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Abstract—Model reprogramming (MR) is an emerging and
powerful technique that provides cross-domain machine learning
by enabling a model that is well-trained on some source task to
be used for a different target task without finetuning the model
weights. In this work, we propose Reprogrammable-FL, the first
framework adapting MR to the setting of differentially private
federated learning (FL), and demonstrate that it significantly
improves the utility-privacy tradeoff compared to standard
transfer learning methods (full/partial finetuning) and training
from scratch in FL. Experimental results on several deep neural
networks and datasets show up to over 60% accuracy improve-
ment given the same privacy budget. The code repository can be
found at https://github.com/IBM/reprogrammble-FL.

Index Terms—Model Reprogramming, Differential Privacy,
Federated Learning, Privacy-Accuracy Tradeoff

I. INTRODUCTION

Federated learning (FL) enables learning a global model
when the training data is distributed across multiple clients.
We define a local version of the model as the model owned
by a client and the global model as the model shared by all
the clients/devices. Local models are trained locally on private
training data and are shared periodically with the server, which
averages the local models to obtain the global model. Figure 1
provides an overview of the federated learning framework.

Clients involved in a federated learning process are con-
cerned about the privacy of their data shared in the learning
process. For instance, if clients are hospitals sharing personal
health data of their patients in a federated learning process,
leakage of any information—be it a feature of a health record,
or worse, a complete health record—could pose ethical and
legal risks. Previously, it was believed that since clients only
exchange local gradients or model parameters, the privacy
of the client data would be well-preserved. However, recent
works [1]–[3] show that naı̈vely trained FL models may not be
private and exhibit data leakage risks including vulnerabilities
to membership inference attacks and gradient leakage attacks.

Differential privacy (DP) [4] is a popular tool used to
preserve privacy during model learning. In particular, the DP-
SGD method [5] is a modification of the standard stochastic
gradient descent (SGD) that incorporates additional noise to

reduce privacy loss during training. However, a model trained
using DP-SGD is likely to suffer from degraded accuracy,
as noisy gradient estimates lead to poor convergence [6].
This leads to an important challenge in differentially private
federated learning, i.e., attaining a better privacy-accuracy
(utility) tradeoff. This paper focuses on improving the attain-
able accuracy given a privacy budget, using the standard DP-
SGD algorithm for FL.

Multiple approaches exist to train a global model in a differ-
entially private manner [7]. One straightforward approach is to
ensure that each client trains its local model using DP-SGD.
However, this approach does not provide a desirable accuracy-
privacy tradeoff, as the privacy budget limits the number of
training steps allowed for updating the global model, thus
leading to sub-optimal accuracy of the global model. A more
effective approach is to start with a model that was pre-trained
on a public dataset and differentially privately finetune it in
a federated manner to improve its accuracy on the dataset
whose privacy we wish to ensure. Intuitively, finetuning an
already trained model requires less rounds of training on the
private dataset to achieve acceptable accuracy levels, and thus
higher accuracy can be achieved at a lower privacy budget.
Indeed, [8] has shown that even partial finetuning of a pre-
trained model on the private dataset can drastically improve
the privacy-accuracy tradeoff. In this paper, we use finetuning
and transfer learning interchangeably.

In this paper, we show that model reprogramming (MR) [9],
a recently introduced alternative to transfer learning [10],
exhibits a superior accuracy-privacy tradeoff to fine-tuning
approaches in the federated setting. The rationale is that MR is
a more efficient approach for leveraging a source pre-trained
model to solve a new target task: instead of changing the pre-
trained weights as in transfer learning, MR attaches a trainable
input transformation layer and an output mapping layer to
the source model for reprogramming. Figure 2 illustrates the
difference between MR and other approaches that tackle the
privacy-accuracy tradeoff. It can be seen that MR keeps the
source model unchanged and only modifies the input and out-
put transformation layers during training, thereby efficiently
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Fig. 1: The framework of federated learning using model reprogramming (Reprogrammable-FL). The corresponding mathe-
matical notation is introduced in Section II. (a) Model reprogramming in a centralized setting. (b) Model reprogramming in a
federated setting. In both cases only the parameters associated with the input and output layers attached to the pre-trained source
model are altered during reprogramming; this differs from standard transfer learning approaches that finetune the parameters
of the source model itself.

utilizing the pretrained model’s capabilities.

The organization of the remainder of the paper is as follows.
A concise summary of the paper’s contributions and findings is
followed by a brief presentation used to familiarize the reader
with the notions and notations of Model Reprogramming
(MR), Federated Learning (FL), and Differential Privacy (DP).
Next, the proposed methodology of MR in the federated
setting, named Reprogrammable-FL, is introduced. Finally,
the results of several numerical experiments are presented to

demonstrate the superiority of Reprogrammable-FL over ex-
isting methods for achieving better privacy-accuracy tradeoffs
in DP-FL settings.

A. Our Contributions

• We propose Reprogrammable-FL, a novel framework
for achieving model reprogramming in the differentially
private federated learning setting, which achieves an
improved utility-privacy tradeoff. This framework uses
an unchanged pre-trained source model, attaches a pair
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Fig. 2: Illustration of different machine learning principles in transfer learning settings. Top to Bottom: Model Reprogramming,
Full-Finetune, Train from Scratch, and Partial Finetune. The colors on the right panel specify the trainable and non-trainable
layers of pretrained/untrained neural networks in each method.

of learnable input and output transform layers to the
source model, and learns their parameters in the federated
setting.

• We show that, across datasets and models, the novel
use of model reprogramming consistently and massively
outperforms existing approaches that aim to improve the
accuracy-privacy tradeoff. For instance, on CIFAR-10, for
a given privacy budget of ϵ = 1.04, Reprogrammable-FL
exhibits up to a 61.4% increase in classification accuracy
over other approaches.

• Our ablation study shows that more accurate (usually
deeper) source models give a better accuracy-privacy
tradeoff for a given budget in Reprogrammable-FL, while
competing approaches may not have such benefits.

II. BACKGROUND AND RELATED WORK

A. Model Reprogramming

Model Reprogramming (MR) [9] is an approach toward
resource-efficient cross-domain machine learning originally
introduced in [11] as an alternative to model finetuning ap-
proaches. In MR (see Figure 1a), a pre-trained source model
is adapted for use in a new domain (i.e., a target domain) by the
addition of input and output transformation layers. The param-
eters of the source model are frozen after training on the source
task in the source domain, then the parameters of the input
and output transformations are learned to map, respectively,
inputs in the target domain to inputs in the source domain and

outputs in the source domain to outputs in the target domain.
The seminal work adapted image classifiers for several image-
based tasks, but subsequent work has demonstrated the success
of MR in cross-domain model adaptation, including repro-
gramming language recognition models to learn molecular
representations [12], reprogramming acoustic models for time
series classification [13], and reprogramming general image
classifiers for data-limited bio-medical measurements [14].

1) Transformation Layers: Without loss of generality, we
assume that the inputs and outputs for the source and target
tasks are vectors of dimension dS and dT respectively. To
facilitate the MR approach, we require dT ≤ dS . We also
assume that the two tasks under consideration are classification
tasks, with KT target classes and KS source classes; and that
KT ≤ KS .

Input Transformation Layer. The input transformation layer
maps a sample xT in the input space of the target task to a
point x̃T in the input space of the source task, while including
learned parameters in x̃T that assist in partially adapting the
source model to the target task. In the case of scaled input
range [−1, 1] in each input dimension, as considered in this
work, a standard choice of input transformation [11] is given
by

x̃T = ZeroPadding(xT ) + tanh(M ⊙Θ).

The operator ZeroPadding adds borders of zeros around the
input image to result in an image of size dS , and M is a binary



mask that equals zero where ZeroPadding(xT ) is equal to xT
and equals one on the border of ZeroPadding(xT ). The only
learnable parameter, Θ, is an input-independent perturbation
of the padded image that helps adapt the source model to the
target task, and tanh is the element-wise hyperbolic tangent
function that ensures each dimension of x̃T stays in the range
[−1, 1].

Output Transformation Layer. The output transformation
layer maps KS classes to KT classes through a trainable fully
connected layer parametrized by W . This mapping between
the logit outputs of the source model, ŷS = fS(x̃T ), and the
logits of the target task, ŷT , is denoted by ŷT = Fc(W ; ŷS).
The final prediction on the target task is given by the softmax
output:

ŷT = softmax[Fc(W ; ŷS)]

2) Training: Given a pretrained source model fS and a
target training set {xi

T , y
i
T }ni=1, the reprogramming parameters

Θ and W are learned as minimizers of

f(Θ,W ) =
1

n

n∑
i=1

ℓ(ŷiT (fS(x̃
i
T )), y

i
T ),

where ℓ is a measure of discrepancy between the true target
and the predicted target.

As proved in [13], the target loss of MR is upper bounded
by the summation of two terms: the source loss and the
representation alignment loss between the source data and the
reprogrammed target data. MR can fully leverage the pre-
trained source model when reprogramming suffices to align
the representations of the target data with those of the source
data. In this case, it is possible to use the classification model
encoded in the source model to solve the target task.

B. Federated Learning

To date, MR has been studied exclusively in a shared
memory (centralized machine learning) setting. This work is
the first to study the performance of MR in distributed learning
settings, and specifically investigate its privacy-accuracy trade-
offs in the setting of differentially private federated learning.

Federated learning is a machine learning paradigm that
allows multiple clients to collaboratively train a model in
a distributed manner without sharing training data. It was
initially proposed in [15] and has gained popularity due to its
demonstrated ability to efficiently use data distributed across
a large number of clients. There is a rich body of literature
addressing problems in federated learning such as data hetero-
geneity [16], [17], expensive communication [18], [19], and
privacy guarantees [20]. The survey paper in [21] provides
an overview of the field.

Let fi(ω) measure the loss of the shared model ω on the
ith client, then FL attempts to minimize the weighted global
loss

F (ω) =
∑m

i=1
αifi(ω)

while minimizing communication and data exposure between
the clients [15]. Typically fi measures the performance of the

model on the training data set local to the ith client. In this
paper we take

fi(ω) =
∑ni

j=1
ℓ(ω; (xij , yij)),

where ℓ(ω; (xi
j , yi

j)) measures the loss of the model ω on the
jth training example (xi

j , yi
j) on client i. We take αi = ni/N

to be the fraction of the overall training data present on the
ith client, where N is the total number of samples used in the
training process.

To achieve the goals of minimizing communication and
data exposure, FL algorithms alternate between aggregating
local models to form a global model and locally updating
these global models on the clients to form more accurate
local models. Algorithms vary in their choice of methods to
aggregate the local models, methods used to update the local
models, choice of clients to participate in each round, and in
additional steps that may be introduced for various reasons:
e.g., to increase privacy, decrease communication costs, mit-
igate the effects of non-participating clients, or alleviate the
impact of heterogenous data distributions across the clients.

The widely employed federated averaging (FedAvg) algo-
rithm forms the tth global model as an average over the local
models ωt =

∑m
i=1 αiω

i
t. The local models ωi

t are obtained
by using multiple steps of SGD on each worker to update the
previous global model ωt−1 to minimize fi [15]. This process
continues until model convergence.

C. Differential Privacy and DP-SGD

The process of fitting ML models potentially discloses
sensitive information about the training data set, even after
seemingly clever anonymization techniques are used on the
data set. This concern is exacerbated in the federated setting,
where the communication of the sequence of global models
between the clients potentially enables information leakage.

Differential privacy (DP) provides strong privacy guarantees
and has become the standard framework for privacy-preserving
ML [4]. A randomized algorithm A is said to be (ε, δ)-DP if
it guarantees that for any two training data sets D and D′

that differ by the inclusion or exclusion of a single training
example, and any set S in the output space,

P [A(D) ∈ S] ≤ exp(ε)P [A(D′) ∈ S] + δ.

When D is the training data set and A is the algorithm used
to learn an ML model, this guarantee ensures that even if all
the other data points utilized in fitting a model are known, one
cannot infer the presence or absence of a particular individual
data point from the learned model because the models A(D)
and A(D′) are very likely to be similar. Smaller values of ε
and δ give stronger privacy guarantees.

By far the most popular and ubiquitous approach to privacy-
preserving model learning is differentially private SGD (DP-
SGD), which modifies the standard SGD algorithm by using
the Gaussian mechanism to lower disclosure risk [5]. Let g
be a deterministic vector-valued query function that takes a
dataset as input, and define its sensitivity Sg as the maximum



of ∥g(D) − g(D′)∥2 over adjacent datasets. The Gaussian
mechanism uses

g(D) +N (0, S2
gσ

2I)

as a more private proxy for g(D); here N (0, S2
gσ

2I) denotes
zero-mean Gaussian noise with the given covariance matrix.
Intuitively, the addition of noise calibrated to the sensitivity
level of the query function hides the influence of any one
particular data point; more precisely, given ε ∈ (0, 1) and
δ ∈ (0, 1), it suffices to take σ > 2ε−1 ln(1.25δ−1) for this
proxy for g to be (ε, δ)-DP [4].

In the application of the Gaussian mechanism to DP-SGD,
the query function g is the SGD gradient estimator evaluated
on the training dataset, and its sensitivity is naturally bounded
by the ℓ2 norm of the largest gradient on any of the training
data points. This quantity is unknown, changes over the
course of training, and can be prohibitively large, so in DP-
SGD the sensitivity of the gradient estimator is fixed at a
hyperparameter C by passing it through the Clip operator:

Clip(x) =
x

max{1, ∥x∥2/C}
.

The moments accounting method of [5] is used to track the
evolution of the privacy parameters ε and δ during DP-SGD
training.

In practice, DP-SGD is used to update the local models
in FedAvg to ensure that the model is learned privately; this
variant of FedAvg is called DP-FedAvg. Our Algorithm 2 in
Section III uses DP-FedAvg to implement Model Reprogram-
ming (MR) in the federated setting. In our study, DP-FedAvg is
used as the algorithmic framework for FL because it comprises
the essential components of FL – model averaging, multi-
ple rounds of local model updating, and privacy-preserving
learning – without additional algorithmic enhancements whose
presence may complicate the interpretation of the impact of
MR on FL.

For clarity, in our proposed Reprogrammable-FL frame-
work, we note that the privacy guarantee is specific to the
private data for FL, not the public data to train the source
model.

III. METHODOLOGY OF REPROGRAMMABLE-FL

We consider the setting of MR on FL (i.e., federated
MR), as illustrated in Figure 1b. The client-server architecture
follows [15] and the DP-SGD methodology follows [5] and
[22]. This work is the first to study model reprogramming
in the context of differentially private federated learning,
and establish that it exhibits superior privacy-utility tradeoffs
compared to fine-tuning.

The client- and server-side algorithms of our proposed
Reprogrammable-FL framework are given in Algorithms 1
and 2, respectively. The same pretrained source model fS
is distributed to each of the clients before the start of
Reprogrammable-FL. At the start of each communication
round, the server communicates the current global reprogram-
ming parameters ω = {Θ,W} to all clients; recall that Θ and

W denote the trainable parameters of the input and output
transformation layers, respectively. DP-SGD is used locally to
obtain updated local reprogramming parameters that increase
performance on the local training data. Finally, the clients
return their reprogramming parameters to the server, which
aggregates them to compute the latest global model.

Consider a setting of m clients where the private data on
the ith client with ni samples are denoted by

xi, yi = {xi
T ,j , y

i
T ,j}

ni
j=1

Here, the subscript T indicates that samples from the target
domain are used for local training and j indicates a specific
training sample. Consider the training procedure of one client.
At the beginning of each round, the client receives the latest
global model, then trains for L local iterations. In each local
iteration, the client samples a batch B uniformly at random
from the local training dataset and updates the local parameters
using DP-SGD. Once the local training ends, the clients send
their local reprogramming parameters ωL = (ΘL,WL) back
to the server. Algorithm 1 provides the details of one round
of client training. For clarity, we abbreviate the loss function
of the ith client to

ℓ(ω; (xi
b, yi

b)) = ℓ(ŷ(fS(x̃ib)), yi
b),

where the subscript b denotes the bth sample from the current
batch of local data, and x̃ib and ŷ are computed using the
current local reprogramming parameters.

Algorithm 1 Federated Model Reprogramming
(Reprogrammable-FL) – Client Side
Input: xi, yi = {xi

T ,j , y
i
T ,j}

ni
j=1

1: ClientUpdatei(ωt;C, σ, L,B, fS)
2: ωi

0 ← ω
3: for t ∈ {0, . . . , L− 1} do
4: B ← uniform sampling w/o replacement
5: Update input transformation layer Θi

t+1 ← Θi
t− η · 1B ·

[
∑

b∈B Clip(∇Θiℓ(ωi
t; (xib, yib))) +N (0, σ2C2I))]

6: Update output transformation layer W i
t+1 ← W i

t − η ·
1
B · [

∑
b∈B Clip(∇W iℓ(ωi

t; (xi
b, yi

b))) +N (0, σ2C2I))]
7: ωi

t+1 ← (Θi
t+1,W

i
t+1)

8: end for
9: return ωi

L

Consider the server-side computations of Reprogrammable-
FL : the clients train their local models in a parallel manner
and send the trained layer parameters {ωi

L}ni=1 back to the
server after the local training procedures conclude. The server
aggregates the local models to form the next global model,
which is then sent back to the clients. Training continues
in this manner for T rounds. Given a fixed pre-determined
δ, and noise variance σ, the moments accountant approach
of [5] is used at each round t to compute the expended privacy
budget so far by all the clients over the entire dataset, ϵ. This
computation uses knowledge of the total number of iterations
over the full dataset, t×L, and total effective batch size m×B.
See Algorithm 2 for the server-side algorithm.



Algorithm 2 Federated Model Reprogramming
(Reprogrammable-FL) – Server Side
Input: ω0 = (Θ0,W0) initialised randomly, δ, T , L, B, C, σ,
N , fS
Output: ωT = (ΘT ,WT )

1: for t ∈ {0, . . . , T − 1} do
2: for all i ∈ m in parallel do
3: ωi

t+1 = ClientUpdatei(ωt, C, σ, L,B, fS)
4: end for
5: Update ωt+1 ←

∑m
i=1 αiω

i
t+1

6: Server calculates expended privacy budget ε using mo-
ments accountant for fixed δ

7: end for

IV. EXPERIMENTAL EVALUATION

We simulate the performance of the Reprogrammable-FL
and its comparison to baselines in a federated setting. These
baselines are the current approaches that aim to improve the
accuracy-privacy tradeoff. Our primary comparison with the
baselines is done for the IID (independently and identically
distributed) setting and we also show results in the non-IID
setting.

The results shown are for a federated scenario with 100
rounds and three clients with each client doing 1 local it-
eration before aggregation of the parameters in all scenarios
considered. Effects of more clients and more local epochs
are then analyzed in the ablation study. All the baselines and
Reprogrammable-FL are getting trained using DP-SGD with
the server implementing Fed-Avg as the aggregation strategy.
Ablation studies with more clients and different local iterations
are also conducted. Minimal changes in the experimental struc-
ture between baselines and model reprogramming demonstrate
the power of model reprogramming over baselines as the only
change is the structure of the client models. The baselines
used are explained below in more detail. See Figure 2 for the
comparison of model reprogramming with the baselines.

A. BaseLine Full Finetune – (BL-FF)

This baseline has the clients using a pre-trained model
where all parameters are tuned on the private dataset of
the clients. The pre-trained model is modified such that the
number of classes matches the performed task. For instance,
to perform CIFAR-10 classification, a Resnet-50 model pre-
trained on ImageNet is modified for 10 classes (by randomly
initializing the last fully connected layer). Note that this is
different from MR in that the model is modified to match the
target tasks. Training in the federated setting means that the
clients exchange all the model parameters after performing L
local iterations in a DP-SGD manner and the server averages
all the received parameters.

B. Baseline Train from Scratch – (BL-TS)

This baseline consists of using the same architecture of
a source model and training it on some target task. The
architecture is modified such that the output classes match the

target task. This entire model is trained in a DP-SGD manner.
In the federated setting, all the parameters are exchanged,
similar to the full-finetune setting.

C. Baseline Partial Finetune – (BL-PF)

This baseline consists of using a pre-trained model on some
source task to perform classification on some target task. In
principle, this baseline assumes a similar setting to BL-FF
with the difference being that instead of fully fine tuning all
the model parameters, only the final modified classification
layer is randomly initialized and finetuned on the target task
with DP-SGD on the private data.

D. Parameters

These parameters are fixed for all the source models and
target tasks. The motivation for making little change to the
parameters was to demonstrate the strength of model repro-
gramming over the competitive baselines. The effect of using
different batch sizes is studied in Section VI.

• Noise Variance σ2 =1.1
• Clipping norm C = 1.0
• Training Batch Size B = 256
• Learning Rate η = 0.15
• δ = 10−5

For model reprogramming, we treat the image size in the
padded image to be a hyperparameter. Therefore, we upsample
the image to size 200 × 200 where the size of the image is
224×224. For using baselines we upsample the image to size
224× 224 for the source model that expects such input in all
of our considered tasks.

E. Source Models

For our experiment, we employ five different source models.
All these source models were trained on ImageNet as a source
task. We employ the popular ResNet [23] architecture of
various depths as our source models, including ResNet18,
ResNet50, and ResNet152 of depths 18, 50 and 152 layers
correspondingly. A more recent architecture ResNext [24]
with different widths is also considered for evaluation, includ-
ing Resnext50 and Resnext101. All these source models were
trained on Imagenet as the source task.

F. Target Tasks and Datasets

We select three representative datasets for image classifi-
cation to conduct our experiments. CIFAR-10 is a common
dataset in FL [25] and model reprogramming [11]. Oxford-IIT
Pet dataset is studied in various transfer learning applications
[26]. These datasets are large and relatively more complex than
MNIST datasets. Since privacy is an important requirement
in healthcare-related machine learning applications, the third
choice of the dataset (Blood MNIST) is used to demonstrate
the efficacy of using model reprogramming in federated learn-
ing for health applications.



a) CIFAR-10: CIFAR-10 is a popular dataset that con-
sists of 60000 images of size 32 × 32 with 10 classes (e.g.:
dog, cat, airplane, etc). The data is split into 50000 training
images and 10000 testing images. This is a well-balanced
dataset such that each class has the same number, i.e., 6000
training samples. We evaluate this dataset in the IID setting
such that the data is equally partitioned amongst the clients.

This dataset is also evaluated in the non-IID setting where
the non-IID conditions are simulated in two ways [27]: one
being to divide the training data unequally between the clients
(similar to Quantity Skew in [27] except that the samples were
not chosen through Dirichlet distribution) and the other being
to divide the certain classes to certain clients. We simulate
the former condition in this section and the class imbalance
setting is evaluated in the ablation study. For three clients the
data is divided in a 45:9:1 ratio.

b) Oxford-IIIT: Oxford-IIIT dataset has 37 classes with
200 images for each class. These contain 25 categories of dogs
and 12 categories of cats. This is also a well-balanced dataset
with a training size of 7400 samples and we demonstrate its
performance in the IID condition.

c) Blood-MNIST: The Blood-MNIST dataset are periph-
eral images of blood cells that come from uninfected patients
[28] of original shape 3× 360× 363. This dataset has 17,092
images of 8 different blood cells. [29] preprocessed these
images to 3× 28× 28 which we upsample to size 224 before
feeding them into the source models. We simulate this dataset
on different source models for the IID case. The training set
consists of 11,959 data samples and the test dataset consists
of 3421 images.

G. Computational Resources

The CIFAR-10 dataset on all the source models with all of
the baselines was evaluated using a core 2.5 GHz Intel Xeon
Gold 6248 NVIDIA Tesla V100 GPU with a 32 GiB HBM
and 768 GiB RAM per node. This platform was also used to
simulate Blood-MNIST for ResNet-152 architecture.

The Oxford-IIIT and Blood MNIST were evaluated using
Google Colab for all different source models. Google Colab
uses Tesla T4 GPU on its platform. Our experiments were
done using Pytorch 1.12 on both platforms.

V. PERFORMANCE EVALUATION AND DISCUSSION

For performance evaluation, we compare Reprogrammable-
FL with baselines in both centralized and federated settings to
study their accuracy-privacy tradeoffs.

Figs 3–11 show the performance comparison of the base-
lines with Reprogrammable-FL. The values on the y-axis are
the accuracy and the values on the x-axis are the privacy
budget consumed after every 10 rounds calculated from the
moment accountant method. This ϵ value is a function of the
total number of iterations of DP-FedAvg, the batch size, the
size of the dataset, and the δ value). The batch size is fixed
in the plots to illustrate how the choice of the number of
iterations of DP-FedAvg and local epochs used in training the
models impact the privacy budget. The choice of ϵ values are

inspired from the work of [30], [22] and [31] but our central
approach lies around fixing the number of global rounds and
local epochs and calculating the result privacy budget and
accuracy at each round. Fig 12 evaluates this performance for
various batch sizes. Fig 13 shows a performance comparison
of using different batch sizes, with other parameters constant.
We see a slight advantage in using larger batch sizes in terms
of the model utility achieved for a fixed number of iterations
of FedAvg.

Figure 3a shows the performance of MR over the baselines
in the centralized case using CIFAR-10 and ResNet-50. The
evaluation is measured as the test accuracy for various ϵ values
calculated from the moment’s accountant method [5]. We see
clearly that for any ϵ value, MR gives better accuracy than
any of the baselines.

In the federated learning case, this ϵ value is evaluated using
the moment’s accountant method after every global round. Test
accuracies are evaluated for these various ϵ values. Figure 3b
shows the performance in the federated setting of three clients
for different budget (ϵ) values in the IID case for CIFAR-10.

Figure 4 shows the Non-IID case for quantity imbalance for
three clients in CIFAR-10. The test accuracy is the accuracy of
the global model plotted against the budget consumed by the
global model. It can be clearly observed that MR does much
better than its baselines in both IID and non-IID settings.

Table I shows the accuracies for given ϵ values for various
combinations of target task and source models in the IID
case, computing using one run for each of the experiments.
Table II reports averages and variances over three runs in
the accuracies of partial-finetuning and reprogrammable-FL.
Table III considers the non-IID scenario (Quantity Skew). In
all cases, we see MR outperforms the baselines significantly.
Additionally, we make a note that for any epsilon values
below the reported ones, MR consistently provides a better
accuracy tradeoff than any of the baselines. Notably, compared
to the best baseline and given the same privacy budget in
Table I, MR can attain a significant increase in the accuracy
across different source models by up to 61.4%/62.7%/23.1%
on CIFAR-10/Oxford-IIIT/Blood-MNIST, respectively. For the
non-IID case, MR has improvements on a similar scale. On
CIFAR-10 it provides a 63.1% better accuracy tradeoff than
the baselines for similar budget values.

We make the following key observations regarding these
empirical results:

• Partial finetuning is the most competitive baseline in
most cases. One possible explanation for this is that it
updates fewer parameters than Full-Fintetune or Train-
from-Scratch (see Table IV), thus this form of fine-tuning
has a lower sample complexity and thus does not need
as large a privacy budget. On the other hand, given a
tight privacy budget, both Train-from-Scratch and Full-
Finetune fail to train the model to reach high accuracy
due to an excessive number of training parameters and
the added noise in DP-SGD.

• Although MR learns an order of magnitude more param-
eters than partial finetuning (see Table IV), its accuracy
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Fig. 3: Privacy-accuracy tradeoff for CIFAR-10; fS = ResNet-50

TABLE I: Comparison of federated learning with DP-SGD in the IID setting. The reported number is test accuracy (%).

Models Data Resnet18 Resnet50 Resnet152 ResNext50 ResNext101

CIFAR-10
(ϵ = 1.04)

MR = 74.68 MR = 79.08 MR = 83.45 MR = 81.7 MR = 87.55
BL-PF = 57.7 BL-PF = 58.31 BL-PF = 24.96 BL-PF = 46.15 BL-PF = 46.13

BL-TS = 16.01 BL-TS = 14.4 BL-TS = 10.45 BL-TS = 16.52 BL-TS = 10.0
BL-FF = 17.58 BL-FF = 16.9 BL-FF = 13.8 BL-FF = 20.25 BL-FF = 10.0

Oxford-IIIT
(ϵ = 5.29)

MR = 72.55 MR = 73.3 MR = 79.59 MR = 79.64 MR = 80.8
BL-PF=67.15 BL-PF = 67.3 BL-PF = 34.88 BL-PF = 58.32 BL-PF = 18.07
BL-TS = 3.63 BL-TS = 2.83 BL-TS = 2.48 BL-TS = 2.9 BL-TS = 2.99
BL-FF = 5.10 BL-FF = 2.59 BL-FF = 2.72 BL-FF = 3.0 BL-FF = 2.73

Blood-MNIST
(ϵ =1.96 )

MR = 65.7 MR = 62.7 MR = 60.15 MR = 67.46 MR = 59.9
BL-PF = 63.19 BL-PF = 53.3 BL-PF = 37.01 BL-PF = 56.7 BL-PF = 37.7
BL-TS = 53.08 BL-TS = 42.99 BL-TS = 45.16 BL-TS = 33.7 BL-TS = 19.5
BL-FF = 52.32 BL-FF = 33.0 BL-FF = 19.47 BL-FF = 20.98 BL-FF = 29.5

TABLE II: Performance evaluation in the IID setting across 3 runs (mean ± standard deviation)

Models Data Resnet18 Resnet50 Resnet152 ResNext50 ResNext101

CIFAR-10 MR = 75.58 ± 0.15 MR = 78.86 ± 0.22 MR = 83.90 ± 0.44 81.27± 0.33 88.12± 0.51
BL-PF = 58.69 ± 0.15 BL-PF = 55.92 ± 2.49 BL-PF = 26.93 ± 1.54 45.69 ± 1.139 47.37± 1.82
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Fig. 4: Non-IID setting (Quantity Skew); fS = ResNet-50

outperforms partial finetuning.The observed superior per-
formance of MR over these baselines in the federated

TABLE III: Performance evaluation in the Non-IID setting
(Quantity Skew). The reported numbers are the test accuracies.

Models / Data Resnet18 Resnet50 ResNext50

CIFAR-10
(ϵ = 1.04)

MR = 79.68 MR = 80.3 MR = 81.2
BL-PF = 56.72 BL-PF = 56.5 BL-PF = 18.16
BL-TS =15.07 BL-TS = 16.8 BL-TS = 10.45
BL-FF =19.55 BL-FF = 12.18 BL-FF = 49.8

setting is consistent with the findings in the centralized
non-private setting as reported in previous works [9],
[13], [14]. As shown in [13], the accuracy of MR in the
noise-free setting can be explained by its ability to align
the representations of the target domain to that of the
source domain used to train the source model. We discuss
an intuition as to why MR additionally displays a superior
privacy-utility tradeoff to the baselines in Section VII.

• It was also observed (see Table I) that deeper source
models in model reprogramming do better than shal-
low source models. For instance, on the Oxford-IIIT



TABLE IV: Comparison of number of trainable parameters

Models Data Resnet18 Resnet50 Resnet152 ResNext50 ResNext101

CIFAR-10 MR = 160538 MR = 160538 MR = 160538 MR = 160538 MR = 160538
BL-PF = 20490 BL-PF = 20490 BL-PF = 20490 BL-PF = 20490 BL-PF = 20490

BL-TS = 11181642 BL-TS = 23528522 BL-TS = 58164298 BL-TS = 23000394 BL-TS = 81426762
BL-FF = 11181642 BL-FF = 23528522 BL-FF = 58164298 BL-FF = 23000394 BL-FF = 81426762

Oxford-IIIT MR = 187565 MR = 187565 MR = 187565 MR = 187565 MR = 187565
BL-PF = 75813 BL-PF = 75813 BL-PF = 75813 BL-PF = 75813 BL-PF = 75813

BL-TS = 1195493 BL-TS = 23583845 BL-TS = 58219621 BL-TS = 23055717 BL-TS = 81482085
BL-FF = 1195493 BL-FF = 23583845 BL-FF = 58219621 BL-FF = 23055717 BL-FF = 81482085

Blood-MNIST MR = 158536 MR = 158536 MR = 158536 MR = 158536 MR = 158536
BL-PF = 16392 BL-PF = 16392 BL-PF = 16392 BL-PF = 16392 BL-PF = 16392

BL-TS = 1180616 BL-TS = 23524424 BL-TS = 58160200 BL-TS = 22996296 BL-TS = 81422624
BL-FF = 1180616 BL-FF = 23524424 BL-FF = 58160200 BL-FF = 22996296 BL-FF = 81422624

dataset, ResNext101 shows a performance improvement
of 62.73% and ResNet152 has a 44.71% improvement on
baselines compared to shallower models like ResNet18
and ResNet50 that have improvements under 10%. We
investigate this further in Section VI.

• Similarly on CIFAR-10 (see Table I), ResNet152 shows
an improvement of 58.49% and ResNext50 has a
61.45% improvement compared to shallower models like
ResNet50 and ResNet18 that show relatively smaller
improvements over the best baseline results for a given
budget. The results suggest that MR is a more efficient
approach for exploiting pre-trained large neural networks.

VI. ABLATION STUDY

A. Multiple Clients

The multiple client scenarios are simulated by increasing
the number of clients and keeping the client source models
and local epochs constant. Particularly, the rounds of commu-
nication are kept at 20 and each client does 3 local iterations
on CIFAR-10 dataset and ResNet50 as the source model. We
simulate this for the IID setting with each client having the
same number of samples.

Figure 5 shows 5 clients scenario, Figure 6 shows the
10 clients scenario, and Figure 7 shows the 20 clients sce-
nario. From the figures, it can be clearly observed that
Reprogrammable-FL outperforms baselines when clients in-
crease in the IID setting.

B. Multiple Local Iterations

We simulate the effect of multiple local iterations with a
fixed number of clients on the CIFAR-10 dataset and ResNet50
as the source model. Data is distributed among 5 clients and
20 rounds of communication are performed.

Figure 8 shows that in the IID setting, for a fixed budget
and increasing the number of local iterations we can see an
improvement in the privacy accuracy tradeoff. For instance,
see that for a budget of ϵ = 1 Reprogrammable-FL provides an
almost 50 % improvement in test accuracy when local iteration
increases from 1 to 5.

We also report that for 10 local epochs and 5 clients
after 1 round of communication, the test accuracies are
80.09/14.59/13.22/12.25 (%) for MR/BL-PF/BL-TS/BL-FF
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Fig. 5: 5 Clients in IID setting; fS = ResNet-50
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Fig. 6: 10 Clients in IID setting; fS = ResNet-50

for ϵ = 0.97. In addition, for 20 epochs and 5 clients
after 1 round of communication, the test accuracies are
83.49/12.4/16.13/18.49(%) for MR/BL-PF/BL-TS/BL-FF for
ϵ = 0.99.

Thus, for a given budget with each client performing
higher local iterations, Reprogrammable-FL still outperforms
baselines.
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Fig. 7: 20 Clients in IID setting; fS = ResNet-50

C. Deep vs Shallow Models

We also see in Figure 9 that the performance gap between
Reprogrammable-FL and the best baseline is larger for deeper
models than shallow models. While partial finetune suffers in
performance when deeper models are used, Reprogrammable-
FL maintains its high utility when being trained privately.

D. Non-IID – Class Imbalance Scenario

In addition to the quantity skew non-IID setting demon-
strated in the paper, Figure 10 demonstrates a class label
imbalance scenario using ResNet-50 as the source model for
the clients and CIFAR-10 as the dataset. In this setting, each
of the clients holds 3,3,4 nonoverlapping CIFAR-10 classes.
This is done for 50 rounds and 3 local epochs with 3 clients.
We can clearly see that in the class imbalance scenario,
Reprogrammable-FL also outperforms baselines.

E. Impact of Batch Size Selection

Figure 11 shows the performance of using different batch
sizes in Reprogrammable-FL and the competing baselines.
Reprogrammable-FL outperforms the baselines on all smaller
batch sizes evaluated. This experiment was done on 3 local
clients, with each client doing 3 local epochs. The number of
global rounds is 50. Figure 12 shows that larger batch sizes
achieve better utility per global round in Reprogrammable-FL
over smaller batch sizes.

F. Area under ROC Curve

In addition to measuring the accuracy of the classifier, an
important characteristic of a good classifier is its ability to
distinguish between various classes. Ideally, for a classifier,
this would mean that a model has no false positives and
negatives. A comparatively better classifier would thus be such
that it is able to distinguish between classes with fewer false
positive/negatives. A metric that measures this is the area
under the receiver operating characteristic (ROC) [32]. Values
closer to 1 mean that the classifier is better at distinguishing
between classes. A value of 0.5 means that the model is merely
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(a) 5 local epochs
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(b) 3 local epochs
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(c) 1 local epoch

Fig. 8: Comparison of privacy-accuracy tradeoff for CIFAR-10
with 3 clients and varying local epochs; fS = ResNet-50

guessing between the true and false class thus in effect being
a futile model.
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Fig. 9: Performance comparison of privacy-accuracy tradeoff
for Oxford-IIIT when using Deeper/Shallow source models
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Fig. 10: Non-IID (Class Imbalance) setting; fS = ResNet-50

For a multi-class classification problem, this metric is com-
puted by doing a one vs rest comparison with all the other
classes. The score reported is the average score for all classes.

Table V shows the AUROC performance for different source
models on the CIFAR-10 dataset. It can be observed that
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Fig. 11: Comparison of privacy-accuracy tradeoff for CIFAR-
10 with with different batch sizes; fS = ResNet-50
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Fig. 12: Different batch sizes on Reprogrammable-FL; fS =
ResNet-50

Reprogrammable-FL has better distinguishability for various
classes when trained privately.

TABLE V: Performance evaluation in the IID setting using
AUROC

Models / Data Resnet18 Resnet50 ResNext50

CIFAR-10
(ϵ = 1.04)

MR = 0.971 MR = 0.978 MR = 0.982
BL-FF = 0.745 BL-FF = 0.77 BL-FF = 0.77
BL-TS = 0.736 BL-TS = 0.656 BL-TS = 0.70
BL-PF = 0.910 BL-PF = 0.909 BL-PF = 0.88

G. Area under the curve

The improvement in the privacy-accuracy trade-off provided
by Reprogrammable-FL can also be illustrated by the area
under the privacy-utility curves. Concretely, we evaluate the
area under the curve for Figure 8b. Table VI shows this com-



TABLE VI: Area under the curve (Accuracy % × the unit of
privacy budget) performance evaluation in the IID setting

Models / Data ResNet50

CIFAR-10
MR = 382.0

BL-FF = 70.2
BL-TS = 60.7
BL-PF = 275.5

parison. We can observe that Reprogrammable-FL provides a
better tradeoff compared to baselines.

VII. THEORETICAL CONSIDERATIONS

We observed significant improvement, with respect to
privacy-utility tradeoff, of MR over transfer learning in the
DP-FL setting. Theoretical justifications for the superior per-
formance of MR over transfer learning are to our knowledge,
non-existent in the literature even in the centralized setting.
The clearest theoretical characterization of the performance of
MR is given in [13], which establishes that when the source
and target domain representations are well-aligned in the sense
of Wasserstein distance, the generalization error of MR on the
target domain is bounded. Note that this result does not argue
or imply that MR should outperform transfer learning.

Intuitively, if the sample complexity of transfer learning is
smaller than that of MR, we expect that MR should have a
superior privacy-utility tradeoff, as a lower sample complexity
suggests MR needs to “touch” less data to achieve a given
generalization gap. The work [33] suggests that MR does have
a smaller sample complexity than transfer learning. That work
considers the sample complexity required to adapt a shared
representation h(x) from a class H, learned on several prior
tasks, to a new task by learning a function f(x) in a class
F and taking f ◦ h as the hypothesis for the new task. Their
main result [33, Theorem 3] implies that, if the complexity of
F is smaller than that of H, a generalization gap of ς can be
achieved on the target task by using

n = O
(
C(F)
ς2

)
samples from the target domain to learn f , where C(F) is the
Gaussian complexity of F .

Partial fine-tuning, the most competitive baseline, exactly
fits into this theoretical framework, where f is chosen from
FBL-PF corresponding to the layers that are fine-tuned. Mean-
while, MR almost fits into this theoretical framework, where
f is chosen from FMR corresponding to the output transfor-
mation. Because the multi-layer neural networks in FBL-PF are
more complex than the class of logistic regressions in FMR,
we expect that MR will have smaller sample complexity, and
thus a superior privacy-utility tradeoff.

The gap in making this argument rigorous lies in the fact
that MR also uses an input transformation, so the hypothesis
learned on the target task takes the form f ◦ h ◦ g. However,
g is a linear transformation, so we expect that a rigorous
exploration of the sample complexity of MR vs. that of partial
fine-tuning will exhibit the behavior predicted using the results

of [33]. We leave a rigorous confirmation of this intuition for
future work.

VIII. CONCLUSION

In this paper, we proposed a new training method for
federated learning with differential privacy, which we call
Reprogrammable-FL. In contrast to finetuning a pre-trained
model, Reprogrammable-FL attaches input and output trans-
formation laters and only trains their associated parameters
while keeping the pre-trained model weights intact. Our empir-
ical evaluation shows that this non-intrusive approach provides
stronger utility-privacy improvements than existing baselines
such as full/partial finetuning in transfer learning and training
from scratch. Given the same privacy budget, consistent accu-
racy improvements are observed across a variety of datasets
and pre-trained models. We also find that Repogrammable-FL
achieves even larger performance improvements over baselines
when reprogramming a model with deeper architecture. Given
that this paper is the first study to demonstrate the high accu-
racy gain of model reprogramming in differentially private FL,
we believe our results and findings will set a new benchmark
for FL and shed new light on future research in private FL.
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