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Abstract

We introduce a framework for causal discovery and attribution of causal influence1

for rare events in time series data–where the interest is in identifying causal links2

and root causes of individual discrete events rather than the types of these events.3

Specifically, we build on the theory of temporal point processes, and describe4

a discrete-time analogue of Hawkes processes to model the occurrence of self-5

exciting rare events with instantaneous effects. We then introduce several scores6

to measure causal influence among individual events. These statistics are drawn7

from causal inference and temporal point process theories, describe complementary8

aspects of causality in temporal event data, and obey commonly used axioms for9

feature attribution. We demonstrate the efficacy of our model and the proposed10

influence scores on real and synthetic data.11

1 Introduction12

The field of causal inference studies causal links among random variables of interest, disentangling13

causal effects from simple statistical associations [25, 27]. For example, quantifying the causal effects14

of a medical treatment on patient outcomes concerns two primary random variables—treatment and15

outcome—potentially along with other covariates to consider. In causal discovery, the aim is to16

recover causal links among finitely many well-defined random variables from which a finite sample17

is observed. However, many causal questions in real world applications take on a different form18

that do not appeal to these descriptions. Many applications in root cause analysis comprise singular19

discrete events that unfold in time, and the objective is to recover causal links and chains among these20

individual events [40]. For example, in system administration and operations (recently, AIOps) it is21

often required to establish root causes of some adverse events such as failures and outages to other22

events in the data such as deployments and failures in dependencies. In the study of electronic health23

records, one may be interested in causally tracing changes in a patient’s trajectory to treatments. These24

examples can be viewed as establishing causal links among individual rare events unfolding in time.25

In multivariate event streams, where events can be identified as members of finitely many types, these26

questions extend to whether one type of event Granger-causes another [1, 8]. However, there exists27

no framework for defining this problem in the language of causal discovery and for attribution of28

causal effects among individual events as opposed to types of events. We aim to address this problem29

in this work, paving the way to a unified and consistent methodology for identifying root causes in30

event streams.31

In this paper, our objectives are twofold. We will first introduce a novel time series model for rare32

“event” data where occurrences of events will be represented as binary random variables in discrete33

time. Our model is inspired by the rich theory on temporal point processes (TPP) [7] and self-exciting34

point processes [12, 13]; and will serve to represent event data in a statistical framework that is35

amenable to causal analysis. We will then use this model to utilize the tools of time-series causal36
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inference and discovery, introducing two measures of causal contribution among events that are37

analogous to causal effects as defined by Pearl[25]. Finally, we will link these quantities to existing38

results on Hawkes processes and Granger causality. Together, our model and causal attribution39

scores constitute a framework for fitting rare event processes and attributing causal influence among40

individual events.41

2 Preliminaries42

Causal Inference Causal inference focuses on drawing causal conclusions from data, establishing43

some variables as the causes of others as opposed to simply recovering associational relationships44

(i.e., correlations) among them. One formalism often used in causal inference is the causal Bayesian45

network (CBN) [25, 30], which is a Bayesian network that obeys the causal Markov condition, i.e.,46

that the joint distribution of random variables X1, X2, · · · , XN decomposes as47

P (x1, x2, · · · , xN ) =
∏
i

P (xi|PAi = pai),

where PAi denotes the set of variables Xj that are the parents of Xi in the CBN, and48

pai the corresponding random variates. Moreover, each conditional P (xi|PAi = pai) rep-49

resents an independent causal mechanism. That is, to obtain the interventional distribution50

P (X1, · · · , Xj−1, Xj+1, · · · , XN−1|do(Xj = xj)) it suffices to replace the term P (Xj |PAj) with51

δXj ,xj
where δa,b denotes Kronecker’s delta. Note that this distribution is different from the condi-52

tional that would result from simply observing that Xj = xj , and corresponds to the distributions of53

{Xi|i ̸= j} when Xj is actively determined (i.e., intervened on).54

Structural Causal Models While CBNs suffice to completely specify all possible interventional55

distributions of a set of variables, a stricter formalism is needed to answer so called counterfactual56

queries that allow answering “what if?” questions for individual observations. Under structural causal57

models (SCMs, also referred to as functional causal or structural equation models), every variable58

is written as a function of its parents and an unobserved noise variable, Xi = fi(PAi, Ui), where59

Ui are statistically mutually independent. fi(PAi, Ui) is an SCM for the conditional P (Xi|PAi) if60

fi(pai, Ui) is distributed according to P (Xi|PAi = pai) for almost all pai.61

Granger causality Time ordering of data significantly facilitates reasoning about causal relations,62

as causal effects can only act forward in time. However, variables measured simultaneously in time,63

up to the temporal granularity available, still present an issue as the causal ordering among these64

variables are not determined [27, Ch. 10]. However, in the absence of causal influence among65

simultaneous measurements of variables, or so called instantaneous effects, causal influence can66

be captured using the formalism of Granger causality [11]. Let {Xt}Tt=1 denote a discrete-time67

vector-valued stochastic process where Xt = [X
(1)
t , X

(2)
t , · · · , X(d)

t ]. A time-series X(i) is said to68

Granger-cause another time series X(j) if the past of X(i) improves the predictions of X(j) given all69

past information about {X(j′)|j′ ̸= i}.70

Temporal Point Processes A TPP specifies the full generative model for random sequences of71

points (t1, t2, · · · , tn) on a bounded subset of the real line, where 0 < t1 < t2 < · · · ≤ T and the72

variable n is also random [7]. The conditional intensity function of the TPP73

λ∗(t)dt = P{next event is in [t, t+ dt)|Ht},
completely determines the process and is often used to characterize TPP models. Here Ht denotes74

the history (filtration) up to time t—specified by the set of points up to time t, {ti|ti < t}. Intuitively,75

the conditional intensity function specifies the arrival rate of events per unit time, in the infinitesimal76

interval after t.77

Hawkes process [13, 12]. A (univariate) Hawkes process is given by the conditional intensity178

λ∗(t) = µ+
∑
ti<t

αφ(t− ti). (1)
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Here µ > 0 is a background intensity—the arrival rate of events if previous events had no effect on the79

present. The delay density φ(s) determines the temporal profile of interactions between points—with80 ∫
φ(s)ds = 1 w.l.o.g. Moreover, the function φ is always “causal,” φ(s) = 0,∀s < 0, nonnegative81

φ(s) ≥ 0, and is often monotonically decreasing over all s > 0. The parameter α > 0 is the so-called82

infectivity or branching parameter.83

Multivariate TPPs model marks yi ∈ {1, · · · , d} for each event ti. That is, events are now observed84

as ordered pairs (ti, yi). Practically, yi often represent membership to an entity, such as a user on a85

social network, host on a computer network, etc. The conditional intensity of the multivariate Hawkes86

process (MHP) is written separately for each mark k as87

λ∗
k(t) = µk +

∑
m

∑
ti<t|yi=m

αkmφ(t− ti).

Note that the background intensity of each mark is now different, and the infectivity parameters88

can now be arranged along a matrix Akm = αkm, where each element describes the directional89

infectivity of one mark over the other. Eichler et al. [8] show that αkm > 0 implies that the process m90

Granger-causes k; while Achab et al. have shown how to recover A via moment-matching estimators91

[1]. While Hawkes processes are defined in continuous time (ti ∈ R), in this paper we will explore92

their discrete time analogues (ti ∈ N) starting from the next section.93

3 Quantifying Causal Contribution with Discrete-Time Hawkes94

Processes95

Basic Observations General TPPs model a wide range of occurrence patterns such as self-excitation96

[12], self-inhibition [16], quasi-periodicity [6], etc. for discrete events in continuous time. However,97

much of the established literature in causal inference deals with a finite set of random variables as98

opposed to continuous time processes, leading to conceptual difficulties in analyzing cause-effect99

relationships in continuous-time stochastic processes. Similarly, in many application domains time is100

inherently quantized, i.e., the data is sampled in discrete time—events can often “co-occur” with no101

temporal ordering implied among them—and a continuous-time process serves as an approximation.102

For example, neural spike trains are recorded with finite sampling rates, or many rare events in103

computer systems logs are recorded in a predetermined time resolution. Therefore, in this section,104

we start with the introduction of a discrete-time analogue of self-exciting temporal point processes105

which will serve primarily to reconcile notation between causal inference and TPPs, as well as having106

the added benefit of removing any statistical bias that results from using continuous-time models for107

discrete data.108

Discrete-Time Hawkes Processes In our formalism, the occurrences of “events”2 or “points” are109

interpreted as those times t ∈ Z>0 of Xt where Xt = 1. Such models have been called discrete-time110

point processes[38], such as in determinantal point processes [19] or discrete-time renewal processes111

[9]. In addition to modeling discretely sampled events, our model builds on Hawkes processes to112

model excitation patterns among them. We introduce the discrete-time Hawkes process (DTHP)113

below.114

Definition 1. (Discrete-time Hawkes Process (DTHP)) A binary-valued stochastic process {Xt ∈115

{0, 1}}t∈Z>0
is a discrete-time Hawkes process if, for all t,116

pt := P{Xt = 1|X1:t−1} = 1− exp

(
−µ−

t−1∑
s=1

Xsg(t− s)

)
.

where g(τ) : Z → R≥0 is a nonnegative function that satisfies g(τ) = 0,∀τ < 0.117

We observe that for all s < t, E [Xt|Xs = 1] > E [Xt|Xs = 0], therefore the process preserves the118

self-excitation property of Hawkes processes, i.e., that events only increase the probability of future119

event occurrences.120

2Not to be confused with the events of the underlying probability space, we reserve this term exclusively to
refer to occurrences of 1 in a discrete-time binary process.
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Our construction of DTHP admits the continuous-time Hawkes process as a limit case, i.e., it tends121

to a continuous-time Hawkes process as events become “infinitely” rare. In the same light, we can122

examine a rare event limit or how the probability of events behaves as events become increasingly123

rare. We will use these limits to derive approximations to the true causal effects that are expressed124

simply in terms of the learned parameters of our model. Concretely, bounding the probability of125

occurrence of points such that ∀t, pt ≤ p̄ we observe as p̄ → 0, these probabilities also admit a linear126

approximation in the effects of past points.127

Proposition 1. pt = µ+
∑t−1

s=1 Xsg(t− s) +O(p̄2) as p̄ → 0.128

Another benefit of casting event occurrences in discrete time is that it enables the use of concepts from129

traditional time-series analysis and the well-established literature of causal inference; specifically130

causal Bayesian networks [25], and causality in time series [26, 27]. Moreover, in order to set our131

new model in this framework, we can write an SCM that results in joint distributions equivalent to132

the DTHP, which follows from observing that each Xt can be written as a function of an independent133

source of noise and parent variables X1:t−1.134

Definition 2. (DTHP SCM) Let {Xt} are determined by the structural equations135

Xt = JUt ≤ λ(X1:t−1)K where λ(X1:t−1) = µ+ α
∑
s<t

Xsg(t− s),

Ut are independent standard exponential random variables and J.K denotes the indicator function.136

Apart from rendering the mathematical objects conceptually simpler, DTHP enables using the137

language of causal graphical models. Note that our choice of 1 − exp(−x) as a link function in138

Definition 1 is one of many possible that would yield similar and tighter approximations. However,139

for the purposes, this function suffices to demonstrate the key links between self-exciting point140

processes and measures of causal contribution.141

Multivariate DTHP We can now extend the DTHP to multivariate processes, where the interest is142

in multiple related types of events.143

Definition 3. (Multivariate DTHP) A binary vector valued process Xt = (X
(1)
t , · · · , X(d)

t ) ∈144

{0, 1}d is a multivariate DTHP if for all k, t145

p
(k)
t := P{X(k)

t = 1|X1:t−1} = 1− exp

(
−µ(k) −

d∑
m=1

t−1∑
s=1

X(m)
s gm→k(t− s)

)
.

Here, gm→k determine the decay profile of effects of events in type m on events of type k. In the146

remainder of this paper, we will assume a more specific form for this quantity, gm→k(t − s) =147

Akmg(t− s) where A ∈ Rd×d and we assume
∑∞

τ=1 g(τ) = 1 without loss of generality.148

We can also rely on previous results in time series causal discovery [27] to repeat a result similar to149

those of [8] and [1] for DTHP.150

Proposition 2. Events {X(m)
t } Granger-cause events {X(k)

t } if and only if Akm > 0.151

In the discrete-time world, however, we encounter another conceptual difficulty: continuous-time152

TPPs are built on the simplicity assumption [7], that specify that no two points can co-occur on the153

same point t′ ∈ R almost surely. This is a somewhat restrictive requirement in discrete time where154

one may be interested in multiple types of points occurring together while being causally related, i.e.,155

via instantaneous effects. Our formulation in Definition 3 disallows any such interactions between156

‘simultaneous’ variables X
(m)
t and X

(k)
t . In order to incorporate such effects for more realistic157

modeling, we can extend the model as follows. For brevity, we denote158

λ
(k)
t = λ(k)(X1:t−1) :=

d∑
m=1

t−1∑
s=1

X(m)
s Akmg(t− s),

and define159

p
(k)
t = 1− exp

−λ
(k)
t −

∑
X(m)∈PA

(B)
k

BkmX
(m)
t

 ,
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where we define B ∈ Rd×d as the weighted adjacency matrix of a graph that specifies the instanta-160

neous causal effects among types of events, and PA
(B)
k to denote the set of parents of X(k) along161

this graph.162

Quantifying Causal Contribution We can now build on the DTHP to introduce our method for163

quantifying causal influence among observed events themselves. Specifically, we will focus on164

quantifying causal contributions given a fitted multivariate DTHP model (Definition 3), where we will165

currently ignore instantaneous effects for notational brevity. However, extensions of our arguments to166

the case with instantaneous effects and implications for continuous-time Hawkes processes can be167

derived from our framework.168

Our problem can be formulated as follows. Given a finite realization of the process {Xt = xt}Tt=1,169

we seek to quantify the causal contribution of X(m)
s on X

(k)
t , where s < t, and when such events are170

“rare.” In practice, such quantification is only relevant when x
(m)
s = x

(k)
t = 1 as, under our model,171

events are assumed to be mutually exciting and we do not intuitively expect that the absence of an172

event is the cause of another.173

Such a notion of causal influence, of X(m)
s on X

(k)
t , can be built on several familiar quantities in174

causal inference. For example, one could consider the average causal effect ACE(X(m)
s → X

(k)
t ) =175

E
[
X

(k)
t | do(X(m)

s = 1)
]
−E

[
X

(k)
t | do(X(m)

s = 0)
]
, measuring the added probability of an event176

on X
(k)
t when X

(m)
s is intervened on [15]. However, this quantity disregards the fact that the entire177

history X1:T is observed. Moreover, ACE also does not take into account how (marginally) rare178

the target event {X(k)
t = 1} is. In this light, we define our first measure of causal influence on179

a different quantity, the direct effect [25, Sec 4.5], which refers to the isolated effect of changing180

only a single parent X(m)
s having observed all other parents of X(k)

t . We will denote this quantity181

DE(X(m)
s → X

(k)
t ), defined182

E
[
X

(k)
t | do(X(m)

s = 1,X¬(m,s) = x¬(m,s))
]
− E

[
X

(k)
t | do(X(m)

s = 0,X¬(m,s) = x¬(m,s))
]
,

where the notation X¬(m,s) is used to refer to all variables in the history except X(m)
s .183

We can now show that under the DTHP SCM and in the rare event regime, the direct effect yields a184

convenient approximation. Namely,185

Proposition 3. DE(X(m)
s → X

(k)
t ) = Akmg(t− s) +O(p̄2).186

This result links the proposed contribution measure to a well known quantity in the analysis of187

Hawkes processes, namely the incremental intensity due to a previous event in the Hawkes process,188

i.e., the summand in λ(k)(X1:t−1) due to X
(m)
s .189

The direct effect is based on a “total” intervention on all of the parents of X(k)
t , comparing the190

intervention where there is a source event at X(m)
s to one where there is not. In this sense, it already191

takes into account the full information available (x1:t). However, it is still scaled in terms of the192

marginal probability of {X(k)
t = 1}. In order to quantify the proportion of influence of each past193

event on a given target event, we can define a normalized quantity.194

Definition 4 (Normalized Direct Effect). The normalized effect is defined195

D̃E(X(m)
s → X

(k)
t ) =

DE(X(m)
s → X

(k)
t )

λt
k

.

Note that, D̃E(X(m)
s → X

(k)
t ) is exactly equivalent to the posterior “parent” distribution in the196

immigration-birth representation of Hawkes processes [14, 3]. Indeed, this representation of Hawkes197

processes captures an intuitive notion of a causal chain of events.As previously indicated, we expect198

that in an unconfounded system, the causes of events can only be (a combination of) other events,199

but not the lack thereof. Similarly, we are more rarely interested in causal questions such as “what200

previous event caused the lack of an event at time t?” In this sense, the immigration-birth process201
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naturally captures an intuitive notion of causality among events. Our results show that the influence202

of a direct cause, in the direct parenthood sense of a Hawkes process, is analogous to the direct effect203

in causal inference. We describe this link in detail in Appendix B. Finally, we observe that for the204

normalized direct effects to add to one, a summand µ(k)/λ
(k)
t is also required. This quantity can be205

thought of as the probability that an event has no observed causal parent. In the immigration-birth206

interpretation, the same quantity can be understood as the probability that an event is an “immigrant,”207

and not a descendant of any previous events. Finally, the following result links Granger causality to208

our approximate contribution measure DE(X(m)
s → X

(k)
t ).209

Proposition 4. Assume ∀τ, g(τ) > 0. Then, DE(X(m)
s → X

(k)
t ) > 0 if and only if X(m) Granger-210

causes X(k).211

We can build on these observations to define a total effect of a single event at X(m)
s on an event at212

X
(k)
t , by summing over all indirect paths of influence, weighted by their normalized direct effects.213

In the following, let Bs,t define the set of all points {X(k′)
s′ = 1|s < s′ < t, k′ ∈ {1, · · · , d}}, and214

Po(Bs,t) all ordered sets in the power set of Bs,t such that temporal ordering is preserved. In other215

words,216

Po(Bs,t) = {(Xk1
s1 , · · · , X

kn
sn )|∀n ∈ [|Bs,t|], si < si+1∀i}.

Note that the empty ordered set ∅ ∈ Po(Bs,t). For brevity, let us also define the path effect217

D̃E((Xk1
s1 , · · · , X

kn
sn )) :=

n−1∏
i=1

D̃E(Xki
si → Xki+1

si+1
).

We heuristically define the total effect as,218

Definition 5 (Total Effect). The total effect TE(X(m)
s → X

(k)
t ) is defined219 ∑

Z∈Po(Bs,t)

D̃E((X(m)
s ,Z, X

(k)
t )), (2)

where we use the notation (X
(m)
s ,Z, X

(k)
t ) to denote the sequence generated by prepending (resp.220

appending) X(m)
s (resp. X(k)

t ) to the sequence Z.221

The simple intuition behind our definition is hidden away by the cumbersome notation required.222

In other terms, the total effect captures the total influence an event has on a descendant, summing223

over all paths of descendance—direct or indirect. While (2) seemingly requires summing over224

exponentially many paths, its computation can be greatly accelerated via simple heuristics such as225

dropping connections below a certain NDE.226

Proposition 4 highlights that one event can be the cause of another in our sense of DE only if there227

is a Granger-causality relationship between their marks. Note, however, that the same is not true228

for our definition of total effects, where one mark can indirectly cause events in another mark. To229

understand this relationship, and to contrast the two measures, assume a multivariate Hawkes process230

of three marks is used to represent “delay” events of three consecutive trains, where the delay of the231

first train directly causes a delay in the second, and a delay in the second causes a delay of the third232

train. Using our measures of influence, and with perfect information, we will always attribute direct233

causation to the previous train only. However, through total effects, we can attribute the third train’s234

delay to that of the first. Finally note that, in the sense of Granger causality, the first train cannot be235

said to cause the delay of the third train as, given knowledge of the second train, we cannot better236

predict the delay of the third train. Although we will not make a rigorous argument in this work, the237

DE measure, when viewed as an attribution method, readily satisfies the axioms of [33].238

Finally, let us highlight that methods proposed in this section can be viewed as the parts of a single239

framework. Given sparse event data that are sampled in discrete time and can be identified as one of240

finitely many types, our framework only makes the additional assumption that past events will have241

linear and additive (self-exciting) effects on future events. Under these assumptions, to identify the242

causal effects among individual events we (i) fit a DTHP model to the observed sequence and (ii) use243

DE, NDE and TE as measures of causal contribution to trace individual events to their causal parents.244

6



4 Related Work245

The Hawkes process has been studied commonly to establish Granger causality—i.e., causal links246

among different types of events as opposed to individual events. Eichler et al. explore the link247

between Hawkes process infectivity kernels and Granger causality [8]. Achab et al. use this link and248

previous results on moment-matching methods for Hawkes process estimation to introduce a fast249

algorithm for uncovering Granger causality [1]. Xu et al. consider group sparsity regularization for250

a more precise recovery of the Granger causal graph [39]. Notably, Prabhakar et al. introduced an251

algorithm for Granger-causal discovery directly from a cross-spectral estimate of multivariate TPPs,252

without making any parametric assumptions on the form of the conditional intensity [28]. We also253

refer the reader to [34] for a discussion of causal discovery in multitype event sequences. Many other254

works, which focus on more effective methods for recovering the infectivity matrix of a Hawkes255

process, can be seen as causal discovery algorithms in the context of multitype event sequences.256

Among these we can cite [21] who use an EM algorithm for better stability, [10] who work with more257

general transmission models, [35] who employ Bayesian inference for more accurate recovery of the258

graph, and [37] who employ low rank factorizations for improved scalability.259

To our knowledge, a “discretized” Hawkes process appears only in [22], who allow each time step260

to have more than one points—i.e., work with time series of positive integers instead of binary261

sequences. Other discrete time point processes, towards recovering Granger-causal structure, have262

also been introduced in the context of neural structure learning [17].263

Sun and Janzing study a similar form for causal discovery in arbitrary causal graphs of binary264

variables, although their setting is more general and their methods do not address temporal data [32].265

Similar to our framework, their probabilities of occurrence also admit linear approximations around266

0, although the authors do not explore this direction. In [5], Budhatoki et al. discuss methods for root267

cause analysis of outlier values, which could be regarded as rare events.268

Recently, Tran et al. introduced QTree [36], a method that draws from extreme value theory and269

causal inference to infer graphs (more specifically, root-directed trees) of causal influence among270

nodes where simultaneous outlier events occur jointly. The max-linear Bayesian network model271

used is able to handle missing values as well as infer graphs of influence among network nodes272

in a robust fashion. Moreover, the authors employ the Chu-Liu-Edmonds algorithm for minimum273

cost arborescence to heuristically recover root-directed trees, as required by their application in274

uncovering hidden river networks. CAUSE, by Zhang et al. , is the closest to our work [40]. Here,275

the authors consider an axiomatic causal attribution method that obeys the axioms of [33]. Notably,276

the method considered attributes causal influence among events, using an “explainable” recurrent277

point process—a neural TPP model. The authors then show that an aggregation of these influence278

scores can be interpreted as a measure for Granger causality among event marks. However, the279

neural network-based model used and the attribution methods make computation under this method280

prohibitively costly. Finally, in “counterfactual” TPPs [23], Noorbakhsh and Gomez-Rodriguez,281

describe a structural causal model analogue of Lewis’ thinning algorithm which they then use to282

answer counterfactual queries in observed point sequences.283

5 EXPERIMENTS284

Model Performance We start by validating the performance of DTHP on three data sets for the285

task of inferring the latent network of influence among event types—the first step of the framework286

we propose. We compare the performance of DTHP with two baselines: QTree [36] and CAUSE287

[40]. To contrast these baselines with ours, QTree is able to handle missing values and can work with288

general real-valued variables to infer both general graphs and trees of influence. However, QTree289

only works with instantaneous effects, i.e., assumes that each time step is i.i.d. CAUSE [40] is based290

on neural TPPs and does not consider instantaneous effects. Both algorithms are developed for causal291

discovery in sequences of rare events. For both baselines, we use repositories made available by the292

authors and keep the original hyperparameters included in the libraries.3293

3see https://github.com/razhangwei/CAUSE,
https://github.com/princengoc/QTree.
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Metric AUC F1
Model QTree CAUSE DTHP (ours) QTree CAUSE DTHP (ours)

hawkes-1 0.248 0.431 0.830 0.114 0.286 0.471
hawkes-2 0.563 0.610 0.765 0.265 0.254 0.467
hawkes-3 0.563 0.536 0.736 0.255 0.242 0.424
danube 0.897 0.628 0.841 0.800 0.118 0.308
lower-colorado 0.712 0.639 0.701 0.450 0.200 0.214
middle-colorado 0.951 0.734 0.563 0.909 0.286 0.235
upper-colorado 0.931 0.570 0.660 0.875 0.267 0.333
Connectomics-1 0.499 0.525 0.623 0.185 0.186 0.234
Connectomics-2 0.519 0.514 0.639 0.179 0.178 0.243
Connectomics-3 0.590 0.508 0.670 0.206 0.175 0.267
Connectomics-4 0.702 0.527 0.738 0.301 0.185 0.348
Connectomics-5 0.730 0.515 0.745 0.320 0.186 0.357
Connectomics-6 0.859 0.715 0.880 0.487 0.307 0.545

Table 1: Experiment results comparing QTree, CAUSE, and DTHP algorithms given in AUC and
maximum F1 scores (higher better). Top scores in each row are given in bold.

The objective of all experiments is the recovery of an underlying causal graph from observed time294

series. We use three groups of data sets, the first of which is simulated, and the others taken from295

real applications. Further details on synthetic data generation and benchmark data sets are given in296

Appendix C.297

• We simulate data from continuous-time multivariate Hawkes processes using tick [2].298

• The River Basin Data Sets include data collected from two river basins in Europe and the299

US [36], for the so-called hidden river discovery task. We experiment with four data sets,300

belonging to the Danube, as well as lower, middle and upper sections of the Lower Colorado301

river basin.302

• We use the neural connectome data set from the Chalearn Connectomics challenge [4]. The303

data set includes realistically generated spike trains from neuronal networks [31] Specifically,304

we perform experiments on the small data sets which are numbered in increasing order from305

the most challenging setting to the least.306

All data sets have ground truth causal networks available. For the river basin data sets, we use raw307

measurements in the QTree algorithm, however threshold the data to convert it into binary time series308

for use in CAUSE and DTHP models. For the neural connectome data sets, we threshold each data309

set at the 99th percentile, obtaining binary time series used in all of the algorithms. We use both310

versions of the QTree algorithm, with and without the minimum cost arborescence step, and report311

the best results. As CAUSE is designed for continuous time data sets, we “dequantize” binary time312

series by adding random noise drawn from a uniform distribution between 0 and 1 to each timestamp.313

Our results are presented in Table 1. We report the area under the ROC curve (AUC) and maximum314

attained F1 score for edge classification. As expected, our model is significantly superior in the315

Hawkes process data sets, and the QTree algorithm dominates in the river basin data sets where it was316

designed to perform well. Both CAUSE and DTHP perform significantly below the QTree baseline317

in the river data sets. We believe this is primarily due to two reasons. First, neither model performs318

Bayesian treatment of missing values which is especially important in the Lower Colorado river basin319

data sets. Second, these algorithms do not search for the best tree with minimum cost arborescence.320

Let us note, however, that running the Chu-Liu-Edmonds algorithm alone on graphs recovered by321

DTHP and CAUSE also did not yield significantly better results. Still, DTHP appears to perform322

slightly more favorably than CAUSE, which does not address instantaneous effects.323

In the Connectomics experiments, we find that our algorithm significantly outperforms baselines.324

This matches our expectation as the Connectomics data set is both high-dimensional (100 marks),325

and features both delayed and instantaneous effects. Our model is the only one designed to capture326

all such patterns simultaneously. Overall, we can conclude that DTHP generally yields favorable327

performance in modeling sparse binary time series where instantaneous effects occur.328

Causal Influence Scores For a demonstration of our causal influence scores, we present a set of329

experiments on synthetic data. Here, our aim is to first exhibit the general difficulty of attributing330
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d pE True Fitted

5

0.05 0.735 ± 0.156 0.604 ± 0.156
0.1 0.717 ± 0.062 0.641 ± 0.081
0.2 0.672 ± 0.069 0.607 ± 0.070
0.5 0.503 ± 0.063 0.473 ± 0.058

10

0.05 0.826 ± 0.097 0.600 ± 0.135
0.1 0.793 ± 0.046 0.600 ± 0.077
0.2 0.722 ± 0.045 0.569 ± 0.047
0.5 0.528 ± 0.038 0.449 ± 0.033

Table 2: Comparison of results when retrieving the Hawkes process parent event using normalized
direct effect. Numbers reported are means and standard deviations of recall at top 1—i.e., among
events with known parents, the ratio of those with the top NDE score assigned to the correct parent. d
denotes the dimensionality of the Hawkes process, and pE is the prior for sparsity.Higher pE implies
lower sparsity.

causal influence among rare events, even with perfect information. To this end, we draw from331

multivariate Hawkes processes while keeping record of the parents of each event. We regard these332

parenthood relationships as the ground truth causes of events, and measure if the direct effects333

computed as per Definition 4 correctly recover the causes. We consider only those events that have a334

parent in the branching process, and compute recall (at top 1).335

Results, for varying dimensionality and degrees of sparsity in the infectivity matrix, are presented336

in Table 2. Here, we observe that direct effects computed with known parameters already fall to an337

accuracy of around 50% when 50% of the edges in the ground truth graph are active—highlighting338

a general ambiguity with assigning causes among events when many such causes are possible.339

Moreover, we find that causal attribution with fitted parameters (“Fitted”) performs slightly worse340

than when ground truth parameters are known (“True”), but also that it is relatively robust. However,341

as expected, robustness decreases when dimensionality is increased. Further details are available in342

Appendix C.343

6 CONCLUSION344

In this paper we introduced a framework for attributing causal influence among individual events345

observed in time. Assuming only that events are sparse and there is a quasi-linear and monotonic346

relationship among their probabilities of occurence our method proceeds by fitting a newly introduced347

discrete-time process model, and performing causal attribution via simple quantities based on the348

fitted parameters of this model Our analysis was cast in a discrete-time framework, enabling unbiased349

estimation in many real-world scenarios where data is sampled with finite rates and instantaneous350

effects are also present. Finally, our numerical experiments validate the efficacy of our model for351

the unique scenarios it addresses, as well as the intuition behind the causal contribution metrics352

we proposed in this work. While our method can address many discrete event scenarios, its main353

limitation is that it only allows excitation relationships among events. Several directions remain as354

next steps to our work, such as extending the model with real-valued marks and inhibitory effects to355

address more general sparse discrete event sequences.356

9



References357

[1] Massil Achab, Emmanuel Bacry, Stéphane Gaïffas, Iacopo Mastromatteo, and Jean-François358

Muzy. Uncovering causality from multivariate Hawkes integrated cumulants. The Journal of359

Machine Learning Research, 18(1):6998–7025, 2017.360

[2] Emmanuel Bacry, Martin Bompaire, Philip Deegan, Stéphane Gaïffas, and Søren Poulsen.361

tick: a python library for statistical learning, with an emphasis on hawkes processes and362

time-dependent models. J. Mach. Learn. Res., 18(1):7937–7941, 2017.363

[3] Emmanuel Bacry, Iacopo Mastromatteo, and Jean-François Muzy. Hawkes processes in finance.364

Market Microstructure and Liquidity, 1(01):1550005, 2015.365

[4] Demian Battaglia, Isabelle Guyon, Vincent Lemaire, Javier Orlandi, Bisakha Ray, and Jordi366

Soriano. Neural connectomics challenge. Springer, 2017.367

[5] Kailash Budhathoki, Lenon Minorics, Patrick Blöbaum, and Dominik Janzing. Causal structure-368

based root cause analysis of outliers. In International Conference on Machine Learning, pages369

2357–2369. PMLR, 2022.370

[6] David Roxbee Cox. Renewal theory. Methuen, 1962.371

[7] Daryl J. Daley and David Vere-Jones. An introduction to the theory of point processes: Volume372

I: elementary theory and methods. Springer Science & Business Media, 2007.373

[8] Michael Eichler, Rainer Dahlhaus, and Johannes Dueck. Graphical modeling for multivariate374

hawkes processes with nonparametric link functions. Journal of Time Series Analysis, 38(2):225–375

242, 2017.376

[9] Willliam Feller. An introduction to probability theory and its applications. John Wiley & Sons,377

1957.378

[10] Manuel Gomez Rodriguez, David Balduzzi, and Bernhard Schölkopf. Uncovering the temporal379

dynamics of diffusion networks. In Proceedings of the 28th International Conference on380

Machine Learning, 2011.381

[11] Clive WJ Granger. Investigating causal relations by econometric models and cross-spectral382

methods. Econometrica: journal of the Econometric Society, pages 424–438, 1969.383

[12] Alan G. Hawkes. Point spectra of some mutually exciting point processes. Journal of the Royal384

Statistical Society. Series B (Methodological), pages 438–443, 1971.385

[13] Alan G. Hawkes. Spectra of some self-exciting and mutually exciting point processes.386

Biometrika, 58(1):83–90, 1971.387

[14] Alan G. Hawkes and David Oakes. A cluster process representation of a self-exciting process.388

Journal of Applied Probability, 11(3):493–503, 1974.389

[15] Paul W Holland. Statistics and causal inference. Journal of the American statistical Association,390

81(396):945–960, 1986.391

[16] Valerie Isham and Mark Westcott. A self-correcting point process. Stochastic processes and392

their applications, 8(3):335–347, 1979.393

[17] Sanggyun Kim, David Putrino, Soumya Ghosh, and Emery N Brown. A granger causality394

measure for point process models of ensemble neural spiking activity. PLoS computational395

biology, 7(3):e1001110, 2011.396

[18] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint397

arXiv:1412.6980, 2014.398

[19] Alex Kulesza, Ben Taskar, et al. Determinantal point processes for machine learning. Founda-399

tions and Trends in Machine Learning, 5(2–3):123–286, 2012.400

[20] Patrick J. Laub, Thomas Taimre, and Philip K. Pollett. Hawkes Processes. arXiv:1507.02822401

[math, q-fin, stat], July 2015. arXiv: 1507.02822.402

[21] Scott Linderman and Ryan Adams. Discovering latent network structure in point process data.403

In International Conference on Machine Learning, pages 1413–1421, 2014.404

[22] Scott W. Linderman and Ryan P. Adams. Scalable bayesian inference for excitatory point405

process networks. arXiv preprint arXiv:1507.03228, 2015.406

10



[23] Kimia Noorbakhsh and Manuel Gomez Rodriguez. Counterfactual temporal point processes. In407

Neural Information Processing Systems, 2019.408

[24] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan,409

Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. Pytorch: An imperative410

style, high-performance deep learning library. Advances in neural information processing411

systems, 32:8026–8037, 2019.412

[25] Judea Pearl. Causality: Models, reasoning, and inference. Cambridge University Press, 2000.413

[26] Jonas Peters, Dominik Janzing, and Bernhard Schölkopf. Causal inference on time series using414

restricted structural equation models. In Advances in Neural Information Processing Systems,415

pages 154–162, 2013.416

[27] Jonas Peters, Dominik Janzing, and Bernhard Schölkopf. Elements of causal inference: founda-417

tions and learning algorithms. The MIT Press, 2017.418

[28] Karthir Prabhakar, Sangmin Oh, Ping Wang, Gregory D Abowd, and James M Rehg. Temporal419

causality for the analysis of visual events. In 2010 IEEE Computer Society Conference on420

Computer Vision and Pattern Recognition, pages 1967–1974. IEEE, 2010.421

[29] Aleksandr Simma and Michael I. Jordan. Modeling events with cascades of Poisson processes.422

arXiv preprint arXiv:1203.3516, 2012.423

[30] Peter Spirtes, Clark N Glymour, Richard Scheines, and David Heckerman. Causation, prediction,424

and search. MIT press, 2000.425

[31] Olav Stetter, Demian Battaglia, Jordi Soriano, and Theo Geisel. Model-free reconstruction of426

excitatory neuronal connectivity from calcium imaging signals. PLoS Computational Biology,427

8(8), 2012.428

[32] Xiaohai Sun and Dominik Janzing. Exploring the causal order of binary variables via exponential429

hierarchies of markov kernels. In 15th European Symposium on Artificial Neural Networks430

(ESANN 2007), pages 465–470. D-Side, 2007.431

[33] Mukund Sundararajan, Ankur Taly, and Qiqi Yan. Axiomatic attribution for deep networks. In432

International Conference on Machine Learning, pages 3319–3328. PMLR, 2017.433

[34] Nikolaj Theodor Thams. Causal structure learning in multivariate point processes. Master’s434

thesis, University of Copenhagen, 2019.435

[35] Long Tran, Mehrdad Farajtabar, Le Song, and Hongyuan Zha. Netcodec: Community detection436

from individual activities. In Proceedings of the 2015 SIAM International Conference on Data437

Mining, pages 91–99. SIAM, 2015.438

[36] Ngoc Mai Tran, Johannes Buck, and Claudia Klüppelberg. Causal discovery of a river network439

from its extremes. arXiv preprint arXiv:2102.06197, 2021.440

[37] Ali Caner Türkmen, Gökhan Çapan, and Ali Taylan Cemgil. Clustering event streams with low441

rank hawkes processes. IEEE Signal Processing Letters, 27:1575–1579, 2020.442

[38] Ali Caner Türkmen, Tim Januschowski, Yuyang Wang, and Ali Taylan Cemgil. Forecasting in-443

termittent and sparse time series: A unified probabilistic framework via deep renewal processes.444

Plos one, 16(11):e0259764, 2021.445

[39] Hongteng Xu, Mehrdad Farajtabar, and Hongyuan Zha. Learning granger causality for hawkes446

processes. In International Conference on Machine Learning, pages 1717–1726. PMLR, 2016.447

[40] Wei Zhang, Thomas Panum, Somesh Jha, Prasad Chalasani, and David Page. Cause: Learning448

granger causality from event sequences using attribution methods. In International Conference449

on Machine Learning, pages 11235–11245. PMLR, 2020.450

11



A Proofs of Propositions451

Proposition 1452

Proof. Let λt := µ+
∑t−1

s=1 Xsg(t− s). Note the Taylor series approximation of pt around 0 is,453

p̄ ≥ pt = λt −
λ2
t

2
+O(λ3

t ).

and also note that p̄2 ∼ λ2
t

2
as p̄ → 0. Therefore pt = λt +O(p̄2).454

Proposition 2455

Proof. We will follow the arguments of [27, Theorem 10.3], assuming causal sufficiency (as required456

by Granger causality in general). By definition, there exists a link between X(m) and X(k) in the457

summary graph only when there exists a link from X
(m)
s to X

(k)
t for some s < t. However, by458

definition of Hawkes SCM (Definition 2, extended analogously to the multivariate case), such a link459

only exists if Akm > 0.460

Proposition 3461

Proof. Let462

λk,0
t := µ(k) +

∑
m′,s′<t|(m′,s′ )̸=(m,s)

x
(m′)
s′ Akm′g(t− s′). (3)

It follows from Proposition 1 that463

DE(X(m)
s → X

(k)
t ) = E

[
X

(k)
t | do(X(m)

s = 1,X¬(m,s) = x¬(m,s))
]

− E
[
X

(k)
t | do(X(m)

s = 0,X¬(m,s) = x¬(m,s))
]
,

= λk,0
t +Akmg(t− s) +O(p̄2)− (λk,0

t +O(p̄2))

= Akmg(t− s) +O(p̄2).

464

Proposition 4465

Proof. From Proposition 3 and 2, this immediately holds for an approximation of direct effects466

DE(X(m)
s → X

(k)
t ) ≈ Akmg(t− s). To see that it also holds exactly, let λk,0

t be defined as in (3)467

and note that468

DE(X(m)
s → X

(k)
t ) = E

[
X

(k)
t | do(X(m)

s = 1,X¬(m,s) = x¬(m,s))
]

− E
[
X

(k)
t | do(X(m)

s = 0,X¬(m,s) = x¬(m,s))
]
,

= exp
(
−λk,0

t

)
− exp

(
−λk,0

t −Akmg(t− s)
)
,

from where it is apparent that Akm = 0 implies DE(X(m)
s → X

(k)
t ) = 0,∀s, t. Conversely, assuming469

g(t− s) > 0, Akm = 0 implies DE(X(m)
s → X

(k)
t ) = 0 completing the proof.470

12



B Equivalence to Hawkes’ Branching Process Interpretation471

Owing to the convenient additive form of its intensity, the Hawkes process lends itself to interpretation472

as a Poisson-cluster process, or an infinite cascade of Poisson processes. This description of the473

process is sometimes intuitively called an immigration-birth or branching representation[14, 7].474

Below, we describe a new generative process, one which does not rely on the conditional intensity475

as in (1). Here, individual points will be denoted as ordered pairs (sn, zn) where sn denotes the476

timestamp, and zn the timestamp of the parent event which gave birth to the point at sn.477

1. Draw N0 ∼ Poisson(µ × T ). Let D0 = {(si, 0)}N0
i=1 where si are drawn uniformly at478

random in (0, T]. These points are the so-called immigrants.479

2. For each generation j, starting from j = 1 we draw the children of each point in the previous480

generation.481

• Letting Dj−1 = {(s(j−1)
i , z

(j−1)
i )}, draw N

s
(j−1)
i

∼ PO(α) for each s
(j−1)
i482

• Let483

Ds
(j−1)
i

j = {(τk + s
(j−1)
i , s

(j−1)
i )}

N
s
(j−1)
i

k=1 ,

where we draw τk ∼ g i.i.d.484

• Let Dj =
⋃

s
(j−1)
i

Ds
(j−1)
i

j .485

• Stop if there exist no (s
(j)
i , z

(j)
i ) ∈ Dj such that s(j)i ≤ T .486

3. Return D =
{
(si, zi) ∈

⋃
j Dj |si ≤ T

}
.487

Somewhat surprisingly, due to the Poisson superposition property, this process is equivalent to the488

process determined by the conditional intensity function of (1). Moreover, if one uses this method489

of generating a Hawkes draw, an auxiliary parenthood variable, zi which refers to the (timestamp490

of) point which “gave birth” to it, s.t. zi < si always holds. Moreover, if these parenthood variables491

were known from the beginning, optimal parameters {µ, α, g} could be recovered in a closed-form492

maximization step since they would just be parameters of iid Poisson process observations.493

The discarded parenthood variables zi define a forest of immigrants (root nodes) and their descendants.494

It is this observation that underlies the EM algorithm for Hawkes processes [14, 3, 29, 20], which495

proceeds by (E) inferring the parent of each variable (computing P{zi = sj} where sj < zi), and (M)496

maximizing {µ, α, g} under the expected complete data likelihood. By consulting [29], for example,497

one can see our approximate normalized direct effect (for the univariate case) αg(ti − tj)/λt appears498

as the “posterior” probability P{zi = tj}. While our exposition here is concerned only with the499

univariate Hawkes process, its extensions to multivariate processes follow easily.500

Using the same statistical foundation as above we can now argue that our approximated normalized501

direct effects coherently describe a graph where each node is a point and each edge is weighted by the502

probability of parenthood. In this formalism, our definition of the total effect also appears as the total503

path weight where a path weight is defined as the product of the weights of edges it is composed of.504

C Further Details on Experiments505

C.1 Model Performance506

Generated Hawkes processes Data sets are generated with the SimuHawkesExpKernels class507

provided in tick [2]. Namely, we generate infectivity matrices A = W ⊙Y where A ∈ Rd×d ⊙508

denotes the Hadamard product, Wkm
iid∼ Exp(1), and Y

iid∼ Bernoulli(0.1). We then adjust the509

spectral radius of the matrix to ρ. We set the baseline intensities µk = 0.05, and the maximum510

number of jumps to 5000. The three data sets hawkes-1, hawkes-2, and hawkes-3 are sampled with511

parameters (ρ, d) = (0.5, 10), (0.4, 20), (0.3, 30) ranked from least to most challenging respectively.512

We then binarize these data sets by quantizing time along the unit grid and setting a time interval to 1513

13



if the interval contains a sampled point. The resulting data sets have points in 5.5%, 8.2%, and 6.8%514

of intervals respectively.515

Lower Colorado River Basin Data Sets Except for use in the QTree algorithm, the data sets are516

preprocessed by binarizing at the 0.99-quantile and filling missing values with 0.517

Connectomics Data Set We first preprocess the data set by taking the first difference of the raw518

action potentials. Except for QTree, we binarize the data by setting a cutoff at at the 99th percentile.519

In practice, this percentile is also close to the recommended binarization cutoff, 0.12.520

Baselines and Hyperparameters We use the ExplainableRecurrentPointProcess class from521

the CAUSE library, and use the default hyperparameters as defined in the training script. By default,522

the model uses a hidden layer size of 64, embedding dimension of 64, batch size of 64, no dropout or523

L2 regularization, learning rate of 0.001, 200 epochs and the Adam optimizer. We use the QTree524

class of the QTree library, leaving default hyperparameters smallR = 0.05, q = 0.8.525

Implementation of DTHP We use our own implementation for the DTHP model, using PyTorch526

[24]. We implement maximum likelihood optimization for the proposed discrete time model, with527

added regularization for the graph such that the total loss function is528

ℓ(µ, θ,A) = log
∑
k,t

p(X
(k)
t |Ht, µ, θ,A) + γ||A||F .

In our experiments, we heuristically set γ = 10. We use the implementation of the Adam optimizer529

[18] implemented in PyTorch for optimization, setting the learning rate to 0.01. We train for 10K530

epochs on the Connectomics data set, and 5K epochs on the other data sets. In practice, we truncate531

the history of each point where influences can flow to a certain maximum history, and set this value532

to 1 in the river data sets and 5 in the synthetic and connectome data sets.533

C.2 Causal Influence534

For the causal influence estimation experiments, we generate infectivity matrices A = U⊙Y where535

A ∈ Rd×d, Ukm
iid∼ Uniform[0, 1), and Ykm

iid∼ Bernoulli(pE), set µ = (2d)−1, and θ = 0.33. We536

use our own implementation of a Hawkes process branching sampler to draw from a Hawkes process537

while retaining the parent identifiers zi as explained in Appendix B.538

For experiments where the infectivity matrix A is estimated (denoted “Fitted” in the results), we run539

DTHP setting maximum lag to 5 and the number of epochs to 3K.540
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