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Abstract

We consider the algorithmic shortlist problem of how to rank a list of choices for a
decision. As the choices on a ballot are as important as the votes themselves, the
decisions of who to hire, who to insure, or who to admit, are directly dependent to
who is considered, who is categorized, or who meets the threshold for admittance.
We frame this problem as one requiring additional non-epistemic context that we
use to normalize expected values, and propose a computational model for this
context based on a social-psychological model of affect in social interactions.

1 Introduction

Definitions of algorithmic fairness include a subset that consider information beyond that included
in a dataset. We propose here that such “additional context” can be found in human non-epistemic
values, thought to be necessary for decision making [Mitchell et al., 2021} [Friedler et al., 2019,
Dotan, |2021]]. An epistemic value is “...one we have reason to believe will, if pursued, help toward
the attainment of [such] knowledge”, where “[such]” knowledge is the “most secure knowledge
available to us of the world we seek to understand” [McMullin, [1982] p.18]. A non-epistemic value
is everything but epistemic values. My neighbour, Chad, returns my garbage cans from the curb
if I am absent. This is epistemic knowledge. The non-epistemic value associated with this is a
societal expectation that neighbours in general are people who do helpful things. If measured, these
non-epistemic values could potentially be removed from expected decisions, resolving bias.

There are three main problems in decision making: agenda setting (what options to consider), framing
(how to understand the options), and priming (how to rank the options) [Scheufele and Tewksbury,
2007|]. We consider the agenda setting problem, which is analogical to the decision of what to put on
the menu in a restaurant. This problem is critical in many domains, such as democratic processes
(who is on the ballot), hiring (who to interview), and marketing (what new populations to explore).
In all these cases, what is on the "menu" has a significant impact on final decisions [Mercier, [2020,
Chap. 9]. Further, shortlists are often made quickly and without rigorous justification, and so foster
the manifestation of biases [Drage and Mackereth, [2022].

Consider the following example. A shortlist for a hiring decision is made using a mapping that ranks
individuals with some irrelevant property p (call this set A) higher than individuals without property
p (set B), but otherwise both A and B are expected to yield the same outcome, if hired. The bias
about p leads to shortlist decisions that are Lipschitz unfair [Dwork et al.,2011]], in that distributions
over outcomes are larger for some group than would be expected. The degree of unfairness, however,
could be estimated by asking a group of relevant people how they feel about each choice, assuming
this question can be asked anonymously and the responses are honest. Suppose they feel comfortable
with A being hired, but find that hiring B makes them uncomfortable, independently of the outcome
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(what job is being hired for). If the shortlist mapping functions are similarly biased, those with
characteristic p should have ranking scores increased to offset the bias.

Beyond exposing this novel view of fairness, we also investigate the use of Affect Control Theory
(ACT), a sociological model that estimates affective coherence based in language describing social
events [Heise} 2007,/2010], as the non-epistemic values. ACT is a computational model that has been
used to predict classes of human behaviour in a variety of settings [MacKinnon and Heise, [2010]],
including in moral decision making [MacKinnonl 2022].

2 Decision Problem

Decisions in which a person is evaluated are often framed as IE(Q(d|v)), where v are attributes of the
person being evaluated, () is the value of taking decision d when the person has attributes v, and d is
the (typically binary) decision [Mitchell et al.l 2021]]. A sum over outcomes, o gives:

Q(d|v)) Z P(old,v)U(d, o), (1)

where U (d, 0) is the utility of taklng decision d and getting outcome o. In the terminology of [Mitchell
et al.| [2021], person ¢ has attributes v;, and the decision about a target variable Y is made by
estimating the conditional probability P(Y = 1|V = v;). The outcome for person i is y;, which is
the same as o in Equation[I] The treatment in Mitchell et al.| [2021]] considers the utility function
as simply an indicator of o, U(d, 0) = I(Y = 1) where I is the indicator function (so it essentially
ignores U). Therefore, estimating P (o|d, v) is all that is needed, using a scoring function ¥ (v;).

Typical approaches then place emphasis on the features by splitting v in two parts, where x are
unprotected features and a are protected features, and proceed by using P(o|d,x) in place of

P(o|d,v){| However, many correlational "back-door" effects of a on o through the intermediary of
make this “unawareness” (of a) approach less than ideal in many cases. Instead, consider computing
the expected value of even considering this person, which then involves a sum over decisions

v)=>_, Pldo)U(d o). )

A shortlist is constructed by ranking individuals using Equation [2] and then applying a cut-off which
is dependent of external factors such as how much time the committee has available. Suppose this
filtering step aims to reject 90% of the individuals (high sensitivity at the cost of low specificity). The
problem of selecting who to hire based on the shortlist is then relegated to a downstream process, one
that involves justifiable rejection by humans of, say, 70% of the candidates interviewed (7% of the
applicants), in order to hire 3% of the applicants. What is important here is that P(d, o|v) # P(o|d, v).
Since P(d, o|v) = P(o|d,v)P(d|v), the usual method simply assumes that all decisions are equally
likely when the outcomes are not considered, that is P(d|v) = ¢ with ¢ constant. In fact, P(d|v) is
exactly where the bias lies.

In the following, suppose we can measure P(d|v) using some population sampling tool (e.g. a survey
or scrape of the web). For example, people could be asked if they would hire individual v without
knowing what was being hired for. What this implies is a negative definition - we will define what
is not the case. Fairness, when viewed as a lack of unfairness, is made up of differences between
whatever you can measure that estimates P(d|v). If decisions are different between v; and vo without
considering outcomes, then this must be because of a bias about v; and v». This definition of fairness
requires any differences in fair decisions between v; and v to be based on attributes that are based
solely on the problem being solved, e.g. the job being hired for. Any other features are relegated to
P(d|v), which we have assumed we can measure. Thus, knowing the history of individuals, decisions
and outcomes (v, d, o, respectively), the inductively learned model of P(o|d, v), call it ¢(o, d,v), is
assumed to contain two terms ¢(o, d,v) = P (o|d,v)P(d|v), where P! is the expectation based on
only epistemic factors. We can then use an estimate of P(d|v), call it ¢)(d, v), to normalize E(Q(v)):

E(Q(v)) % Euor(QW) =Y, ‘MO'” § 9(d,0lv)Ud, o) 3)

Since we have defined unfairness to be exactly what can be measured with v (d|v), the resulting
ranking of individuals is generated only from P (o|d, v):

Erorm(Q(v)) = Erarr(Qv)) = Zdﬁ P (old,v)U(d,0), )

2Protected features are ones on which a decision should not be based, such as race or gender.



Therefore, the type of bias measured by v is removed, such that a decision that neglects outcomes is
independent of v. If all bias is centred around some particular variables, a, then they will be removed
from PT(o|d,v) through the normalization.

Therefore, our estimate of fairness requires an estimate of P(d|v): decisions made by the population
of decision makers about individual v, without considering outcomes. What we propose is a measure
of how individuals feel about certain decisions regarding other individuals. For example, we can
measure how hiring committees feel about hiring or not hiring person v without considering what
the job is, or the fit of v. We have uncovered a bias if some type of person is not represented in the
shortlist, and this would happen independently of the job due to historical experience or “back-door”
effects. If we define bias precisely as decision differences when the outcomes are ignored, then all
such bias is removed in ¢ (d, v), and we call the resulting decision ¥)-fair (complement of )-bias).
We consider an affective basis for ¢/ in the next section, although other interpretations are possible.

3 Affect Control Theory (ACT)

ACT is a social-psychological model of human social interactions based in sentiments about objects
and events [Heisel 2007]. ACT maintains a static denotative model as an actor-behaviour-object state
(e.g. manager hires student), and an associated connotative model: a dynamical system in Osgood’s
three-dimensional “EPA” space of affective meaning: evaluation (good vs. bad), potency (strong vs.
weak) and activity (fast vs. slow). This dynamical system represents evaluative knowledge, whereas
declarative and procedural knowledge are represented in the denotative model. The two models
(denotative and connotative) are linked with a dictionary that maps from labels (e.g. manager) to EPA
space. These sentiments are elicited using semantic differentials, in which individuals rate a word,
say manager, on scales such as for evaluation with good at one end and bad at the other. Ratings
are typically averages over about 1000 participants. The result for manager from the Indiana 2003
survey [Francis and Heisel 2006]] is EPA:1.0,1.6,1.3.

Affective coherence in ACT is the difference between the sentiments elicited out of context, and
the same sentiments elicited in a context given by an actor-behaviour-object triple representing a
situation. This difference (squared) is called deflection, and measures how unlikely a given event is to
occur. Thus, while mother hugs child is a low deflection (highly probable) event, mother strikes child
is much higher in deflection (less likely). A key insight in this paper is that these deflections can be
used as an independent measure of non-epistemic bias in decision makingE]

We can construct a set of actor-behaviour-object events for a hiring decision with the deflections shown
in Figure[I{b). Also shown are the deflections for the behaviour fire-from-a-job (EPA:-1.1,1.5,0.4).
Thus, someone labelled manager would be more likely to hire (EPA:1.7,1.9,1.1) a saleslady
(EPA:0.6,-0.2,0.6) or a student (EPA:1.5,0.3, 0.8) than a criminal (EPA:-2.4,-0.8,0.8) or a delin-
quent (EPA: -1.8,-0.8,0.4), indicating a bias in the population against criminals and delinquents.
This bias will also be part of estimates, by the same population, of how successful each of these hires
is. That is, the same population will rate delinquents as having a lower chance of success. More subtle
differences, such as across gender, will yield smaller deflection differences. For example, the event
woman hire saleslady has a deflection of 2.1, compared to 1.1 for man hire saleslady. By reversing
the genders, we have uncovered a bias in the Indiana 2003 dataset [Francis and Heisel, [2006].

To define P(d|v), we use D for the deflection of a decision d. In this context, the actor is the
decision-making body or committee, ¢, the behaviour is the decision, d (e.g. to hire or not hire),
and the object is v, so the deflection is written D(c, d, v). With & as an arbitrary scale factor, this is
converted to a probability distribution (the v-fair ranking) following |Hoey et al.|[2021]] as

P(dv) = (d,v) o e~ d*Pledv) 5)

The assignment of labels to individuals and behaviours is a key component of this analysis. For
example, the assignment of the label manager to someone may have to do with protected attributes.
An applicant with some attribute facing a hiring committee biased against that attribute may be
labelled as a delinquent while an applicant without that characteristic may be labelled as a saleslady.
It is exactly this bias that we aim to remove by computing deflections. The assignment of labels to
groups, however, is information which needs to be carefully elicited, see Hoey and Chan|[2022].

3The numerical scores range between -4.3 and 4.3 for historical reasons. A deflection close to 1.0 is
considered low, a probable event.



4 Exploratory Example - Hiring

Suppose we have two attributes: r € {w, d}, which is protected, and e € {m, b}, which we believe
the decision making process should depend on (say this is a graduate or undergraduate degree).
The population under study then have some (perhaps biased) ¢(d, o, e, ) which they use to rank
applicants for any setting of the two variables e, . For each such setting, we can also construct
an equivalent ACT event in actor-behaviour-object space as “manager/self hires person of with
attributes r, e.” Suppose that in some society, a bias against r = d exists. Then simultaneously, one
would expect that ¢ as measured in a population would decrease for r = d, while the deflection of
the equivalent ACT event would increase. If the deflection for the event was still low, although ¢
was also low, then the normalized PT(o|d, v) would stay the same: there is no bias against hiring this
person, so the low ¢ estimate must be “real” and this person’s ranking should remain low. The result
is a 1)-fair decision-making algorithm in the sense defined in Section 3]

To quantify these notions, imagine that a measure of success, ¢, given that a person is hired, is
¢(o,d = hire, e, r) as shown in Figure c), indicating a bias favouring people with » = w. Now
consider deflection, and that the deflections are biased against persons with = d as follows. First,
we have to assign identities to the different actors involved. Suppose we estimate that someone with
e = m,r = w will be labelled as a saleslady and someone with e = b, r = w a student. However,
due to a negative stereotype, persons with e = m,r = d are labelled as criminals and those with
e=b,r=das delinquentsE] The deflections are those in Figure b), and taking the exponent of
the negative of this gives something proportional to the probability of success. The probabilities of
not hiring also must be estimated using the event manager fire [ applicant]E] This event, also shown
in Figure[I[a), when normalized, gives us the final outcome probability. Repeating the process for
arange of & gives a set of unbiased probability matrices that we can compare to the original ¢. To
make the comparison, we look at (1) how inequitable it is across the protected attribute, shown as the
KL-divergence of the distribution across the protected attribute, averaged over the unprotected one,
shown in blue in Figure[I|(a), and (2) how different it is from the original, shown as KL-divergences
between the normalized and original distributions, averaged across all four conditions, shown in
red in Figure a). If we simply sum theseE] we get a maximum at & = 0.35 (determined visually),
which corresponds to the less biased probability matrix in Figure[I{d). So we can see the method is
favouring equitable distributions, in particular over the e = b class. Another way to interpret the blue
curve in Figure[T]is as a measure of how far the distribution is from satisfying the Lipschitz condition
above. After the inflexion point at & = 0.35 in Figure|l] the closest is achieved, and this is close to
zero, after which the originally disfavoured group starts to gain disproportional advantage.

5 Limitations and Conclusion

We have described a method for normalizing automated decision making using non-epistemic values,
and explored the use of this technique in a simple hiring scenario. This paper is largely conceptual,
and has practical limitations which need more research. Key limitations are the external validity of
the ACT surveys, multi-modal value distributions in affective space for polarizing identities, and the
requirement to match the survey population with the decision making one. Further, the associations
between applicants and identities in ACT was done manually in the context of the exploratory
hiring example above. We show how these labels could be extracted from existing text corpora,
present another example, consider the intersectionality problem [Kong, [2021]], and discuss further
limitations in [Hoey and Chan, [2022]. We stress the obvious importance of being careful with social
engineering. We emphasize that our objective is for the algorithms proposed herein to be used strictly
as informational devices for decision makers. A hiring decision could have an informed, unbiased
reference point on which to base part of its decision, for example. A better understanding of bias in
decision making can help in making automated decision making tools more easily explainable.

“Ideally, feelings about individual candidates would be measured directly, e.g. by averaging sentiments
automatically measured in communications such as email and social media [Hoey and Chan, [2022].

SWe use fire because not hire was not in the ACT survey used.

SHow to balance these two is an empirical question based on the domain. Other notions of fairness beyond
statistical parity, such as differential [Foulds et al.,|2018]] can also be used as measures of equity.
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Figure 1: (a) Discrimination (blue) and model divergences (red) combine linearly to give (black) an
best estimate of where both divergence and discrimination are minimized. The model predictions
trade off equity (Lipschitz) with accuracy (how well they optimize the employer’s loss function),
but other weightings may also be possible. (b) The deflections for the event manager [behaviour]
applicant using Indiana 2003 dataset [Francis and Heise, [2006]. The original (biased) estimate of ¢
is shown in (c), and final probability matrix shown in (d) for the maximum from (a) of & = 0.35.
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