models have been studied in score-based generative models (Song & Ermon, 2019; Ho et al., 2020;
Block et al., 2020; Song et al., 2021) under a different setting. Specifically, these models estimate the
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score function (i.e., gradient of the log probability density with respect to data) of data distribution via
neural network parametrization, which may encounter challenges in learning and sampling of high
dimensional data and call for special techniques (Song & Ermon, 2019). The recent work of Song et al.
(2021) developed reverse-time SDE sampling for score-based generative models, and adopted the
connection to neural ODE to compute the likelihood; using the same idea of backward SDE, Zhang
& Chen (2021) proposed joint training of forward and backward neural SDEs. Theoretically, latent
diffusion Tzen & Raginsky (2019b;a) was used to analyze neural SDE models. The current work
focuses on neural ODE model where the deterministic vector field f(x, t) is to be learned following
a JKO scheme of the Fokker-Planck equation. Rather than neural SDE, our approach involves no
sampling of SDE trajectories nor learning of the score function. Our obtained residual network is
also invertible, which can not be achieved by the diffusion models above. We experimentally obtain
competitive or improved performance against on simulated and high-dimensional tabular data.

JKO-inspired deep models have been studied in several recent works. (Bunne et al., 2022) reformu-
lated the JKO step for minimizing an energy function over convex functions. JKO scheme has also
been used to discretize Wasserstein gradient flow to learn a deep generative model in (Alvarez-Melis
et al., 2021; Mokrov et al., 2021), which adopted input convex neural networks (ICNN) (Amos et al.,
2017). ICNN as a special type of network architecture may have limited expressiveness (Rout et al.,
2022; Korotin et al., 2021). In addition to using gradient of ICNN, (Fan et al., 2021) proposed to
parametrize the transport in a JKO step by a residual network but identified difficulty in calculating the
push-forward distribution. The approach in (Fan et al., 2021) also relies on a variational formulation
which requires training an additional network similar to the discriminator in GAN using inner-loops.
In contrast, our method trains an invertible neural-ODE flow network which enables the flow from
data density to normal and backward as well as the computation of transported density by integrating
the divergence of the velocity field along ODE solutions. The objective in JKO step to minimize KL
divergence can also be computed directly without any inner-loop training, cf. Section 4.

For the expressiveness of generating deep models, universal approximation properties of deep neural
networks for representing probability distributions have been developed in several works. Lee et al.
(2017) established approximation by composition of Barron functions (Barron, 1993); Bailey &
Telgarsky (2018) developed space-filling approach, which was generalized in Perekrestenko et al.
(2020; 2021); Lu & Lu (2020) constructed a deep ReLU network with guaranteed approximation
under integral probability metrics, using techniques of empirical measures and optimal transport.
These results show that deep neural networks can provably transport one source distribution to a
target one with sufficient model capacity under certain regularity conditions of the pair of densities.
In our proposed flow model, each residual block is trained to approximate the vector field f(x, t) that
induces the Fokker-Planck equation, cf. Section 3.2. Our model potentially leads to a constructive
approximation analysis of neural ODE flow model to generate data density pX .

2 PRELIMINARIES

Normalizing flow. A normalizing flow can be mathematically expressed via a density evolution
equation of ρ(x, t) such that ρ(x, 0) = pX and as t increases ρ(x, t) approaches pZ ∼ N (0, Id)
Tabak & Vanden-Eijnden (2010). Given an initial distribtuion ρ(x, 0), such a flow typically is not
unique. We consider when the flow is induced by an ODE of x(t) in Rd

ẋ(t) = f(x(t), t), (1)
where x(0) ∼ pX . The marginal density of x(t) is denoted as p(x, t), and it evolves according to the
continuity equation (Liouville equation) of (1) written as

∂tp+∇ · (pf) = 0, p(x, 0) = pX(x). (2)

Ornstein–Uhlenbeck (OU) process. Consider a Langevin dynamic denoted by the SDE dXt =
−∇V (Xt)dt+

√
2dWt, where V is the potential of the equilibrium density. We focus on the case of

normal equilibrium, that is, V (x) = |x|2/2 and then pZ ∝ e−V . In this case the process is known as
the (multivariate) OU process. Suppose X0 ∼ pX , and let the density of Xt be ρ(x, t) also denoted
as ρt(·). The Fokker-Planck equation describes the evolution of ρt towards the equilibrium pZ as

∂tρ = ∇ · (ρ∇V +∇ρ), V (x) := |x|2/2, ρ(x, 0) = pX(x). (3)
Under generic conditions, ρt converges to pZ exponentially fast. For Wasserstein-2 distance and the
standard normal pZ , classical argument gives that (take C = 1 in Eqn (6) of Bolley et al. (2012))

W2(ρt, pZ) ≤ e−tW2(ρ0, pZ), t > 0. (4)
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JKO scheme. The seminal work Jordan et al. (1998) established a time discretization scheme of
the solution to (3) by the gradient flow to minimize KL(ρ||pZ) under the Wasserstein-2 metric in
probability space. Denote by P the space of all probability densities on Rd with finite second moment.
The JKO scheme at k-th step with step size h > 0, starting from ρ(0) = ρ0 ∈ P , is written as

ρ(k+1) = argmin
ρ∈P

F [ρ] +
1

2h
W 2

2 (ρ
(k), ρ), F [ρ] := KL(ρ||pZ). (5)

It was proved in Jordan et al. (1998) that as h→ 0, ρ(k) converges to the solution ρ(·, kh) of (3) for
all k, and the convergence ρh(·, t) → ρ(·, t) is strongly in L1(Rd, (0, T )) for finite T , where ρh is
piece-wise constant interpolated on (0, T ) from ρ(k).

3 JKO SCHEME BY NEURAL ODE

Given i.i.d. observed data samples Xi ∈ Rd, i = 1, . . . , N , drawn from some unknown density pX ,
the goal is to train an invertible neural network to transports the density pX to an a priori specified
density pZ in Rd, where each data sample Xi is mapped to a code Zi. A prototypical choice of pZ is
the standard multivariate Gaussian N (0, Id). By a slight abuse of notation, we denote by pX and pZ
both the distributions and the density functions of data X and code Z respectively.

3.1 THE OBJECTIVE OF JKO STEP

We are to specify f(x, t) in the ODE (1), to be parametrized and learned by a neural ODE, such
that the induced density evolution of p(x, t) converges to pZ as t increases. We start by dividing
the time horizon [0, T ] into finite subintervals with step size h, let tk = kh and Ik+1 := [tk, tk+1).
Define pk(x) := p(x, kh), namely the density of x(t) at t = kh. The solution of (1) determined
by the vector-field f(x, t) on t ∈ Ik+1 (assuming the ODE is well-posed (Sideris, 2013)) gives a
one-to-one mapping Tk+1 on Rd, s.t. Tk+1(x(tk)) = x(tk+1) and Tk+1 transports pk into pk+1,
i.e., (Tk)#pk−1 = pk, where we denote by T#p the push-forward of distribution p by T , such that
(T#p)(·) = p(T−1(·)).
Suppose we can find f(·, t) on Ik+1 such that the corresponding Tk+1 solves the JKO scheme
(5), then with small h, pk approximates the solution to the Fokker-Planck equation 3, which then
flows towards pZ . By the Monge formulation of the Wasserstein-2 distance between p and q
as W 2

2 (p, q) = minT :T#p=q Ex∼p∥x − T (x)∥2, solving for the transported density pk by (5) is
equivalent to solving for the transport Tk+1 by

Tk+1 = arg min
T :Rd→Rd

F [T ] +
1

2h
Ex∼pk

∥x− T (x)∥2, F [T ] = KL(T#pk||pZ). (6)

The equivalence between (5) and (6) is proved in Lemma A.1. Furthermore, the following proposition
gives that the value of F [T ] can be computed from f(x, t) on t ∈ Ik+1 only once pk is determined
by f(x, t) for t ≤ tk. The counterpart for convex function based parametrization of Tk was given in
Theorem 1 of (Mokrov et al., 2021), where the computation using the change-of-variable differs as
we adopt an invertible neural ODE approach here. The proof is left to Appendix A.

Proposition 3.1. Given pk, up to a constant c independent from f(x, t) on t ∈ Ik+1,

KL(T#pk||pZ) = Ex(tk)∼pk

Ç
V (x(tk+1))−

∫ tk+1

tk

∇ · f(x(s), s)ds
å

+ c. (7)

By Proposition 3.1, the minimization (6) is equivalent to

min
{f(x,t)}t∈Ik+1

Ex(tk)∼pk

Ç
V (x(tk+1))−

∫ tk+1

tk

∇ · f(x(s), s)ds+ 1

2h
∥x(tk+1)− x(tk)∥2

å
, (8)

where x(tk+1) = x(tk) +
∫ tk+1

tk
f(x(s), s)ds. Taking a neural ODE approach, we parametrize

{f(x, t)}t∈Ik+1
as a residual block with parameter θk+1, and then (8) is reduced to minimizing over

θk+1. This leads to block-wise learning algorithm to be introduced in Section 4.
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3.2 INFINITESIMAL OPTIMAL f(x, t)

In each JKO step of (8), let p = pk denote the current density, q = pZ be the target equilibrium
density. In this subsection, we show that the optimal f in (8) with small h reveals the difference
between score functions between target and current densities. Thus minimizing the objective (8)
searches for a neural network parametrization of the score function ∇ log ρt without denoising score
matching as in diffusion-based models (Ho et al., 2020; Song et al., 2021).

Consider general equilibrium distribution q with a differentiable potential V . To analyze the optimal
pushforward mapping in the small h limit, we shift the time interval [kh, (k + 1)h] to be [0, h] to
simplify notation. Then (8) is reduced to

min
{f(x,t)}t∈[0,h)

Ex(0)∼p

Ç
V (x(h))−

∫ h

0

∇ · f(x(s), s)ds+ 1

2h
∥x(h)− x(0)∥2

å
, (9)

where x(h) = x(0)+
∫ h

0
f(x(s), s)ds. In the limit of h→ 0+, formally, x(h)−x(0) = hf(x(0), 0)+

O(h2), and suppose V of q is C2, V (x(h)) = V (x(0)) + h∇V (x(0)) · f(x(0), 0) + O(h2). For
any differentiable density ρ, the (Stein) score function is defined as sρ = ∇ log ρ, and we have
∇V = −sq . Taking the formal expansion of orders of h, the objective in (9) is written as

Ex∼p

Å
V (x) + h

Å
−sq(x) · f(x, 0)−∇ · f(x, 0) +

1

2
∥f(x, 0)∥2

ã
+O(h2)

ã
. (10)

Note that Ex∼pV (x) is independent of f(x, t), and the O(h) order term in (10) is over f(x, 0) only,
thus the minimization of the leading term is equivalent to

min
f(·)=f(·,0)

Ex∼p

Å
−Tqf +

1

2
∥f∥2
ã
, Tqf := sq · f +∇ · f , (11)

where Tq is known as the Stein operator (Stein, 1972). The Tqf in (11) echoes that the derivative of KL
divergence with respect to transport map gives Stein operator (Liu & Wang, 2016). The Wasserstein-2
regularization gives an L2 regularization in (11). Let L2(p) be the L2 space on (Rd, p(x)dx), and
for vector field v on Rd, v ∈ L2(p) if

∫
|v(x)|2p(x)dx <∞. One can verify that, when both sp and

sq are in L2(p), the minimizer of (11) is

f∗(·, 0) = sq − sp.

This shows that the infinitesimal optimal f(x, t) equals the difference of the score functions of the
equilibrium and the current density.

3.3 INVERTIBILITY OF FLOW MODEL AND EXPRESSIVENESS

At time t the current density of x(t) is ρt, the analysis in Section 3.2 implies that the optimal vector
field f(x, t) has the expression as

f(x, t) = sq − sρt
= −∇V −∇ log ρt. (12)

With this f(x, t), the Liouville equation (2) coincides with the Fokker-Planck equation (3). This
is consistent with that JKO scheme with small h recovers the solution to the Fokker-Planck equa-
tion. Under proper regularity condition of V and the initial density ρ0, the r.h.s. of (12) is also
regular over space and time. This leads to two consequences, in approximation and in learning:
Approximation-wise, the regularity of f(x, t) allows to construct a k-th residual block in the flow
network to approximate {f(x, t)}t∈Ik when there is sufficient model capacity, by classical universal
approximation theory of shallow networks (Barron, 1993; Yarotsky, 2017). The JKO-iFlow model
proposed in this work suggests a constructive proof of the expressiveness of the invertible neural ODE
model to generate any sufficiently regular density pX , which we further discuss in the last section.

For learning, when properly trained with sufficient data, the neural ODE vector field f(x, t; θk) will
learn to approximate (12). This can be viewed as inferring the score function of ρt, and also leads to
invertibilty of the trained flow net in theory: Suppose the trained f(x, t; θk) is close enough to (12), it
will also has bounded Lipschitz constant. Then the residual block is invertible as long as the step size
h is sufficiently small, e.g. less than 1/L where L is the Lipschitz bound of f(x, t; θk). In practice,
we typically use smaller h than needed merely by invertibility (allowed by model budget) so that
the flow network can more closely track the Fokker-Planck equation of the diffusion process. The
invertibility of the proposed model is numerically verified in experiments (see Table 1).
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4 TRAINING OF JKO-IFLOW NET

4.1 BLOCK-WISE TRAINING

Note that the training of (k + 1)-th block in (8) can be conducted once the previous k blocks
are trained. Specifically, with finite training data {Xi = xi(0)}ni=1, the expectation Ex(t)∼pk

in (8) is replaced by the sample average over {xi(kh)}ni=1 which can be computed from the
previous k blocks. Note that for each given x(t) = x(tk), both x(tk+1) and the integral of
∇ · f in (8) can be computed by a numerical neural ODE integrator. Following previous works,
we use the Hutchinson trace estimator (Hutchinson, 1989; Grathwohl et al., 2019) to estimate
the quantity ∇ · f in high dimensions. Applying the numerical integrator in computing (8),
we denote the resulting k-th residual block abstractly as fθk with trainable parameters θk.

Algorithm 1 Block-wise JKO-iFlow training

Require: Time stamps {tk}, training data, termi-
nation criterion Ter and tolerance level ϵ, max-
imal number of blocks Lmax.

1: Initialize k = 1.
2: while Ter(k) > ϵ and k ≤ Lmax do
3: Optimize fθk upon minimizing (8) with

mini-batch sample approximation, given
{fθi}k−1

i=1 . Set k ← k + 1.
4: end while
5: L ← k. Optimize fθL+1

using (8) with h =
∞. {▷ Free block, no W2 regularization.}

This leads to a block-wise training of the normal-
izing flow network, as summarized in Algorithm
1. Regarding input parameters,, we found the
generative performance JKO-iFlow may vary de-
pending on starting choices of tk, but a simple
choice such as tk = k often yields reasonably
good performance. We discuss further the initial
selection of tk in Appendix C.1. Meanwhile,
one can use any suitable termination criterion
Ter(k) in line 2 of Algorithm 1. In our experi-
ments, we monitor the per-dimension W2 loss
W 2

2 (T#pk, pk) as defined in (6), and terminate
training more blocks if the per-dimension loss
is below ϵ. Lastly, the heuristic approach in line
5 of training a “free block” (i.e., block without the W2 loss) is to flow the push-forward density
pL closer to pZ , where the former is obtained through the first L blocks and the latter denotes the
Gaussian density at equilibrium.

Note that Algorithm 1 significantly reduces memory and computational complexity: only one block is
trained when optimizing (8), regardless of flow depth. Therefore, one can use larger data batches and
more refined numerical integrator without memory explosion. In addition, one can train each block
for a fixed number of epochs using either back-propagation or the NeuralODE integrator (Grathwohl
et al., 2019, adjoint method). We found direct back-propagation enables faster training but may also
lead to greater numerical errors and memory consumption. Despite greater inaccuracies, we observed
similar empirical performances across both methods for JKO-iFlow, possibly due to the block-wise
training that accumulates fewer errors than a generic flow model composed of multiple blocks.

4.2 IMPROVED COMPUTATION OF TRAJECTORIES IN PROBABILITY SPACE

We adopt two additional computational techniques to facilitate learning of the trajectories in the
probability space, represented by the sequence of densities pk, k = 1, · · · ,K, associated with the
K residual blocks of the proposed normalizing flow network. The two techniques are illustrated in
Figure 2. Additional details can be found in Appendix B.

• Trajectory reparametrization. We empirically observe fast decay of the movements W 2
2 (T#pk, pk);

in other words, initial blocks transport the densities much further than the later ones. This is especially
unwanted because in order to train the current block, the flow model needs to transport data through
all previous blocks, yet the current block barely contributes to the density transport. Hence, instead
of having tk := kh with fixed increments per block, we reparametrize the values of tk through an
adaptive procedure, which is entirely based on the W2 distance at each block and the averaged W2

distance over all blocks.

• Progressive refinement. To improve the probability trajectory obtained by the trained residual
blocks, we propose a refinement technique that trains additional residual blocks based on time steps
tk obtained after reparametrization. In practice, refinement can be useful when the time increment
tk+1 − tk for certain blocks is too large. In those cases, there may exist numerical inaccuracies as
the loss (8) is computed over a longer time horizon. More precisely, we increase the number of
JKO-steps parametrized by residual blocks, where in practice, we training C additional “intermediate”
blocks for density transport between pk and pk+1 at each k.
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Figure 2: Diagram illustrating trajectory reparametrization and refinement. The top panel shows the
original trajectory under three blocks via Algorithm 1. The bottom panel shows the trajectory under
six blocks after reparametrization and refinement, which renders the W2 movements more even.

5 EXPERIMENT

We first generate based on two-dimensional simulated samples. We then perform unconditional and
conditional generation on high-dimensional real tabular data. We also show JKO-iFlow’s generative
performance on MNIST. Additional details are in Appendix C.

5.1 SETUP

Competing Methods and metrics. We compare JKO-iFlow with five other models, including four
flow-based model and one diffusion model. The first two continuous flow models are FFJORD
(Grathwohl et al., 2019) and OT-Flow (Onken et al., 2021). The next two discrete flow models are
IResNet (Behrmann et al., 2019) and IGNN (Xu et al., 2022), which replaces the expensive spectral
normalization in IResNet with Wasserstein-2 regularization to promote smoothness. The last diffusion
model is the score-based generative modeling based on neural stochastic differential equation (Song
et al., 2021), which we call it ScoreSDE for comparison. We are primarily interested in two types of
criteria. The first is the computational efficiency in terms of the number of iterations (e.g., batches
that the model uses in training) and training time per iteration. Due to the block-wise training scheme,

(a) True data JKO-iFlow
τ : 2.06e-4, MMD[m]: 3.52e-4
τ : 2.96e-4, MMD[c]: 8.87e-4

(b) FFJORD
4.10e-4
8.57e-4

(c) OT-Flow
7.25e-4
1.32e-3

(d) W2 IResNet
3.34e-3
3.39e-3

(e) ScoreSDE
5.16e-4
1.09e-3

(f) Fractal tree (g) Olympic rings (h) Checkerboard

Figure 3: Two-dimensional simulated datasets. The generated samples X̂ by JKO-iFlow in (a) are
closer to the true data X than competitors in (b)-(e). Under the more carefully selected bandwidth
via the sample-median technique, MMD[m] in (20) by JKO-iFlow is also closer to the threshold τ in
(21) than others. (f)-(h) visualizes generation by JKO-iFlow on more examples.

Table 1: Inversion error Ex∼pX
∥T−1

θ (Tθ(x))− x∥2 of JKO-iFlow computed from sample average
on test data, where Tθ denotes the transport mapping over all the blocks of the trained flow network.

POWER GAS MINIBOONE BSD300 Rose Fractal tree Olympic rings Checkerboard
1.48e-5 1.58e-6 1.09e-6 1.53e-5 3.30e-6 3.58e-5 2.24e-6 3.07e-5
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(a) True X|Y JKO-iFlow
τ : 2.78e-3, MMD[m]: 2.29e-2
τ : 3.90e-3, MMD[c]: 3.65e-2

(b) IGNN
2.60e-2
3.11e-2

(c) True X|Y JKO-iFlow
τ : 1.30e-2, MMD[m]: 3.65e-2
τ : 1.69e-2, MMD[c]: 7.50e-2

(d) IGNN
1.09e-1
1.53e-1

Figure 4: Conditional graph node feature generation by JKO-iFlow and iGNN. We visualize the con-
ditionally generated samples upon projecting down to the first two principal components determined
by true X|Y . We visualize generation at two different values of Y .

Table 2: Numerical metrics on high-dimensional real datasets. All competitors are trained after 10
times more iterations (i.e., batches), because their performance under the same number of iterations
is not comparable to JKO-iFlow. Complete results are shown in Table A.1.

Data Set Model # Param Test MMD[m] Test MMD[c]

POWER
d = 6

τ : 1.75e-4 τ : 2.84e-4
JKO-iFlow 76K 8.21e-4 1.26e-3
OT-Flow 76K 5.69e-4 9.62e-4
FFJORD 76K 1.38e-3 1.98e-3
W2 IResNet 304K 2.76e-3 2.72e-3
IResNet 304K 4.50e-3 2.49e-2
ScoreSDE 76K 1.34e-3 6.56e-3

GAS
d = 8

τ : 1.93e-4 τ : 2.83e-4
JKO-iFlow 76K 5.96e-4 1.79e-3
OT-Flow 76K 1.51e-3 3.64e-3
FFJORD 76K 3.62e-3 6.09e-3
W2 IResNet 304K 7.14e-3 1.50e-2
IResNet 304K 3.26e-3 2.72e-2
ScoreSDE 76K 1.31e-3 1.45e-3

Data Set Model # Param Test MMD[m] Test MMD[c]

MINIBOONE
d = 43

τ : 4.59e-4 τ : 6.87e-4
JKO-iFlow 112K 7.97e-4 1.01e-3
OT-Flow 112K 1.23e-3 1.01e-3
FFJORD 112K 5.47e-3 1.04e-3
W2 IResNet 448K 1.27e-2 1.03e-3
IResNet 448K 2.58e-3 1.04e-3
ScoreSDE 112K 4.29e-3 1.03e-3

BSDS300
d = 63

τ : 1.35e-4 τ : 9.63e-5
JKO-iFlow 396K 4.83e-3 3.03e-3
OT-Flow 396K 8.55e-2 8.44e-2
W2 IResNet 990K 5.52e-1 6.88e-1
IResNet 990K 5.42e-1 5.95e-1
ScoreSDE 396K 5.51e-1 6.62e-1

we measure the number of iterations for JKO-iFlow as the sum of iterations over all blocks. Using
this metric allows us to examine performance easily across models, under a fixed-budget framework
in terms of batches available to the model. The second is the maximum mean discrepancy (MMD)
comparison (Gretton et al., 2012; Onken et al., 2021), which is a way of measuring the difference
between two distributions based on samples. Additional details for MMD appear in Appendix C.4.
We also report negative log-likelihood as an additional metric in Table A.1.

Conditional Generation. Due to the increasing need for conditional generation, we also apply
JKO-iFlow for conditional generation: generate samples based on the conditional distribution X|Y .
Most existing conditional generative methods treat Y as an additional input of the generator, leading
to potential training difficulties. Instead, we follow the IGNN approach (Xu et al., 2022), which also
incurs minimal changes to our training. Additional details are in Appendix C.5.

5.2 RESULTS

Two-dimensional toy data. Figures 3a—3d compare JKO-iFlow with the competitors on non-
conditional generation, where the subcaption indicates MMD values (20) under both bandwidths and
the corresponding thresholds τ in (21). We omit showing IResNet with spectral normalization as it
yields similar results as W2 IResNet. The generative quality by JKO-iFlow is the closest to that of
the ground truth, and when the MMD bandwidth is more carefully selected via the sample-median
technique, JKO-iFlow also yields smaller MMD than others. Meanwhile, Figures 3f–3h shows the
satisfactory generative performance by JKO-iFlow on other examples. In Appendix, Figure A.2
compares the performance of JKO-iFlow before and after using the technique described in Section
4.2, where the generative quality by JKO-iFlow improves after several reparametrization moving
iterations, and Figure A.4 shows additional unconditional and conditional generation results.

High-dimensional tabular data. In terms of conditional graph node feature generation, Figure 4
compares JKO-iFlow with IGNN on the solar dataset introduced in iGNN. The results show that
JKO-iFlow yields competitive or clearly better MMD values on the conditional distribution X|Y
with the most or second most observations, respectively. Next, Table 2 assesses the performance of
JKO-iFlow and competitors on four high-dimensional real datasets, where JKO-iFlow still has the
best overall performance. Dataset details are described in Appendix C.3. To ensure a fair comparison,
we keep the number of parameters for continuous flow models and the diffusion model the same and
properly increase model sizes for discrete flow models. FFJORD results on BSDS300 are omitted
due to incomparably longer training time. In terms of results, except on POWER, JKO-iFlow yields
smaller or very similar MMD under both bandwidths than all other methods. Table A.1 in Appendix
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(a) Components of loss (8) over moving iterations.

(b) Results at moving iteration 1.

(c) Results at moving iteration 5.

Figure 5: MINIBOONE, reparametrization moving iterations of JKO-iFlow. We plot different
components of the loss objective (8) over tk. In (a), results at moving iteration 5 are obtained by
using Algorithm 2 (modified for training flow model) 4 times, and the reparametrization gives more
uniform W2 losses after moving iterations. On this example, the generative performance are both
good before and after the moving iterations, cf. plots (b) and (c).

Figure 6: MNIST generation by JKO-iFlow coupled with a pre-trained auto-encoder.

C shows the complete results, including the number of training iterations and test log-likelihood.
Overall, we remark that comparisons using MMD[m] (i.e., MMD with bandwidth selected using the
sample-median technique) best align with visual comparisons in Figure A.1 of Appendix C.6, so that
we suggest MMD[m] as a more reliable metric out of others we used. Furthermore, we illustrate the
reparametrization technique on MINIBOONE in Figure 5, where the benefit appears in yielding a
flow trajectory with more uniform movement under a competitive generative performance.

MNIST. We illustrate the generative quality of JKO-iFlow using an AutoEncoder. Consider a pre-
trained encoder Enc : R784 → Rd and decoder Dec : Rd → R784 such that Dec(Enc(X)) ≈ X for
a flattened image X . We choose d = 16. The encoder (resp. decoder) uses one fully-connected layer
followed by the ReLU (resp. Sigmoid) activation. Then, JKO-iFlow is trained on N encoded images
{Enc(Xi)}Ni=1, and the trained model gives an invertible transport mapping (over all residual blocks)
Tθ : Rd → Rd. The images are generated upon sampling noises Z ∼ N (0, Id) through the backward
flow followed by the decoder, namely Dec(T−1

θ (Z)). The generated images are shown in Figure 6.

6 DISCUSSION

The work can be extended in several directions. The application to larger-scale image dataset
by adopting convolutional layers will further verify the usefulness of the proposed method. The
applications to generative tasks on graph data, by incorporating graph neural network layers in
JKO-iFlow model, are also of interest. This also includes conditional generative tasks, of which
the first results on toy data are shown in this work. For the methodology, the time-continuity over
the parametrization of the residual blocks (as a result of the smoothness of the Fokker-Planck flow)
have not been exploited in this work, which may further improve model capacity as well as learning
efficiency. Theoretically, the model expressiveness of flow model to generate any regular data
distribution can be analyzed based on Section 3.3. To sketch a road-map, a block-wise approximation
guarantee of f(x, t) as in (12) can lead to approximation of the Fokker-Planck flow (3), which pushes
forward the density to be ϵ-close to normality in T = log(1/ϵ) time, cf. (4). Reversing the time of
the ODE then leads to an approximation of the initial density ρ0 = pX by flowing backward in time
from T to zero. Further analysis under technical assumptions is left to future work.
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A PROOFS

A.1 PROOFS IN SECTION

Lemma A.1. Suppose p and q are two densities on Rd in P , the following two problems

min
ρ∈P

Lρ[ρ] = KL(ρ||q) + 1

2h
W 2

2 (p, ρ), (13)

min
T :Rd→Rd

LT [T ] = KL(T#p||q) +
1

2h
Ex∼p∥x− T (x)∥2, (14)

have the same minimum, and

(a) If T ∗ : Rd → Rd is a minimizer of (14), then ρ∗ = (T ∗)#p is a minimizer of (13).

(b) If ρ∗ is a minimizer of (13), then the optimal transport from p to ρ∗ minimizes (14).

Proof of Lemma A.1. Let the minimum of (14) be L∗
T , and that of (13) be L∗

ρ.

Proof of (a): Suppose LT achieves minimum at T ∗, then T ∗ is the optimal transport from p to
ρ∗ = (T ∗)#p because otherwise LT can be further improved. By definition of Lρ, we have
L∗
T = LT [T

∗] = Lρ[ρ
∗] ≥ L∗

ρ. We claim that L∗
T = L∗

ρ. Otherwise, there is another ρ′ such
that Lρ[ρ

′] < L∗
T . Let T ′ be the optimal transport from p to ρ′, and then LT [T

′] = Lρ[ρ
′] < L∗

T ,
contradicting with that L∗

T is the minimum of LT . This also shows that Lρ[ρ
∗] = L∗

T = L∗
ρ, that is,

ρ∗ is a minimizer of Lρ.

Proof of (b): Suppose Lρ achieves minimum at ρ∗. Let T ∗ be the OT from p to ρ∗, then Ex∼p|x−
T ∗(x)|2 = W2(p, ρ

∗)2, and then LT [T
∗] = Lρ[ρ

∗] = L∗
ρ which equals L∗

T as proved in (a). This
shows that T ∗ is a minimizer of LT .

Proof of Proposition 3.1, Given pk being the density of x(t) at t = kh, recall that T is the solution
map from x(t) to x(t+ h). We denote ρt := pk, and ρt+h := T#pk. By definition,

KL(T#pk||pZ) = Ex∼ρt+h
(log ρt+h(x)− log pZ(x)). (15)

Because pZ ∝ e−V , V (x) = |x|2/2, we have log pZ(x) = −V (x) + c1 for some constant c1. Thus

Ex∼ρt+h
log pZ(x) = Ex(t)∼ρt

log pZ(x(t+ h)) = c1 − Ex(t)∼ρt
V (x(t+ h)). (16)

To compute the first term in (15), note that

Ex∼ρt+h
log ρt+h(x) = Ex(t)∼ρt

log ρt+h(x(t+ h)), (17)

and by the expression (called “instantaneous change-of-variable formula” in normalizing flow litera-
ture (Chen et al., 2018), which we derive directly in below)

d

dt
log ρ(x(t), t) = −∇ · f(x(t), t), (18)

we have that for each value of x(t),

log ρt+h(x(t+ h)) = log ρ(x(t+ h), t+ h) = log ρ(x(t), t)−
∫ t+h

t

∇ · f(x(s), s)ds.

Inserting back to (17), we have

Ex∼ρt+h
log ρt+h(x) = Ex(t)∼ρt

log ρt(x(t))− Ex(t)∼ρt

∫ t+h

t

∇ · f(x(s), s)ds).

The first term is determined by ρt = pk, and thus is a constant c2 independent from f(x, t) on
t ∈ [kh, (k + 1)h]. Together with (16), we have shown that

r.h.s. of (15) = c2 − Ex(t)∼ρt

∫ t+h

t

∇ · f(x(s), s)ds)− c1 + Ex(t)∼ρt
V (x(t+ h)),

which proves (7).
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Derivation of (18): by chain rule,

d

dt
log ρ(x(t), t) =

∇ρ(x(t), t) · ẋ(t) + ∂tρ(x(t), t)

ρ(x(t), t)

=
∇ρ · f −∇ · (ρf)

ρ

∣∣∣∣
(x(t),t)

(by (1) and (2))

= −∇ · f(x(t), t).

B TECHNICAL DETAILS OF SECTION 4.2

Although the layer-wise training formulation in Section 4.1 enjoys several aforementioned benefits,
there exists undesirable movement patterns along the trajectory. Empirically, the movement by initial
blocks fθk is much larger than later ones. The blue curve labeled “Phase 1” in Figure A.2a visualizes
one typical pattern of the movement measured by W2 distances.

In fact, this phenomenon is not specific to training flow networks by the JKO scheme. It essentially
arises due to smaller gradient magnitude at later estimates, which gradually approach a local minimum
during optimization. In particular, such irregular movement also appears in gradient descent in vector
space. We thus propose a reparametrize-and-refine technique.

1. Vector-space case

We first motivate our method with optimization in vector space. Suppose our goal is to find a local
minimum x∗ of F (x) for a nonlinear differentiable function F : Rd → R. Starting at x(0), consider
the following sequential optimization problem, where x(t) denotes the estimate at the t-th iteration
and ht is a pre-specified regularization parameter:

x(t+1) = argmin
x

F (x) +
1

2ht
∥x− x(t)∥22. (19)

Using the first order Taylor expansion F (x) ≈ F (x(t)) +∇F (x(t))T (x− x(t)) at x(t), we get

x(t+1) = x(t) − htgt, gt := ∇xF (x(t)).

Define the arc length of iterates St := ∥x(t+1) − x(t)∥2 = ht∥gt∥2, whereby it appears in practice
that the magnitude of St is near zero as x(t) → x∗. This issue is typical as a result of small gradient
as estimates approach the local minimum. We thus propose Algorithm 2 to resolve this uneven arc
length issue, which takes in iterates x(t,old) and step sizes hold

t from the previous trajectory.

We first motivate and explain the reparametrization step in line 3. Mathematically, we want arc
lengths defined using re-optimized values x(t,new) to satisfy Snew

t ≈ S̄. This is equivalent to
requiring hnew

t ∥gnewt ∥2 ≈ S̄, where gnewt := ∇F (xnew
t ). The quantity ∥gnewt ∥2 is unknown before

re-optimization takes place, so that we approximate it using ∥goldt ∥2 = Sold
t /x(t,old). In practice,

using the quantity S̄hold
t /Sold

t alone to update ht can be undesirable, because larger hnew
t tend to

cause non-smooth trajectories and inaccurate final estimates. We thus introduce inertia controlled by
parameter η and upper bound the largest ht by hmax to allow more flexibility.

We now explain the refinement step in line 4. We interpolate C ≥ 0 intermediate points between each
pair of (x(t,new), x(t+1,new)). For instance, if C = 1, we optimize for the “mid-point” x(t+1/2,new)

before reaching x(t+1,new). Using this approach ensures smoother new trajectories {x(t,new)}t≥1

and potentially more accurate final estimate. Figure A.3 illustrates the behavior and our solution on
minimizing the Muller-Brown energy potential in R2.

2. JKO Flownet reparametrization

Although Algorithm 2 is developed for re-parametrizing and refining trajectories in vector space
Rd, it can be directly used to reparametrize h for JKO-iFlow by replacing the arc length St between
consecutive iterates in vector space with the W2 movement in probability space of the residual
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Algorithm 2 Trajectory improvement (vector-space case)

Require: Penalty factors hold
t and iterates x(t,old) for t = 1, . . . , T . Hyper-parameters hmax > 0

and η ∈ (0, 1].
1: Compute Sold

t := ∥x(t+1,old) − x(t,old)∥2 and S̄ :=
∑N

t=1 S
old
t /T .

2: for t = 1, . . . , T ′ do
3: Compute hnew

t := min{hold
t + η(S̄hold

t /Sold
t − hold

t ), hmax}. {▷ Reparametrize}
4: For C ≥ 1, store ĥnew

t := [hnew
t /(C + 1), . . . , hnew

t /(C + 1)] for C + 1 times. {▷ Refine}
5: end for
6: Re-optimize (19) for x(t,new) with {ĥnew

t }∪∞.
7: Repeat all steps above until std({Snewt })/mean({Snewt }) is small enough.

block. More precisely, let L be the total number of trained blocks via Algorithm 1 and denote
hk := tk+1 − tk as the “step-size” for block fθk . Replace the iterates x(t) in vector space with
x(tk), which is the mapping through previous k − 1 blocks. Then, the arc length St becomes the
W2 distance, which can be easily computed using N samples {xi(tk)}Ni=1 along each step of the
trajectory. The refinement step thus becomes training additional residual blocks via optimizing (8).

C EXPERIMENTAL DETAILS

C.1 CHOICE OF tk IN ALGORITHM 1

Recall that to train our JKO-iFlow, one needs as input a sequence of tk, where the k-th JKO block
integrates from tk to tk+1. Although the selection of tk varies by problem, we consider two choices
in our settings.

• Constant increment. Denote hk := tk+1 − tk, We let hk ≡ c1 for a constant c1 > 0. On
many experiments for two-dimensional toy data and high-dimensional data, we use c1 = 1.

• Constant multiplier. Given t0 > 0 and a constant c2, we let tk+1 := c2tk. The rationale is
that from empirical evidence, the W2 movement as in (6) tends to be larger at initial blocks
than at latter blocks, so that moving later blocks more than the initial ones would enable
more uniform movements, thus faciliating the training process. On some experiments for
two-dimensional toy data and high-dimensional data, we let t0 = 0.75 and c2 = 1.2.

We acknowledge that many other choices are possible. We also want to emphasize that due to
the reparametrization and refinement techniques proposed in Section 4.2, the values of tk would
be adaptively updated based on data, where the adaptive values would yield more uniform W2

movements over blocks as we saw in Section 5.

C.2 OTHER SETUP DETAILS

All experiments are conducted using PyTorch (Paszke et al., 2019) and PyTorch Geometric (Fey &
Lenssen, 2019) . Regarding network architecture

• For simulated 2D data, high-dimensional real data, and MNIST using pre-trained autoen-
coder: each residual block uses fully-connected layers of the form d → H → H → d,
where d (resp. H) is the feature (resp. hidden nodes’) dimension. The hidden dimension
vary by example, in the range of 128∼512.

• For conditional graph node feature generation: each residual block uses one Chebnet input
layer of order 3 followed by two fully-connected layers. The hidden dimension H = 64 in
all hidden layers.

The activation function is chosen as Tanh or Softplus with β = 20. In addition, we use Rugge-Kutta
4 (Lawrence, 1986) to numerically estimate the integrals in the continuous flow model. The Adam
optimizer is used with constant learning rate of 1e− 3 throughout training. Regarding batch sizes,
we use 1000 samples for simulated two-dimensional data and 50% of the training samples for the
solar graph data. The batch size selections for high-dimensional real data are described in Table A.1.
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C.3 DATASET

For two-dimensional simulated examples, we generate fresh random draws of 10000 training samples
at each training epoch. The four high-dimensional real datasets (POWER, GAS, HEP- MASS,
MINIBOONE) come from the University of California Irvine (UCI) machine learning data repository.
These datasets are commonly used to compare flow models (Grathwohl et al., 2019; Finlay et al.,
2020; Onken et al., 2021). The solar dataset as used in iGNN (Xu et al., 2022) is retrieved from the
National Solar Radiation Database (NSRDB).

C.4 MMD METRICS

Besides visual comparison, the maximum mean discrepancy (MMD) (Gretton et al., 2012; Onken
et al., 2021) provides a quantitative way to evaluate the performance of generative models. Given
samples X := {xi}Ni=1 and Y := {yj}Mj=1 and a kernel function k(x, y), we compute

MMD(X,Y ) :=
1

N2

N∑
i=1

N∑
j=1

k(xi, xj) +
1

M2

M∑
i=1

M∑
j=1

k(yi, yj)−
2

NM

N∑
i=1

M∑
j=1

k(xi, yj). (20)

For our purpose, we use the Gaussian kernel k(x, y) := exp
(
−∥x− y∥2/h

)
with bandwidth h. We

select the bandwidth both as a constant value hc = 2 and via the “sample-median technique” (Gretton
et al., 2012) hm := 2median({∥xi − xj∥2}i,j), where xi are test samples. We use the same set of
200 test samples to compute hm in each experiment. We thus denote MMD[c] (resp. MMD[m]) as
evaluating (20) using the Gaussian kernel with constant (resp. median) bandwidth, where X (resp.
Y ) denotes true (resp. generated) test sample. Note that a low MMD value indicates two samples X
and Y are likely drawn from the same distribution (Gretton et al., 2012). In this setting, MMD is an
impartial evaluation metric as it is not used to train JKO-iFlow or any competing methods.

We can also determine the statistical significance of a MMD value. First, compute the threshold

τ := Q1−α({MMD(X[Ib1],X[Ib2]}Bb=1), (21)
where Q1−α denotes the upper 1− α quantile of a set of scalars and Ibj ⊂ {1, . . . , N} denotes the
j-th index set at the b-th bootstrapping without replacement. Then, under the null hypothesis that
X and Y are drawn from the same distribution, this hypothesis is rejected if MMD exceeds the
threshold τ . The Type-I error is controlled at level α. Thus, if the MMD values by two models both
exceed τ , we prefer the model with the smaller MMD. If both values are under τ , then they generate
equally well. In our experiments, we use B = 1000 bootstraps, each of which has 50% re-sampled
test samples.

C.5 CONDITIONAL GENERATION

We follow the conditional generation scheme as proposed in iGNN (Xu et al., 2022). More precisely,
when the response variable Y is a categorical variable taking value in K classes, iGNN designs the
target distribution as a Gaussian mixture model. Thus, instead of flowing from data density pX to noise
density pZ , iGNN flows from the conditional data density pX|Y to pH|Y , where H|Y ∼ H(µY , σ

2I).
One can then minimize the negative log-likelihood − log pX|Y using logpH|Y and the change-of-
variable formula.

To use JKO-iFlow for conditional generation in this setting, we thus only need to modify the objective
(8). Instead of using VZ based on Z ∼ N(0, Id), we would using VH|Y based on the Gaussian
mixture H|Y ∼ H(µY , σ

2I).

C.6 ADDITIONAL RESULTS

We present complete results in addition to those in Section 5. In particular,

• Table A.1 contains the complete numerical results of JKO-iFlow against competitors on high-
dimensional real datasets. For ScoreSDE, we use the implementation in (Huang et al., 2021),
which computes the evidence lower bound (ELBO) for the data log-likelihood as reported in
the last column. In addition, Table A.2 contains MMD and negative log-likelihood results
for OT-Flow and FFJORD as taken from the original papers.
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Table A.1: Numerical metrics on high-dimensional real datasets, in addition to those Table 2.
Comparing to flow-based models, JKO-iFlow takes much less iterations to reach a small enough
MMD value. Although ScoreSDE is the fastest, its performance, even under 100 times more iteration
than JKO-iFlow, is still worse in terms of MMD[m] on all except GAS. We advocate the comparison
using MMD[m] because the results align with visual comparisons in Figure A.1.

Data Set Model # Param Training Testing

Time (h) # Iter Time/Iter (s) Batch size MMD[m] MMD[c] Neg Loglik

POWER
d = 6

τ : 1.75e-4 τ : 2.84e-4
JKO-iFlow 76K 0.12 0.76K 0.57 10000 8.21e-4 1.26e-3 0.58
OT-Flow 76K 1.21 7.58K 0.57 10000 5.69e-4 9.62e-4 0.30
FFJORD 76K 3.40 7.58K 1.61 10000 1.38e-3 1.98e-3 0.60
W2 IResNet 304K 0.49 7.58K 0.23 10000 2.76e-3 2.72e-3 0.36
IResNet 304K 0.76 7.58K 0.36 10000 4.50e-3 2.49e-2 3.37
ScoreSDE 76K 0.08 7.58K 0.04 10000 1.34e-3 6.56e-3 3.41
ScoreSDE 76K 0.84 75.85K 0.04 10000 1.30e-3 5.66e-3 3.33

GAS
d = 8

τ : 1.93e-4 τ : 2.83e-4
JKO-iFlow 76K 0.08 0.76K 0.38 5000 5.96e-4 1.79e-3 -4.61
OT-Flow 76K 0.72 7.60K 0.34 5000 1.51e-3 3.64e-3 -4.29
FFJORD 76K 3.49 7.60K 1.65 5000 3.62e-3 6.09e-3 -2.07
W2 IResNet 304K 0.57 7.60K 0.27 5000 7.14e-3 1.50e-2 -4.45
IResNet 304K 0.86 7.60K 0.41 5000 3.26e-3 2.72e-2 -1.17
ScoreSDE 76K 0.04 7.60K 0.02 5000 1.31e-3 1.45e-3 -3.69
ScoreSDE 76K 0.42 76.00K 0.02 5000 4.27e-4 8.56e-4 -5.58

MINIBOONE
d = 43

τ : 4.59e-4 τ : 6.87e-4
JKO-iFlow 112K 0.03 0.32K 0.33 2000 7.97e-4 1.01e-3 13.63
OT-Flow 112K 0.75 3.39K 0.80 2000 1.23e-3 1.01e-3 11.93
FFJORD 112K 1.74 3.39K 1.85 2000 5.47e-3 1.04e-3 23.45
W2 IResNet 448K 0.80 3.25K 0.89 2000 1.27e-2 1.03e-3 16.34
IResNet 448K 1.32 3.25K 1.46 2000 2.58e-3 1.04e-3 22.36
ScoreSDE 112K 0.01 3.25K 0.01 2000 4.29e-3 1.03e-3 27.38
ScoreSDE 112K 0.09 32.48K 0.01 2000 4.68e-3 1.10e-3 20.70

BSDS300
d = 63

τ : 1.35e-4 τ : 9.63e-5
JKO-iFlow 396K 0.16 1.03K 0.56 5000 4.83e-3 3.03e-3 -156.67
OT-Flow 396K 3.50 10.29K 1.22 1000 8.55e-2 8.44e-2 -142.45
W2 IResNet 990K 2.01 10.29K 0.70 1000 5.52e-1 6.88e-1 -107.39
IResNet 990K 3.47 10.29K 1.21 1000 5.42e-1 5.95e-1 -33.11
ScoreSDE 396K 0.01 10.29K 0.005 1000 5.51e-1 6.62e-1 -7.55
ScoreSDE 396K 0.14 102.90K 0.005 1000 5.51e-1 6.65e-1 -7.31

Table A.2: MMD[c] and negative loglikelihood results of OT-Flow and FFJORD, as taken from
(Onken et al., 2021). We include them to compare against ours in Table A.1. The models in previous
studies use comparable model size (especially for OT-Flow), where the numerical results in some
cases are much smaller than ours due to significantly longer training time.

Data Set Model # Param
Training Testing

Time (h) # Iter MMD[c] Neg Loglik
POWER
d = 6

OT-Flow 18K 3.1 22K 4.68e-5 -0.30
FFJORD 43K 68.9 29K 4.34e-5 -0.37

GAS
d = 8

OT-Flow 127K 6.1 52K 2.47e-4 -9.20
FFJORD 279K 75.4 49K 1.02e-4 -10.69

MINIBOONE
d = 43

OT-Flow 78K 0.8 7K 2.84e-4 10.55
FFJORD 821K 9.0 16K 2.84e-4 10.57

BSDS300
d = 63

OT-Flow 297K 7.1 37K 4.24e-4 -154.20
FFJORD 6.7M 166.1 18K 6.52e-3 -133.96

• Figure A.1 visualizes the principal component projections of the generated samples by
JKO-iFlow and competitors of the high-dimensional real datasets.

• Figure A.2 visualizes components of loss 8 and the resulting generated images.
• Figure A.3 visualizes the trajectory of estimates in R2 of minimizing the Muller-Brown

energy potential.
• Figure A.4 shows additional unconditional and conditional generated samples by JKO-iFlow

on toy data.
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(a) Power: JKO-iFlow (b) OT-Flow (c) FFJORD (d) W2 IResNet (e) ScoreSDE

(f) Gas: JKO-iFlow (g) OT-Flow (h) FFJORD (i) W2 IResNet (j) ScoreSDE

(k) MINIBOONE: JKO-iFlow (l) OT-Flow (m) FFJORD (n) IResNet (o) ScoreSDE

(p) BSDS300: JKO-iFlow (q) OT-Flow (r) W2 IResNet (s) IResNet (t) ScoreSDE

Figure A.1: Generative quality on high-dimensional datasets via PCA projection of generated samples.
The generative quality in general aligns with the MMD[m] values shown in Table 2 and A.1.

(a) Losses in moving iterations.

(b) Results at moving iteration 1.

(c) Results at moving iteration 4.

Figure A.2: Rose, reparametrization moving iterations of JKO-iFlow. The plots and setup are
identical to Figure 5. We observe improved generative quality after the moving iterations.
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Figure A.3: Reparametrization and refinement moving iterations in vector space based on Algorithm
2. The task is to estimate a local minimizer of the Muller-Brown energy potential. We see that arc
lengths between consecutive iterates become more even in magnitude over more reparametrization
and refinement moving iterations.

(a) Two-circles (b) Conditional generation illustration.

Figure A.4: Additional unconditional and conditional generation on simulated toy datasets by
JKO-iFlow.

19


