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Abstract

Faulty sensors in a multiple input stream setup are more prone to corrupted
input data streams, hindering the performance of Deep Neural Networks
(DNN), which focus on deducing information from data. However, the rel-
evant information among multiple input streams has correlations and con-
tains mutual information. This paper utilizes this opportunity to retrieve
perturbed information caused by corrupted input streams. We propose In-
foNet, which estimates the information entropy at every element of the
input feature to the network and retrieves the missing information in the
input feature matrix. Finally, using the estimated information entropy and
retrieved data, we introduce a novel guided replacement procedure to re-
cover the complete information that is the input to the downstream DNN
task. We evaluate the proposed algorithm for sound localization where au-
dio streams from the microphone array are corrupted. We have recovered
the performance drop due to the corrupted input stream and reduced the
localization error with non-corrupted input streams. Finally, we assess the
potential of using the proposed algorithm for retrieving information in other
sensing modalities, e.g., wireless signal-based source localization.

1 Introduction

Deep learning has shown promising results in extracting meaningful information from sensor
data in the last few years. Currently, deep learning is largely used in various domains
including event detection Alitaleshi et al. (2023), multi-camera multi-object tracking Wang
et al. (2023), speaker and vehicle localization Bohlender et al. (2023); de Godoy et al.
(2018), speaker separation Nugraha et al. (2016), cybersecurity Jiang et al. (2018), health
monitoring Yuan et al. (2018), and emotion recognition Chao et al. (2018). With the
popularity of multi-sensor devices, e.g., microphone arrays in Amazon Echo , Google Home ,
and wireless earbuds , and camera array in recent smartphones, the probability of having
faulty sensors has increased. These faulty sensors result in missing or corrupted information
in one or more input streams due to uncertainty, e.g., unstable communication medium
Hyadi et al. (2016), stochastic energy Islam & Nirjon (2020); Monjur et al. (2023), and
sensor failure Li et al. (2020a). However, traditional a deep neural networks (DNNs) are not
resilient to these faulty data Li et al. (2020b) and perform poorly with missing or corrupted
portions in inputs Roy et al. (2020); Yin & Hou (2016).
Though statistical methods Jerez et al. (2010) like mean imputation Allison (2001), hot deck
Little & Rubin (2019), and multiple imputations Rubin (1996) can recover missing data por-
tions, these imputation techniques fail whenever the missing data sequence is long Hasan
et al. (2021). Besides, the statistical feature is insufficient for higher dimensional and com-
plex data distributions in real-world applications Al-Janabi & Alkaim (2020), including
image processing, acoustic sensing, and Radio Frequency (RF) imaging. Literature shows
extracted features, e.g., generalized cross-correlation and spectral power, perform signifi-
cantly better than raw time-domain as input to a DNN when a large training corpus is
absent Rajanna et al. (2015). Researchers have developed ultra-low power devices for fea-
ture extraction from different sensors for various tasks with techniques like analog signal
processing and time-mode analog filter banks Yang et al. (2019); Ray & Kinget (2023).
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Therefore, there is a need for more sophisticated techniques for recovering or proxying these
missing or corrupted complex features to avoid erroneous DNN inference output.
Recent works on mutual information and conditional entropy can quantify the relationship
between the variables Vergara & Estévez (2014). Though these methods can be exploited to
identify the corrupted portion in the complex feature set, they are insufficient to recover the
information for maintaining the performance of the DNN-based sound source localization.
On the other hand, recent works on information estimationHjelm et al. (2018); Poole et al.
(2019) present the opportunity to recover the corrupted data. However, blindly recovering
all data without knowing which one is corrupted results in the alteration of the correct data,
which results in poor performance in the DNN.
This paper proposes InfoNet, a generalized algorithm that retrieves the information from a
corrupted feature set to recover the inference performance loss due to corrupted input data
streams.It combines information entropy estimation and conditional interpolation to identify
the corrupted portions in the feature set and estimates the true feature values. InfoNet con-
sists of three novel components – (1) early attention (EA) that estimates the information
entropy at each element of the calculated features to understand the effect of the corrupted
data stream on that element; (2) deep conditional interpolator (DCI) that estimates
missing information utilizing the estimation relation; and (3) guided replacement (GR)
that takes the information entropy from the EA and replaces the affected element from the
initially generated features with the interpolated features from DCI without impacting the
element unaffected by corrupted data. This newly replaced feature serves as the input to
the downstream DNN task, e.g., sound source localization, for instance.
For evaluation, we focus on sound source localization with a microphone array, which is
a challenging component of various applications, including augmented and virtual reality
Ahrens et al. (2019); Argentieri et al. (2015) and robotics Argentieri et al. (2015). Here we
consider each microphone of a microphone array as the input stream of a multi-stream sensor
system. We first use the popular DCASE dataset Politis et al. (2021b) (Dataset 1 ) and
achieve 36.91 ± 3.56% less degree of arrival (DoA) error with the corrupted data stream.
Next, to mitigate the lack of a large sound source localization dataset, we simulated and
published a large audio dataset (Dataset 2 ) of 50 hours with 10 different environments.
We have reduced the DoA on the corrupted dataset by 22.54 ± 18.30% using InfoNet.
Finally, we show that the proposed algorithm is suitable for other application domains, such
as wireless localization, to prove the generalizability of InfoNet. We evaluate on wireless
source localization task using WiFi channel state information (CSI) dataset Ayyala-
somayajula et al. (2020) with 75% missing information and achieved 25.52% improvement
in 90th percentile localization error.

2 Problem Formulation and Mathematical Foundation

Let us consider X as the raw data dependent on a set of n random variables, S =
{x1, x2, ..., xn}. Then X can be represented by X = f(S). X, is then mapped to the
feature domain data, F , by a feature extraction function, G. Thus, F = G(X).
Though F is considered as a full rank matrix in traditional deep learning, corruption in
sensor data results in one or some missing or corrupted element in set S. As a result, full-
rank data, X, becomes low-rank, X̃ producing a rank-deficient F̃ . In this paper, we focus
on recovering F̂ from F̃ , where F̂ ≈ F .
Since F is a function of X, and X depends on a set of random variables (S), the amount of
information content or entropy, i, at every element of F depends on the same set of random
variables, S. Thus the information entropy at the kth element of F , ik, is formulated as

ik = −G(f(Sk) log G(f(Sk)) (1)

Here, ik is a real number, and ik ∈ [0, 1]. ik = 1 represents the presence of all information,
while ik = 0 indicates a complete absence of information. Any value between 0 and 1
implies fractional missing information and quantifies the amount of missing information in
the feature map F̃ = G(X̃).
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Orchard et al. introduced the computation principle of fractional missing information Or-
chard & Woodbury (1972), which states that the likelihood of complete data, L(θ|X), can
be factored into the likelihood of the observed lower-ranked data, L(θ|X̃), and the density
of rank-deficient data given the observed data, f(Z|θ, X̃), where Z and θ are missing data
and model parameter, respectively.

L(θ|X) = L(θ|X̃)f(Z|θ, X̃) (2)

The first derivative of the complete data log-likelihood can be represented as
∂logL(θ|X)

∂θ
= ∂logL(θ|X̃)

∂θ
+ ∂logf(Z|θ, X̃)

∂θ
(3)

The covariance matrix of equation 3 defines the information matrix, F̂X , which is derived
by the following equation–

F̂X = Cov

(
∂logL(θ|X)

∂θ

)
; F̂X̃ = Cov

(
∂logL(θ|X̃)

∂θ

)
; F̂X|X̃ = Cov

(
∂logf(Z|θ, X̃)

∂θ

)
Here, Cov(·) is the covariance. Finally, equation 3 can be written in terms of the complete
information JX which is the sum of available low-rank information JX̃ and JX|X̃ missing
information matrix.

F̂X = F̂X̃ + F̂X|X̃ (4)

The rank-deficient F̃ consists of information content and noise content. The latter arises
due to the missing elements of S. Hence, the information content, F̂X̃ , can be written in
terms of F̃ as equation 5, here I is the element-wise information entropy of F̃ . So, the
missing information matrix F̂X|X̃ can be obtained by estimating the values of the missing
elements in noise contents from the existing information contents. If ¯̄F is the estimated
missing information then F̂X|X̃ is presented by equation 6.

F̂X̃ = I ⊗ F̃ (5) F̂X|X̃ = (1 − I) ⊗ ¯̄F (6)

With equation 5 and 6, equation 4 can be re-written as

F̂ = F̂X = I ⊗ F̃ + (1 − I) ⊗ ¯̄F (7)

3 Proposed Methodology

InfoNet maps the low-ranked feature matrix, F̃ , of Equation 7 into the full-ranked feature
matrix, F̂ ≈ F by estimating the missing information matrix for a given task using a three-
step approach. Figure 1 shows the overall architecture of InfoNet, which sits between
the feature extraction module and the application-dependent downstream task. InfoNet
consists of three main components – (1) early attention (EA) that estimates the low-rank
information and measures the element-wise information entropy, I in F̃ (Equation 5); (2)
deep conditional interpolator (DCI) which interpolates the missing elements ( ¯̄F in Equa-
tion 6) from the available low-rank feature matrix, F̃ ; and (3) guided replacement (GR)
which combines the less informative elements of the original feature set with the interpo-
lated feature values in the guidance of element-wise information entropy. This combining
process is governed by the equation 7. The resultant enhanced feature set, F̂ is fed to the
downstream task for inference.

3.1 Early Attention (EA)

This step aims to estimate the information entropy, I, for each element of the low-rank
feature set F̃ . To achieve this, we design an early attention module that estimates the
channel and spatial information entropy Park et al. (2018). Low-rank feature set F̃ ∈ RdX̃

is the input to the EA, where dX̃ is the dimension of F̃ . The left-hand side of Figure 1 shows
the details of the proposed early attention architecture which has two main components.
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Figure 1: Architecture of proposed InfoNet. Note that only the highlighted components
are the contributions of this paper.
The first component of EA is the channel information branch, fγ(F̃ ), parameterized with γ.
This branch performs average pooling, followed by a multi-layer perceptron on the input to
extract the channel information entropy. Average pooling feeds gradients across all indices
and thus enables the model to learn more robust features while more accurately depicting the
overall strength of a feature. At this point, we expand the feature by an expansion factor, e.
The multi-layer perceptron consists of three fully connected layers with batch normalization
and rectified linear unit (ReLU) after the first two layers. Finally, this branch outputs a
vector Ic that measures of global information on each channel.
The second component of EA is the point-wise information branch, fλ(F̃ ), parameterized
with λ. The input, F̃ , first passes through a convolution layer with a kernel size of (1×1) and
a channel reduction factor of r. Then it goes through n number of dilated convolution layers
with a kernel of (3 × 3) with dilation value d, batch normalization, and ReLU activation. In
our architecture, n = 3 and d = 2. The dilated convolution increases the respective field and
enables us to leverage contextual information. Finally, this contextual information passes
through another convolutional layer of kernel size (1 × 1) and outputs Is, which estimates
the point-wise information of the input feature.

Ic = fγ(F̃ ) (8) Is = fλ(F̃ ) (9)

Next, we broadcast Is to RdX̃ to get information entropy estimation of the same dimension as
F̃ and perform element-wise addition on Ic and Is. Element-wise addition ensures smooth
gradient flow He et al. (2016). Finally, the sigmoid function maps the results between 0
and 1, where a value closer to 1 indicates higher information availability and vice versa.
Therefore, Equation 5 can be rewritten as –

F̂X̃ = σ(Ic + Is) ⊗ F̃ (10)

Here, ⊗ denotes element-wise multiplication, σ(Ic + Is) is the information entropy, I (equa-
tion 5), and σ is sigmoid function.

3.2 Deep Conditional Interpolator (DCI)

The deep conditional interpolator (DCI) estimates the missing information by exploit-
ing relations among the available channels and is parameterized by β, ¯̄F = fβ(F̃ ),
which is used in Equation 6. The right-hand side of Figure 1 shows the architecture
of DCI. It takes F̃ as input and provides interpolated feature ¯̄F as output. Thus,
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¯̄F = fϕ(xj |x1, x2, ..., xj−1, xj+1, ..., xn). Here, xj is the corrupted or missing data stream.
We propose a function fϕ that takes the low-rank feature and interpolates it to reach its
full-rank. We choose an auto-encoder for estimating fϕ as it can learn compressed interme-
diate representation. They efficiently interpolate by semantically mix characteristics from
data Berthelot et al. (2018) and are used in qualitative experimentation and latent variable
generation Dumoulin et al. (2016); Ha & Eck (2017).
DCI contains two paths – (1) contraction and (2) expansion. The contraction path has
n consecutive downsampling blocks, where each block consists of a convolution layer with
ReLU and batch normalization. In our implementation, n = 5, kernel size = 5×3, and ReLU
slope = 0.2. Though we downsample the feature using stride = 2 on each step, we double
the number of output feature channels. The output of the contraction path is Fcon ∈ Rdc ,
where Fcon stands for the latent intermediate representation of the input feature set, F̃ , and
dc represents the intermediate feature dimension.
The expansion path passes the input Fcon through 5 consecutive upsampling blocks consist-
ing of transposed convolution (kernel = 4×2 or 2×2 and stride = 2) with batch normalization
and leaky-ReLU activation. The last convolution uses a sigmoid activation with no batch
normalization. After each up-sampling block, we half the number of output feature filters
and set the last layer’s output filter number to match the shape of the input feature map.
The expansion path returns the interpolated feature matrix, ¯̄F = fβ(F̃ ), where ¯̄F ∈ Rdz .

3.3 Guided Replacement (GR)

We replace the low-rank F̃ with the interpolated feature ¯̄F . The whole replacement process
is guided by σ(Ic + Is). The kth element σ(Ic + Is) provides the amount of available
information present at the kth element of F̃ . Hence, FX|X̃ in equation 6 can be quantified
as follows

F̂X|X̃ = (1 − σ(Ic + Is)) ⊗ ¯̄F (11)

Guided replacement utilizes the low-rank information matrix, F̂X̃ , and missing information
matrix, F̂X|X̃ , to find the estimated full-rank enhanced feature matrix F̂X from equation 7.

3.4 Training

We train InfoNet jointly with the downstream task. Let us assume that the loss function
of the downstream task is LDT . The impact of this loss, LDT , backpropagates through the
downstream task as well as the channel and point-wise information branches (fγ and fλ) of
EA. However, DCI (fβ) has a separate training loss, LDCI , the squared L2 distance between
F and ¯̄F . LDCI is defined by LDCI = ||F − ¯̄F ||2. Note that we use two different optimizers
to train the EA and downstream task with LDT and DCI with LDCI separately.

4 Experimental Setup

This section describes the dataset, feature extraction, downstream task, baseline, data
preparation, and evaluation metrics to evaluate InfoNet for sound source localization. Our
implementation can be found here 1.
Dataset. We evaluate InfoNet on 2 multichannel sound source localization datasets.
Dataset 1 – DCASE. We use the DCASE2021 Task 4 dataset Politis et al. (2021a) which
aims to localize sound sources regarding the degree of arrival (DoA). The dataset consists of
600 4-channel 1-minute spatial recordings of overlapping sound events sampled at 24KHz.
The development and evaluation contain 400 and 200 samples, respectively. A group of
spatial room impulse responses (SRIR) determines the synthesis of these spatial recordings,
and a maximum of 4 polyphony can be present in each recording. Moreover, multi-channel

1https://github.com/hidethyself/InfoNet
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ambient noise is present where the noise level is scaled in signal-to-noise-ratio (SNR) and is
randomly taken from 6dB to 30dB.
Dataset 2 – LargeSet. To address the lack of a large dataset for sound source localization, we
simulated and published a 50 hours of multi-channel audio dataset for the localization
task. This dataset has 10 different environments and each audio contains a 1 second audio
sampled at 44.1KHz. We have used the UrbanSound8K dataset Salamon et al. (2014) as
the sound source. The complete dataset simulation process and environment configurations
are in the appendix A. The dataset can be found here Authors (2023).
Feature Extraction. We follow the feature extraction procedure provided by the DCASE
challenge. We first perform 1024-point FFT with a 40 ms window length and 20 ms hop
length at 24kHz and 44.1kHz on the raw time-domain audio data. Next, we calculate two
features from the FFT – (1) multi-channel log-Mel-spectrogram in 64 Mel bands, and (2)
generalized cross-correlation (GCC), where we truncate the GCC sequences to the same
value as the Mel bins. Finally, we stack these two features to obtain the feature matrix, F .
Corrupted Data Preparation. To prepare a dataset with corrupted information, we
randomly select a channel and replace the original audio with Gaussian noise of 0 mean and
1 standard deviation. We assume up to 50% simultaneous faulty channels and the number
of missing channels belongs to the set [0, 1, 2, 3]. A p% missing data percentage (MDP)
denotes that p% of the total audio length is corrupted with noise. Figure 2 shows an example
raw audio where MDP is 100%, and only 1 channel is missing channel at any time.
Downstream Task. For the downstream task, we implement the SELDNet Adavanne
et al. (2018) algorithms for sound event localization, which uses multi-channel audio to
benefit from the spatial relationship among microphones. We consider each mic input as a
random variable, xi, and an element of set S. Thus, any corrupted element in S results in a
low-rank feature matrix F̃ . The model comprises a convolutional recurrent neural network
(CRNN) Cao et al. (2019) and a single full-connected (FC) layer. Detailed architecture of
the CRNN is provided in appendix C.1 .
Evaluation Baseline. We evaluate the performance of InfoNet; we compare against the
following baselines.
Retrained with Missing Information. We retrain the downstream task (RTrainp) for the
SEL task, where p represents MDP for the training and testing set.
Time-Domain Recovery Techniques. To evaluate the model performance against the time
domain feature recovery techniques, we replace the Gaussian noises of the missing channel
with the data from the most correlated channel (REPcorr) and the average of all available
channels (REPavg). Then, we pass the calculated features from these raw channels through
the pre-trained downstream task.
Evaluation Metrics. We evaluate the performance of our sound event localization with
three metrics – (1) Degree of Arrival Estimation Error (EDoA) of the entire dataset, (2)
Event Localization F1-score when EDoA ≤ 20O(F120), and (3) Localization Recall (RL) on
each frame. The detailed definitions and derivations are provided in the appendix B.

5 Results

This section provides the results of our experiments by first comparing InfoNet with the
baseline and showing how the performance varies with the proportion of missing information.
Next, we perform an ablation study to show the effect of different components of InfoNet
and some design choices.

5.1 Performance Analysis Compared to Baseline Algorithms

DCASE. Figure 3 compares EDoA among the baselines and InfoNet, where 75% of data are
missing during inference. As the extracted feature loses spatial information in the presence
of corrupted data, SELDNet’s performance drops. We notice 58.16% of performance drop
of SELDNet with 75% of MDP.
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Figure 3: Comparison among different al-
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SELDNet’s EDoA with uncorrupted data.

First, we evaluate the performance of two time-domain recovery techniques, which replace
corrupted time-domain data and retrain the downstream task with the recovered data. Both
REPcorr and REPavg, can recover 20.56 and 8.79 degrees, consecutively, from the EDoA

drop by the baseline SELDNet. While these approaches fail to recover phase information,
InfoNet considers channel and spatial relations to retrieve the information. Thus, InfoNet
recovers 26.41% and 40.39% more performance than REPcorr and REPavg, respectively.
Besides, InfoNet does not require prior knowledge of which mic is corrupted, which is
essential for time-domain replacement models. Additionally, to increase efficiency, feature
extraction is often performed in analog circuits de Godoy et al. (2018); Trevisi et al. (2015),
making feature recovery more desirable than time-domain information recovery.
Next, we compare with RTrainp, which is retrained with a corrupted feature set and recovers
EDoA by 12.45% compared to the SELDNet which is trained with the uncorrupted feature
set. On the contraty, InfoNet recovers 47.81% EDoA.
LargeSet. In Figure 3, the performance of SELDNet drops by 70.32% compared to un-
corrupted data. REPcorr and REPavg drops EDoA by 75.83% and 75.61% than SELDNet,
correspondingly. These time-domain recovery methods fail to improve the results as they
can not incorporate the phase information. RTrainp recovers performance by 35.67% from
SELDNet. InfoNet achieves 37.77% performance gain compared to SELDNet inference
results in the presence of corrupted data. More results, including visual examples of GR,
are added in the appendix D.

5.2 Effect of Missing Data Percentage (MDP)
Table 1: Performance of SELDNet, RTrainp and InfoNet trained with p% MDP.

MDP 0 25 50 75 100
Dataset Model F120 EDoA RL F120 EDoA RL F120 EDoA RL F120 EDoA RL F120 EDoA RL

SELDNet 16.90 42.10 34.70 8.20 55.20 4.70 4.70 68.73 15.30 1.70 70.70 11.70 1.50 92.60 13.50
DCASE RTrainp 16.90 42.10 34.70 14.70 59.10 30.70 10.30 63.30 26.50 11.40 61.90 26.10 9.10 67.20 25.90

InfoNet 18.10 32.50 39.80 13.90 35.90 34.60 13.40 43.00 33.80 11.80 41.30 33.30 12.80 41.10 32.60
SELDNet 85.94 16.41 75.35 85.86 16.43 75.23 72.58 25.81 56.96 42.90 45.52 27.30 27.66 58.52 16.05

LargeSet RTrainp 85.94 16.41 75.35 85.94 16.41 75.35 80.16 19.50 66.89 62.74 29.28 45.71 50.96 34.90 34.19
InfoNet 86.66 15.77 76.46 86.66 15.77 76.46 80.82 19.55 67.81 64.28 28.62 47.36 53.61 33.12 36.62
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Figure 4: Effect of MDP on the EDoA for
the DCASE and LargeSet.
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Figure 5: Improvement of EDoA on DCASE
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Table 1 and Figure 4 compares the EDoA, F120, and RL of InfoNet, RTrainp and SELDNet
for a set of MDP with p = 25, 50, 75, 100% on DCASE and LargeSet. We observe that
InfoNet achieves 38.48 ± 11.86% and 22.55 ± 18.30% degree lower EDoA than SELDNet
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on the DCASE and LargeSet, respectively. We can also find a consistent F120 and RL

form table 1, which signifies the InfoNet’s ability to identify all data points in a relevant
class consistently.. Figure 4 shows the performance trend for both datasets on the presence
of corrupted input streams; hence lower information. It is evident that, with the higher
percentage of missing information, the SELDNet tends to suffer while InfoNet performs
fairly consistently by retrieving the missing information by maintaining a 4.39 and 7.89
EDoA variance for DCASE and LargeSet, respectively.
In Table 1, Sys achieves 33.24±6.66% and 2.98±2.09% degree lower EDoA than RTrainp on
the DCASE and LargeSet, respectively. Similar to the previous dataset the consistency of
F120 and RL are evident. The EDoA of both and RTrainp SELDNet significantly increases
with lower available information or higher p since spatial relationships among different input
streams are the most critical feature for localization tasks. Table 1 shows that the improve-
ment is lesser for LargeSet than the DCASE dataset. This can be attributed to the fact
that, as LargeSet doesn’t have overlapping sound sources, it has a lesser effect of MDP also;
hence, there is less scope for improvement.

5.3 Ablation Study
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Effect of EA. To understand the impact of the EA only, we integrate EA with the down-
stream task and jointly train them with p% missing information(RTrainp + EA). We
observe that the EDoA reduces by 22.85 ± 10.56% than only in RTrainp (Red box in Fig-
ure 5). Though adding EA improves the performance, it can only estimate the available
information entropy at each element of the feature matrix, F̃ . The failure to estimate the
missing elements’ value in the full-rank version, F , lowers the EDoA by 14.25 ± 17.62% than
original SELDNet with no missing information as input (Blue box in Figure 5). Thus, In-
foNet with EA and DCI estimates the feature values have 16.76 ± 11.21% less EDoA than
RTrainp + EA.
Effect of DCI. Figure 5 shows only adding DCI with RTrainp (RTrainp + DCI) reduces
EDoA by 16.22 ± 8.87% compared to only RTrainp (red box)., However, only RTrainp +
DCI performs worse when no information was missing and has 26.55 ± 14.56% higher EDoA

than SELDNet because DCI estimates the full-rank features ( ¯̄F ), it adds error to the matrix
elements where the effect of missing data is minimal. EA provides the information entropy
and reduces this additional error. InfoNet replaces the low-rank feature with the guidance
of estimated information entropy.
Effect of Re-Training Downstream Task. To understand the benefit of retraining the
downstream task, we only add a trained EA with pre-trained SELDNet whose weights are
frozen (SELDNet+EA). Figure 5 shows that SELDNet+EA significantly increases EDoA

by 54.41 ± 49.79% than RTrainp. Adding both EA and DCI with pre-trained SELDNet
(SELDNet+EA+DCI) reduces the EDoA by 53.76±46.52% than RTrainp. Thus, jointly
training EA and downstream task is necessary for EA to learn the element-wise information
entropy, which is critical for successfully replacing low-rank features.
Effect of Simultaneously Missing Input Streams or Mics. Figure 6 compares two
systems with one and two simultaneously missing mics or input streams. As anticipated,
single missing mic system performs better than the two missing mics system due to the
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lack of available information for estimation. Though missing two mics results in 46.18%
less EDoA than a single missing mic for 50% MDP, with higher MDP, the EDoA increases
significantly because with more simultaneously unavailable mics, the information entropy
estimation becomes more inexact, and the guided replacement becomes inaccurate.
Effect of Less Number of Input Streams or Mics. Figure 7 observes the effect of
having one less mic or input stream. When we have full-rank input from only three mics
in training and testing (SELD3Net), the EDoA 6.29% lower than RTrain100, where the
information missing happening at various mics. InfoNet reduces the EDoA by 67.59% from
SELD3Net and achieves 22.80% EDoA gain than SELDNet at 0% MDP.

5.4 Performance on WiFi CSI.

To verify the effectiveness of the proposed InfoNet in different data domains, we evaluate
it on a state-of-the-art large-scale location-referenced WiFi CSI dataset Ayyalasomayajula
et al. (2020) for user localization with 75% of missing information. This dataset consists of
two indoor environments spanning 2000 sq. ft. area under 8 different scenarios. We adhere
to the same two-step image-based representation feature extraction process proposed by
the authors along with their proposed a deep learning-based wireless localization algorithm
(DLoc), which is an encoder-decoder architecture with two parallel decoders. Detailed
architecture of DLoc is provided ar appendix C.2. Figure 8 shows that the baseline DLoc’s
90th percentile error is 2.98m. Though retraining DLoc (DLocretrain increases it to 3.29m,
InfoNet reduces it to 2.13m, which signifies 35.25% and 25.52% of performance gain over
DLocretrain and DLoc.

6 Related Work

The mutual information between the input and output of each layer quantifies DNN Colom-
bini et al. (2014). This information is hard to understand as we only have the data samples
but not the distributions McAllester & Stratos (2020). Previously proposed optimizers
solve the tasks with minimal knowledge of input distribution Alemi et al. (2016) but do not
address corrupted data samples.
Attention learns the cognitive and behavioral characteristics to focus on essential information
and ignore the rest selectively Colombini et al. (2014). For multi-channel input, attention
explores the channel characteristics and estimates the channel state information Gao et al.
(2021). Though commonly used later in a network, early attention improves performance
with substantial margins Hajavi & Etemad (2020) motivating our EA component.
Corrupted multi-stream data is used to attain better performance on tasks such as speech
enhancement Taherian et al. (2022). Unlike source localization, speech enhancement only
partially depends on hard-to-recover spatial information. Some recent works focus on re-
covering missing modalities in multimodal sensing Ma et al. (2022; 2021).
Classic sound source localization (SSL) methods, e.g., MUSIC Gupta & Kar (2015), in-
dependent component analysis Noohi et al. (2013), and sparse models Yang et al. (2018),
perform poorly for under-determined scenarios. Recently DNN has shown promising results
for SSL Ferguson et al. (2018); Yiwere & Rhee (2017); Hirvonen (2015). However, none of
the existing sound source localization works focuses on missing or corrupted information.

7 Discussions and Limitations

Interdependence among different random variables can be utilized to recover missing in-
formation. Classical algorithms to handle missing data points are insufficient due to their
limitations, e.g., the requirement of prior knowledge and performance degradation on high
and complex data distributions. This paper shows how to overcome such limitations. How-
ever, the proposed method requires training the downstream task to gain performance. Also,
we have minimal improvement for the task where multiple data stream is optional. We will
focus on removing the downstream task retraining requirement in our future work.

9
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Reproducibility Statement

We conduct this research study by keeping reproducibility in mind. In this section, we
describe several aspects of implementation and datasets used in the experiments.
Codebase. The implementation of InfoNet with the LargeSet dataset can be found
here (https://github.com/hidethyself/InfoNet). Our feature extraction pipeline is
motivated from Adavanne et al. (2018). Also, we follow the feature extraction proce-
dure and SELDNet implementation from here (https://github.com/sharathadavanne/
seld-dcase2022).
For WIFI-CSI dataset, we follow the implementation provided by the authors
(https://github.com/ucsdwcsng/DLoc_pt_code) to implement the Wloc baseline.
Though the feature extraction procedure is not available in this codebase, the authors
graciously provided us with the code for feature extraction from raw data upon request.

Dataset. We use three datasets in this research.

• DCASE2021 - Task 4: This dataset is available at (https://dcase.community/
challenge2021/task-sound-event-localization-and-detection)

• LargeSet: We simulated 10 different environments to create a 50 hours of audio
localization dataset. The detailed procedure of this simulation can be found here
A. The dataset is also available at (https://drive.google.com/drive/folders/
1YbOdBA8p-WI_FRT7ktbiex3TXhZS7igb?usp=drive_link)

• WIFI-CSI: The dataset is available here (https://wcsng.ucsd.edu/dloc/)

Parameters & Environment. The hyper-parameter used in the experiment (for feature
extraction & model) is stated in the provided codebase. We also provide the required
package list for this project in the codebase. The data split (train, validation, and test) is
only done once to train and test the model with the same set of instances for all the MDPs.
We also provide these split lists in the provided dataset.
Hardware. We conducted all the experiments on a machine with the following configura-
tion.
Operating Ststem: Ubuntu 20.04
Processor: Ryzen Threadripper 3960X - 24-Core - 3.8 GHz / 4.5GHz Boost - 280w.
RAM: 128 GB DDR4 3200MHz
GPU: 2x NVIDIA RTX 3090, 10496 CUDA Cores, 24GB GDDR6X Memory, PCIe 4.0
Instruction. Detailed instruction to run the experiments is provided in the codebase.
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A Data Generation Details for LargeSet

Microphone Array

Probable location of 
sound source

Figure 9: Simulation environment with the microphone ar-
ray in the center. Figure 10: Microphone array

We use the configurations in table 2 to simulate 10 different environments. Each environment
consists of a room with a ceiling, floor, and wall with different elements. Each room is box-
shaped with (l × w × h) m dimensions.

A microphone array of 6 microphone is placed at the ( l
2 , w

2 , h
2 ) co-ordinate of the room,

which is the center the room. The microphone is a sphere in shape. The microphones are
equally spaced on the circumference of the sphere. The radius of the sphere is 4.25cm.
Figure 9 and 10 show the simulation environment and microphone array structure with 6
microphones.
We use UrbanSound8K Salamon et al. (2014) dataset as the different sound source present
in the simulation environments. We randomly generate a point (x, y, z) inside the room as
the originating point of the sound. This generated point is used as the ground truth for
training the model. Here,

x ∈ [0, l)
y ∈ [0, w)
z ∈ [0, h)

We use PyRoomacoustics Scheibler et al. (2018) to simulate the different scenarios. The
audios are sampled at 44100 Hz. For each environment, we simulate 5 hours of audio;
hence, a total of 50 hours of audio was recorded for 10 environment.

Table 2: Configurations of all the simulated environments.
# Room Dimension(lm × wm × hm) Ceiling Floor Wall
1 10 × 7.5 × 3.5 unpainted concrete carpet 6mm open cell foam reverb chamber
2 10 × 7.5 × 3.5 plasterboard cocos fibre roll 29mm ceramic tiles
3 15 × 8 × 5 wooden lining linoleum on concrete rough lime wash
4 15 × 8 × 5 hard surface carpet rubber 5mm brickwork
5 10 × 7.5 × 3.5 plasterboard carpet hairy wooden lining
6 10 × 7.5 × 3.5 rough lime wash carpet 6mm closed cell foam plasterboard
7 15 × 8 × 5 rough lime wash felt 5mm brick wall rough
8 15 × 8 × 5 rough lime wash carpet cotton unpainted concrete
9 7.5 × 4 × 4.3 plasterboard carpet thin rough concrete

10 7.5 × 4 × 4.3 unpainted concrete carpet tufted 9.5mm hard surface
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B Evaluation Metrics

B.1 Degree of Arrival Estimation Error (EDoA)

EDoA of entire dataset is represented by

EDoA = 1
D

D∑
d=1

ζ((xd
e , yd

e , zd
e ), (xd

r , yd
r , zd

r ))

Here, (xe, ye, ze) and (xr, yr, zr) are the estimated and reference coordinates, respectively.
ζ is the angle between the reference and estimated coordinates. Now, ∆x = xr − xe,
∆y = yr − ye, ∆z = zr − ze. ζ calculates the angle between dth estimated and reference
DoAs. ζ can be written as –

ζ = 2 arcsin (
√

∆x2 + ∆y2 + ∆z2

2 )180
π

B.2 Event Detection F1-score (F1)

F1 is defined as follows

F1 = 2
∑K

k=1 TP (k)
2

∑K
k=1 TP (k) +

∑K
k=1 FP (k) +

∑K
k=1 FN(k)

Here, for the kth one-second segment, TP (k) is the total number of sound events present
in both prediction and reference, FP (k) represents the number of active sound events in
prediction, but inactive in reference, FN(k) stands for the number of sound events inactive
in the prediction.

B.3 Localization Recall (RL)

RL measures the localization performance on each frame. RL is represented by

RL = TPDoA

TPDoA + FNDoA

Here,TPDoA stands for the total number of time frames where number of estimated DoAs
is equal to the number of reference DoAs, and FNDoA represents the total number of time
frames where estimated and reference DoAs are not equal. We consider DoA prediction as
a true positive if its distance is within 20◦.
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C Baseline Model Architecture

C.1 Sound Event Localization & Detection Network (SELDNet)

We employ the SELD algorithm from Adavanne et al. (2018); Shimada et al. (2021) to
develop our downstream task model. This model uses an activity-coupled Cartesian DOA
(ACCDOA) representation, which assigns a sound event activity to the length of a corre-
sponding Cartesian DOA vector. The SELD task is converted into an ACCDOA estimation
problem. The model comprises a convolutional recurrent neural network (CRNN) Cao et al.
(2019) followed by a single full-connected (FC) layer, which estimates the ACCDOA repre-
sentation vector.
The feature sequence of T frames, with an overall dimension of T × M/2 × 2C, where the
2C dimension consists of C magnitude and C phase components. Here, the M/2 positive
frequencies without the zeroth bin are used.
SELDNet uses local shift-invariant features from the spectrograms. To learn these features,
SELDNet uses multiple layers of CNN layers. Each CNN layer consists of P filters of
3 × 3 × 2C dimension. These filters work in the time and frequency axis. Each CNN layer
is followed by a rectified linear unit (ReLU) activation and batch normalization layer. To
reduce the dimensionality, max-pooling is applied. But max-pooling is only applied along
the frequency axis to keep the sequence length T . The output shape of the CNN blocks is
T × 2 × P . This CNN output is further reshaped to a T frame of length sequence 2P to
feed into the bidirectional RNN layer. With the introduction of the RNN layer, the model
learns the temporal features. A gated recurrent unit (GRU) is used here as the RNN layer.
Finally, a fully connected layer consists of 3N nodes with tanh activation, where each of the
N sound event classes is represented by 3 nodes corresponding to the sound event location
in x, y, and z, respectively.

C.2 Deep Learning Based Wireless Localization (DLoc)

DLoc Ayyalasomayajula et al. (2020) follows a single encoder and two decoder architecture.
One of the decoders is named a consistency decoder, and the other is a location decoder.
The encoder takes the input heatmaps of all corresponding APs and generates a concise
representation. This concise representation then goes into two decoders. The consistency
decoder ensures that the network sees a consistent view of the environment across different
training samples and access points. The location decoder takes the encoder representation
and estimates a user’s location.
ResNet blocks are the main building blocks of encoders and decoders. The encoder consists
of 6 ResNet blocks. It also has an initial convolution layer with 7×7 kernel followed by tanh
activation. The consistency and location decoders have 6 and 3 ResNet blocks, respectively.
For the inference, only the location decoder is used.
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D Extended Results

D.1 Effect of Different Model Configuration at Various MDP

Table 3: Performance with different model configurations on DCASE dataset with p% MDP.
MDP 10 25 50 75 100

Model Configuration F120 EDoA RL F120 EDoA RL F120 EDoA RL F120 EDoA RL F120 EDoA RL

RTrainp + EA 16.20 33.70 38.50 13.70 49.10 35.00 12.50 50.40 30.80 11.30 53.40 31.50 11.20 53.90 32.10
RTrainp + DCI 9.50 41.10 28.10 6.60 54.10 24.30 6.40 51.10 23.70 5.20 58.20 24.10 6.90 56.20 26.50
SELDNet + EA + DCI 10.10 47.60 26.60 7.70 66.30 22.40 4.30 61.00 15.80 2.40 82.70 12.80 1.50 92.60 13.50
SELDNet + EA 10.90 48.00 27.00 8.20 55.20 21.70 4.70 72.70 15.30 1.70 85.50 11.70 2.60 84.30 11.40

Table 3 shows the effect of different (EA, DCI) on the result. The result shows only EA
and DCI can not retrieve the missing information. GR combines them, and performance is
improved.
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Figure 11: Example of low-rank (left) and estimated full-rank (right) features from the
DCASE test set.

D.2 Visual Representation of Guided Replacement of InfoNet

Figure 11 shows a few examples of the low-rank F̃ and estimated full-rank features F̂ . In-
foNet receives available information estimation I from EA and interpolated feature ¯̄F from
DCI. Then, the guided replacement (GR) block replaces unavailable information according
to the equation 7 by using I , ¯̄F and F̃ . From the figure, it is evident that how InfoNet
successfully recovers the missing information achieves better performance.
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