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Abstract

The transformer architectures, based on self-attention mechanism and convolution-
free design, recently found superior performance and booming applications in
computer vision. However, the discontinuous patch-wise tokenization process
implicitly introduces jagged artifacts into attention maps, arising the traditional
problem of aliasing for vision transformers. Aliasing effect occurs when discrete
patterns are used to produce high frequency or continuous information, resulting in
the indistinguishable distortions. Recent researches have found that modern convo-
lution networks still suffer from this phenomenon. In this work, we analyze the
uncharted problem of aliasing in vision transformer and explore to incorporate anti-
aliasing properties. Specifically, we propose a plug-and-play Aliasing-Reduction
Module (ARM) to alleviate the aforementioned issue. We investigate the effective-
ness and generalization of the proposed method across multiple tasks and various
vision transformer families. This lightweight design consistently attains a clear
boost over several famous structures. Furthermore, our module also improves data
efficiency and robustness of vision transformers1.

1 Introduction

Transformers have led to impressive breakthroughs in language understanding, dominating a wide
range of natural language processing (NLP) tasks. Meanwhile, continuous researches strive to
leverage transformers for vision tasks, revolutionizing the conventional inductive bias in convolutional
neural networks (CNNs). After a big leap made by vision transformer (ViT) [1], promising results
on vision tasks have recently emerged [2–4], demonstrating a possibility of using transformers as a
primary backbone for vision applications.

While appealing advantages such as long-range context modeling and parameter efficiency are
introduced by self-attention, this mechanism also brings an inevitable aliasing issue to vision
transformers. Aliasing [5] traditionally refers to the phenomenon that high-frequency signals become
indistinguishable when undersampled [6]. This effect occurs when discrete patterns are utilized to
capture a more continuous signal, resulting in frequency ambiguity. In terms of ViT [1], images are
split into non-overlapping patches during tokenization, which are then fed into transformer blocks.
Compare to the more “continuous” representation of image, tokenization and self-attention performed
on its discontinuous patch embeddings can be regarded as subsampling operations. While alleviating
computational costs, these operations leave a side-effect which leads to possible aliasing.

A simple solution to mitigate aliasing phenomenon is to increase the sampling rate. Similar properties
emerge in vision transformers, where overlapped tokens [7] and smaller patch sizes [1, 8] lead
to improved performance. As increased sampling rates lead to quadratic computation costs, we
hereby conjecture that proper anti-aliasing filters that integrated into the “attending” process could
also provide a fix. A potential concern is that the general purpose of anti-aliasing: to introduce
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“smoothness” to signals, might be contradictory with the goal of self-attention: to capture more
significant and high-frequency features in contrast. How would traditional anti-aliasing techniques
influence vision transformers? And what if we equip these state-of-the-art transformer architectures
with suitable anti-aliasing options?

Figure 1: Visualization of attention maps from pre-trained DeiT-B [9]. The attention maps are visualized by
averaging heads in the selected block. The masks are obtained by thresholding the self-attention maps following
DINO [8]. The second row shows the results after applying our anti-aliasing module to the first transformer
block. The earlier aliasing effect on the fish tail region makes the subsequent layers focus on the incorrect
high frequency and make the wrong prediction. In contrast, the employed anti-aliasing maintains the overall
smoothness, leading follow-up layers to capture more continuous features along the real semantic contour.

To this end, we design the Aliasing Reduction Module (ARM) for vision transformers, which consists
of an anti-aliasing filter and an external modulation module. Extensive investigations are conducted
primarily, including the filtering choices such as the basic Gaussian blurring filters in [10] and
learnable convolutional filters, as well as different placements of these filters. Notably, based on
the observations that the “jagged” phenomenon varies across images and locations, we propose an
adaptive filtering method which draws inspirations from dictionary learning [11]. Specifically, a
lightweight aliasing estimation network is constructed to predict the combination coefficients of the
pre-defined low pass filter bank adaptively. Furthermore, the position of integrating our Aliasing
Reduction Module in highly-modularized transformers is crucial. The model benefits from an
early anti-aliasing operation right after the self-attention computation, which is distinctive from the
observations in CNNs [10, 12]. As elaborated in Figure 1, the module brings perceptually smoother
attention, which leads to better feature localization and eventually correct prediction. By integrating
ARM to state-of-the-art architectures, we consistently find a considerable margin of improvement.

To summarize, our contributions are:

• We investigate anti-aliasing techniques for vision transformers, and propose the Aliasing
Reduction Module (ARM), which is compatible with most existing architectures.

• We tailor various anti-aliasing strategies and different placements of aliasing reduction,
which are distinctive from the observations in CNN structures.

• Experiments show that our simple yet effective design boosts sophisticated state-of-the-art
vision transformers. Furthermore, we observe stronger generalization, robustness, and
data-efficiency brought by our anti-aliasing strategy.

2 Related Works

Vision Transformers. The transformer structure was introduced in [13] for machine translation,
which further became a general purpose model for many NLP tasks. The Vision Transformer (ViT) [1]
firstly closes the gaps on image classification with previous CNN models using pure transformer.
DeiT [9] further improves training data efficiency of ViT, utilizing an additional distillation token
for teacher-student training as well as stronger data augmentations [14, 15]. Given its superior
performance on classification, recent works apply transformer architecture to various vision tasks,
including object detection [16, 17], segmentation [3, 18, 19], point cloud processing [20], image
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generation [21–24] and so on. In order to obtain better transformer architectures that generalize
well to general vision tasks, some concurrent advances have introduced hand-crafted designs. For
example, CPVT [25] and CoaT [26] improves the original positional encoding. T2T [7] improves
the naive tokenization process. Multi-scale information [27, 28], convolutional designs [29–31], and
pyramid structures [32, 33] are also utilized in vision transformer extensions. Due to the inefficiency
and unnecessity of self-attention, some researchers also explore approximated attention [34], local
attention [31, 32] or even replacing it with MLP structure [35]. Different from these designs, our work
dive into the “feature-resampling” property of the self-attention mechanism, which leads to aliasing
and performance degradation. To this end, we investigate a lightweight anti-aliasing module to help
mitigate the effect. This design is general and compatible with most vision transformer architectures.

Anti-aliasing in CNNs. The definition of aliasing was originally covered in signal processing [6],
which causes the distortion on sampled signals to reconstruct original signals. The aliasing issue
occurs in CNNs with any strided layers, such as max pooling and strided convolution. While early
smoothing methods like average pooling [36] degrades performance on modern models and bench-
marks, the elegant Blurpool [10] introduces both anti-aliasing properties and increased accuracies to
strong baselines. DDAC [12] further assigns adaptive filters for each spatial location and channel
group. These anti-aliased CNNs demonstrate both better recognition, generalization to downstream
tasks and robustness towards corruptions [37, 38].

Differs from CNN structures, vision transformers do not have explicit “strided” subsampling except
for the tokenization step, i.e. patch embedding. Furthermore, their potential downsampling [32, 33]
choices are mostly densely-connected layers. Thus the observations and techniques for CNNs may
not generalize well to transformers. In contrast, we argue that in transformer, self-attention on split
patch tokens can be viewed as a “resampling” step which tries to reconstruct the informative part on
the original continuous pixel representation of images. To this end, we investigate on anti-aliasing
self-attention operation, in order to learn a more continuous and smoothed attention representation.

3 Methodology

We propose to blend the anti-aliasing property into vision transformers by processing the inner
representation with a lightweight Aliasing Reduction Module (ARM). ARM consists of an anti-
aliasing filter as well as an external smoothing module. The anti-aliasing operator can be chosen
flexibly among a traditional low-pass filter, e.g. Gaussian filter, a learnable convolutional filter, or
a pre-defined filter bank. In this section, we will first explain what raises the issue of aliasing in
vision transformers, as well as its difference compared with the twin problem in CNNs. Secondly,
we provide the details about how we design the proposed ARM and the crucial choice of where to
integrate it.

3.1 What makes for aliasing in vision transformer?

Frequency aliasing is the phenomenon occurs when performing subsampling on any type of signal,
for instance an audio, an image or a video. When the sampling rate is lower than bandwidth of the
original signal and does not meet the Nyquist rate [39], the resampled signal will be aliased where its
high frequency patterns interlace with the low frequency components additively. As demonstrated in
Figure 2, this effect usually results in visible corruptions and artifacts.

Figure 2: Different types of aliasing: (a) aliasing on 1D signal; (b) aliasing on images [12]; (c) aliasing in
graphical rendering [40]; (d) aliasing from self-attention. For (d), we visualize the attention map from pre-trained
DeiT-B [9] by averaging the heads in the first block, where inconsistent semantic importance is observed.

As discussed in [10], convolutional networks also suffer from aliasing which is caused by strided
operations, i.e., strided convolution or max pooling, that commonly exist in widely adopted CNN
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structures. The subsequent layers following the strided operations are likely to extract features from
the distorted inputs. Such artifacts might affect the final prediction, as well as model’s robustness
towards natural corruptions.

Self-attention mechanism allows transformers to integrate information across all spatial locations, by
resampling the importance of feature representations based on self-affinities. However, with quadratic
cost in terms of large number of pixels, naive application of “per-word” tokenization in NLP does not
scale to realistic image sizes. A widespread practice is to process each input image into a sequence
of patches as in ViT [1]. The patch tokenization and embedding indeed alleviate computational
costs while inevitably bring in the problem of aliasing due to the discontinuous processing. When
there exists an aliasing phenomenon in very early layers, the subsequent transformer blocks will be
overwhelmed by the misled signals. Similar to CNNs, vision transformers have another potential
aliasing sources from the downsampling layers. Note that there exists no progressive downsampling
in ViT-based architectures, we further analyze whether the feature map downsampling in recent
transformer architectures [32, 30, 33] influences the model in Section 3.2 and Section 4.2.

In conclusion, the discontinuous tokenization process and its succeeding self-attention make for the
aliasing phenomenon in vision transformer, further limiting their modeling power. Meanwhile, it’s
computationally infeasible to simply extend the finite token sets through smaller resolutions or even
pixel-wise processing. To this end, we aim to develop a generic anti-aliasing module that mitigates
this omitted phenomenon in vision transformers.

3.2 Incorporating anti-aliasing module into vision transformer

In this section, we answer two questions raised above: how we design the structure of ARM and
where to place it inside the highly-modularized transformer architecture.

We first re-visit the implementation of a transformer block for vision transformer. Given an input
x ∈ RC×H×W , the block first splits x into a sequence z ∈ RN×d with a length of N where
the dimension of patch embedding is d. The sequence representation is then passed into a fully
connected layer. The FC layer projects the sequences into query, key and value with the same hidden
dimension [q, k, v] ∈ RD×3Dh , where D and Dh represent the input and hidden dimension. Then
self-attention SA can be formulated as:

A = softmax(qkT /
√
Dh) (1)

SA(z) = Av (2)

Then with the projection and normalization, the attention map x̂ is obtained. The attentive signal is
accumulated back to the original input x.

As we’ve analyzed in Section 3.1, the self-attention operation is conducted on split patch tokens
from the original feature maps. This process “attends” to finite sets of discrete tokens and identifies
relevant features from them, collecting stronger significance while bringing in aliasing. In other
words, the attention map x̂ is a resampled signal from the original representation x, which is more
discrete and sparse. To this end, we choose to directly act on the aliased attention map and apply
anti-aliasing operation on it. The general purpose is to make the attention signal more continuous and
robust. A recent work FNet [41], which replaces self-attention in BERT [42] with Fourier Transforms,
may also share the same spirit. Besides, we’ve also tried to put the smoothing filter to the different
positions, such as tokenization process or downsampling step in Swin Transformer [32]. Detailed
discussion about the placement can be found in Section 4.2.

Figure 3 provides an overview of the proposed Aliasing Reduction Module (ARM). The module
adaptively smooths aliased attention maps computed from the discontinuous token sets. We tailor
three valid choices of the anti-aliasing filter as visualized in Figure 3:

Gaussian Filter. In order to investigate whether the model suffers from aliasing, the simplest
approach is to smooth the attention map with a traditional low pass filter. Hereby we choose the
Gaussian blur, which is effective at reducing image noise and leaving fewer sharp edges. The filter is
kept frozen during training, introducing roughly zero computation cost to training and testing.

Learnable Convolution Filter. While Gaussian blurring servers as an efficient operator at removing
noises, applying such fixed smoothing to the entire feature map inevitably results in some valuable
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Figure 3: Method overview. The left portion illustrates the placement of Aliasing Reduction Module (ARM).
On the right, we demonstrate the detailed design of ARM. Note that the filter could be chosen among a Guassian
kernel, a learnable filter, as well as the drawn filter bank.

high frequency information loss. As has been discussed in [12], it’s sub-optimal to apply the same
filter across the varying content. To this end, we also propose a learnable convolution-based filter.
The content-aware filter adaptively learns to produce varying anti-aliasing effect. On the contrary,
this design incurs additional trainable parameters and extra GPU memory.

Pre-defined Filter Bank. Due to the unconstrained nature of attention representations, the training of
shallow Anti-Aliasing convolution filter is unstable as the gradients oscillate between varying attention
maps. While other strategies such as residual learning and encoder-decoder structures may alleviate
these issues, this line of method demands even more computation costs. To balance the trade-off, we
predefine a filter bank that contains disparate degrees of smoothness. A lightweight convolutional
layer is optimized to estimate the combination coefficient of the atomic filters. Specifically, The filter
Fi ∈ Rk×k, which denotes a filter in the i-th channel of the input attention maps, is constructed as a
linear combination of n pre-defined filter dictionary D from the coefficient Φ:

Fi =

N∑
j=1

ΦjDj (3)

Based on the predicted coefficient from the weight head, a complex filter can be derived from the
pre-defined filter bank. Since the estimated filter evolves within the linear space constructed from the
atomic filters in the dictionary, it is feasible and fast to optimize. The linear assembling strategy has
been proven effective in computational photography [43], parametric human body representation [44],
network compression [45] and acceleration [46].

Specifically, we compose our pre-defined filter bank with Gaussian filters as well as a small portion
of difference of Gaussians (DoG), which can endow the feasibility when edge-preserving properties
are required. As visualized in Figure 4, the filter bank is constructed by altering the covariance matrix
of multivariate Gaussian kernels, reflecting in varying scale, rotation, and ellipticalness. Each filter is
normalized to the summation of 1. Thus the weights of a k × k sized kernel is defined based on the
probability density function (PDF) of the Gaussian distribution with a covariance matrix Σ:

k(x− x0; Σ) =
1

2π|Σ| 12
e−

1
2 (x−x0)T Σ−1(x−x0)T (4)

Beyond the “internal” smoothing operation within each attention map, we also explore the
effect brought by “external” modulation approach. Using buffered frames, temporal Anti-
Aliasing (TAA) [47] in computer graphics tackles the aliased patterns that the edge-smoothing
filters handle poorly. Inspired by this, we propose to ensemble our anti-aliasing filter with an ex-
ternal regularization which reduces the internal shift in attention maps using batched samples. We
operationalize the module using a batch norm [48] after the filtered attention maps. As the normal-
ization operation has been analyzed to bring smoothness into the optimization process of neural
networks [49], it is non-trivial to be ensembled into our Aliasing Reduction Module for being able to
mitigate separate patterns and oscillations, of which the filter-based methods are incapable.
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Figure 4: Visualization of a 5× 5 pre-defined filter bank, which consists of 8 filters. Note that the parameters
of i, j, rotation, scaling, and ellipticalness, are sampled stochastically. The experiment results are consistent
using different random seeds. We provide more details about the generation of filter bank in the appendix.

In summary, our anti-aliasing component is composed of an anti-aliasing filter, which can either
consist of a Gaussian filter, the learnable convolution, and the proposed filter bank. Subsequently,
an external modulation module connects to the filters, rescaling the filtered features. The module
directly applies smoothness to the attention maps, thus being pluggable to most vision transformation
architectures.

4 Experiments

In this section, we first conduct extensive experiments to analyze the suitable design choices, including
which anti-aliasing filter to choose and where to integrate our anti-aliasing component. With these
observations, we apply our proposed aliasing reduction module to various state-of-the-art vision
transformer architectures. To validate its effectiveness, we comprehensively perform downstream
tasks, data-efficient training, as well as robustness evaluation. In the end, we present additional
ablation studies to justify the contribution of each design.

4.1 Choices of Anti-Aliasing filter

As discussed in Section 3.2, three filters are designed with different anti-aliasing effects. In order to
compare their respective influence, we conduct apple-to-apple comparison and keep the placement
consistent with the best conclusion made in Section 4.2. We choose Swin-T [32] as our main baseline
for its dominating performance and efficiency.

All training and testing parameters remain consistent with its open-source implementation [50]. In
Table 1, we report the performance of different anti-aliased variants on ImageNet [51] validation set
with 50K images. All models are trained for 300 epochs.

Method Input
size # Parameters. FLOPs Throughput

( image/s)
ImageNet 2012

Top-1 Acc
Original 2242 28.3M 4.5G 746.0 81.2

w Gaussian 2242 28.3M 4.5G 732.4 81.5
w Learnable 2242 28.7M 4.9G 668.9 81.6

w Filter Bank (n=8) 2242 28.6M 4.6G 708.4 82.0

Table 1: Comparison of different anti-aliasing filters on ImageNet classification.

Despite smoothing seems to be conflicting with the spirit of attention, we still see an increased
accuracy in Table 1 when a fixed Gaussian filter is applied to the strong baseline. The improvement
indicates that vision transformer structures benefit from naive anti-aliasing. However, there is no
significant boost when we switch the Gaussian filter to a more powerful convolution operator. We
thus reckon that as the attention maps vary across different heads and instances, it is extremely
difficult to capture the high-level relationship using such a simple structure. The proposed filter bank
strategy achieves the best results, which manifest the feasibility of anti-aliasing. The pre-defined
filters provide several anti-aliasing templates which alleviate the training curse from the huge diversity
between the attention of individuals.
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Table 2: Comparisons of different placements
of the proposed aliasing reduction module.

Model Placement (after) Top-1 Acc
DeiT-S - 79.8
DeiT-S Patch Embedding 79.5
DeiT-S Attention 80.7
DeiT-S Attention + shortcut 78.1
Swin-T - 81.2
Swin-T Patch Embedding 81.0
Swin-T Attention 82.0
Swin-T Attention + shortcut 79.8
Swin-T Patch Merging 79.5

Table 3: Comparison of different layers of
transformer encoders being filtered. Top-2
results are in bold size. Diff indicates the
performance gap to the baseline where no
anti-aliasing is performed.

Filtered Layers Top-1 Acc
1 2 3 4 Val Diff
- - - - 81.2 -
X 82.0 +0.8
X X 81.7 +0.5

X X 80.6 -0.6
X X X X 81.3 +0.1

4.2 Placements of Aliasing Reduction Module

Interestingly, we find that the correct placement of the anti-aliasing filter is crucial, as improper
positions to insert such “smoothing” operation would potentially hurt valuable information.

As mentioned in Section 3.2, the aliasing issue potentially emerges during the discontinuous tok-
enization and the self-attention’s resampling process. It’s straightforward to apply the anti-aliasing
operation to these positions including patch embeddings, attention maps, and the fused inputs with
attention maps, i.e. after the shortcut connection in the transformer encoder. While aliasing in CNNs
majorly happens after strided layer, there is no such downsampling in ViT [1] family. We hereby
choose Swin-T as the baseline as it follows a powerful and hierarchical structure, and experiment
whether the fully connected downsampling (patch merging) brings in aliasing.

Table 2 illustrates the uneven effects from different placements of the anti-aliasing module. Training
settings are consistent with the ones in Section 4.1. Both DeiT [9] and Swin [32] transformers
encounter minor performance drop when we choose to smooth their patch embeddings. In contrast,
anti-aliasing on attention maps brings improvement to both baselines. Nevertheless, if we move a step
further and try to filter the post-shortcut features, significant degradation in accuracy is observed. As
discussed, self-attention operations in vision are analogous to a feature resampling on discontinuous
tokens. It attends the overall feature to a more significant representation and leads to potential aliasing.
Applying the smoothing techniques to attention maps makes the signals more continuous and can
reduce some impulse noise, thus improving the overall performance. From another perspective,
low-pass filtering on the attention branch will not diminish the amount of total information as the
values are still presented in the shortcut path. Conversely, filtering after shortcuts inevitably reduces
the total information and leads to the accuracy drops in Table 2. Unlike previous findings in CNNs,
smoothing the downsampling in transformer leads to a dramatic performance drop, suggesting that
the densely-connected subsampling in vision transformers requires no anti-aliasing.

As we have chosen to apply anti-aliasing to attention maps, another question arises: how many
transformer blocks we choose to smooth? The cascaded transformer encoders in vision transformers
gradually increase the significance of attention. Anti-aliasing on different depths might have different
influences on the succeeding layers. Table 3 shows the respective influences on anti-aliasing different
layers in transformers. Note that Swin-T has a 2-2-6-2 layer number, which denotes how many
transformer blocks exist in each layer. Then each row in Table 3 refers to filter all the blocks in
the marked layers. The results show that anti-aliasing on earlier layers contributes to a substantial
performance boost, while deeper integration leads to performance degradation. These observations
indicate that the aliasing problem mainly occurs when the continuous images are split into separate
tokens and become self-attended with the partial signals. As the layers go deeper, the “attended” mes-
sage in the tokens has already been individual and separable, where such over-aggressive smoothing
operations instead decrease the inherent salient information. Our observations accord with some
recent findings on the robustness of transformers [52, 53]. In [52], people find that the CLS token
in ViT [1] changes slowly at earlier layers, but evolves rapidly in later layers where limited updates
happen to representations of individual patches. Though no CLS token, the cascaded architectures in
Swin identically build up the functionality that earlier layers refine the tokens embedding and the
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latter layers consolidate the overall information for classification. These findings explain the uneven
effects brought by different placements.

In conclusion, our anti-aliasing strategy for vision transformers is to employ our module directly on
the recomposed attention maps, and merely at the earlier transformer layers.

4.3 Comparison of state-of-the-arts

To further validate that our anti-aliasing technique is versatile with different vision transformer
architectures, we integrate the proposed module to several state-of-the-art models, including DeiT [9],
CoaT [26], Token-2-Token ViT [7], and Swin Transformer [32]. These networks contain distinctive
designs and pipelines for improving the performance of Vision Transformer. To allow a fair compari-
son, we utilize the original training scripts [54–56, 50] and keep the training parameters consistent
with the provided ones. Except for T2T ViT [7], which is originally trained for 310 epochs, all models
are trained for 300 epochs on ImageNet [51] training set using 8 Tesla V100 GPUs. When applied
with our component, the training configurations are maintained the same as the baselines, such as the
optimizers and data augmentations. Table 4 shows how our method influence these state-of-the-art
vision transformers. We here use the pre-defined filter bank which consists of 8 randomly sampled
3× 3 kernels and integrate it into the first two transformer blocks as analyzed in Section 4.2.

Transformer Family Model #Parameters. Throughput
(image/s) Top-1 Accuracy

CoaT [26]

CoaT-Lite-Tiny 5.7M - 77.5
CoaT-Mini 10M - 80.8

CoaT-Lite-Tiny w Ours 5.7M - 78.4
CoaT-Mini w Ours 10M - 81.5

ViT [1], DeiT [9] family

DeiT-S 22.1M 425.6 79.8
DeiT-B 86.6M 285.4 81.8

DeiT-S w Ours 22.3M 402.7 80.7
DeiT-B w Ours 86.7M 259.1 82.4

Token-to-Token [7] T2T-ViT-14 21.5M - 81.5
T2T-ViT-14 w Ours 21.7M - 81.9

Swin Transformer [32]

Swin-T 28.3M 746 81.2
Swin-S 49.6M 423.8 83.0
Swin-B 88M 273.1 83.3

Swin-T w Ours 28.5M 708.4 82.0
Swin-S w Ours 49.8M 401.5 83.5

Table 4: Top-1 accuracy on ImageNet validation set. All experiments use the input size of 224 × 224.
Throughput is measured on a Tesla V100 GPU using [57].

From Table 4, we can find that improvements are made across different transformer architectures. For
the lightweight baseline CoaT-Lite [26], about one percent improvement can be observed. By utilizing
stronger backbones such as DeiT [9] and Swin [32], our anti-aliasing variants also outperform their
“aliased” counterparts by a clear margin. While T2T [7] utilizes the soft splits with overlapping and re-
structurization strategies that could potentially reduce aliasing, our module still yields improvement,
which manifests the consistent benefit from our anti-aliasing strategy. Notably, the anti-aliased
Swin-S model surpasses Swin-B, which is roughly 2 times heavier. Due to space limits, we verify the
effectiveness on two downstream tasks, object detection and semantic segmentation, in the appendix.

Table 5: Ablation about varying sizes of the pre-
defined filter bank. Each row represents a model
trained with n-sized bank. 10% and 100% denote
the percentage of ImageNet training set we used.

Number of Kernels Top-1 Accuracy
10% 100%

n = 2 43.8 81.6
n = 8 45.81 82.0
n = 16 46.5 81.8
n = 24 46.1 81.5

Table 6: Ablation about the external modulation. “Fil-
tering” refers to the proposed filter and “External” de-
notes our external modulation. The gray row shows the
results when applied it to all four layers in Swin-T.

Top-1 AccuracyVariants Layer Val Difference
Baseline - 81.2 -

+ Filtering 1 81.7 +0.4
+ External 1 82.0 +0.3
+ External 1,2,3,4 80.6 -1.4
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4.4 Ablation studies

While the choice of filter and placement ablations have been conducted in Section 4.1 and 4.2, there
still exist potential factors that may influence the final performance. For efficiency and consistency,
we perform all the following ablation studies using Swin-T with identical parameters to those in
Section 4.3.

Number of filters. We increase the number of pre-defined filters to study the influence of a larger
dictionary. As shown in Table 5, we can see a trend of improvement from the growing bank when the
number is smaller. However, a larger dictionary doesn’t help significantly when n > 8 and further
saturates. When trained with fewer data, the model benefits from a relatively large filter bank which
provides more details. Since more filters introduce redundancy and complexity, we choose a proper
size of 8 for all experiments unless otherwise stated.

External Anti-aliasing. In Table 6, we further analyze how much gain does the external modulation
bring. It’s easy to find that both filtering and modulation are beneficial. Besides, we can observe a
similar performance drop in Section 4.2, if we solely apply the external modular to all transformer
blocks. The result in the gray row indicates that over-aggressive normalization on attention, especially
on deeper layers, might be harmful.

Speed Analysis. During our implementations, the weights of anti-aliasing filter are ensembled into
convolution, i.e. F.conv2d in PyTorch [58]. The process of smoothing can be viewed as performing
depth-wise convolution with defined kernels. Our technique only brings in a negligible number of
parameters since the filtering operation is “depth-wise”. Owing to the slower implementation of
group convolution in cuDNN and PyTorch, about 4% to 5% lower throughput can be seen in Table 4.
Given a better implementation, our module could further be accelerated.

4.5 Data efficiency and feature robustness

Another major curse of vision transformers is data efficiency. As ViT [1] is originally trained with
hundreds of millions of images [59], previous methods have been making efforts to increase its data
efficiency. We hereby investigate whether our module is beneficial for data utilization. Thus we
conduct comparisons by limiting the training data and training epochs. We train the baseline models
as well as their anti-aliased ones using a smaller portion of ImageNet for only 100 epochs. Besides
the consistent elevations in Table 7, we can find that relative improvements are even larger when
the numbers of training samples become smaller. The results verify that our smoothing strategy is
capable of enhancing data efficiency and improving generalization.

Dataset PCT (%) Top-1 Accuracy
Original Ours Improved

ImageNet-1k

10 42.64 45.81 7.4%
20 60.9 63.19 3.8%
30 67.72 69.9 3.2%
40 71.41 72.89 2.1%
50 73.6 74.92 1.8%

Table 7: Each row represents the accuracy on validation when the
model is trained using a percentage of the original ImageNet-1k
training set. The baseline architecture here follows Swin-T [32].

# Params FLOPs normalized
mCE↓

AA Res-50 [10] 25.6M 4.2G 73.4
Swin-T 28.3M 4.5G 60.7

Swin-T + ARM 28.4M 4.6G 59.8

Table 8: Normalized mean corruption
error mCE on ImageNet-C, which mea-
sures the robustness towards corruptions.

We further validate whether the proposed ARM upgrades the robustness of vision transformers
towards natural corruptions on ImageNet-C [60], as observed in anti-aliased CNNs [10]. Though
transformers have demonstrated dominance against corruptions compared to CNNs [52, 61], our
module still enhances the robustness of the baseline structure Swin-T as shown in Table 8. We would
like to emphasize that the baseline Swin-T is already very strong, with an absolute 12.7% reduction
in terms of mCE comparing to anti-aliasing ResNet50 [10].

4.6 Analysis of the Serial Characteristics of Transformer Blocks

We also present some analysis on understanding the serial information flow in vision transformers.
It’s natural to conjecture that the attention signals grow more “peaked” in deeper blocks, leading to
confident final predictions. The gradually varying attention maps could potentially lead to different
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degrees of aliasing in different layers. In order to study the serial characteristics in vision transformer,
we perform a pioneering study on the implicit divergence between different layers.

Figure 5: Accuracy of recognizing the degrees of input blurring from the attention maps at different layers.
The classification model follows the ResNet50 architecture with 6-channel input. The attention maps are from a
pre-trained DeiT-Base on ImageNet.

Settings. We utilize a pre-trained DeiT-Base [9] model, which consists of 16 transformer blocks in
total. To verify whether there exists unknown effects from different depths in vision transformer, we
use 50000 images from ImageNet-val and process them with 5 different levels of Gaussian blurring.

The original 50K images are split into training split with 45K images and testing split with 5K
images. By feeding the blurred images into the pre-trained vision transformer, we save their feature
maps from the [0, 4, 8, 16]-th blocks and assign them one-hot labels based on the given levels of
Gaussian blurring. Given these annotations, we train another estimation network to examine whether
the degrees of Gaussian blurring on input images could be inferred from the inner representations.
The network follows the default ResNet-50 [62] architecture and is trained with cross-entropy loss
based on the 5 classes from blurring levels. Then the model is evaluated on the testing split to
recognize which level of blurring is introduced. We respectively train four estimation networks using
the features from [0, 4, 8, 16]-th blocks and report the results in Figure 5. Note that the accuracy is
relatively low since we keep the blurring effects subtle which are hardly recognized by human.

Analysis. From Figure 5, we find that it’s at least recognizable of those content-agnostic signals like
Gaussian blurring on inputs at earlier transformer blocks. However, these nuisance signals become
hard to distinguish in deeper transformer blocks and result in a random guess. The results verify
that, similar with the hierarchical design in CNNs [63, 37], vision transformers also have a serial
characteristic that gradually extracts high-level features from inputs. In consequence, different levels
of aliasing occur with different instances and different layers. These observations indicate a dilemma
between dealing with aliasing or truly-valuable high frequency information.

Furthermore, the accuracies (about 20%) on deeper transformer blocks show that the nuisance signals
are filtered and the estimation process approximates a random guess. The comparative results indicate
that deeper layers in vision transformers are focusing on aggregating high-level semantics globally
while the shallower blocks refines the extracted token embeddings from inputs, which better explain
why anti-aliasing on deeper layers leads to a performance drop as in Table 3.

5 Discussion and Conclusion

In this work, we explore feasible solutions for mitigating the aliasing issue in vision transformers.
Unlike prior works introducing modified pipelines or increased sampling rates, we investigate a
versatile aliasing reduction module which is compatible with these designs. Our method has shown
promising results in terms of recognition, generalization, and robustness. The relatively small but
noticeable improvements from the frozen Gaussian filter suggests that the power of self-attention on
images may not be fully exploited.

We also note that anti-aliasing for modern neural networks still remains an open problem. Our findings
initially draw novel insights towards understanding the source of aliasing in vision transformers. As
such phenomenon is currently hard to quantify, we also expect a more interpretable and advanced
operation. We also plan to generalize our module to other vision tasks beyond backbones.
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