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ABSTRACT

Learning with noisy labels is a practically challenging problem in robust deep
learning. Recent efforts to improve the robustness are made by meta-learning the
sample weights or transition matrix from a prior unbiased set. Thus, previous
meta-learning based approaches generally assume the existence of such prior
unbiased set. Unfortunately, this assumption unrealistically simplifies the task of
learning noisy labels in real-world scenarios; even worse the updating iterations
in previous meta-learning algorithms typically demand prohibitive computational
cost. This paper proposes an efficient meta-learning approach for robust deep
learning to address these challenges. Specifically, without relying on prior unbiased
validation set, our method dynamically estimates unbiased samples in training
data and leverages meta-learning to refine the deep networks. Furthermore, to
significantly reduce the updating iterations in optimization cost, we elaborately
design the inner loop adaption and outer loop optimization of the meta-learning
paradigm, respectively. Experimental results demonstrate that our approach is
able to save about 6 times training time while achieving comparable or even
better generalization performance. In particular, we improve accuracy on the
CIFAR100 benchmark at 40% instance-dependent noise by more than 13% in
absolute accuracy.

1 INTRODUCTION

Training set biases are inevitable in real-world scenarios, and in particular, noisy labels can negatively
influence the model performance. Critically, recent studies (Zhang et al., 2017; Arpit et al., 2017;
Toneva et al., 2019) have shown that deep neural networks (DNNs) can overfit to label noise and
eventually lead to the poor generalization performance. Thus, as an effective learning paradigm, meta-
learning (Finn et al., 2017; Nichol et al., 2018) has been widely studied for noisy label learning (Ren
et al., 2018). The underlying concept of ‘learning to learn’ is to train the model at the meta-level
beyond to achieve the data-agnostic and noise-type-agnostic meta-models. This facilitates the model
adapting to the specific tasks.

Recently, there is a growing interest in meta-learning-based methods to optimize sample weights (Ren
et al., 2018), model parameters (Li et al., 2019), or noise transition matrix Q (Wang et al., 2020),
and corrected labels (Zheng et al., 2021). However, the applicability of these meta-learning-based
methods in real-world scenarios is hindered by two limitations. First, as shown in Figure 1(left), the
vanilla meta-learned robust model demands a prior unbiased subset to find the optimal sample-weight
or heuristically approximates Q. Unfortunately, the assumption of an additional unbiased subset
available is pretty strong in practice, thus limiting the general applicability and deployment of meta-
learned models. Therefore, it is essential in this paper to study how to directly estimate unbiased data
from the biased training data. Second, existing meta-learning methods (Ren et al., 2018; Shu et al.,
2019; Zhang et al., 2020; Zheng et al., 2021) require the nested optimization of models and other
parameters, which takes the expensive second-order computation (Finn et al., 2017). In particular,
we highlight two computational bottlenecks: (1) dot product between training and validation inputs,
and (2) dot product between training and validation gradient directions. This computational burdens
prevent these methods from using large-scale DNNs. We thus emphasize on further improving the
efficiency of the model optimization.
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Figure 1: Overview of our proposed method compared
with the vanilla meta-learning methods.

To this end, we propose an efficiently meta-
learning approach for robust deep networks that
does not only rely on prior unbiased subset, but
also significantly reduce the optimization cost
as well. Particularly, as shown in Figure 1(right),
the key idea is to leverage meta-feedback mech-
anism to correct the sample bias by observing
how its inaccurate-labels would affect the stu-
dent. We propose meta-learning to dynamically
distill unbiased knowledge based on the learning
state of the model in a teacher-student manner.

This is motivated by the recent success – DINO (Caron et al., 2021) of knowledge distillation with no
labels. Specifically, we introduce a novel meta-feedback mechanism which adjusts the distillation
criterion of biased samples by minimizing the loss of the student network on distilled samples. The
proposed mechanism consists of two nested stages, where the inner stage, i.e., the student network,
consists of one-step gradient descent for knowledge distillation, and the outer stage updates teacher
parameters based on student feedback.

Our approach naturally fits robust deep learning and can handle the aforementioned two challenges.
For the first challenge, our method can dynamically distill unbiased samples in training data and does
not rely on a prior unbiased set, making the new method more practical. We show that using the
unbiased samples which are dynamically selected based on the learning state of the student will result
in better performance than using a prior unbiased set. For the second challenge, the huge optimization
cost of second-order meta gradient (Nichol et al., 2018), we introduce a distillation objective in the
inner loop adaption to approximate multi-step adaptation and propose an approximate solution to the
second-order gradient in the outer loop optimization. Section 5.2 indicates that our proposed method
can save about 6 times of training time. Meanwhile, Section 5.1 shows that the proposed method is
able to outperform or achieve highly competitive performance compared with other gradient-based
methods with noisy labels, especially on the CIFAR100 benchmark of 40% instance-dependent noise
with more than 13% absolute accuracy. Additionally, we further extend and verify the effectiveness
of our proposed method in the setting of class imbalance. Surprisingly, our new method can also
achieve very competitive results compared with other gradient-based methods.

In summary, the contribution of this paper is three-fold:

1) We present an efficiently meta-learning approach, which eliminates the dependence on additional
unbiased data and reduces the optimization complexity of recent meta-learning based method.

2) A novel meta-feedback mechanism is presented, which can dynamically update the teacher
network and refine estimators based on the learning state of the student network. In order to
reduce the computational complexity, we refine the inner loop adaption and outer loop optimization
of the meta-learning paradigm respectively.

3) Experimental results demonstrate that our approach is able to save about 6 times the training
time while still achieving a comparable or even better generalization performance in both label
noise and long-tail settings. Furthermore, we analyze the insights of our approach in the risk of
distillation object and theoretical guarantees for the convergence of the proposed approach.

2 RELATED WORK

Learning with noisy labels has observed exponentially growing interests. These methods address
this problem from a variety of perspectives. For example, several works focus on estimating the
noise transition matrix Q to correct the predictions (Menon et al., 2015; Goldberger & Ben-Reuven,
2017; Patrini et al., 2017; Hendrycks et al., 2018; Xia et al., 2019). Since the CrossEntropy loss
has been proved to easily overfit noisy labels (Zhang et al., 2017), Ghosh et al. (2017); Zhang &
Sabuncu (2018); Wang et al. (2019); Ma et al. (2020) try to design different loss functions to reduce
the influence of noisy samples or regularization terms (Zhang et al., 2018; Hu et al., 2020; Menon
et al., 2020; Liu et al., 2020). Another direction seeks to improve the label quality by correcting
the noisy labels (Lee et al., 2018; Tanaka et al., 2018; Yi & Wu, 2019). Moreover, some methods
choose the clean data via the ‘small-loss’ trick (Han et al., 2018; Jiang et al., 2018; Yu et al., 2019;
Wei et al., 2020), but this introduces selection criterion hyperparameters. Liu & Tao (2015); Jiang

2



Under review as a conference paper at ICLR 2023

et al. (2018; 2020); Fang et al. (2020); Zhang et al. (2021) proposes to reduce the weights assigned to
noisy samples.

Among them, meta-learning (Finn et al., 2017; 2018; 2019; Zintgraf et al., 2019; Raghu et al., 2020)
has recently emerged as an effective framework for robust deep learning. In addition, through an
additional unbiased validation subset, meta-learning based methods (Ren et al., 2018; Shu et al.,
2019; Chen et al., 2021; Zhang et al., 2020; Xu et al., 2021; Wu et al., 2021a) can cope distribution
shift, including label noise and class imbalance. For example, L2RW (Ren et al., 2018) directly
adjusts the weight for each example. MW-Net (Shu et al., 2019) learns an explicit weighting function.
FaMUS (Xu et al., 2021) learns to approximate the meta gradient. MLC (Wang et al., 2020) estimates
the noise transition matrix. These methods all learn a meta-model from a prior unbiased set but differ
in specific ways to correct the biased training labels. Unfortunately, this paradigm unrealistically
simplifies the task of noisy label learning in real-world scenarios. MLNT (Li et al., 2019) simulates
regular training with synthetic noisy labels. Unlike the MLNT, which lacks a clear signals of clean
supervision, we encourage the teacher to adjust the target distribution of training sample explicitly.
Knowledge distillation (Hinton et al., 2015; Romero et al., 2015) contracts a softened softmax
probability distribution to transfer the knowledge, which inspired their subsequent works (Li et al.,
2017; Zhang et al., 2020) that leveraging a predefined unbiased set to optimize exemplar weights and
labels of mislabeled samples in order to distill effective supervision. Instead of directly applying KD
loss, inspired by the idea of knowledge distillation, we propose to integrate KD into the meta-learning
paradigm, treating the unbiased data as knowledge to dynamically distill.

3 METHODOLOGY

Notations. Consider a classification problem with the training set D = {(xi, yi)|Ni=1}, where xi
denotes the i-th sample, yi ∈ {0, 1}c is the label vector over c classes, and N is the number of the
entire training data. Let X ∈ Rd be the feature space and Y = {1 . . . c} be the label space, where
each (xi, yi) ∈ (X × Y). A classifier is a function that maps input feature space to the label space
F : X → Rc. Let F(· | θT ) and F(· | θS) be the teacher network and the student network in
our approach while θT and θS denote their parameters respectively. We use ℓce (p, q) to denote the
cross-entropy loss between two distributions q and p. And KL (·, ·) denotes the Kullback-Leibler
divergence.

Meta-Feedback Mechanism.

Our approach is summarized in Figure 2. It naturally fits the bi-level optimization framework,
where the student network θS is the inner-learner and the teacher network θT is the meta-learner.

Figure 2: The flowchart of our Distilled Meta-Learning approach.

In particular, the proposed meta-
feedback mechanism consists of two
nested stages, where the inner stage
consists of one-step gradient descent
for knowledge distillation, and the
outer stage updates teacher parame-
ters based on student feedback. This
two-stage paradigm is named meta-
feedback mechanism in this work.
Specifically, we encourage the teacher
to adjust the target distribution of
training samples in a manner that minimizes the loss of the student network on distilled samples.
The teacher network is updated by policy gradients computed by evaluating the student network on
distilled samples. The complete algorithm is shown in Algorithm 1.

Meta Objective. We take the above meta-feedback mechanism as our meta-objective of optimization
and formalize it as,

min
θT

E(x̃,ỹ)∈D̃L (ỹ,F(x̃ | θ∗S (θT ))) ,

s.t. θ∗S (θT ) = argmin
θS

Eȳ∼P (·|x;θT )L (ȳ,F(x | θS))
(1)

where D̃ = {(x̃i, ỹi)|Mi=1} indicates the unbiased samples distilled from teacher, and the distillation
criterion is controlled by the feedback of student. And ȳ indicates the target distribution of training
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samples from teacher network. Note that the meta-optimization is performed over the θT , whereas
the objective is computed using the updated θS . In effect, our proposed method aims to optimize
teacher parameters such that one gradient step on unbiased samples will produce maximally effective
behavior on that task.

Specifically, our proposed loss function L on D is constructed as follows,

L (D; θT ; θS) = (1− λ) · Lsup + λ · LKD (2)

where λ is a hyper-parameter to control the relative importance of the two terms. In this loss
function, the first part Lsup = ℓce (F(xi | θS), yi) + ℓce (F(xi | θT ), yi) is supervised learning
loss of the student and teacher networks on biased D, the second part LKD = KL

(
pξ, qξ

)
=

KL (F(xi | θS , ξ),F(xi | θT , ξ)) refers to the Knowledge Distillation (Hinton et al., 2015) loss
which makes the logits of student match the ones of teacher. DNNs typically produce class prob-
abilities by using a softmax output layer that converts the logit, zi, computed for i-th class into
a probability, qi, by comparing zi with the other logits: qi = exp(zi/ξ)/

∑
j exp(zj/ξ), where ξ is the

temperature factor to control the importance of each soft target. The optimization details are described
below.

Meta Learning Optimization. Intuitively, by optimizing the teacher’s parameters according to the
performance of the student on unbiased samples, the target distribution can be adjusted accordingly
to further improve student’s performance. As we are effectively trying to optimize the teacher on
a meta level, the optimal student’s parameters should minimize loss on distilled samples. For each
training step, we give a mini-batch of training samples x and the learning rate γ, and the student
network is updated with knowledge distillation algorithms:

θ′S (θT ) = θS − γ∇θSL (x; θS ; θT ) (3)

For example, when using one gradient update at t epoch, the update rules are as follows:

θ
(t+1)
S = θ

(t)
S − γ∇θS ℓce (ȳ,F (x | θS)) |θS=θ

(t)
S

(4)

where ȳ ∼ P (· | x; θT ) indicates pseudo labels distilled from the teacher. In this work, we sample
the hard pseudo labels from the teacher distribution to train the student.

The meta-optimization across tasks is performed via Stochastic Gradient Descent (SGD), such that
the θT is updated as follows:

θ′T = θT − η∇θTL (θS −∇θSL (θS , θT )) (5)

This differentiation requires computing the gradient of gradient 1. To simplify notation, we will
consider one gradient update for the rest of this section, but using multiple gradient updates is a
straightforward extension.

Practical Approximation. As mentioned above, the student uses the teacher’s distilla-
tion knowledge to update its parameters. In expectation, the new parameter of student is
Eȳ∼P (·|x;θT ) [θS − γ∇θSL (ȳ,F(x | θS))] := θ̄′S . We will update the teacher’s parameter to mini-
mize the student’s loss on a batch of unbiased data. Then, by the chain rule:

∂R
∂θT

=
∂

∂θT
L
(
F(x̃ | θ̄′S), ỹ

)
=
∂L
(
F(x̃ | θ̄′S), ỹ

)
∂θS

∣∣∣∣∣
θS=θ̄′

S

· ∂θ̄
′
S

∂θT
∝ γ · h · L (ȳ,F (x; θT ))

∂θT

(6)

where h = ∂L(ỹ,F(x̃;θS))
∂θS

·
(

∂L(ȳ,F(x;θS))
∂θS

)⊤
is the dot product of the gradient from unbiased training

loss and the gradient from the knowledge distillation loss. Intuitively, h quantifies how much a
specific change in θT affects the training gradient of the student. As a result, it is also known as the
student’s feedback. We refer readers to Appendix A for the detailed derivation.

Meta-Feedback. We rewrite the computation of the feedback of student network coefficient h:

h̃ =
[
∇θ′

S
L (ỹ,F (x̃; θ′S))

]⊤ · ∇θSL (ȳ,F (x; θS)) (7)

1Since θT depends on θS via Equation (5), we compute its second-order dependency on θT .
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In this work, h̃ is not only used to approximate the meta-gradient, but also dynamically affect the
unbiased samples selection criteria. Intuitively, h̃ quantifies the reward signal of how well the student
performs on distilled samples, indicating the estimation accuracy of unbiased data. Since we use the
h̃ to compute selection criteria, we get rid of the prior assumption about the noise rate τ compared
to (Malach & Shalev-Shwartz, 2017; Han et al., 2018; Yu et al., 2019; Wei et al., 2020).

Algorithm 1 The Proposed Distilled Meta-Learning
1: Input: Train set D = {(xi, yi)|Ni=1}, teacher θT , stu-

dent θS , teacher and student learning rate η, γ, epoch
T .

2: Initialize θ(0)T and θ(0)S .
3: for t = 0 to T do
4: Fetch mini-batch Dn from D.
5: Obtain D̃ by Rt(c)|Dn|.
6: Sample a pseudo label ȳ ∼ P (· | xi; θT ).
7: One step gradient update:

θ
(t+1)
S = θ

(t)
S − γ∇θS ℓce (ȳ,F (x; θS)) |θS=θ

(t)
S

8: Compute the student’s feedback h by Equation (7)
9: Compute g(t)T = h · ∇θ′

T
ℓce (ŷ,F (x; θT )) |θT=θ

(t)
T

10: update teacher: θt+1
T = θtT − η · g(t)T

11: update Rt (c) by Equation (8)
12: end for
13: return θ(T )

S

Unbiased Knowledge Distillation. Be-
fore introducing the details, we first clar-
ify the connection between small losses
and clean instances. Intuitively, small-
loss examples are likely to be the ones
that are correctly labeled (Han et al.,
2018; Jiang et al., 2018; Yu et al., 2019;
Wei et al., 2020). Based on this, ap-
plying the ‘small-loss’ criterion can se-
lect ‘clean’ instances, but it cannot elim-
inate data bias. For example, in noise-
robust training problems, this additional
validation set Dval is expected to have
clean and class-balanced labels (Shu
et al., 2019). Although (Malach &
Shalev-Shwartz, 2017; Han et al., 2018;
Yu et al., 2019; Wei et al., 2020) pro-
pose sample-selection-based method
and achieve promising performance, the
assumptions in previous work cannot al-
ways hold true. In other words, Dval is
required to be unbiased and to have a reasonable size. Following the setting of Han et al. (2018),
previous work update R(t) (the ratio of small-loss samples), which controls how many samples
should be selected in each mini-batch. Therefore, we take that R(t) should be data-driven and related
to the learning state of the student network.

Rt (c) =

B∑
b=1

(

t

argmin
Dn

L (Dn; θT ; θS) >

T∑
t=1

h̃t + ϵ0

|

· Jargmax(F(x | θT )) = cK) (8)

where JK is the Iverson’s bracket notation and B indicates batch size. σt(c) reflects the selection
criterion of class c at time step t. Rc(t) = ϵ0 +

∑c
i=0 σ̃t(i). Here we formalize Rc(t) as a selection

criterion for c classes (see Figure 3(c) and Figure 4 for ablation studies). In order to select the sample
at step t = 0, we use a very small ϵ as the initial. The ablation study for ϵ can be found in Figure 3(f).

Why estimate unbiased knowledge instead of prior unbiased set? In this work, we propose
a learning-based approach that learns Rt(c) by employing a meta-learning optimization strategy.
Intuitively, the prior unbiased set reflects the finite field classes distribution, which is biased from
the real distribution, while estimating the unbiased sample from the training sample provides a
path to approximate the real distribution. It is worth noting that the teacher and student networks
have different learning routes, so the outputs of the two models will not increasingly become
consistent. To illustrate the core idea of our proposed meta-feedback mechanism, we formalize the
algorithm as Algorithm 1, and we also provide the pseudo code of our proposed method, see details
in Algorithm 2.

4 THEORETICAL INSIGHTS

In this section, we analyze the convergence and complexity of Algorithm 1. In particular, we need to
handle the difference between two losses over the training and unbiased set (i.e., inner- and outer-loop
losses) in the analysis.

Convergence analysis. And then, we provide the convergence and complexity analysis for Algo-
rithm 1 based on the properties established in the previous subsection.
Theorem 4.1. Let Assumption D.1 and Assumption D.2 hold, and apply Algorithm 1 to solve the
objective function Equation (1). Under the same setting of Theorem D.5, choose γ = 1

8L , Cη = 80.
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Table 1: Test accuracy (%) on CIFAR10/CIFAR 100 with symmetric noise. M indicates the number
of clean samples required for the method.

Method CIFAR10 CIFAR100

M τ = 0.2 τ = 0.4 τ = 0.6 M τ = 0.2 τ = 0.4 τ = 0.6

Forward × 87.90 ± 0.00 - - × 58.60 ± 0.00 - -
GLC 1k 91.43 ± 0.00 88.52 ± 0.00 84.08 ± 0.00 1k 69.30 ± 0.00 63.24 ± 0.00 56.12 ± 0.00
GCE × 89.90 ± 0.20 87.10 ± 0.20 - × 66.80 ± 0.40 61.80 ± 0.20 -
PENCIL × - - - × 73.86 ± 0.34 69.12 ± 0.62 57.79 ± 3.86
Co-teaching × 82.32 ± 0.07 74.81 ± 0.00 73.06 ± 0.00 × 54.23 ± 0.08 46.20 ± 0.00 35.67 ± 0.00
JoCoR × 85.73 ± 0.19 - - × 53.01 ± 0.04 - -
DivideMix × 96.10 ± 0.00 - - × 77.30 ± 0.00 - -
MentorNet 1k 92.00 ± 0.00 89.00 ± 0.00 - 1k 73.00 ± 0.00 68.00 ± 0.00 -
MentorMix 1k 95.60 ± 0.00 94.20 ± 0.00 91.30 ± 0.00 1k 78.60 ± 0.00 71.30 ± 0.00 64.60 ± 0.00
L2RW 1k 90.00 ± 0.40 86.92 ± 0.19 82.24 ± 0.36 1k 67.10 ± 0.10 61.34 ± 2.06 48.15 ± 0.34
MW-Net 1k - 89.27 ± 0.28 84.07 ± 0.33 1k - 67.73 ± 0.26 58.75 ± 0.11
MLC 0.5k 84.28 ± 0.00 79.89 ± 0.00 - 0.5k - - -
IEG 0.1k 96.20 ± 0.20 95.90 ± 0.20 - 1k 81.20 ± 0.70 80.20 ± 0.30 -
FaMUS 1k - 95.37 ± 0.15 94.97 ± 0.11 1k - 75.91 ± 0.19 73.58 ± 0.28
FastRW × 95.10 ± 0.10 93.70 ± 0.10 - × 78.70 ± 0.20 74.20 ± 0.40 -

Ours × 96.92 ± 0.32 95.94 ± 0.21 94.60 ± 0.20 × 82.26 ± 0.23 80.76 ± 0.18 74.20 ± 0.43

We have

E∥∇L(wζ)∥ ≤ O

(
1

T
+
σ2

B
+

√
1

T
+
σ2

B

)
(9)

Theorem 4.1 shows that the proposed method converges linearly with the number T of outer-loop
meta iterations, and the convergence error decays linearly with the number B of sampled mini-batch.
See proof in Appendix D. Our proposed distilled meta-learning converges sublinearly with the
convergence error decaying sublinearly with the number of samples due to nonconvexity of the meta
objective function. The empirical results also support our conclusion Figure 3(d).

Risk analysis. Next, we analyze the risk of students learning teacher-generated soft-targets in the
distillation meta-learning framework. Similar to Li et al. (2017), we define the expected risk Ry

associated with the unreliable label sampled from D: Rŷ = ED [ℓ(ŷ, y∗)]. where y∗ is the unknown
ground-truth label, and E denotes the expectation over D. Then, we show that the risk of using
Equation (1) can be smaller than using either the full noisy labels or only the partial clean labels.
Theorem 4.2. The optimal risk associated with ȳλ is smaller than both risks with ŷ and ỹ, i.e.,

min
λ

Rȳλ < min{Rŷ,Rỹ}, for λ =
Rŷ

Rŷ +Rỹ
(10)

where ŷ is the unreliable label, and ỹ is the clean label.

Theorem 4.2 indicates that, by properly setting the balance weight λ, we can obtain a pseudo label
that is closer to the ground-truth label in theory. Therefore, we can potentially train a better model
based on our distillation framework. See proof in Appendix C.

5 EXPERIMENTS

Table 2: Results on CIFAR10 with asymmetric noise.
Method M τ = 0.2 τ = 0.4

Forward (Patrini et al., 2017) × 90.10 ± 0.00 -
GLC (Hendrycks et al., 2018) 1k 92.46 ± 0.00 91.74 ± 0.00
GCE (Zhang & Sabuncu, 2018) × 89.50 ± 0.30 82.30 ± 0.70
PENCIL (Yi & Wu, 2019) × 92.43 ± 0.00 91.01 ± 0.00
JoCoR (Wei et al., 2020) × - 76.36 ± 0.49
DivideMix (Li et al., 2020) × 93.40 ± 0.00 -
L2RW (Ren et al., 2018) 1k - 86.73 ± 0.48
MW-Net (Shu et al., 2019) 1k 90.33 ± 0.61 87.54 ± 0.23
MLC (Wang et al., 2020) 0.5k 84.60 ± 0.00 79.85 ± 0.00
IEG (Zhang et al., 2020) 0.1k 96.50 ± 0.20 95.90 ± 0.10
FastRW (Zhang & Pfister, 2021) × 95.00 ± 0.10 93.60 ± 0.30

Ours × 96.70 ± 0.12 95.63 ± 0.41

We compare our method with other methods in
the label noise setting in Section 5.1, including
symmetric noise, asymmetric noise and instance-
dependent label noise. Then, we conduct further
experiments to verify the algorithm efficiency
in Section 5.2. Finally, we compare our method
with other methods in the class imbalance set-
ting in Section 5.3.

5.1 LABEL NOISE SETTING

Generating corrupted labels. Following (Patrini et al., 2017; Xia et al., 2020), we manually corrupt
the labels by constructing the noise transition matrixQ, whereQij = P (ŷ = j|y = i) given that noise
ŷ is flipped from clean y. Assume that the matrixQij has three types. (1) Symmetric noise, i.e.,Qij =
τ/(c− 1) for i ̸= j and Qi,i = 1 − τ , where τ is the constant noise level. (2) Asymmetric noise,
the labels may make mistakes only within very similar classes, i.e., Qij = τ and Qii = 1− τ . (3)
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Figure 3: Ablation studies of our proposed Distilled Meta-Learning approach on CIFAR100 with
40% symmetric noise. ‘tch’ is short for teacher network while ‘stu’ is short for student network.

Instance-dependent label noise is related to the sample, i.e., Qij(X) = P (ŷ = j|y = i,X). We test
the proposed method on standard benchmark datasets, CIFAR10 and CIFAR100 (Krizhevsky, 2012).

Table 3: Results on CIFAR100 with asymmetric noise.
Method M τ = 0.2 τ = 0.4

Forward (Patrini et al., 2017) × 64.20 ± 0.00 -
GLC (Hendrycks et al., 2018) 1k 71.40 ± 0.00 67.73 ± 0.00
PENCIL (Yi & Wu, 2019) × 74.70 ± 0.56 63.61 ± 0.23
JoCoR (Wei et al., 2020) × - 32.70 ± 0.35
L2RW (Ren et al., 2018) 1k - 59.30 ± 0.60
MW-Net (Shu et al., 2019) 1k 64.22 ± 0.28 58.64 ± 0.47
MLC (Wang et al., 2020) 0.5k 57.22 ± 0.00 53.33 ± 0.00

Ours × 80.24 ± 0.66 69.52 ± 1.22

For CIFAR10/100, we use three types of label
noise: symmetric (Table 1), asymmetric (Ta-
ble 2 & Table 3) and instance-dependent label
noise (Table 4).

Baselines. We compare the proposed method
with the following representative methods: 1)
Several works apply loss correction on an esti-
mated noise transition matrix, e.g., Forward (Pa-
trini et al., 2017), GLC (Hendrycks et al., 2018).
2) One typical idea is to reduce the influence of noisy samples with robust loss functions, e.g.,
GCE (Zhang & Sabuncu, 2018), Peer Loss (Liu & Guo, 2020). 3) Another direction seeks to correct
noisy labels based on model predictions, e.g., PENCIL (Yi & Wu, 2019). 4) Some methods based on
sample selection to select trusted samples from training data, e.g., Co-Teaching (Han et al., 2018),
JoCoR (Wei et al., 2020), CORES (Cheng et al., 2021). 5) Some approaches leverage semi-supervised
techniques to learn from noisy labels, e.g., DivideMix (Li et al., 2020). 6) Other methods try to
reduce the weights assigned to noisy samples, e.g., MentorNet (Jiang et al., 2018), MentorMix (Jiang
et al., 2020). 7) Meta-learning-based approaches, e.g., L2RW (Ren et al., 2018), MW-Net (Shu et al.,
2019), MLC (Wang et al., 2020), IEG (Zhang et al., 2020), FaMUS (Xu et al., 2021), FastRW (Zhang
& Pfister, 2021), Purify (Wu et al., 2021a), CAL (Zhu et al., 2021).

Implementations. For label noise experiments on CIFAR10/100, we use the WRN-28-10 (Zagoruyko
& Komodakis, 2016) as it is commonly used in (Ren et al., 2018; Shu et al., 2019). We use SGD with
a momentum of 0.9 with a weight decay of 5× 10−4, and an initial learning rate 5× 10−2 for both
teacher and student network. And the batch size is set to 128. We train the network for 300 epochs
and reduce the learning rate by a factor of 10 after 100, 150 and 200 epochs. Please for details, refer
to Appendix H.

Results of synthetic datasets. Table 1 shows the results for symmetric label noise on CIFAR10/100
with noise rates of {0.2, 0.4, 0.6}, respectively. We report the mean and standard deviation over three
training trials using different random seeds. Our method achieves competitive results to IEG (Zhang
et al., 2020) and FaMUS (Xu et al., 2021), although it marginally underperforms IEG and FAMUS,
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which requires additional clean data. Specifically, even under relatively high noise ratios (e.g., τ = 0.6
on CIFAR-100 with symmetric noise), our method has competitive classification accuracy (74.20%)
without using any clean data. Table 2 and Table 3 show the results for asymmetric label noise on
CIFAR10/100 with noise rates of {0.2, 0.4}, respectively. These results illustrate the effectiveness of
our method on synthetic noise.

Table 4: Results on CIFAR with instance-dependent
label noise.

Method CIFAR10 CIFAR100

τ = 0.2 τ = 0.4 τ = 0.2 τ = 0.4

Forward 88.08 82.67 58.95 41.68
Co-teaching 88.66 69.50 43.03 23.13
Co-teaching+ 89.04 69.15 41.84 24.40
JoCoR 88.71 68.97 44.28 22.77
MentorNet 70.56 46.22 - -
Peer Loss 89.33 81.09 59.92 45.76
CORES 89.50 82.84 61.25 41.81
CAL 92.01 84.96 69.11 63.17

Ours 96.00 94.37 81.36 76.09

Real-world corrupted dataset. To verify the ef-
ficacy of our methods in the real-world scenario,
we conduct experiments on the noisy dataset
Clothing1M (Xiao et al., 2015). Specifically,
for experiments on Clothing1M, we use the 1M
images with noisy labels for training and 10k
clean data for testing respectively. Following the
previous work (Patrini et al., 2017; Tanaka et al.,
2018), we used ResNet-50 (He et al., 2016) pre-
trained on ImageNet. For preprocessing, we
resize the image to 256× 256, crop the middle
224× 224 as input, and perform normalization.
We used SGD with a momentum 0.9, a weight
decay 10−4, and an initial learning rate 10−3 for
both teacher and student network, and batch size 64. The learning rate is divided by 10 after 5 epochs
(for a total 30 epochs). The results are summarized in Table 5 which shows that the proposed method
achieves the best performance.

Table 5: Comparison with state-of-the-art
methods in test accuracy (%) on Clothing1M.

Method Test Accuracy

PENCIL (Yi & Wu, 2019) 73.49
MLNT (Li et al., 2019) 73.47
MW-Net (Shu et al., 2019) 73.72
DivideMix (Li et al., 2020) 74.76
JoCoR (Wei et al., 2020) 70.30
MLC (Wang et al., 2020) 71.06
FaMUS (Xu et al., 2021) 74.43

Ours 75.23

Ablation study. Figure 3 shows the ablation studies of our
proposed distilled meta-learning method. Notice that we
use the WRN-28-2 (Zagoruyko & Komodakis, 2016) net-
work for all experiments. From Figure 3(a), it can be seen
that in the standard knowledge distillation schema, even if
students learn from the soft-targets provided by teachers,
memorization effects (Arpit et al., 2017) still occur, indi-
cating that teachers provide error guidance for students.
From the results, the accuracy was maintained at about
50%, indicating that knowledge distillation alone could
not avoid the network falling into over-fitting. Figure 3(b)
indicates that lacking the student’s performance as feed-
back, also known as h, to optimize the teacher network will also affect the scale of sample selection
and the final accuracy. As discussed in Section 3, by varying h, we can get the feedback of student
and derive the percentage of relabeled training data against the complete training set. Figure 3(b)
provides the impact of the absence of h. In Equation (2), we innovatively introduced distillation
loss. In order to verify the effectiveness of this change, we eliminated the influence of distillation
loss by setting its coefficient λ to 0, and the result is shown in Figure 3(c). Since Theorem 4.1
shows that the proposed method converges linearly with the number T of outer-loop meta iterations,
and the convergence error decays linearly with the number B of sampled mini-batch. As shown
in Figure 3(d), we studied the empirical results of the proposed meta-learning method at different
batch sizes. Experimental results show that the convergence rate of the algorithm accelerates with the
increase of batch size. Compared with Co-teaching based methods (Han et al., 2018; Yu et al., 2019;
Wei et al., 2020) using fixed criteria to select samples, we made the selection criteria data-driven
by self-learning penalty terms, and experiment Figure 3(e) proved its effectiveness. Meanwhile, the
proposed selection criteria can effectively improve the accuracy of sample estimation. As it can be
seen from Figure 3(e), the estimation accuracy, i.e., estimated accuracy = (# of clean labels) / (# of all
selected labels), of our method increases steadily. To show the impact of ϵ0 on R(t) in Algorithm 1,
we vary ϵ0 = {0.04, 0.06, 0.08, 0.10, 0.15} in Figure 3(f). Note that, ϵ0 cannot be zero. In this case,
since no samples are selected, there is no gradient back-propagation, and the optimization will stop.

Hyper-parameter analysis. We evaluate the impact of four hyper-parameters on the CIFAR100
dataset with 40% symmetric noise. Due to the limited space, the results are shown in Appendix H. As
shown in Figure 6, λ controls the relative importance of Ldirect and LKD. α is used in the extended
Algorithm 2 as an unsupervised loss coefficient to control the contribution of unselected samples. The
third figure in Figure 6 reports the effect of distillation temperature ξ. The fourth figure in Figure 6
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reports the effect of the teacher’s label smoothing parameter. We use the controlled variable method
to observe the effect by varying the selected hyper-parameters and freezing the remaining hyper-
parameters. The biggest change by sweeping these hyper-parameters is 2%, indicting insensitivity to
hyper-parameters.

5.2 ALGORITHM EFFICIENCY

Table 6: Training complexity by time per second.

Method Time(ms) Acc.(%)

L2RW 903 86.92
MW-Net 954 89.59
IEG 1416 92.80
L2RW + FaMUS 266 87.60
MW-Net + FaMUS 304 90.50

Ours (Second-order) 321 93.01
Ours (First-order) 160 92.72

Table 6 shows the results on the CIFAR10
dataset with 40% symmetric noise, where the
“Time” column lists the average running time
(in millisecond) per training iteration on a sin-
gle NVIDIA 3090 GPU. For fair and consistent
comparisons, we use the WRN-28-2 network ar-
chitecture for all methods, and train with a mini-
batch size of 100. The teacher network obtains
0.25 GFLOPs as well as the student network.
Experimental results show that our method can
significantly reduce the training time compared
with other meta-learning algorithms (Ren et al.,
2018; Shu et al., 2019; Zhang et al., 2020; Xu et al., 2021), while still maintaining comparable
generalization performance or achieving better generalization performance.

5.3 LONG-TAILED IMBALANCE SETTING

Table 7: Test accuracy (%) of ResNet32 (He et al., 2016) on long-tailed CIFAR10 and CIFAR100. M
represents the number of additional balanced data required for the method.

Dataset CIFAR10 CIFAR100

Imb. ratio M 200 50 10 M 200 50 10

SoftMax × 65.68 74.81 86.39 × 34.84 43.85 55.71
Focal Loss (Lin et al., 2017) × 65.29 76.71 86.66 × 35.62 44.32 55.78
Class-Balanced × 68.89 79.27 87.49 × 36.23 45.32 57.99
L2RW (Ren et al., 2018) 1k 66.51 78.93 85.19 1k 33.38 44.44 53.73
MW-Net (Shu et al., 2019) 1k 68.91 80.06 87.84 1k 37.91 46.74 58.46
FaMUS (Xu et al., 2021) × 67.76 79.17 87.40 × 35.44 42.57 55.45

Ours × 70.02 81.43 88.67 × 36.78 46.75 60.21

Setup and comparison methods. We test our method on long-tailed CIFAR (Krizhevsky et al., 2009)
benchmarks, with different imbalance ratios as defined by (Cui et al., 2019). Long-Tailed CIFAR are
created by reducing the number of training instances per class according to an exponential function
n = niµ

i, where i is the class index, ni the original number of training images and µ ∈ (0, 1).
We modify some training configurations as we use for label noise experiments. Following recent
methods (Cao et al., 2019; Kang et al., 2020) commonly apply deferred balancing, which trains model
in the supervised manner to learn representations and then applies re-balancing methods to fine-tune
the model. Overall, our proposed distilled meta-learning approach achieves competitive results to
other methods, even though MW-Net requires additional balanced data.

6 CONCLUSION

In this paper, we present an efficiently distilled meta-learning approach to overcome the two afore-
mentioned problems: 1) removing the dependence of prior unbiased set and 2) improving training
efficiency. The proposed method dynamically estimates unbiased samples in training data and lever-
ages meta-learning to refine the deep networks. We conduct extensive experiments to demonstrate its
effectiveness on both noisy labels and long-tailed recognition benchmarks.
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APPENDIX

A DERIVATION OF THE META UPDATE RULE.

Understanding that these notations and conventions might cause confusions, in the derivation below.
In expectation, the new parameter of student is:

θ̄′S = Eȳ∼P (·|x;θT ) [θS − γ∇θSL (ȳ,F(x | θS))] (11)

where θS ∈ R|S|×1. We will update the θT to minimize the knowledge distillation loss on student:

∂R
∂θT

=
∂

∂θT
L
(
ỹ,F

(
x | θ̄′S

))
(12)

where θT ∈ R|T |×1.

We now present the derivation.

∂R
∂θT

=
∂

∂θT
L
(
ỹ,F(x̃ | θ̄′S)

)
=
∂L
(
ỹ,F(x̃ | θ̄′S)

)
∂θS

∣∣∣∣∣
θS=θ̄′

S

· ∂θ̄
′
S

∂θT
(13)

where first factor has dimension 1× |S|, and second factor has dimension |S| × |T |. The first factor
in Equation (13) can be simply computed via back-propagation. We now focus on the second term.
We have:

∂θ̄′S
∂θT

=
∂

∂θT
Eȳ∼P (·|x;θT ) [θS − γ · ∇θSL (ȳ,F(· | θS))] (14)

where the Jacobian of L (ȳ,F (x | θS)) needs to be transposed to |S| × 1 to match the dimensions of
θS . Since θS in Equation (14) does not depend on θT , we can leave it out of subsequent derivations.
Also, to simplify notations, let us define the gradient:

gF(ȳ|θS) =

(
∂L (ȳ,F(· | θS))

∂θS

)⊤

(15)

where gF(ȳ|θS) ∈ R|S|×1. The the Equation (14) becomes:

∂θ̄′S
∂θT

= −γ · ∂

∂θT
Eȳ∼P (·|x;θT )

[
gF(ȳ|θS)

]
(16)

Since gF(ȳ|θS) has no dependency on θT ,

∂θ̄
(t+1)
S

∂θT
= −γ · ∂

∂θT
Eȳ∼P (·|x;θT )

[
gF(ȳ|θS)

]
= −γ · Eȳ∼P (·|x;θT )

[
gF(ȳ|θS) ·

∂ logP (ȳ | x; θT )
∂θT

]
= γ · Eȳ∼P (·|x;θT )

[
gF(ȳ|θS) ·

∂L(ȳ,F(· | θT ))
∂θT

] (17)
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where ∂L(ỹ,F(·|θT ))
∂θT

∈ R1×|T |, Now, we can substitute Equation (17) into Equation (13) to obtain:

∂R
∂θT

=
∂L
(
ỹ,F(x̃ | θ̄′S)

)
∂θS

∣∣∣∣∣
θS=θ̄′

S

· ∂θ̄
′
S

∂θT

= γ · ∇θ̄′
S
Lu (θS) · Eȳ∼P (·|x;θT )

[
gF(ȳ|θS) ·

∂L(ỹ,F(x | θT ))
∂θT

] (18)

where
∂L(ỹ,F(x̃|θ̄′

S))
∂θS

∣∣∣∣
θS=θ̄′

S

:= ∇θ̄′
S
Lu (θS).

Finally, we use Monte Carlo approximation for every term in Equation (18) using the sampled ȳ.
In particular, we approximate θ̄′S with the parameter obtained from θS via updating the student
parameter on ȳ ∼ P (· | x; θT ), i.e., θ′S = θS −γ ·∇θS ℓ (ȳ,F(· | θS)), and approximate the expected
value in the second term with ȳ. With these approximation, we obtain the gradient:

∇θTL(θT , θS) = γ · ∂L (ỹ,F(x̃ | θ′S))
∂θS

·
(
∂L (ȳ,F(x | θ′S))

∂θS

)⊤

· ∂L (ȳ,F (x; θT ))

∂θT

= γ · h · ∇θTL(ȳ,F(x; θT ))

(19)

where
∂L(ỹ,F(x̃|θ′

S))
∂θS

∈ R1×|S|, and
(

∂L(ȳ,F(x|θ′
S))

∂θS

)⊤

∈ R|S|×1. The product of these two

terms is a scalar, which is recorded as h. We rewrite the computation of this term: h̃ =[
∇θ′

S
L (ỹ,F (x̃; θ′S))

]⊤ · ∇θSL (ȳ,F (x; θS)).

B PSEUDO CODE

In this section, we present pseudo code for a complete version of our proposed Distilled Meta-
Learning method. A limitation of the sample-selection-based method is that the examples that are
selected tend to be easier, and the subset of selected examples may not be rich enough to generalize
effectively to held-out data (Liu et al., 2020). This suggests that in addition to estimate unbiased
samples from the noisy data, it is also important to estimate the correct labels via re-labeling process.
We informally call this process as estimation of “Data cleaning”, which are two major information for
constructing supervised training. This extension is very simple. We follow (Xie et al., 2020) and give
a new label ynew to the unselected samples via the teacher’s prediction. In particular, we extend the
proposed approach to include re-labeling loss in the optimization objectives of the teacher network.
In order to facilitate the study of its influence, we set the coefficient of re-labeling loss as α, and the
experimental details can be found in Figure 7. We emphasize that the re-labeling objective is applied
on the teacher, while the student still only learns from the teacher. The pseudo code can be found in
Algorithm 2.

C RISK ANALYSIS

In this section, we analyze the risk of student network learning by knowledge distillation in Distilled
Meta-Learning framework. Similar to (Li et al., 2017), we define the expected risk Ry associated with
the unreliable label sampled from D: Rŷ = ED [ℓ(ŷ, y∗)]. where y∗ is the unknown ground-truth
label, and E denotes the expectation over D. The random variable ŷ denotes the unreliable label
corrupted from the y∗. Although Rŷ does not relate directly with the final accuracy of the classifier,
it is an indicator of the level of noise seen by the training process, which implicitly affects the final
performance. Then, we show that the risk of using Equation (1) can be smaller than using either the
full noisy labels or only the partial clean labels.

Proof. First, we rewrite a risk Rŷ associated with the unreliable label ŷ for the tractability of analysis:

Ry = ED
[
∥ŷ − y∗∥2

]
(20)
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Algorithm 2 Pseudo Code for Our Methods
1: Input: Train set D = {(xi, yi)|Ni=1}, the teacher net F (· | θT ), the student net F (· | θS), teacher

and student net learning rate γ, η, epoch T , fixed ϵ0.
2: Initialize θ(0)T and θ(0)S .
3: Shuffle training set D.
4: for t = 0 to T do
5: Fetch mini-batch Dn from D.
6: Obtain D̃ = argminD′:|D′

n|≥R(t)|Dn| [L (D; θT ; θS)]

where D̃ = {(x̃i, ỹi)|R(t)|Dn|
i=1 }

7: Sample a pseudo label ȳ ∼ P (· | xi; θT ).
8: Compute one step gradient of knowledge distillation:

θ̂t+1
S = θ

(t)
S − γ∇θS ℓce (ȳ,F(x; θS)) |θS=θ

(t)
S

9: Compute the student’s feedback:

h = η ·
[(

∇θ′
S
ℓce

(
ỹ,F

(
x̃; θ

(t+1)
S

))⊤
· ∇θS ℓce

(
ȳ,F

(
x; θ̂t+1

S

))]
10: Compute g(T )

T = h · ∇θ′
T
ℓce (ȳ, ft (x; θT )) |θT=θ

(t)
T

{ // the teacher’s gradient on student’s
feedback}

11: Compute g(t)
T,D̃

= ∇θ′
T
ℓce (ỹ,F (x̃; θT )) |θT=θ

(t)
T

{ // the teacher’s gradient on unbiased data}

12: Compute g(t)T,D = ∇θ′
T
ℓce (ynew,F (x̃; θT )) |

θT=θ
(t)
T

{ // the teacher’s gradient on refined
labels}

13: update teacher:
θt+1
T = θtT − η ·

(
g
(t)
T + g

(t)

T,D̃
+ g

(t)
T,D

)
14: update Rt(c)
15: end for
16: return θ(T )

S

Ideally, we would like to define the risk according to the training loss, but ℓ2 distance is used for
the tractability of analysis. The risk of using labels corrupted by noise as ŷ ∼ PD (ŷ | (x, y∗)) is
quantified by the following residual term. Consider our teacher model trained from an unbiased
dataset D̃, the expected prediction error can be decomposed into the variance term and the bias term
(Domingos, 2000):

ED̃ [ℓ(ỹ, y∗)] = ℓ(s̄, y∗) + ED̃ [ℓ(ỹ, s̄)] (21)
where ℓ (·, ·) is the loss function, and s̄ (x) is called the “main” prediction, defined according to the
loss function. For the squared loss s̄(x) = averageD̃(F(x)). For simplicity of proving Equation (10),
we use the squared loss. Since we are training a over parameterized CNN, we can make a reasonable
assumption that the bias term ℓ (s̄, y∗) is close to zero. Therefore, we have ℓ (s̄, y∗) ≈ 0 ⇒ s̄ ≈ y∗.

ED̃
(
∥ỹ − y∗∥2

)
≈ ED̃

(
∥ỹ − s̄∥2

)
≜ Rs (22)

The label corruption process is unknown, but we can assume that it is independent of the model
variance. This leads to:

ED̃
[
(ŷ − y∗)⊤(ỹ − y∗)

]
= (ED̃ [ŷ − y∗])

⊤ ED̃ [ỹ − y∗]

= (ED̃ [ŷ − y∗])
⊤ ED̃ [ỹ − s̄]

= (ED̃ [ŷ − y∗])
⊤ 0 = 0

(23)

where 0 denotes a zero vector. Now, we are ready to show Equation (10):

Rȳλ = ED̃
[
∥ȳλ − y∗∥2

]
= ED̃

[
∥(1− λ)ỹ + λỹ − y∗∥2

]
= ED̃

[
∥(1− λ)(y − y∗) + λ(ȳ − y∗)∥2

]
= (1− λ)2Rŷ + λ2Rỹ

(24)
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When λ =
Rŷ

Rŷ+Rỹ
, Rȳλ reaches its minimum,

min
λ

Rȳλ =
RŷRỹ

Rŷ +Rỹ
(25)

The proof is completed.

D CONVERGENCE PROOF OF OUR METHOD

This section provides the proofs for Theorems Theorem D.4 and Theorem 4.2 in the paper.

D.1 BASIC ASSUMPTIONS

We state several standard assumptions for the analysis in the proposed distilled meta-learning
approach.
Assumption D.1. For each mini-batch, the loss function ℓS(·) and ℓTi(·) in Equation (1) satisfy

1. ℓS(·), ℓTi
(·) are bounded below, i.e., infθS∈R|S|ℓS(θS)>−∞ and infθT∈R|T |ℓTi

(θT )>−∞.

2. Gradients ∇ℓS(·) and ∇ℓTi(·) are L-Lipschitz continuous, i.e., for any w = θS , u = θT ∈ Rd

∥∇ℓS(w)−∇ℓS(u)∥ ≤ L∥w − u∥and∥∇ℓTi
(w)−∇ℓTi

(u)∥ ≤ L∥w − u∥.

3. Hessians ∇2ℓS(·) and ∇2ℓTi
(·) are ρ-Lipschitz continuous, i.e., for any w = θS , u = θT ∈ Rd

∥∇2ℓS(w)−∇2ℓS(u)∥ ≤ ρ∥w − u∥and∥∇2ℓTi
(w)−∇2ℓTi

(u)∥ ≤ ρ∥w − u∥.

The following assumption provides two conditions ∇ℓS(·) and ∇ℓTi
(·).

Assumption D.2. For all w ∈ Rd, gradients ∇ℓS(w) and ∇ℓTi
(w) satisfy

1. ∇ℓTi(·) has a bounded variance, i.e., there exists a constant σ>0 such that

Ei∥∇ℓTi(w)−∇ℓT (w)∥2 ≤ σ2,

where ∇ℓT (·) = Ei[∇ℓT (·)].
2. For each i ∈ I, there exists a constant bi>0 such that ∥∇ℓS(w)−∇ℓTi(w)∥ ≤ bi.

Instead of imposing a bounded variance condition on the stochastic gradient ∇ℓS(·), we alternatively
assume the difference ∥∇ℓS(w)−∇ℓTi

(w)∥ to be upper-bounded by a constant, which is more reason-
able because sample sets Si and Ti are often sampled from the same distribution and share certain sta-
tistical similarity. We note that the second condition also implies ∥∇ℓS(w)∥ ≤ ∥∇ℓTi

(w)∥+bi which
is weaker than the bounded gradient assumption made in papers such as MAML (Finn et al., 2017). It
is worthwhile mentioning that the second condition can be relaxed to ∥∇ℓS(w)∥ ≤ ci∥∇ℓTi(w)∥+bi
for a constant ci>0. Without the loss of generality, we consider ci = 1 for simplicity.

D.2 PROPERTIES OF META GRADIENT

We develop several important properties of the meta gradient. The following proposition characterizes
a Lipschitz property of the gradient of the objective function

∇L(w) = Ei∼D

N−1∏
j=0

(I − γ∇2ℓS(w̃
i
j))∇ℓTi

(w̃i
N ), (26)

where the weights w̃i
j ∈ I. In general, j = 0, . . . , N are given by the gradient descent steps

in Equation (4) and here we conduct a distillation objective at inner loop optimization to simplify N
to 1.
Theorem D.3. Suppose that Assumption D.1 and Assumption D.2 hold. Then, for any w, u ∈ Rd, we
have

∥∇L(w)−∇L(u)∥ ≤ Lw∥w − u∥, Lw = (1 + γL)2L+ Cbb+ CLE∥∇ℓTi(w)∥

17



Under review as a conference paper at ICLR 2023

where b = Ei[bi] and Cb, CL>0 are constants given by

Cb = (γρ+
ρ

L
(1 + γL))(1 + γL)2 =

ρ

L
(2ργ)(1 + γL)2,

CL = (γρ+
ρ

L
(1 + γL))(1 + γL)2 =

ρ

L
(2ργ)(1 + γL)2

(27)

Proof. By the definition of ∇L(·), we have

∥∇Li(w)−∇Li(u)∥ ≤ ∥(I − γ∇2ℓS(w̃0))∇ℓTi(w̃
i)− (I − γ∇2ℓS(ũ0))∇ℓTi(w̃

i)∥
+ ∥(I − γ∇2ℓS(ũ0))∇ℓTi

(w̃i)− (I − γ∇2ℓS(ũ0))∇ℓTi
(ũi)∥

≤ ∥(I − γ∇2ℓS(ũ))− (I − γ∇2ℓS(u))∥∥∇ℓTi
(w̃i)∥

+ (1 + γL)∥∇ℓTi
(w̃i)−∇ℓTi

(ũi)∥

(28)

where ∥(I − γ∇2ℓS(ũ)) − (I − γ∇2ℓS(u))∥ := A. And we next upper-bound A in the above
inequality. Specifically, we have

A ≤ ∥(I − γ∇2ℓS(w̃))− (I − γ∇2ℓS(w̃))(I − γ∇2ℓS(ũ))∥
+ ∥(I − γ∇2ℓS(w̃))(I − γ∇2ℓS(ũ))− (I − γ∇2ℓS(ũ))∥

≤ ((1 + γL)γρ+
ρ

L
(a+ γL)[(1 + γL)− 1])∥w − u∥

(29)

Combining Equation (28) and Equation (29) yields

∥∇Li(w)−∇Li(u)∥ ≤ ((a+ γL)γρ+
ρ

L
(a+ γL)((1 + γL)− 1))∥w − u∥∥∇ℓTi

(wi)∥

+ (1 + γL)L∥w̃i − ũi∥
(30)

To upper-bound ∥∇ℓTi(w
i)∥ above, following the Assumption D.2, using the mean value theorem,

we have

∥∇ℓTi(w
i)∥ = ∥∇ℓTi(w − γ∇ℓS(w̃))∥ ≤ ∥∇ℓTi(w)∥+ γL(1 + γL)∇ℓS(w̃)

≤ (1 + γL)∥∇ℓTi
(w)∥+ γL+ bi

(31)

then, we have
∥w̃i − ũi∥ ≤ (1 + γL)∥w − u∥ (32)

Combining the above equation yields

∥∇Li(w)−∇Li(u)∥ ≤
[
(1 + γL)γρ+

ρ

L
γ(1 + γL)

]
(1 + γL)∥∇ℓTi(w)∥∥w − u∥

+
[
(1 + γL)γρ+

ρ

L
γ(1 + γL)

]
(1 + γL)bi∥w − u∥

+ (1 + γL)2L∥w − u∥,

(33)

which, in conjunction with Cb and CL given in Equation (27), yields

∥∇Li(w)−∇Li(u)∥ ≤
[
(1 + γL)2L+ Cb + CL∥∇ℓTi(w)∥

]
∥w − u∥. (34)

Based on the above inequality and Jensen’s inequality, we finish the proof.

Theorem D.3 shows that ∇L(w) has a Lipschitz parameter L(w).
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Similarly to analysis of MAML Fallah et al. (2020), we use the following construction

L̂wt = (1 + γL)2L+ Cbb+
CL

|B′
t|
∑
i∈B′

k

∥∇ℓTi(wt)∥ (35)

at the t-th outer-stage iteration to approximate L̂wt
, where B′

t ⊂ I is chosen independently from Bt.
It can be verified that the gradient given in Equation (26) is an unbiased estimate of L̂wt

. Thus, our
next step is to upper-bound the second moment of Equation (26).
Theorem D.4. Suppose that Assumption D.1 and Assumption D.2 hold, and define constants

Aw =
4(1 + γL)4

2− (1 + γL)4
,

Ab =
4(1 + γL)8

2− (1 + γL)4
(σ + b)2 + 2(1 + γ)4(σ2 + b̃),

(36)

where b̃ = Ei∼D[b
2
i ]. Then if γ <

√
2

L , then conditioning on wt, we have

E∥Ĝi(wt)∥2 ≤ Aw∥∇L(wk)∥2 +Ab. (37)

Proof. Conditioning on wt, we have

E∥Ĝi(wt)∥2 = E∥(I − γ∇2ℓS(wt))∇ℓTi
(wi

t)∥ ≤ (a+ γL)2E∥∇ℓTi
(wi

t)∥, (38)
then, we have

E∥Ĝi(wt)∥2 ≤ 2(1 + γL)4E∥∇ℓTi
(wt)∥2 + 2(1 + γL)2(1 + γL)2Eib

2
i

≤ 2(1 + γL)4(∥∇ℓT (wt)∥2 + σ2) + 2(1 + γL)4b̃i

≤ 2(1 + γL)4(
2

C2
1

∥∇ℓT (wt)∥2 + 2
C2

2

C2
1

+ σ2) + 2(1 + γL)4b̃i

≤ 4(1 + γL)4

C2
1

∥∇ℓT (wt)∥+
4(1 + γL)4C2

2

C2
1

+ 2(1 + γL)4(σ2 + b̃),

(39)

where constants C1, C2 > 0. C1 = 2− (1 + γL)2 and C2 = ((1 + γL)2 − 1)σ + (1 + γL)γLb.

Based on the above properties, we next characterize the convergence of one-step distilled meta-
learning approach.

D.3 CONVERGENCE RESULTS

Theorem D.5. Let Assumption D.1 and Assumption D.2 hold, and apply Algorithm 1 to solve
the objective function Equation (1). Choose the meta stepsize ηt = 1/CηL̂(wt) with L̂(wt) given
by Equation (35), where Cη>0 is a constant. For L̂(wt) in Equation (35), we choose the batch
size B′

k = R(t)|Dn| such that |B′
k| ≥ 2C2

Lσ2
/(Cbb+(1+γL)2L)2, here Cb and CL are given by Equa-

tion (36). Define constants

φ =
2− (1 + γL)2

CL
(1 + γL)2L+

(2− (1 + γL)2Cbb)

CL
+ (1 + γL)3b,

ψ =
2− (1 + γL)2

CL

(
1

Cη
− 1

C2
η

(
Aw

B
+ 1

))
ϕ =

Ab

LC2
η

,

(40)

where Cb, CL, Aw, Ab are given by Equation (27) and Equation (36). Choose γ <
√
2−1/L, and

choose Cη and B such that ψ>0. Then, Algorithm 1 attains a solution wζ such that

E∥∇L(wζ)∥ ≤ ∆

2ψT
+

ϕ

2ψB
+

√
φ(

∆

ψT
+

ϕ

ψB
) + φ(

∆

2ψT
+

ϕ

2ψB
)2 (41)

The parameters φ,ψ and ϕ in Theorem D.5 take complicate forms.
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Proof. Based on the smoothness of ∇L(·) established in Theorem D.3, we have

Lt+1 ≤ Lt − η

〈
∇L(wt),

1

B

∑
i∈B̄t

〉
+
Lwt

η2

2
∥ 1

B

∑
i∈B̄t

Ĝi(wt)∥2 (42)

where B̄t = R(t)Bt indicates the selected sample. Taking the conditional exception given wt over
the above inequality and noting that the randomness over η is independent of the randomness over
Ĝi(wt), we have

E(L(wt+1) | wt) ≤ L(wt)−
1

Cη
E(

1

Lwt

| wt)∥∇L(wt)∥2

+
Lwt

2C2
η

E(
1

L2
wt

| wt)E(∥
1

B

∑
i∈B̄t

Ĝi(wt)∥2 | wt).
(43)

Note that, conditioning on wt,

E∥ 1

B

∑
i∈B̄t

Ĝi(wt)∥2 ≤ 1

B
(Aw∥∇L(wt)∥2 +Ab) + ∥∇L(wt)∥2 (44)

where the inequality follows from Theorem D.4. Then, combining the Equation (54) and Equa-
tion (44), we have

E(L(wt+1) | wt) ≤ L(wt)− (
1

LwtCη
− 1

LwtC
2
η

(
Aw

B
+ 1))∥∇L(wt)∥2 +

Ab

LwtC
2
ηb
. (45)

Recalling that Lwt
= (1 + γL)2L + Cbb + CLC

2
ηEi∥∇Ti

(wt)∥ and conditioning on wt, we have
Lwt

≤ L and

Lwt
≤ (1 + γL)2 + Cbb+ CL(∥∇ℓt(wt)∥+ σ)

≤ (1 + γL)2 + Cbb+ CL(
C1

C2
+ σ) +

CL

C1
∥∇L(wt)∥,

(46)

then, we have

E(L(wt+1) | wt) ≤ L(wt)
( 1
Cη

− 1
C2

η
(Aw

B + 1))∥∇L(wt)∥2

(1 + γL)2L+ Cbb+ CL(
C1

C2
+ σ) + CL

C1
∥∇L(wt)∥

+
1

LC2
η

Ab

B

= L(wt)
( 1
Cη

− 1
C2

η
(Aw

B + 1))∥∇L(wt)∥2

C1

CL
(1 + γL)2L+ C1Cbb

CL
+ C2 + C1σ + ∥∇L(wt)∥

+
1

LC2
η

Ab

B

(47)

Combining the definitions in Equation (40) with Equation (47) and taking the expectation over wt,
we have

E
ψ∥∇L(wt)∥2

φ+ ∥∇L(wt)∥
≤ E(L(wt)− L(wt+1)) +

ϕ

B
. (48)

Telescoping the above bound over t from 0 to T − 1 and choosing ζ from 0, . . . , T − 1 uniformly at
random, we have

E
ψ∥∇L(wζ)∥2

φ+ ∥∇L(wζ)∥
≤ ∆

T
+
ϕ

B
. (49)

Consider a function f(x) = x2

c+x , x>0, where c > 0 is a constant. Simple computation shows that

f ′′(x) = 2c2

(x+c)3>0. Thus, applying Jensen’s inequality, we have

E
ψ∥∇L(wζ)∥2

φ+ ∥∇L(wζ)∥
≤ ∆

ψT
+

ϕ

ψB
, (50)

20



Under review as a conference paper at ICLR 2023

which further implies that

E∥∇L(wζ)∥ ≤ ∆

2ψT
+

ϕ

2ψB
+

√
φ(

∆

ψT
+

ϕ

ψB
) + (

∆

2ψT
+

ϕ

2ψB
)2 (51)

which finishes the proof.

Theorem D.6. Under the same setting of Theorem D.5, choose γ = 1
8L , Cη = 80. We have

E∥∇L(wζ)∥ ≤ O

(
1

T
+
σ2

B
+

√
1

T
+
σ2

B

)
(52)

Proof. Since γ = 1
8L , we have (1 + γL)4 < e0.5 < 2, and thus

Aw < 32, Ab < 8(σ + b)2 + 4(σ2 + b̃)

CL < (
5ρ

32L
+
ρ

L

5

16
)
5

4
<

5ρ

8L
,

CL >
ρ

L
(γL) >

ρ

L
γL >

ρ

16L
,

Cb <
15

32

ρ

L

1

4
<

ρ

8L

(53)

which, in conjunction with Equation (40), yields

φ ≥ 24L2

ρ
+

37b

16
, ψ ≥ 1

80

4L

5ρ
(1− 33

80
) ≥ L

200
, ϕ ≥ 2(σ + b)2 + (σ2 + b̃)

1600L
. (54)

then, combining Equation (52) and Equation (54) yields

E
ψ∥∇L(wζ)∥2

φ+ ∥∇L(wζ)∥
≤ ∆

ψT
+

ϕ

ψB
, (55)

which further implies that

E∥∇L(wζ)∥ ≤ ∆

2ψT
+

ϕ

2ψB
+

√
φ(

∆

ψT
+

ϕ

ψB
) + (

∆

2ψT
+

ϕ

2ψB
)2

≤ O

(
1

T
+
σ2

B
+

√
1

T
+
σ2

B

) (56)

Theorem 4.1 shows that the proposed method converges linearly with the number T of outer-loop
meta iterations, and the convergence error decays linearly with the number B of sampled mini-batch.
The convergence rate is further significantly affected by the number the inner-loop steps. Specifically,
with respect to θS , meta-learning based converges exponentially fast as inner-loop cost increases.

E EMPIRICAL RESULTS OF HIGH NOISE RATIO

The experimental results of high noise rate are shown in A.

F MORE ABLATION STUDIES

The ablation experiment mentioned in the main paper is supplemented in this session. In this section,
we evaluate the effect of various modules on the CIFAR100 dataset with 40% symmetric noise. We
first conduct the experiments on the CIFAR10 with symmetric noise use ResNet18 Backbone. And
the other hyper-parameters are the same as those in the main paper.
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Table A: Test accuracy on CIFAR10 / CIFAR100 with symmetric noise.
Dataset Cifar10 Cifar100

Method M τ = 0.8 τ = 0.9 M τ = 0.8 τ = 0.9

F-Correction Patrini et al. (2017) × 63.30 42.90 × 19.90 10.20
Co-teaching+ Yu et al. (2019) × 67.40 47.90 × 27.90 13.70
DivideMix Li et al. (2020) × 92.90 76.00 × 60.20 31.50
DM-AugDesc Nishi et al. (2021) × 93.77 91.76 × 66.04 40.89
UNICON Karim et al. (2022) × 93.90 90.80 × 63.90 44.80

Ours × 93.34 78.72 × 61.23 34.75

Figure 4: (a) and (b) indicate the loss curves of student and teacher network on CIFAR10 corrupted by 40%
symmetric label noise, respectively. (c) indicates the curves of distillation criterion for each class, also known as
Rt(c).

F.1 DISTILLATION CRITERION

In this section, to illustrate the effectiveness of the meta-feedback mechanism, as shown in Fig-
ure 4 (a,b), by comparing our loss curves (Equation (2)) with clean and noisy cross-entropy curves.
As training progresses, the meta-feedback mechanism makes the network to quickly fit clean samples
and obtain curves consistent with clean CE losses. In addition, as shown in Figure 4 (c), we visualize
the distillation criteria under each class.

F.2 THE IMPACT OF BACKBONE

We use an 18-layer PreAct ResNet He et al. (2016) as the network backbone and train it using SGD
with a batch size of 128. Other experimental settings follow the experiments in the main paper.

Table 9: Test accuracy on CIFAR10 with symmetric noise using ResNet18 Backbone.
Method M τ = 0.2 τ = 0.5 τ = 0.8

Purify (Wu et al., 2021b) × 93.4 90.3 69.9
DivideMix (Li et al., 2020) × 96.1 94.6 92.9
C2D (Zheltonozhskii et al., 2022) × 96.2 95.1 94.3
UNICON (Karim et al., 2022) × 96.0 95.6 93.9

Ours × 96.3 95.8 92.1

F.3 ESTIMATED ACCURACY

As for performance measurements, we use the estimated accuracy in each mini-batch, i.e., estimated
accuracy = (# of clean labels) / (# of all selected labels). Specifically, we sample R(t) of small-loss
instances in each mini-batch, and then calculate the ratio of clean labels in the small-loss instances.
Intuitively, higher estimation accuracy means less noisy instances in the mini-batch after sample
selection, and the method with higher estimation accuracy is also more robust to the label noise.
Figure 5 shows the estimation accuracy of our method and Co-teaching for training data on the
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Figure 5: The Estimated Accuracy of the proposed method and Co-teaching.

CIFAR10/100 dataset respectively. This indicator shows the proportion of clean label samples to
small loss samples. Our method can select more clean samples than Co-teaching along with the
training.

G INSTANCE-DEPENDENT LABEL NOISE

We generate instance-dependent label noise following Xia et al. (2020). We compare our proposed
method with the following representative approaches under instance-dependent noise: Peer Loss Liu
& Guo (2020) introduces peer loss, a family of loss functions that enables training a classifier over
noisy labels. CORES Cheng et al. (2021) introduces a sample sieve that is guaranteed to be robust
to general instance-dependent label noise and sieve out corrupted examples. CAL Zhu et al. (2021)
has proposed a second-order approach to transforming the challenging instance-dependent label
noise into a class-dependent one. The initial learning rate is set to 0.05 for both teacher and student
networks, and the detailed experimental results are shown in Table 4. The experimental results
show that our proposed method is more robust and significantly outperforms the baseline methods in
tackling instance-dependent label noise.

H HYPER-PARAMETERS

Figure 6: Accuracy with different hyper-parameters on CIFAR100 with 40% symmetric noise. The
X-axis is the value of corresponding hyper-parameter and the Y-axis indicates accuracy.

In order to explore the influence of different hyper-parameters on the experimental results, we evaluate
the impact of four hyper-parameters on the CIFAR100 dataset with 40% symmetric noise and plot the
accuracy curve for four hyper-parameters under different values. We use the same hyper-parameters
with λ = 0.5, α = 8.0, ξ = 0.7, and label smoothing = 0.10. As shown in Figure 6 and Figure 7 , λ
is set from 0.3 to 0.7, λ = 0.5 results in a better performance. We set αmin = 6.0, as α increases,
α = 8.0 results in a better performance. We pick ξmin = 0.6, ξmax = 1.0, ξ = 0.7 outperforms
than others. Label smoothing is set from 0.05 to 0.25, label smoothing = 0.10 results in a better
performance. The biggest change by sweeping these hyper-parameters is 2% which shows that our
proposed method is insensitive to the hyper-parameters.
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Figure 7: Accuracy on CIFAR100 with 40% symmetric noise of different hyper-parameters.

24


	Introduction
	Related work
	Methodology
	Theoretical Insights
	Experiments
	Label Noise Setting
	Algorithm efficiency
	Long-tailed Imbalance Setting

	Conclusion
	Derivation of the Meta Update Rule.
	Pseudo Code
	Risk Analysis
	Convergence Proof of Our Method
	Basic Assumptions
	Properties of Meta Gradient
	Convergence Results

	Empirical Results of High Noise Ratio
	More ablation studies
	Distillation Criterion
	The impact of Backbone
	Estimated accuracy

	Instance-dependent Label Noise
	Hyper-parameters

