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Abstract

In generative modeling, numerous successful approaches leverage a low-
dimensional latent space, e.g., Stable Diffusion [68] models the latent space induced
by an encoder and generates images through a paired decoder. Although the se-
lection of the latent space is empirically pivotal, determining the optimal choice
and the process of identifying it remain unclear. In this study, we aim to shed light
on this under-explored topic by rethinking the latent space from the perspective
of model complexity. Our investigation starts with the classic generative adver-
sarial networks (GANs). Inspired by the GAN training objective, we propose a
novel "distance" between the latent and data distributions, whose minimization
coincides with that of the generator complexity. The minimizer of this distance is
characterized as the optimal data-dependent latent that most effectively capitalizes
on the generator’s capacity. Then, we consider parameterizing such a latent dis-
tribution by an encoder network and propose a two-stage training strategy called
Decoupled Autoencoder (DAE), where the encoder is only updated in the first
stage with an auxiliary decoder and then frozen in the second stage while the actual
decoder is being trained. DAE can improve the latent distribution and as a result,
improve the generative performance. Our theoretical analyses are corroborated by
comprehensive experiments on various models such as VQGAN [21] and Diffu-
sion Transformer [60], where our modifications yield significant improvements in
sample quality with decreased model complexity.

1 Introduction

In the past decade, deep generative models have achieved great success across various domains
such as images, audio, videos, and graphs [32, 59, 33, 34]. The advances are epitomized by recent
breakthroughs in text-driven image generation [69, 66, 65, 68]. Behind the empirical success are
fruitful developments of a wide variety of deep generative models, among which, many can be
associated with a latent space, e.g., generative adversarial networks (GANs) [23, 6, 40], Variational
Autoencoders (VAEs) [44], and latent diffusion models [79, 68, 60]. It is commonly believed that
for structured data such as images, the intrinsic dimension is much lower than the actual dimension
[4, 62]. By utilizing a proper low-dimensional latent space, generative modeling can be more efficient
[79, 50, 78]. Take text-to-image generation as an example, state-of-the-art models such as DALL-E
[65], Parti [88], Stable Diffusion [68] all utilized discrete Autoencoders to alleviate the computation
cost by downsampling images, e.g., from 256×256 to 32×32.

In practice, the choice of the latent plays a critical role. Stable Diffusion [68] employs the Autoencoder
from VQGAN [21], which is an improvement over VQVAE [80] by incorporating adversarial training.
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The discrete Autoencoder was later substituted to continuous ones regularized with Kullback–Leibler
(KL) divergence. ViT-VQGAN [87] further boosted VQGAN by using vision transformers [20] as
the backbone and it was adopted by Parti [88]. Despite the methodological advances, our theoretical
understanding of the latent space is still limited. Important questions such as what constitutes a good
latent space, what is the optimal choice, and how it depends on data remain elusive.

Ideally, the latent distribution Pz should preserve the important information about the data distribution
Px as much as possible so that the required effort from the model learning is minimal. Finding such a
data-dependent latent can be viewed as a self-supervised learning (SSL) task. Can we borrow insights
from the vast literature on SSL to understand and improve the latent? Unfortunately, existing methods
[57, 14, 25, 28, 29] are designed for discriminative tasks and not suited for generative modeling. To
illustrate, consider the classic GANs [24, 76] where the latent distribution is usually pre-defined.
When modeling the CIFAR-10 dataset [45], if we substitute the DCGAN’s latent [63] from standard
Gaussian to the features learned from SimCLR [14] with the same dimension, the Inception Score
(IS) drops from 5.68 to 3.932. Therefore, new theoretical insights are in dire need to elucidate the
ideal Pz and uncover its connection to Px.

In this work, we aim to provide a new understanding of the latent space in generative modeling from
the angles of SSL and minimizing model complexity, where we first formalize the problem for GAN
models and then generalize it to Autoencoders.

Drawing inspiration from the training objective of GANs, a novel distance between distributions in
different dimensions can be defined to measure the closeness between the latent and the data (Section
3.1). As is typically emphasized in learning theory [82, 83, 35, 61], the complexity of the generator
is an important factor in this formulation, where a latent is deemed closer to the data if a generator
can achieve the same (better) performance with lower (the same) complexity. The latent closest to the
data in a GAN-induced distance is characterized as the optimal choice for that GAN, which leads to
the simplest map between the latent and the data.

With our formulation of the optimal latent distribution, the immediate question is how to estimate
it, which gives rise to a new SSL task for generative modeling. Naturally, we consider utilizing an
encoder network to parameterize the latent, which uncovers the popular Autoencoder architecture
with the paired generator as a decoder (Section 3.2). In the learning process, we further emphasize
the importance of a relatively weak decoder and the trade-off between the informativeness of the
latent and the capability of the decoder (Section 4.1). To this end, we propose a 2-stage training
scheme called Decoupled Autoencoder (DAE), where the encoder is only updated in the first stage
with an auxiliary decoder and then frozen in the second stage while the actual decoder is being trained
(Section 4.2). Our theoretical analyses are corroborated by comprehensive experiments on both
synthetic data and real image data with various models such as DCGAN [63], VAEGAN [47, 90],
VQGAN [21], and Diffusion Transformer (DiT) [60], where our modifications yield significant
improvements in image quality with decreased model complexity (Section 6).

2 Preliminary

Notations. For a function f : Ω → R, let ∥f∥p = (
∫
Ω
|f(x)|pdx)1/p. For a vector x, ∥x∥p

denotes its lp-norm. Lp and ℓp are used to distinguish function norms and vector norms. For two
positive sequences {an}n∈N and {bn}n∈N, we write an ≲ bn if there exists a constant C > 0 such
that an ≤ Cbn for all sufficiently large n. We use Px and px to denote the probability distribution
and density of the random variable x. g ◦ f(x) := g(f(x)) denotes composition of functions.

Generative adversarial networks are a type of implicit generative models that aim to learn
transformations g ∈ G from random noises z to the data x. At the population level, its objective
function can be expressed in general as

inf
g∈G

Dh(Px, Pg(z)), z ∼ Pz, (2.1)

where Pz is usually pre-determined to be some simple distribution such as (mixture) Gaussian
or uniform, and Dh is realized by the adversarially-trained discriminator h and when optimized
properly, can give rise to various well-established distances, e.g., Jensen-Shannon divergence [24],

2Calculated using reconstructed data. More details can be found in Section 6.2
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maximum mean discrepancy [48], f -divergence [58], Wasserstein distance [5], etc. Exploiting the
flexible architectures of various neural networks as generators [41, 42], GAN enjoys state-of-the-art
performance in generating various data types [41, 85, 74, 89] with notable advantage in the sampling
speed, especially compared with diffusion probabilistic models (DPMs) [72, 32]. However, GAN
models often suffer from mode collapse, failing to keep the data diversity intact. Besides the usual
suspect of the min-max adversarial training, the poor choice of latent noise distribution is also to
blame [22].

Self-supervised learning. The goal of SSL is to learn a (low-dimensional) feature representation
f(x) from unlabeled data that is suited for various discriminative downstream tasks, e.g., classifi-
cation, detection, etc. There are mainly three categories, i.e., pretext task-based [57], contrastive
methods such as SimCLR [14], MoCo [28], BYOL [25], SimSiam [15], and generative-based such
as Masked Autoencoder (MAE) [29]. The learned feature map f(x) defines a distribution over the
feature space z ∈ Rdz , denoted as Pf . Ideally, Pf should preserve the important information about
Px as much as possible. In this sense, representation learning in general can be seen as preserving
certain "distances3" between distributions in different dimensions [36, 8].

Distance between distributions in different dimensions. To quantitatively measure the closeness,
various similarity measures between Pf and Px are defined. Since dz < d, typical distances
between distributions will not work due to the different metric spaces z and x reside in. Fortunately,
there are two existing tools we can turn to. The first is Gromov-Wasserstein distance [56, 71],
which circumvents the metric spaces mismatch by comparing pairwise joint distributions. Typical
manifold learning methods such as stochastic neighbor embedding can be thought of as a special case
[31, 81, 36]. Second, as in [9], popular distances such as Wasserstein-p distance and f -divergence
can all be naturally extended to such settings, either by embedding Pz to Rd or projecting Px to Rdz

and taking the infimum over all orthogonal linear projections. Specifically, for any distance between
distributions D(·, ·) in the Wasserstein-p or f -divergence family, define its generalized version to be

D+(Px, Pz) := inf
Px̂∈Φ+(Pz,d)

D(Px, Px̂),

where Φ+(Pz, d) := {Px̂ : Ax̂ + b ∼ Pz,A ∈ Rdz×d, b ∈ Rdz ,AA⊤ = Idz
} is the family of

distributions in Rd embedded from Pz by a linear orthogonal transformations from Rdz → Rd.
Similarly, we can define D−(Px, Pz) and [9] showed that D+(Px, Pz) = D−(Px, Pz).

Contrastive learning has deep connections with manifold learning [8] in terms of preserving pairwise
similarity, which can be viewed as a special case of preserving the Gromov-Wasserstein distance [36].
In contrast, as we will demonstrate in this work, the optimal latent for generative modeling such as
GANs is more closely related to D+(Px, Pz).

3 Optimal latent distribution for generative models

Recall the typical training objective of GANs (2.1) and denote its empirical version as Ln(g|Pz),
where n is the sample size. For any given Pz , with limited capacity on the generator, ming Ln(g|Pz)
reflects the compatibility or closeness between Pz and Px. If Pz1 is a better latent than Pz2 , intuitively
ming Ln(g|Pz1) ≤ ming Ln(g|Pz2). This can serve as an empirical and relative evaluation of the
quality of GAN latents. Inspired by this, we can generalize the distance proposed in [9] to construct a
more meaningful version specifically for implicit generative models such as GANs.

3.1 GAN-induced distance

Let M(Ω) denote the set of all Borel probability measures on Ω. For any distance between distri-
butions D(·, ·) in the data space M(Rd), define the generalized version associated with a generator
g ∈ G mapping from Rdz to Rd as:

DG(Pz, Px) := inf
g∈G

D(Pg(z), Px). (3.1)

3We use the word “distance" quite generally, including not only well-defined metrics, but also divergences.
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Compared with D+ in [9], DG substitutes the linear orthogonal mappings to a general function space.
Although DG is not a valid metric as it is defined between different probability measure spaces, it can
serve as a viable measurement of the closeness between Pz and Px.

In order for DG to be nontrivial, the function space G cannot be too large, as it is known that one-
dimensional distributions can approximate higher dimensional distributions arbitrarily well by neural
network transformations in Wasserstein-p distance [86]. On the other hand, G cannot be too small, or
it may not be able to adequately extract the information from the latent distribution. In this work, we
consider G to be a family of neural networks with bounded complexity, i.e., Gc = {g ∈ G : C(g) ≤ c},
where c > 0 and C(·) is some complexity measure to be specified. C(·) can be as specific as the
Lipschitz constant, or as general as the size (width, depth, etc.) of the network.
Remark 3.1. It is worth emphasizing that in (3.1), we do not consider the optimization problem but
instead, focus on the existence or the global minimum of infg∈G . A toy example is given in Appendix
A.1 to illustrate the global minimizers of g ∈ G.
Remark 3.2 (Complexity scaling law). In the toy case of Appendix A.1, the relationship between DGc

and c is an embodiment of the popular scaling law phenomenon [39, 91] with respect to the model
complexity. It’s worth noting that the requirement on the complexity can be drastically decreased if
we consider multiple steps of generation, rather than single-step push-forward transformations. From
this perspective, one of DPM’s main advantages may just be the increased complexity due to the
recursive sampling process.

Directly following the definition in (3.1), we have the following propositions.
Proposition 3.3. Let D be a p-Wasserstein metric, a Jensen-Shannon divergence, a total variation,
or an f -divergence. Then, DG(Pz, Px) in (3.1) is zero if and only if there exists g∗ ∈ G such that
Pg∗(z) = Px.
Proposition 3.4. For two distributional distances, generalizing them across different dimensions
via (3.1) does not change their relative relationships, e.g., if D is Wasserstein distance, we still have
WG

p (px, pz) ≤ WG
q (px, pz), for p ≤ q.

Equipped with DG to compare different latent distributions, we can characterize the ideal Pz as
the one that minimizes DG(Pz, Px), i.e., the latent that requires the lowest generator capacity for
L(g|Pz) to be below a certain threshold4. Such a latent depends on both the data and the GAN
training algorithm and can be seen as an SSL task, targeting specifically minimizing the required
capacity of the corresponding generator, thus easing the training of the generator.
Remark 3.5 (Dimensional collapse). In contrast to the common dimensional collapse phenomenon
[38] found in contrastive learning where the learned feature distribution is only supported on a
low-dimensional subspace, minimizing DG(Pz, Px) with respect to Pz encourages it to maintain
the intrinsic dimension of the data so that D(Pg(z), Px) is not ill-posed. The dimensional collapsed
latent contributes to the poor performance of SimCLR+DCGAN mentioned in Section 1.
Remark 3.6 (Change-of-scale problem). Although DG serves as a well-defined measurement of
closeness between pz and px, the latent pz that minimizes DG(pz, px) might be ill-posed. If the
complexity is not invariant to scaling, e.g., Lp norm, Lipschitz constant, etc., DG(Pz(λz), Px) is
non-increasing with λ. In the next section, we impose extra constraints to circumvent this problem,
and the optimal P ∗

z is characterized therein.

3.2 Learning the latent by an encoder

Now that we have characterized the ideal latent distribution given the generator family and the data, the
next question is how to find such a good latent. Casting it as an estimation problem, the first decision
to make is how to parameterize Pz . We could adopt Gaussian mixtures as in [84]. Nonetheless, a
more universal and powerful way is to employ an encoder network f ∈ F : Rd → Rdz , similar to
SSL methods. With Pz parameterized by an encoder, the overall structure is an Autoencoder. In the
remaining part, we also refer to the generator as the decoder and use the two words interchangeably.

At the population level, we want to match the distributions of x and the reconstructed g ◦ f(x), i.e.,

inf
f∈F,g∈G

D(Px, Pg◦f(x)) = inf
f∈F

(
inf
g∈G

D(Px, Pg◦f(x))

)
= inf

f∈F
DG(Px, Pf(x)).

4More mathematical ground for this argument can be found in Appendix A.3.

4



Looking at the encoder and the decoder together, we can see that optimizing D(Pg◦f , Px) amounts
to learning an encoder f that minimizes DG . This strategy is employed by VQGAN [21], where
the encoder and decoder are optimized together with the discretized latent code. Inspired by this
observation, we can characterize the optimal latent distribution P ∗

z for a given Px from the perspective
of minimizing the distance between distributions in different dimensions by defining Pf∗ as

f∗ = argmin
f∈F

DG(Px, Pf(x)). (3.2)

Notice that P ∗
f not only depends on Px and D, but also F and G. The change-of-scale problem in

Remark 3.6 is mostly taken care of by the inherent boundedness of F . More discussion on the choice
of G can be found in Section 4.1.
Remark 3.7 (Classification). As the solution of a new SSL task, f∗ in (3.2) will preserve well-
separated clusters of Px, though not as discriminative as the features learned from existing SSL
methods. See Proposition A.3 in the appendix for more details. We also conducted experiments on
simulated data evaluating the classification accuracy in Section 6.1.

With the encoder, (3.2) is not the only option to characterize the optimal latent distribution. Besides
directly parameterizing Pz , F can also serve an auxiliary role in defining a more general P ∗

z . To
this end, in parallel to DG , we can also define DF (Pz, Px) := inff∈F D(Pz, Pf(x)). As DG is to
D+, DF generalizes the D− in [9]. Combining DG and DF , we get a generalized measure of
distance between the latent and data for Autoencoders as Dæ(Pz, Px) = DG(Px, Pz)+DF (Px, Pz),
which resembles the condition number of matrices, but for latent distributions. The optimal latent
distribution can also be characterized by

P ∗
z = argmin

Pz

Dæ(Pz, Px). (3.3)

If dz = d, then identity mapping, i.e., P ∗
z = Px, obviously solves (3.2) and (3.3). If like DPMs

or VAEs where the latent distributions are chosen to be data-agnostic, e.g., standard Gaussian,
Dæ(Pz, Px) can be significantly larger for complicated data.
Remark 3.8. DG and DF can be zero, especially when Px is supported on a low-dimensional space
[9]. As a result, the defined f∗ or P ∗

z might not be unique. We provide a toy example in Appendix
A.2 to illustrate how P ∗

z minimizes the complexity.

4 Improving the latent with Decoupled AutoEncoder

In practice, the encoder and decoder family should be as powerful as possible. However, as stated
before, G and F should be chosen carefully in order for the induced DG and DF to be meaningful.

4.1 Necessity of relatively weak decoders

Given a total budget5 of G and F , intuitively, C(G) = C(F) tend to result in the best approximation
of G ◦ F to the identity mapping. This is reflected in practice where the encoder-decoder pair is
often designed with symmetric architecture, with the same number of blocks and parameters, e.g.,
up-sampling vs. down-sampling, convolution vs. deconvolution, etc. However, when it comes to the
quality of the encoded latent, only targeting the reconstruction error may not be the ideal strategy. As
we will demonstrate in Section 4.2, a better way is to first target a good latent distribution, and then
do reconstruction using the learned latent. Consider two symmetric cases: (larger encoder, smaller
decoder) vs (smaller encoder, larger decoder). The reconstruction ability may not be significantly
different, although both are sub-optimal, the former tends to produce better latent distribution. See
Section 6.1 for empirical evidence in the toy case comparing the two cases.

For a concrete demonstration, consider the simple linear case where the encoder and the decoder are
two matrices, denoted as We ∈ Rd×dz and Wd ∈ Rdz×d respectively. Take the matrix 2-norm as a
measurement of complexity, which is equal to the largest singular value. A similar setting is also
considered in [37]. In the linear case, the quality of the latent is equivalent to the reconstruction error
and the optimal encoder should recover the principal components. The next theorem states that the
Autoencoder could fail if the encoder is not large enough.

5The budget and C(·) here refer to the general concept of size (width, depth, etc.) of the network.
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Figure 1: Overview of the DAE 2-stage training. DAE addresses the trade-off between generation
quality and the latent quality where the encoder is only updated in the first stage with an auxiliary
weaker decoder and then frozen in the second stage while the actual decoder is being trained.

Theorem 4.1. Let the singular values of Wd be λ1 ≥ . . . ≥ λdz
. If ∥We∥ < 1/λdz

, the linear
Autoencoder cannot recover the principal components, and the reconstruction error is sub-optimal.

The linear case provides insights into neural networks as Autoencoders, indicating that the encoder
should be relatively strong to better learn the latent distribution. In the more practical nonlinear
cases, things become more complicated. The intuition that (larger encoder, smaller decoder) is
preferred to (smaller encoder, larger decoder) for learning a more informative latent is supported
by the well-known posterior collapse phenomenon in the VAE literature [1, 27, 67, 54], where the
encoded distribution becomes completely uninformative if the decoder is too powerful. However,
for implicit generative models such as GANs, the generator is obviously the key component and it
should be as powerful as possible. There exists a trade-off between generation quality and the quality
of the latent. Using a decoder too powerful can hinder the learning process of a good latent while
a decoder too small will hurt the generation performance. In practice, whether a decoder family is
weak or not can be summarized in an oversimplified way by its size, i.e., a smaller decoder is weaker.
Remark 4.2. We could consider pairing a sufficiently large G with an even larger F . Unfortunately,
such a combination may not be a good solution. Besides the added computational cost, an encoder-
decoder pair too powerful can drive DG +DF too close to zero, so that it may get overwhelmed by
random noise. The signal-to-noise ratio may be too low for effective optimization.

4.2 Decoupled AutoEncoder

To address the trade-off between generation quality and the quality of the latent, we can introduce
an auxiliary decoder GA, potentially much smaller/weaker, to substitute G for training the encoder.
Once the encoder is trained, we can then freeze it and pair it with G for the decoder training. The key
idea is to decouple the learning process of the encoder and the decoder in a 2-stage training scheme
we call Decoupled AutoEncoder (DAE). Figure 1 illustrates the method overview where the two
stages of DAE can be summarized as:

• DAE Stage 1: Train f̂ ∈ F with a small decoder GA to learn a good latent.

• DAE Stage 2: Freeze the trained encoder f̂ . Then train the regular decoder g ∈ G to ensure
good generation performance.

By the 2-stage training, one with GA and one with G, without much hyperparameter tuning, DAE can
learn a better latent distribution and as a result, achieve better reconstruction and generative modeling.
Remark 4.3 (Realizing GA). The essence of the first stage is to employ an auxiliary decoder that is
relatively weak compared with the encoder. Straightforwardly, we can introduce an extra decoder
family. For an easier way of implementation, we can also use various forms of regularization to
realize GA. For instance, with a balanced encoder-decoder pair, we can apply strong Dropout [73] to
the decoder in the first stage to make it weaker. Both methods are experimented in Section 6.

DAE can be applied in a plug-and-play style to any existing Autoencoder training pipelines with the
decoupled 2-stage modification. We demonstrate in Section 6 that compared to various baselines,
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e.g., VAE, VQGAN, etc., our DAE-modified versions are better in terms of both reconstruction error
and quality of the latent. For instance, we refer to Figure 3 in the appendix where we experimented
with VQGAN [21]. In terms of the reconstruction error, Stage 1 is worse than the baseline, which is
to be expected since a weaker decoder is used. However, paired with the Stage 1 encoder, the decoder
(the same size as the baseline) can achieve better reconstruction performance.

4.3 Sampling from the latent distribution

In most Autoencoder-based generative models, e.g., VAE, adversarial Autoencoder [55], Wasserstein
Autoencoder [76], etc., the latent distributions are all modeled by Gaussian distributions. DPMs
[72, 32] can also be seen as a type of Autoencoder-based method with the forward noising process as
the encoder and the denoising process as the decoder, with the latent distribution being Gaussian. As
discussed in Remark 3.2, the decoding process of DPM enjoys drastically increased capacity due to
the multi-step generative process.

In our work, with Pz parameterized by the encoder, how to generate new samples from it requires
extra modeling of the latent. Otherwise, we can only do reconstruction. There are two mainstream
methods to sample from the latent distribution. The first is inspired by natural language processing. In
VQGAN [21] and Parti [88], the discretized latent codes are autoregressively modeled by transformers
as a sequence, similar to GPT [64] while masked image modeling methods [11, 12] resembles BERT
[19]. The second is by diffusion process. Latent space diffusion models [68, 60] can be seen as
using DPMs to model the latent space of a powerful Autoencoder. We mainly adopt the VQGAN
formulation in our numerical experiments for training the Autoencoders. To validate the effectiveness
of our DAE, we consider modeling the latent by both transformers and diffusion models.

5 Related works

BourGAN [84] proposed to model the latent distribution as Gaussian mixtures as a remedy for the
mode collapse problem of GANs. Instance-conditioned GAN [10] proposed to partition the data
manifold into a mixture of overlapping neighborhoods described by a data point and its nearest
neighbors to improve the quality of unconditional generation. There is also a line of work that
considers post-sampling latent space mining of GANs by exploiting the trained discriminator [75, 13].
[49] further proposed adding an implicit latent transform before the mapping function to improve
the latent from its initial distribution in a bi-level optimization fashion. Though these works targeted
improving the latent distribution of GANs, they did not characterize the optimal choice nor employ
an encoder to model the latent. In comparison, we approach the problem from the perspective of
preserving the distance between distributions in different dimensions and propose a 2-stage training
scheme involving an encoder.

There are GANs that incorporate an Autoencoder structure. VAEGAN [47, 90] combines a VAE by
collapsing the decoder and the generator into one. [2] utilized a standard autoencoder to embed data
into the latent space to address the mismatch of the continuous neural network and the discontinuous
optimal transport (OT) map. [3] later proposed to utilize semi-discrete OT maps to sample from the
latent and train GAN models. VQGAN [87] uses vector-quantized latent codes and transformers to
model the tokenized latent distribution. ViT-VQGAN [87] later made improvements over VQGAN.
Besides using vision transformers [20] as the backbone, it also introduced an l2 regularization term
to the latent code. However, the aforementioned works did not characterize the optimal latent either
and did not point out the necessity of the decoupled 2-stage training. Our DAE approach can also be
applied to them for further improvement.

In the literature of VAE, [77] introduced new priors consisting of mixture distribution with components
given by variational posteriors conditioned on learnable pseudo-inputs. [17] proposed a two-stage
learning scheme to amend the problems associated with the Gaussian encoder/decoder assumptions.
[1] stated that obtaining a good ELBO is not enough for good representation learning and proposed
to incorporate mutual information and rate-distortion curve to achieve a better balance between the
informativeness of the latent and the reconstruction quality. In comparison, our characterization of
the optimal latent is from the perspective of matching distributions and minimizing complexities
and is not restricted to Gaussian assumptions. It is also worth emphasizing that while the mutual
information, closely related to VAEs, can also serve as a "distance" between distributions in different
dimensions, it will not work for our benefit since we are considering deterministic encoders and
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decoders. In the deterministic case, the conditional entropy would be zero and the mutual information
would always be the entropy of the latent. Hence uniformly distributed latent is always ideal, which
does not offer new insights.

Masked Autoencoder (MAE) [29] is a generative-based SSL method with the training objective of
reconstructing masked images. In MAE, a high mask ratio and a relatively weak decoder have been
verified as important factors for good discriminative performance, which is also corroborated by our
perspective of preserving distributions in different dimensions. MAEs are designed for discriminative
tasks and their generation capability is yet to be explored.

6 Experiments

In this section, we conduct empirical evaluations of our proposed DAE training scheme on a variety
of datasets and generative models, from toy Gaussian mixture data to DCGAN on CIFAR-10, to
VQGAN and DiT on larger datasets. The detailed experiment settings can be found in Appendix B.

6.1 Toy examples

To showcase the effectiveness of the proposed 2-stage training, we consider a toy Gaussian mixture
case with 8 clusters, whose centers are evenly placed on the unit circle, and the variances are 0.25.
All samples in R2 are then projected to R10 via a linear orthogonal mapping. We employ the vanilla
VAE [44] for demonstration with dz = 2. In our implementation, both the encoder and the decoder
are 3-layer fully connected networks with different hidden dimensions to control the size. Giving
each cluster a label, we evaluate (1) the nearest neighbor classification accuracy from the 2D latent;
(2) the nearest neighbor classification accuracy from the 10D reconstruction; and compare different
configurations of the encoder and decoder pair. The average classification accuracy is reported in
Table 1, which corroborates our analysis in Section 4, i.e., a relatively weak decoder can learn a better
latent and the following 2-stage training can further improve reconstruction.

Table 1: The mean (variance) of the classification
accuracy w.r.t. difference hidden dimensions of
the (encoder, decoder) over 10 replications.

Hidden Dim (64, 128) (128, 64)
Latent Acc (%) 80.6 (7.0) 87.8 (5.8)
Hidden Dim (128, 128) DAE (128, 128)
Rec Acc (%) 92.2 (6.1) 98.0 (1.3)

Table 2: The performance of DCGAN with dif-
ferent latent distributions.

Method IS (↑) FID (↓)
DCGAN (reproduced) 5.68 51.76
DCGAN-SimCLR 3.93 168.23
VAEGAN 5.82 48.11
DAE-VAEGAN 6.16 46.12

6.2 GAN on CIFAR-10

As a more comprehensive proof-of-concept, we experiment with DCGAN [63] on the CIFAR-10 [45]
dataset. Specifically, we consider a vanilla baseline where the generator has 5 convolutional layers and
the discriminator has 4 convolutional layers, followed by a linear classification layer. The latent for
DCGAN is standard Gaussian. To corroborate our analysis in Section 4, we adapted the DCGAN with
varying latent space configurations: (1) We utilize a latent space defined by a CIFAR-10 pre-trained
SimCLR model [16], denoting this adaptation as DCGAN-SimCLR. (2) We consider VAEGAN
with a learnable latent space. The structures of the decoder and discriminator mirrored those of
our baseline DCGAN while the encoder is implemented with a five-layer CNN. (3) We modified
VAEGAN to DAE-VAEGAN, where the width of convolutional layers in the decoder is halved in the
first stage and then set back to its original structure in the second stage.

We evaluated the aforementioned four methods using the metrics of Inception Score (IS) [70] and
Frechlet Inception Distance [30]. With the exception of DCGAN, which generates images from
random noises, the other methods first encode an image into latent space, and then generate an image
based on that encoding. To this end, we omit the latent space modeling and calculate their metrics
from reconstructed images. The results are listed in Table 2, with two take-home messages: (1)
Traditional SSL methods may not help with the latent for generative modeling; (2) Decoupling the
encoder and decoder training can improve the overall performance of generative modeling.
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6.3 VQGAN

VQGAN [21] consists of two major components. The first is a discrete Autoencoder, where the
latent is quantized by looking up nearest neighbors from a learnable codebook. After the encoder
and decoder are trained (objective contains adversarial loss), the second component, a transformer
model, learns to generate discrete codes autoregressively in the latent space, which are then mapped
to images by the learned decoder.

To demonstrate the effectiveness of our DAE, we introduce the decoupled training strategy to the first
component of the standard VQGAN. In the first stage, we implement the relatively weak auxiliary
decoder by applying Dropout [73] to the decoder with ratio p, and train encoder and the dropped
decoder jointly6. Then in the second stage, we freeze the encoder and train the full decoder without
Dropout. Training of the transformer component is the same as VQGAN. The modified model is
denoted as DAE-VQGAN.

Setup. We evaluate DAE-VQGAN by comparing with the baseline VQGAN on the FacesHQ
dataset, which is a combination of two face datasets CelebAHQ [51] and FFHQ [43], with 85k
training images and 15k validation images in total. In all experiments, the input image size is
256x256. We use the official VQGAN implementation7 and model architectures for FacesHQ. The
Autoencoder is dubbed VQ-f16. The training process of DAE-VQGAN is divided equally into two
stages, where in the first stage we apply 2D Dropout (channel-wise) to the decoder with ratio p = 0.5.

Table 3: Reconstruction FID over FacesHQ training and
validation sets, and transformer generation FID on Cele-
bAHQ and FFHQ training sets. †: Evaluated on the pub-
licly available pre-trained model on FacesHQ. *: Our repro-
duction is based on the official VQGAN implementation.

Method Reconstruction Generation
Train Val CelebaHQ FFHQ

VQGAN 4.81† 6.27† 10.2 9.6
VQGAN* 4.23 5.83 9.97 10.44
DAE-VQGAN 2.01 3.82 8.58 8.36

Table 4: Class-conditional image gen-
eration on ImageNet 256× 256 using
the DiT-L/4 model with different Au-
toencoders. *: Our reproduction is
based on the official DiT implementa-
tion, which is consistent with the re-
sults reported in Fig.5 of [60].

Method FID sFID IS
DiT* 35.16 7.33 39.25
DAE-DiT 32.29 6.90 41.71

Improved image reconstruction and generation. To quantitatively evaluate the encoder-decoder
component, we train the model on FacesHQ and compute the reconstruction FID over the full training
and validation splits. We further train a transformer separately for CelebAHQ and FFHQ with the
same architecture as in [21], and compute the generation FID with 50k generated samples against the
training split of the respective dataset. As shown in Table 3, DAE-VQGAN achieves significantly
improved FID compared to VQGAN, indicating that a stronger encoder-decoder component can be
unlocked for VQGAN by our DAE approach. We show qualitative generation results in Figure 2.
We see that models trained by DAE-VQGAN can reconstruct and generate images with high fidelity.
Figure 3 in the Appendix shows the reconstruction losses during training. It is worth noting that while
our DAE-modified VQGAN has higher reconstruction losses in the first stage, it catches up fast in the
second stage and converges to a lower level than the baseline. This is to be expected as the first stage
of DAE focuses on learning a better latent, which can ease the training of the decoder in the second
stage and result in better performance overall.

Decreased Complexity. Minimizing the model complexity is a key motivation for our DAE. To
verify our claims, we evaluate the Lipschitz complexity (CLip defined in (B.1)) of the encoder f and
decoder g in VQGAN. Since g ◦ f is trained to be approximately the identity map, the trends of
CLip(f) and CLip(g) are expected to be the opposite, with the ideal number being close to 1 for both
if we want the overall complexity CLip(f) + CLip(g) to be minimized. We observed in Figure 4
that the encoder complexity of VQGAN and DAE-VQGAN are 1.40 and 0.88, respectively, with an
increasing trend in terms of training steps; the decoder complexity of VQGAN and DAE-VQGAN

6We also implemented the auxiliary weak decoder by leveraging an extra decoder family with the number of
convolution channels halved. The overall performance is similar and we put the results in Appendix B.1

7https://github.com/CompVis/taming-transformers
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(a) (b)

Figure 2: (a) Top: original image; Middle: reconstruction of VQGAN; Bottom: reconstruction of
DAE-VQGAN. (b) Generated samples of DAE-VQGAN.

are 0.73 and 1.16, respectively, with a decreasing trend in terms of training steps. Compared with
the baseline, our DAE-modified version produces better latent distribution with a significantly lower
complexity while achieving a lower reconstruction error. See Appendix B.2 for more details.

6.4 Diffusion Transformers (DiT)

The encoder in VQGAN is discrete with a codebook. In Appendix B.3, we look into the codebook
and investigate how different training strategies affect the behavior of the learned latent. Our DAE
can also apply to continuous Autoencoders that are usually regularized by KL divergence. Such
KL-regularized AEs are adopted by latent diffusion models such as DiT [60]. Following similar
settings as VQGAN, we also modified DiT to DAE-DiT by employing the decoupled training scheme
and experimented with the larger ImageNet dataset [18]. The details can be found in Appendix B.4.

For evaluation, we train DiT on the ImageNet dataset with 256×256 resolution following the official
implementation8. Instead of the largest DiT-XL/2 model (675M Params), we select the DiT-L/4
model (458M Params) for higher training efficiency. The corresponding Autoencoder is dubbed
KL-f8. AdamW [53] optimizer is employed with a constant learning rate of 10−4 and a weight decay
of 3 × 10−2. The batch size is 1024, and the number of epochs is 120. The trained model with
Exponentially Moving Average (EMA) is then used to generate 50k images of the 1000 categories
equally via a 250-step DDPM sampling [32] and a classifier-free guidance scale of 4. Table 4
compares the image generation quality where we can see that our DAE-DiT achieves significant
improvement, similar to what we observed for DAE-VQGAN.

7 Discussion

This work investigates the ideal latent distribution for generative models. We introduce a novel dis-
tance between distributions to characterize the ideal Pz that minimizes the required model complexity.
Practically, we propose a two-stage training scheme called DAE that achieves practical improvements
on various models such as GAN, VQGAN, and DiT. Since many of the most powerful generative
models are associated with a latent space, the impact of such investigations is potentially very high.

Nevertheless, there are many limitations of our work that call for further research along this line.
First, our formulation of the optimal latent distribution is based on DG ,DF and Dæ, which serve
mainly illustrative purposes. The proposed distances cannot be effectively calculated. Second, the
effectiveness of DAE is not proven mathematically and the resulting latent is not guaranteed to
be closer to P ∗

z . Our work could be further strengthened if the aforementioned limitations can be
addressed. It would also be an interesting direction to explore how our method affects latent space
disentanglement [52, 26].

8https://github.com/facebookresearch/DiT.
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A Technical details

A.1 Toy example 1

To illustrate the interplay between DG and G, we devise a one-dimensional toy example where
x ∼ N(0, σ2), z ∼ U(0, 1), g : R → R is monotonically increasing and C(g) is the Lipschitz
constant upper bounded by c. In this case, the optimal transformation is g∗ = P−1

x , whose derivative
around 0 or 1 is exponentially dependent on µ/σ. Due to the Lipschitz constraint, by the change of
distribution formula, we have

pg(z)(x) = I{g−1(x)∈(0,1)} · ∇g−1 ≥ 1

c
.

From the perspective of regression, the optimal ℓ2-projection of g∗ to Gc is

ĝ(z) =

{
g∗(z) if ∇g∗(z) ≤ c,

c(z − 1
2 ) else.

Let zc =
√
2σ2 log(c/2π) and it is clear that ∇g∗(zc) = c, or equivalently, px(zc) = 1/c. As a

result, the push-forward distribution is a truncation of Px supported on |x| ≤ zc + c · Px(−zc), i.e.,
Pĝ = Px if px ≥ 1/c and 1/c otherwise, which is equivalent to minimizing the total variation (TV)
between Pg and Px. In this oversimplified example, it is easy to see the scaling between c and DGc ,
i.e., TV Gc(Pz, Px) ≲ Px(−zc), which is polynomial with c in the Gaussian case.

A.2 Toy example 2

To illustrate the characterization of P ∗
z and how it minimizes the complexity, consider a toy example

where dz = 1, x ∼ N(0,Σd) and both G and F are linear functions with bounded Lipschitz constant
c > 1. Denote the singular values of Σd as λ1 ≥ . . . ≥ λd. In this case, we have C(P ∗

z ) = 0 and
P ∗
z = N(0, σ2) with σ ∈ (

√
λn,

√
λ1).

Lemma A.1 (Example 6.1 in [9]). If D is Wasserstein-2 metric,

D−(N(0, σ2), N(0,Σ)) =


√
λn − σ if σ <

√
λn,

0 if
√
λn ≤ σ ≤

√
λ1,

σ −
√
λ1 if σ >

√
λ1,

where λ1 ≥ · · · ≥ λd are the singular values of Σ.

As a direct corollary of the above lemma, we have C(P ∗
z ) = 0 and P ∗

z = N(0, σ) with σ ∈
(
√
λn,

√
λ1).

A.3 Discussion on P ∗
z and C(g)

The ideal P ∗
z is characterized as the one that minimizes DG(Pz, Px). The link between its definition

and the capacity of the generator can be made mathematically sound with an extra assumption.
Assumption A.2. For any Pz and Px, DGc(Pz, Px) is continuous and monotonically decreasing
with c.

Assumption A.2 is not provable for general D(·, ·) and C(·). Nevertheless, we give proof that the
ideal P ∗

z that minimizes DG(Pz, Px) will give rise to the minimal complexity generator if it holds.

Proof. First, recall that Gc := {g ∈ G : C(g) ≤ c} where C(g) is defined as some complexity
measurement. It is easy to see that for any c2 ≥ c1 > 0, Gc1 ⊂ Gc2 . Therefore, DGc2 (Pz, Px) ≤
DGc1 (Pz, Px).

Consider a generator family G with bounded complexity and we target to have the generated
distribution close to the data at level ϵ measured by D, i.e., D(Px, Pg(z)) ≤ ϵ for some Pz and g ∈ G.

For a certain (non-degenerate) Pz , there exists c > 0 such that DGc(Pz, Px) = ϵ, that is, by using
this latent Pz , we need at least complexity c to achieve the ϵ goal. If Pz is not ideal, by definition
we know that there exists P ∗

z that DGc(P ∗
z , Px) = ϵ∗ < ϵ. By Assumption A.2, we know there

exists c′ < c such that DGc′ (P ∗
z , Px) = ϵ. This means that the goal can be achieved using a lower

complexity generator if the latent is ideal.
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A.4 Proof of claims in Section 3

Proposition 3.3 and 3.4 directly follow the definition of DG .

DG is to DF as D+ is to D−. Due to the enlarged function space, the equality D+ = D− no
longer holds. Directly following Lemma 2.1 in [9], we have the following inequality: DG(Pz, Px) ≤
DF (Pz, Px) where D can be a p-Wasserstein metric or an f -divergence.

Proposition A.3 (Classification guarantee for clustered data). Suppose Px has m disjoint supports.
Then the corresponding P ∗

z must preserve all the clusters.

Proof. Let DKL be the KL divergence (for example). Suppose Px has m disjoint supports. Then

DKL(Px, Px̂) =

m∑
k=1

∫
Xk

px(x) log

(
px(x)

px̂(x)

)
dx.

To minimize DKL(Px, Px̂), clearly px̂(x) = 0 implies px(x) = 0. As px̂(x) increases, DKL(Px, Px̂)
decreases. Since Pẑ can be selected according to our will, if px(x) = 0 but px̂(x) ̸= 0, it is possible
to build p̃ẑ such that p̃x̂(x) ≥ px̂(x) for all x, and 1 =

∑m
k=1

∫
Xk

p̃x̂(x)dx >
∑m

k=1

∫
Xk

px̂(x)dx,
which implies there exists a positive measure such that p̃x̂(x) > px̂(x). This implies px̂(x) cannot
minimize DKL(Px, Px̂). Thus, we must have if px(x) = 0, then px̂(x) = 0. This further implies that
z must have at least m disjoint supports. If z has less than m disjoint supports, then x̂ must have less
than m disjoint supports, because the linear map is continuous. Then there must exists px(x) = 0 but
px̂(x) ̸= 0.

In [9], it has been proved that infDKL(Px, Px̂) = infDKL(Pz, Pẑ). Following the same logic, the
number of supports of ẑ must be smaller than the number of supports of x, which implies the number
of supports of ẑ must be smaller than m. Combining these results with the previous one, we must
have the number of supports of ẑ is m.

A.5 Proof of claims in Section 4

Before we prove Theorem 4.1, we introduce the following lemma on linear auto-encoder.

Lemma A.4. Consider two optimization problems:

min
W∈Rm×n

∥X −WWTX∥2F , (A.1)

which corresponds to Principle Component Analysis (PCA), and

min
W1,W2∈Rm×n

∥X −W2W1X∥2F , (A.2)

which is a linear auto-encoder. Let W ∗ be the solution to PCA and W ∗
1 ,W

∗
2 be the solution to linear

auto-encoder, and

L1 = ∥X −W ∗(W ∗)TX∥2F , L2 = ∥X −W ∗
2W

∗
1X∥2F . (A.3)

Then, L1 = L2.

Proof. Clearly, L2 ≤ L1, because we can set WT
1 = W2 = W ∗, which leads to

L2 = ∥X −W ∗
2W

∗
1X∥2F ≤ ∥X −W ∗(W ∗)TX∥2F = L1.

Therefore, it suffices to show L1 ≤ L2.

For a fixed W2, By [7], the optimal solution with respect to W1 is

W1 = (WT
2 W2)

−1WT
2 .

Therefore,

L2 = ∥X −W ∗
2 ((W

∗
2 )

TW ∗
2 )

−1(W ∗
2 )

TX∥2F .
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Let the singular value decomposition of W ∗
2 be

W ∗
2 = UΣV,

where U ∈ Rn×n and V ∈ Rm×m are orthogonal matrices, and Σ ∈ Rn×m is a diagonal matrix
with singular values λ1 ≥ . . . ≥ λm. Therefore,

W ∗
2 ((W

∗
2 )

TW ∗
2 )

−1(W ∗
2 )

TX =UΣV (V TΣTUTUΣV )−1V TΣTUTX

=UΣ(ΣTΣ)−1ΣTUTX.

Note that ΣTΣ is a diagonal matrix. Therefore, we can set

W̃ = UΣ(ΣTΣ)−1/2.

Clearly,

(W̃ )T W̃ = (ΣTΣ)−1/2ΣTUTUΣ(ΣTΣ)−1/2 = Im,

which implies

L2 =∥X −W ∗
2 ((W

∗
2 )

TW ∗
2 )

−1(W ∗
2 )

TX∥2F
=∥X − UΣ(ΣTΣ)−1ΣTUTX∥2F
=∥X − UΣ1U

TX∥2F
=∥X − UmUT

mX∥2F
≥∥X − U∗

m(U∗
m)TX∥2F

=L1,

where Σ1 = diag(1, ..., 1, 0, ..., 0) is a rank m diagonal matrix. This finishes the proof.

With the above lemma, Theorem 4.1 is a simple corollary.

Proof of Theorem 4.1. Recall the proof of Lemma A.4 where the linear encoder is W1 and the linear
decoder is W2. Then, in order to realize the PCA solution, we have

∥W1∥2 =∥(WT
2 W2)

−1WT
2 ∥2 = ∥(ΣTΣ)−1ΣT ∥2 = λ−1

m ,

∥W2∥2 =∥Σ∥2 = λ1. (A.4)

Thus, as long as λ1λm < 1, the encoder is larger in terms of 2-norm.

B More on Experiments

B.1 Experiment details for DAE-VQGAN

Let’s recap the VQGAN basics with more details. VQGAN [21] consists of two major components. In
the first component, an input image x is encoded by an encoder f into latent representation z = f(x).
A quantization step is applied to obtain zq = τ(z), which contains nearest neighbors of entries of
z from a learnable codebook. Then a decoder g reconstructs x̂ = g(zq) from the codes. After the
encoder and decoder are trained (with adversarial loss), the second component, a transformer model,
learns to generate discrete codes in the latent space, which are then mapped to images by the learned
decoder g.

We evaluate our DAE modifications to VQGAN on the FacesHQ dataset, which is a combination of
two face datasets CelebAHQ and FFHQ, with 85k training images and 15k validation images in total
(Table 5). In all experiments, the input image size is 256x256.

We use the official VQGAN implementation9 and model architectures for FacesHQ, where both
encoder f and decoder g have 128 convolution channels. The spatial dimension of the latent
representation is 16 × 16. See Table 7 and Table 8 in [21] for details. All experiments are run on
eight V100 GPUs. For training the encoder and decoder, the learning rate is 4.5× 10−6, the batch

9https://github.com/CompVis/taming-transformers

19



Dataset Training Validation Total
CelebaHQ 25k 5k 30k
FFHQ 60k 10k 70k
FacesHQ 85k 15k 100k

Table 5: Number of images in the face datasets.

size is 8 on each GPU (total batch size 64), and the number of training epochs is 80. For training
the transformer the learning rate is 2 × 10−6 and the batch size is 12 on each GPU. The FIDs in
Table 3 are obtained by selecting the best results from three independent runs, for both VQGAN and
DAE-VQGAN.

To implement our 2-stage DAE-VQGAN, we consider two ways to realize the auxiliary decoder
family GA during the first stage of training the encoder. Similar to the settings in Section 6.1 and 6.2,
we first utilize an extra auxiliary decoder gaux with half the number of channels as the actual decoder.
Then, we experimented with decoder Dropout [73], as mentioned in Remark 4.3.
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Figure 3: Training reconstruction loss trends for two implementations of DAE-VQGAN. (a) Halving
the channels: while the reconstruction loss of our first stage (f + gaux) converges to a higher value
than the baseline (f + g), our second stage (f + gaux/g) converges to a lower level with much faster
convergence speed; (b) Dropout: the switch between the 2 stages of DAE occurs at halfway (40 epoch,
around step 53k), where we can see that our method trails behind before the switch and surpasses the
baseline after the switch and converges to a lower level of the reconstruction error.

Halving the channels. We use the same f and g architectures as the VQGAN baseline, and gaux is
the same as g except for the number of channels set to 64. To distinguish, we use f + g to represent
the models from the baseline VQGAN, and use f + gaux and f + gaux/g to denote the first stage
and second stage of DAE-VQGAN, respectively. For the DAE training, we jointly train encoder f
and the auxiliary decoder gaux ∈ GA in the first stage (first 40 epochs). Then in the second stage
(last 40 epochs), we replace gaux with g, and train g from scratch with f (and the trained codebook)
fixed. For a more thorough investigation, we extended the run for both VQGAN and DAE-VQGAN
to 200 epochs and the reconstruction error trends are shown in Figure 3(a), where we can see that our
DAE-VQGAN achieves significantly better reconstruction. For the actual evaluation on the FacesHQ
dataset, we stick to the 80 epoch training scheme for both the baseline and our DAE-VQGAN, with
the switch point between the two stages at epoch 40.

Dropout. In the first stage, we implement the relatively weak auxiliary decoder by applying 2D
Dropout (channel-wise) to the decoder. In particular, we replace the Dropout layer in each ResNet
Block in the decoder of the original VQGAN with 2D Dropout and set ratio p = 0.5, and train the
encoder and the dropped decoder jointly. Then in the second stage, we freeze the encoder and train
the full decoder without Dropout. There are in total 80 training epochs for both the baseline and
DAE-VQGAN (the first 40 epochs belong to the first DAE stage and the second DAE stage takes up
the next 40 epochs). Figure 3(b) shows the trends of the reconstruction loss during training, where
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we can see that our DAE-VQGAN achieves significantly better reconstruction as well, despite the
fact that the encoder f is only updated in the first stage.
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Figure 4: Lipschitz complexity of encoder and decoder during training. Our DAE second stage
f + gaux/g utilizes the frozen encoder f from the first stage f + gaux at epoch 40 (around step
53k, where the blue line and the orange line intersect). Since g ◦ f is trained to be the identity map,
the trends for Clip(g) and Clip(f) are approximately reciprocal and the ideal values for them are
1. Compared with the baseline f + g (blue line), our DAE stage one f + gaux (orange line) has a
significantly lower Clip(f) that is closer to 1. Since the second stage f + gaux/g does not update the
encoder, the green line stays flat.

B.2 Complexity of encoder and decoder

One benefit of our DAE is the ability to better exploit the capacity/complexity of the encoder and
decoder. To this end, we investigate the Lipschitz complexity CLip of encoder f and decoder g
defined as:

CLip(f) = Ex1,x2∼Px

[
∥τ(f(x1))− τ(f(x2))∥2

∥x1 − x2∥2

]
, (B.1)

CLip(g) = Ex1,x2∼Px

[
∥g(τ(f(x1)))− g(τ(f(x2)))∥2

∥τ(f(x1))− τ(f(x2))∥2

]
.

Without loss of generality, we choose the DAE-VQGAN implemented by introducing an auxiliary
gaux for demonstration. The conclusions for Dropout are similar. Figure 4 shows the Lipschitz
complexity of the encoder and decoder during 200 epochs of training, where f + g represents the
baseline VQGAN, f + gaux represents the first stage of our method, and f + gaux/g represents the
second stage of our method where encoder f is initialized with weights from the 40-th epoch (around
training step 53k) of the first stage training. Since g ◦ f is trained to be approximately the identity
map, the trends of the encoder and decoder are the opposite. As stated in Section 3, the Lipschitz
complexity should be ideally close to 1 for both the encoder and decoder. Compared with the baseline,
our DAE-VQGAN produces a better latent distribution with significantly lower complexity overall
(closer to 1) while achieving smaller reconstruction errors. We also compute a variant of CLip where
the ℓ2 norms of difference between x1 and x2, and that between their reconstructions, are replaced
with perceptual similarity (LPIPS) [92]. This LPIPS complexity variant shows similar trends as CLip

(Figure 5).

B.3 VQ codebook

We look into the codebook and investigate how different training strategies affect the behavior of the
learned latent. For both VQGAN and DAE-VQGAN, the codebook size is 1024. For the codebook
itself, we compute the pairwise cosine similarity among the learned codes and show the histogram of
the similarity scores in Figure 6(a). For VQGAN, the cosine similarities are much more concentrated
near 1 and -1, indicating that a large portion of learned codes may be highly similar. In comparison,
codes learned by DAE-VQGAN are more scattered in the latent space and therefore can be more
efficient. The expressiveness of our codebook is more powerful in approximating the ideal latent
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Figure 5: Lipschitz complexity with perceptual similarity (LPIPS complexity) of encoder and decoder.
The overall trends are similar to those in Clip shown in Figure 4.

distribution than the original one. We further plot the eigenvalues of the cosine distance matrix for
learned codes in Figure 6(b), where we can clearly see that the eigenvalue decay for the baseline is
significantly faster, indicating more severe dimensional collapse.
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Figure 6: (a) Histogram of cosine similarity of codes. (b) Top 20 eigenvalues of the cosine distance
matrix. (c) Number of appearances of codes in sorted order.

For the latent expressed using the codebook, we count and sort the number of appearances of codes
over the training set of CelebAHQ (Figure 6(c)). We see that DAE-VQGAN can learn less redundant
codes and hence their appearances are more evenly distributed. Interestingly, all codes are utilized in
the reconstruction process for both VQGAN and DAE-VQGAN, perhaps due to the limited size of
the codebook.

B.4 Experiment details for DAE-DiT

We note that while the auxiliary decoder gaux approach presents clear trends of complexity changing,
it requires manually changing the network between the two stages, and hence is less convenient
to implement than the Dropout approach in practice. Therefore we adopt Dropout as the default
approach in our DAE-DiT experiments.

Similar to DAE-VQGAN, in the first stage of DAE-DiT, we implement the relatively weak auxiliary
decoder by applying Dropout[73] to g with ratio p = 0.2, and train encoder f and the dropped
decoder jointly. Then in the second stage, we freeze encoder f and train the full decoder g without
Dropout. We train on the OpenImages [46] dataset and adopt the KL-f8 model as in [68]. The encoder
and decoder are trained with learning rate 4.5× 10−6 and batch size 64.

For the diffusion training, we adjust the scale factor from the default 0.18215 to 0.8 such that
the variance of features from the encoder is close to 1. Following the same setup as the official
implementation, the EMA rate is 0.9999 and the classifier-free guidance scale is 4. The computation
during both the training and the testing process was executed using FP16 precision except for the
attention module for computational stability.
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