
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

LEARNING REACTIVE SYNTHESIS FROM MODEL
CHECKING FEEDBACK

Anonymous authors
Paper under double-blind review

ABSTRACT

Deep learning applications to formal verification typically fall into one of two cat-
egories: employing reinforcement learning that suffers from slow convergence,
or supervised learning that suffers from limited exploration. For reactive syn-
thesis, the problem of automatically constructing a system that satisfies a formal
specification, existing approaches fall into the latter category. In this paper, we
propose a hybrid approach that only initializes the model with supervised learning
and then continues training by reinforcing formally verified predictions. We show
that by training the model to synthesize correct solutions rather than fixating on
the supervised data, performance substantially improves. We can further utilize
our approach to optimize for size without any performance degradation. Finally,
we show that we can iteratively reinforce on open problems that synthesis tools
are unable to solve. Our approach is demonstrated for both deep neural networks
trained from scratch and pre-trained models fine-tuned on reactive synthesis, es-
tablishing new state-of-the-art results for learning reactive synthesis.

1 INTRODUCTION

Reactive synthesis is one of the fundamental problems in formal verification: Given a specification
in a formal logic, a synthesis algorithm automatically constructs a system that satisfies the specifica-
tion (Church, 1963). The promise of making the manual implementation of systems superfluous has
sparked research for more than half a century, ranging from early theoretical contributions (Buchi &
Landweber, 1969) to modern algorithms and tools (Meyer et al., 2018; Renkin et al., 2022; Kretı́nský
et al., 2025). Nowadays, an annually held competition tracks the progress in the field (Jacobs et al.,
2022). Most research interest revolves around reactive synthesis from specifications expressed in
linear-time temporal logic (LTL) (Pnueli, 1977) for which the synthesis results are hardware circuits.
The success story of LTL started in hardware model-checking, where a multitude of industry-level
model-checkers have been developed Kuppe et al. (2019), which eventually led to a widely applied
industry standard (IEEE-Commission, 2005). The computationally harder synthesis problem from
LTL specifications is theoretically complex and often intractable in practice, as existing synthesis al-
gorithms often time out even for small specifications. One promising way to overcome these barriers
is deep learning: in recent years, reactive synthesis was turned into a deep learning problem (Schmitt
et al., 2021) to build on the promising success of deep learning in program synthesis (Austin et al.,
2021) and code generation (Rozière et al., 2023).

Current deep learning solutions, however, suffer from the drawbacks of supervised learning: They
generalize over the training data and mimic the behavior of the synthesis tool used for data genera-
tion. To enable supervised learning, large datasets of specification-circuit pairs are constructed with
the help of algorithmic synthesis tools for synthesizing the training targets. While supervised learn-
ing on such datasets allows for some generalization, the resulting systems are ultimately confined
to the abilities of the synthesis tool that generated the training data. In the reinforcement learning
literature, such problem settings are regarded as imitation learning or learning from demonstra-
tion (Schaal, 1996), i.e., training an agent to imitate a teacher that is providing labeled data. In the
context of synthesis, the learning algorithm can be seen as imitating the specific synthesis algorithm
and tool that was used to generate the dataset. Imitation learning is well-known to have limited abil-
ity to fully generalize or substantially improve over the labeled data. Therefore, it appears unlikely
that a fully supervised learning approach alone will overcome the limitations of reactive synthesis
tools.

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

Neural
Network

Model
Checker

Synthesized
Dataset

Specification
φ

TRAINUPDATE(φ, Ĉ)

TRAINUPDATE(φ,C)

Ĉ

Ĉ ⊨ φ

Ĉ ⊭ φ C

Figure 1: An overview of our method showing the conditional training update. For a given speci-
fication φ, the neural network predicts a circuit Ĉ that is verified against φ by a model-checker. In
case Ĉ satisfies the specification (Ĉ ⊨ φ), we perform a gradient update with φ and Ĉ. In the dual
case Ĉ ⊭ φ, a synthesis tool is used to compute a correct circuit C for the gradient update.

In this paper, we present a new learning approach for reactive synthesis that overcomes the restric-
tions of imitation learning. Our approach uses supervised learning only as an initialization of the
neural network, after which a second training stage is entered that allows the neural network to
self-improve its own predictions. Depicted in Figure 1, we formally verify the circuits Ĉ that was
predicted by the neural network and utilize this feedback to train on circuits that the neural network
already predicts correctly. If the prediction was correct, we reinforce the model with a training up-
date on the specification and its prediction. We only fall back to a training target C from a synthesis
tool if the neural network is not yet able to predict a correct circuit (Ĉ ⊭ φ). The formal verifica-
tion of the prediction is achieved by utilizing existing model-checking tools and benefits from the
lower complexity of the model-checking problem for LTL. We thereby change the training objective
from imitating a synthesis tool to the actual objective, i.e., the synthesis of a circuit that satisfies the
specification. The effects of this change are substantial, as shown in our experiments. Our approach
not only improves sample efficiency but also allows our model to generalize better. We can amplify
the results by searching over multiple predictions of the model and make use of it for optimizing
the size of circuits. Finally, we show that our method clearly scales beyond the capabilities of the
synthesis tool used to generate the data by including open problems into the training process.

In summary, we make the following contributions:

1. We introduce a novel deep learning approach to reactive synthesis, combining both super-
vised and reinforcement learning to optimize correctness over imitating synthesis tools.

2. We generalize our approach with a search component to an expert iteration method and
demonstrate its ability to further improve performance and optimize the size of circuits.

3. We utilize our framework to iterate on synthesis problems that reactive synthesis tools are
unable to solve and show the potential of our methods to gradually improve on them.

The remainder of the paper is structured as follows. Related work is discussed in Section 2. Back-
ground on reactive synthesis and deep learning methods thereof are described in Section 3. Our
method for learning reactive synthesis from model checking feedback is presented in Section 4 fol-
lowed by an experimental evaluation in Section 5. We conclude and discuss future work in Section 6.

2 RELATED WORK

Expert Iteration and Theorem Proving. Expert iteration (Anthony et al., 2017) has been applied
with great success to automated theorem proving. An early example in the context of large language
models is the GPT-f work by Polu & Sutskever (2020) which was later developed into a full cur-
riculum learning approach by Polu et al. (2023). Recent applications to Lean corpora such as the
Lean-workbook corpus (Ying et al., 2024) were presented by Wu et al. (2024) and Xin et al. (2025).

Deep Learning Aided Verification and Synthesis. The importance of formal methods in do-
mains such as hardware design has led to extensive application of deep learning to verification and

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

(assumptions)
¬rm

→
(guarantees)
(¬gm ∨¬g0)
(r0→ g0)
(rm→(¬g0 U gm))

aag 10 2 2 2 6
2
4
6 18
8 21
15
16
10 7 8
12 2 7
4 11 13
16 9 13
18 9 12
20 11 17

Figure 2: We show an example for an LTL specification that specifies a prioritized arbiter on the
left. A circuit implementing the specification is provided as a graphical representation (middle) and
in the AIGER format (right).

synthesis tasks, covering all steps of the verification process. Beginning with formal specifications,
deep learning was used to automatically formalize natural language into specifications (Chen et al.,
2023; Cosler et al., 2023a; Mendoza et al., 2024). For the verification of formal specifications neural
networks were used as proof certificates (Giacobbe et al., 2024). Deep learning has been applied to
hardware systems themselves at various levels of abstraction, including boolean circuits (Neto et al.,
2021; Chowdhury et al., 2024; Wang et al., 2024), hardware description languages (Vasudevan et al.,
2021; Thakur et al., 2024; Zhu et al., 2022; Zheng et al., 2025) and chip placement (Mirhoseini et al.,
2021). For reactive synthesis specifically, a neural-symbolic portfolio solver was developed (Cosler
et al., 2024) following the work of Schmitt et al. (2021). The same architecture that was applied to
reactive synthesis was also applied to the related problem of circuit repair (Cosler et al., 2023b).

Deep Learning for Formal Logics. Deep learning has proven itself to be a promising direction
for solving formal logic problems. For Boolean Satisfiability (SAT) supervised (Selsam & Bjørner,
2019; Selsam et al., 2019; Li et al., 2024), unsupervised (Amizadeh et al., 2019; Ozolins et al., 2022)
and expert iteration approaches (Ghanem et al., 2024) were explored for both predicting and prov-
ing satisfiability. For quantified Boolean formulas (QBF) (Lederman et al., 2020) and Satisfiability
Modulo Theories (SMT) (Balunovic et al., 2018) deep neural networks were successfully integrated
into algorithmic solvers. For temporal logics such as LTL, most research focused on learning traces
for satisfiability prediction (Hahn et al., 2021; Luo et al., 2022; Isik et al., 2024). Closely related to
temporal logics, representation of Büchi automata were learned with Graph Neural Networks (Stam-
met et al., 2022).

3 BACKGROUND

Reactive synthesis is a fundamental problem in computer science (Church, 1963), with theoretical
solutions already established in the 1960s (Buchi & Landweber, 1969). The most common ver-
sion is reactive synthesis, where a circuit is synthesized for a provided temporal, e.g., linear-time
temporal logic (LTL) (Pnueli, 1977). LTL combines propositional boolean logic operators such as
¬,∧,∨, =⇒ with temporal operators such as - next, U - until, - always, and - eventually
which allows to specify the behavior of a reactive system that maintains a continuous interaction
with its environment. We give an example of an LTL specification for a prioritized arbiter in Fig-
ure 2. It specifies that, under the assumption that ¬rm is infinitely often true, gm and g0 are never
true at the same time, whenever r0 holds, then at some later point g0 holds, and that whenever rm
holds, g0 does not hold until gm holds. A system that is implementing such a specification is typ-
ically represented as a sequential circuit that translates an infinite stream of inputs into an infinite
stream of outputs. A standard representation for sequential circuits is And-Inverter Graphs extended
with simple memory elements, so-called latches. The AIGER format (Brummayer et al., 2007),
which we employ in this work, is a widely adopted textual encoding for such And-Inverter Graphs.
In Figure 2, we show a graphical representation of an And-Inverter Graph and its corresponding

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

AIGER format. The graphical representation is read from bottom to top, with triangles being the
input and outputs. Diamonds are latches that store their input value for one clock cycle, and ellipses
describe AND-gates. Negations are depicted by a dot on the wire between gates. Algorithms for
solving LTL synthesis can be broadly categorized into game-based (Rabin, 1972) and bounded syn-
thesis (Schewe & Finkbeiner, 2007). All algorithms face the challenges related to the problem being
2EXPTIME-complete (Pnueli & Rosner, 1989).

The complexity bound of the algorithmic approach to the problem of reactive synthesis motivated
the use of machine learning methods. Supervised learning has recently been applied to reactive
synthesis (Schmitt et al., 2021). To enable their approach, Schmitt et al. (2021) proposed a data
generation method that leverages the synthesis tool Strix (Meyer et al., 2018) to generate large
numbers of synthetic specification-circuit pairs. Since reactive synthesis specifications typically
consist of conjunctions of smaller assumption and guarantee properties (see Figure 2), the authors
collected a set of such properties from the annual synthesis competition (Jacobs et al., 2022) and
randomly combined them to form new specifications. The generation process begins with a single
property and incrementally adds new properties until either the specification becomes unrealizable
or the synthesis tool times out after 120 seconds. Using this approach, the authors constructed a
dataset containing hundreds of thousands of training samples. The reactive synthesis problem is then
phrased as a sequence-to-sequence learning problem. The authors demonstrated that a hierarchical
transformer architecture can be successfully trained on the synthetic dataset and is able to generalize
to both the synthesis competition benchmarks and specifications that the synthesis tool cannot solve.
The same dataset was later used to fine-tune code generation models on the reactive synthesis task,
which exhibited superior generalization compared to the hierarchical transformer (Schmitt et al.,
2023). We will adopt the same architectures and datasets to evaluate our approach, as detailed in
Section 5.

4 METHOD

In the following, we describe our approach for combining supervised learning with model-
checking feedback for reactive synthesis. We begin by describing the general idea and present
three adapted versions in the subsequent paragraphs. Our method requires a dataset D =
{(φ1, C1), . . . , (φn, Cn)} of specification-circuit pairs and access to a model-checking tool to auto-
matically verify a circuit C against a specification φ. Given dataset D, we start by building an initial
model M0 with standard supervised learning. Assuming that the labels in dataset D were generated
with a synthesis tool, we can view this first stage as an imitation learning phase that trains the model
to imitate the synthesis tool. Following the initialization with imitation learning, we begin to itera-
tively improve our model with its own predictions. We distinguish between using top-1 and top-k
predictions, as well as access to the circuit from the dataset that we can fall back to. For simplicity,
we describe the methods for a single specification-circuit pair. It is straightforward to generalize this
to the mini-batched algorithm that we have implemented in our experiments.

Reinforcing Learned Semantics. Our first method is motivated by the observation that some
model predictions differ from the training targets but still satisfy the input specification. This is an
expected situation since, in theory, there exist infinitely many correct circuits for each specification.
A practical reason can, for example, be as simple as changing the order of gates or as complicated
as creating a completely different circuit. We propose reinforcing such predictions as described in
Algorithm 1. In each iteration, we sample a specification-circuit pair (φ,C) from training data D

and evaluate model Mi−1 from the previous iteration on specification φ. If prediction Ĉ of our
model satisfies the specification (denoted as Ĉ |= φ), we train on Ĉ instead; otherwise, we keep the
training target C.

Expert Iteration and Circuit Minimization. The previous method can be generalized by per-
forming a search over the model outputs, evaluating the top-k circuit predictions, and selecting the
training target among them. We generalize lines 4 and 5 in Algorithm1 accordingly:

4: {Ĉ1, . . . , Ĉk} ←SEARCH(Mi−1, φ)
5: C∗ ← VERIFYANDSELECT(φ, {Ĉ1, . . . , Ĉk} ∪ {C})

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Algorithm 1 Learning from Model Checking Feedback
Require: D = {(φ1, C1), . . . , (φn, Cn)}

1: M0 ← IMITATIONLEARNING(D)
2: for i← 1 to n do
3: Sample (φ,C) ∼ D

4: Ĉ ← EVALUATE(Mi−1, φ)
5: C∗ ← if Ĉ |= φ then Ĉ else C
6: Mi ← TRAINUPDATE(Mi−1, (φ,C

∗))

This is motivated by the observation that generating more than a single output (for example, through
beam search) increases the likelihood of finding correct solutions. We note that this resembles the
expert iteration method proposed in the context of reinforcement learning (Anthony et al., 2017). In
our context, building an expert corresponds to automatically verifying the top-k model predictions
with the fallback mechanism to the training dataset. For larger k, it becomes likely to find multiple
valid circuits, therefore raising the question of how to best choose between them. In addition to
selecting the first circuit that satisfies the specification, our method is also used to optimize the size
of circuits. Smaller circuits are generally preferable as they are easier to understand and, in principle,
less expensive to manufacture. By selecting the smallest circuit, we are not only reinforcing the
semantics but also training the model to find minimal circuits, further disentangling the model from
the initial dataset.

Iterating on Open Problems. Finally, we consider a version of our method in which we do not
always have access to a training target for a given specification. We refer to such problems as
open problems. This is particularly interesting for improving over a synthesis tool where the open
problems correspond to those that the synthesis tool is unable to solve. Note that synthesis tools run
into timeouts even for specifications for which small solutions exist if they are hard to compute. We
modify our method as follows: With probability popen, we sample a specification from the dataset
of open problems instead of a specification-circuit pair from the dataset D. We then proceed in the
same way as in expert iteration. However, if none of the model predictions satisfy the specification,
we do not have a circuit for the next training update. In that case, we continue without a training
update and begin sampling either an open problem with probability popen or a labeled specification-
circuit pair with probability 1− popen again.

We give the full description for iterating on open problems in algorithm 2. In contrast to Algo-
rithm 1 on reinforcing learned semantics, we additionally require a dataset of open problems and a
probability to select from that dataset.

Algorithm 2 Iterating on Open Problems
Require: Dtrain, Dopen, popen

1: M0 ← IMITATIONLEARNING(Dtrain)
2: for i← 1 to n do
3: if random() > popen
4: Sample (φ,C) ∼ Dtrain

5: {Ĉ1, . . . , Ĉk} ←SEARCH(Mi−1, φ)
6: C∗ ← VERIFYANDSELECT(φ, {Ĉ1, . . . , Ĉk} ∪ {C})
7: Mi ← TRAINUPDATE(Mi−1, (φ,C

∗))
8: else
9: Sample φ ∼ Dopen

10: {Ĉ1, . . . , Ĉk} ←SEARCH(Mi−1, φ)
11: if C∗ ∈ {Ĉ1, . . . , Ĉk} such that C∗ |= φ
12: Mi ← TRAINUPDATE(Mi−1, (φ,C

∗))

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

5 EXPERIMENTS

In this section, we report on the experimental results for our new learning approach for reactive
synthesis. We begin by first describing the experimental setup, including datasets, architectures,
and implementation in Section 5.1. The different variants of our method are then evaluated in
Sections 5.2, 5.3, and 5.4 respectively.

5.1 EXPERIMENTAL SETUP

We closely follow the experimental setup of previous work to evaluate our method. In particular, we
use the same datasets for training and testing as Schmitt et al. (2021). The training dataset comprises
200 000 specification-circuit pairs resulting from a data generation method based on specification
patterns and was created with the synthesis tool Strix (Meyer et al., 2018). The trained models are
evaluated on three datasets: The holdout dataset created with the same data generation method as
the training data is referred to as Testset. The SYNTCOMP dataset is a collection of challenging
benchmarks, containing 145 instances directly taken from the annual reactive synthesis competition.
The Timeouts dataset was collected during data generation and contains specifications that the
synthesis tool Strix could not solve within 120 seconds. For all datasets, we report pass@k rates
denoting whether one of the k circuits generated by the model satisfies the specification. Verification
is performed with the nuXmv model checker (Cavada et al., 2014).

We evaluate the two architectures that have been previously employed for learning the reactive
synthesis problems, hierarchical transformers (Li et al., 2021) and CodeT5 (Wang et al., 2021). A
hierarchical transformer architecture was chosen in previous work for its permutation invariance
with respect to different orderings of assumption and guarantee properties in the temporal logic
specification. We chose the same hyperparameters for the architecture as in previous work, training
models with 8 layers, 4 attention heads, an embedding dimension of 256, and a feed-forward neural
network dimension of 1024. Token positions of LTL properties are encoded with a tree positional
encoding (Shiv & Quirk, 2019). All models are trained with the Adam optimizer (Kingma & Ba,
2015) with betas set to β1 = 0.9 and β2 = 0.98. We implemented the standard transformer learning
rate schedule proposed by Vaswani et al. (2017). The batch size is set to 256. From the CodeT5
model family, we chose the small version, which has about 60 million trainable parameters. We train
CodeT5 models with the AdamW optimizer (Loshchilov & Hutter, 2019) with a start learning rate
of 0.0005 and a linear learning rate decay. The weight decay is set to 0.1 and the batch size is set to
128.

We implemented all experiments in PyTorch (Paszke et al., 2019) and included the Hugging-
Face (Wolf et al., 2020) transformers library for the CodeT5 experiments. We train on a NVIDIA
DGX A100 system. All training runs are between 8 and 96 hours. Further training details and
parameters are provided in the respective sections.

5.2 REINFORCING LEARNED SEMANTICS

We begin by evaluating the semantic reinforcement for both hierarchical transformer models trained
from scratch and fine-tuned CodeT5 models. In both cases, we obtain the top prediction of the model
using greedy decoding. All results are summarized in Table 1 and further discussed below.

Hierarchical Transformer (HT). In Table 1, we directly compare the supervised learning of the
hierarchical transformer with our semantic reinforcement approach in the rows specifying model
HT. Specifically, we compare training for 30 000 steps of supervised learning with only 15 000 steps
of supervised learning followed by 2 000 steps of semantic reinforcement. We see the pass rates
increase for all datasets, with the difference being most pronounced for the pass@1 rates.

We note that a relatively small number of semantic reinforcement steps towards the end of training
are sufficient to achieve the performance gains. In Figure 3, we visualize the diminishing returns of
changing from supervised learning to semantic reinforcement early in the training process. Further
results for different combinations of supervised learning steps and semantic reinforcement steps are
shown in Table 5 in Appendix A.

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

0 5k 10k 15k
·104

0

0.2

0.4

0.6

0.8

step

p
a
ss
@
1

baseline
from 2k
from 5k
from 10k

Figure 3: The pass@1 rate on validation data over the course of the training comparing supervised
learning (baseline), and starting reinforcing learned semantics from step 2 000, 5 000, and 10 000.

Table 1: Pass rates on evaluation datasets for both hierarchical transformer (HT) and CodeT5 show-
ing results for 2 000 steps of reinforcing learned semantics.

Dataset Model Method pass@1 pass@4 pass@8 pass@16

Testset

HT Supervised Learning 53.6 70.4 75.8 79.9
+ Semantic Reinforcement 70.4 80.0 82.6 85.3

CodeT5 Fine-tuning 61.0 76.3 81.2 84.5
+ Semantic Reinforcement 70.1 81.7 85.2 87.4

SYNTCOMP

HT Supervised Learning 51.9 60.0 63.6 66.8
+ Semantic Reinforcement 53.8 62.1 65.5 66.9

CodeT5 Fine-tuning 55.2 63.2 65.7 68.3
+ Semantic Reinforcement 53.1 63.7 67.4 71.9

Timeouts

HT Supervised Learning 11.7 21.1 25.9 30.1
+ Semantic Reinforcement 24.0 31.7 34.2 36.5

CodeT5 Fine-tuning 13.8 24.1 30.2 35.2
+ Semantic Reinforcement 27.7 36.1 39.0 42.4

We performed an ablation study to investigate how much performance improvement is due to rein-
forcing correct circuits. In the ablation study, we compare our setting with skipping over correct cir-
cuits and only training on specification-circuit pairs that are not solved yet. Note that this resembles
hard negative mining techniques employed, for example, in computer vision domains (Shrivastava
et al., 2016). The ablation study can be found in Appendix A.2 and concludes that simply not train-
ing on already correct circuits behaves similarly to the regular supervised learning setting. We can
therefore attribute performance improvements to the reinforcement of correct circuits.

Pre-trained Code Generation Models (CodeT5). In previous work, it was reported that instead
of training hierarchical transformers from scratch, fine-tuning pre-trained code generation models
such as CodeT5 (Wang et al., 2021) yields comparable or better results for reactive synthesis. We re-
peat the experiments for hierarchical transformers with CodeT5. The rows specifying model CodeT5

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

in Table 1 compare CodeT5 fine-tuned for 30 000 steps with CodeT5 fine-tuned for 20 000 steps and
performing an additional 2 000 steps of reinforcing learned semantics. Similar to training trans-
formers from scratch, reinforcing learned semantics improves fine-tuned code models for almost all
pass rates on all evaluation datasets. We note that CodeT5’s general advantage over hierarchical
transformers carries over to the setup with reinforcing learned semantics. More results for different
combinations of training steps can be found in Table 12 in Appendix B

5.3 EXPERT ITERATION

In this section, we evaluate the generalization of our method to expert iteration. We obtain the top-k
circuit predictions from our model with a beam search (Sutskever et al., 2014) and distinguish two
criteria to choose our training target among them. First, we present results for selecting the first
circuit that satisfies the specification, and second, the results for choosing the smallest circuit among
the ones satisfying the specification. In both cases, we fall back to the circuit from our dataset if
no circuit satisfies the specification. We only report results for CodeT5 since CodeT5 outperformed
hierarchical Transformers in most evaluations. The results for hierarchical Transformers can be
found in Table 7 in Appendix A.3.

Table 2: Pass rates for CodeT5 on evaluation datasets after 20 000 steps of supervised learning and
2 000 steps of expert iteration compared for different beam sizes. Results are averaged over 3 runs.

Dataset Beam Size pass@1 pass@4 pass@8 pass@16

Testset
1 70.1 81.7 85.2 87.4
4 74.8 84.4 87.2 89.3

SYNTCOMP
1 53.1 63.7 67.4 71.9
4 56.1 67.8 69.9 72.4

Timeouts
1 27.7 36.1 39.0 42.4
4 32.1 41.3 43.9 46.5

We summarize the results for the first criterion in Table 2, comparing a beam size of 1 and a beam
size of 4. Note that a beam size of 1 corresponds to greedy decoding and therefore to the results
of the method presented in Section 5.2. We can see through all pass@k rates a clear improvement
when moving from Beam Size 1 to 4. For the Testset, the result for pass@16 constitutes the best
performance in the paper and establishes new state-of-the-art results on the dataset. We note that the
improvements come at a higher computational cost, as more model checking calls are made each
training step. The number of model checking calls scales linearly in the beam size.

In a second step, we adapt our expert iteration method to optimize for smaller circuits. We optimize
our method by selecting the smallest correct circuit from the set of the top-k predictions as the
next training target. Notably, the syntactic accuracy during expert iteration with selecting smaller
circuits drops from 36% to 0%, while the semantic accuracy is still improving (see Figure 4 in the
Appendix). This shows that the model’s predictions shift strongly away from the original training
data, while still being correct.

We show that optimizing for size does not impede performance (see A.4) while generating smaller
circuits. We evaluate on the SYNTCOMP dataset, and compare circuit sizes to Strix, the algorithmic
state-of-the-art tool in Reactive Synthesis. As shown in Table 3, our circuits are 54% smaller on
average, while fine-tuning without Expert Iteration creates circuits that are 46% smaller than Strix’s
circuits. Expert Iteration improves the circuit size over fine-tuning by 12.5%. Absolute results,
including for the hierarchical Transformer, can be found in Appendix A.4.

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Table 3: Improvement in circuit size over different baselines (percent). Evaluated on SYNTCOMP.

Improvement of eval@1 eval@4 eval@8 eval@16

Fine-tuning over Strix 46.0 46.1 46.4 48.7
Expert Iteration over Strix 54.6 55.2 56.5 55.0
Expert Iteration over Fine-tuning 12.5 9.1 5.7 4.7

5.4 ITERATING ON OPEN SYNTHESIS PROBLEMS

By applying deep learning to reactive synthesis, we aim to enable compute solutions for synthesis
problems that existing synthesis tools cannot solve. The Timeouts dataset that we evaluated on
in previous sections provides exactly these kind of specifications. It contains specifications that the
Strix could not solve within 120 seconds. Note that increasing this timeout does not increase the
number of solved instances substantially because of the high complexity of the problem. In the
following, we use the dataset to evaluate our method to iterate on open problems. We follow the
same setup as in Section 5.3, fine-tuning CodeT5 models for 20 000 steps and then performing 2 000
steps of expert iteration with a beam size of 4. Within the 2 000 steps of expert iteration, we pick a
problem of the Timeouts dataset with probability ptimeout instead of a problem from the regular
dataset. In Table 4 we report the results of the experiment comparing ptimeout values of 0.0, 0.25,
and 0.5. The results show that we can effectively bootstrap on open synthesis problems and solve
more than half of the problems in the dataset that the symbolic synthesis tool was unable to solve.
The results for pass@16 establish a new state-of-the-art result on the dataset. On other datasets,
iterating on timeouts does not clearly improve or decrease performance as shown in the full results
Table 14 in Appendix B.3.

Table 4: Pass rates for CodeT5 on holdout portion of Timeouts dataset after 20 000 steps of fine-
tuning and 2 000 steps of expert iteration with beam size 4 comparing different probabilities ptimeout

of including samples from Timeouts during training. Results are averaged over 3 runs.

Dataset ptimeout pass@1 pass@4 pass@8 pass@16

Timeouts
0.0 32.1 41.3 43.9 46.5
0.25 38.0 45.6 48.4 50.7
0.5 40.1 47.4 49.9 51.9

6 CONCLUSION

We presented a combination of supervised learning and reinforcement learning for learning reactive
synthesis. By rectifying the training objective to synthesizing correct circuits rather than imitat-
ing a synthesis tool, we showed substantial performance gains over pure supervised learning ap-
proaches on both in-distribution and out-of-distribution benchmarks. The tight integration with a
model checker makes our approach flexible and allows to include search and other optimization cri-
teria, such as size, in the learning process. Indeed, we showed the ability to discover smaller circuits
than algorithmic synthesis tools.

The results of the paper show the potential of deep learning solutions to push the barriers of reactive
synthesis. By bootstrapping on open synthesis problems, our approach is capable of solving more
than half of the problems that modern synthesis tools cannot solve. The ability to self-improve and
progress on a distribution of open problems is particularly interesting synthesis-style problems, and
will be an essential step for solving reactive synthesis problems in practice.

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

7 REPRODUCIBILITY STATEMENT

All datasets and libraries used in this work are open source. In Section 5.1 we describe the hyper-
parameters for all architectures and training algorithms needed to reproduce the results. We will
make our implementation publicly available after the double-blind review period ends. We averaged
experimental results over 3 runs to ensure reproducibility.

8 LLM USE STATEMENT

In this paper, large language models were used for small refinements when writing the paper and as
an assistant tool when implementing the experiments.

REFERENCES

Saeed Amizadeh, Sergiy Matusevych, and Markus Weimer. Learning to solve circuit-sat: An
unsupervised differentiable approach. In 7th International Conference on Learning Represen-
tations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019. OpenReview.net, 2019. URL
https://openreview.net/forum?id=BJxgz2R9t7.

Thomas Anthony, Zheng Tian, and David Barber. Thinking fast and slow with deep
learning and tree search. In Isabelle Guyon, Ulrike von Luxburg, Samy Bengio,
Hanna M. Wallach, Rob Fergus, S. V. N. Vishwanathan, and Roman Garnett (eds.), Ad-
vances in Neural Information Processing Systems 30: Annual Conference on Neural In-
formation Processing Systems 2017, December 4-9, 2017, Long Beach, CA, USA, pp.
5360–5370, 2017. URL https://proceedings.neurips.cc/paper/2017/hash/
d8e1344e27a5b08cdfd5d027d9b8d6de-Abstract.html.

Jacob Austin, Augustus Odena, Maxwell I. Nye, Maarten Bosma, Henryk Michalewski, David
Dohan, Ellen Jiang, Carrie J. Cai, Michael Terry, Quoc V. Le, and Charles Sutton. Pro-
gram synthesis with large language models. CoRR, abs/2108.07732, 2021. URL https:
//arxiv.org/abs/2108.07732.

Mislav Balunovic, Pavol Bielik, and Martin T. Vechev. Learning to solve SMT formulas. In Samy
Bengio, Hanna M. Wallach, Hugo Larochelle, Kristen Grauman, Nicolò Cesa-Bianchi, and Ro-
man Garnett (eds.), Advances in Neural Information Processing Systems 31: Annual Conference
on Neural Information Processing Systems 2018, NeurIPS 2018, December 3-8, 2018, Montréal,
Canada, pp. 10338–10349, 2018. URL https://proceedings.neurips.cc/paper/
2018/hash/68331ff0427b551b68e911eebe35233b-Abstract.html.

R. Brummayer, A. Cimatti, K. Claessen, N. Een, M. Herbstritt, H. Kim, T. Jussila, K. McMillan,
A. Mishchenko, F. Somenzi, et al. The aiger and-inverter graph (aig) format version 20070427,
2007. Available at http://fmv.jku.at/aiger/.

J. Richard Buchi and Lawrence H. Landweber. Solving sequential conditions by finite-state
strategies. Transactions of the American Mathematical Society, 138:295–311, 1969. URL
https://api.semanticscholar.org/CorpusID:4568478.

Roberto Cavada, Alessandro Cimatti, Michele Dorigatti, Alberto Griggio, Alessandro Mariotti,
Andrea Micheli, Sergio Mover, Marco Roveri, and Stefano Tonetta. The nuxmv symbolic
model checker. In Armin Biere and Roderick Bloem (eds.), Computer Aided Verification -
26th International Conference, CAV 2014, Held as Part of the Vienna Summer of Logic, VSL
2014, Vienna, Austria, July 18-22, 2014. Proceedings, volume 8559 of Lecture Notes in Com-
puter Science, pp. 334–342. Springer, 2014. doi: 10.1007/978-3-319-08867-9\ 22. URL
https://doi.org/10.1007/978-3-319-08867-9_22.

Yongchao Chen, Rujul Gandhi, Yang Zhang, and Chuchu Fan. NL2TL: transforming natural lan-
guages to temporal logics using large language models. In Houda Bouamor, Juan Pino, and
Kalika Bali (eds.), Proceedings of the 2023 Conference on Empirical Methods in Natural Lan-
guage Processing, EMNLP 2023, Singapore, December 6-10, 2023, pp. 15880–15903. Associ-
ation for Computational Linguistics, 2023. doi: 10.18653/V1/2023.EMNLP-MAIN.985. URL
https://doi.org/10.18653/v1/2023.emnlp-main.985.

10

https://openreview.net/forum?id=BJxgz2R9t7
https://proceedings.neurips.cc/paper/2017/hash/d8e1344e27a5b08cdfd5d027d9b8d6de-Abstract.html
https://proceedings.neurips.cc/paper/2017/hash/d8e1344e27a5b08cdfd5d027d9b8d6de-Abstract.html
https://arxiv.org/abs/2108.07732
https://arxiv.org/abs/2108.07732
https://proceedings.neurips.cc/paper/2018/hash/68331ff0427b551b68e911eebe35233b-Abstract.html
https://proceedings.neurips.cc/paper/2018/hash/68331ff0427b551b68e911eebe35233b-Abstract.html
http://fmv.jku.at/aiger/
https://api.semanticscholar.org/CorpusID:4568478
https://doi.org/10.1007/978-3-319-08867-9_22
https://doi.org/10.18653/v1/2023.emnlp-main.985


540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Animesh Basak Chowdhury, Marco Romanelli, Benjamin Tan, Ramesh Karri, and Siddharth Garg.
Retrieval-guided reinforcement learning for boolean circuit minimization. In The Twelfth Inter-
national Conference on Learning Representations, ICLR 2024, Vienna, Austria, May 7-11, 2024.
OpenReview.net, 2024. URL https://openreview.net/forum?id=0t1O8ziRZp.

Alonzo Church. Application of recursive arithmetic to the problem of circuit synthesis. Journal of
Symbolic Logic, 28(4), 1963.

Matthias Cosler, Christopher Hahn, Daniel Mendoza, Frederik Schmitt, and Caroline Trippel.
nl2spec: Interactively translating unstructured natural language to temporal logics with large lan-
guage models. In Constantin Enea and Akash Lal (eds.), Computer Aided Verification - 35th
International Conference, CAV 2023, Paris, France, July 17-22, 2023, Proceedings, Part II, vol-
ume 13965 of Lecture Notes in Computer Science, pp. 383–396. Springer, 2023a. doi: 10.1007/
978-3-031-37703-7\ 18. URL https://doi.org/10.1007/978-3-031-37703-7_
18.

Matthias Cosler, Frederik Schmitt, Christopher Hahn, and Bernd Finkbeiner. Iterative circuit
repair against formal specifications. In The Eleventh International Conference on Learning
Representations, ICLR 2023, Kigali, Rwanda, May 1-5, 2023. OpenReview.net, 2023b. URL
https://openreview.net/forum?id=SEcSahl0Ql.

Matthias Cosler, Christopher Hahn, Ayham Omar, and Frederik Schmitt. Neurosynt: A neuro-
symbolic portfolio solver for reactive synthesis. In Bernd Finkbeiner and Laura Kovács (eds.),
Tools and Algorithms for the Construction and Analysis of Systems - 30th International Confer-
ence, TACAS 2024, Held as Part of the European Joint Conferences on Theory and Practice of
Software, ETAPS 2024, Luxembourg City, Luxembourg, April 6-11, 2024, Proceedings, Part III,
volume 14572 of Lecture Notes in Computer Science, pp. 45–67. Springer, 2024. doi: 10.1007/
978-3-031-57256-2\ 3. URL https://doi.org/10.1007/978-3-031-57256-2_3.

Mohamed Ghanem, Frederik Schmitt, Julian Siber, and Bernd Finkbeiner. Learning better repre-
sentations from less data for propositional satisfiability. In Amir Globersons, Lester Mackey,
Danielle Belgrave, Angela Fan, Ulrich Paquet, Jakub M. Tomczak, and Cheng Zhang (eds.),
Advances in Neural Information Processing Systems 38: Annual Conference on Neural In-
formation Processing Systems 2024, NeurIPS 2024, Vancouver, BC, Canada, December 10 -
15, 2024, 2024. URL http://papers.nips.cc/paper_files/paper/2024/hash/
56a225639da77e8f7c0409f6d5ba996b-Abstract-Conference.html.

Mirco Giacobbe, Daniel Kroening, Abhinandan Pal, and Michael Tautschnig. Neu-
ral model checking. In Amir Globersons, Lester Mackey, Danielle Belgrave, Angela
Fan, Ulrich Paquet, Jakub M. Tomczak, and Cheng Zhang (eds.), Advances in Neu-
ral Information Processing Systems 38: Annual Conference on Neural Information Pro-
cessing Systems 2024, NeurIPS 2024, Vancouver, BC, Canada, December 10 - 15,
2024, 2024. URL http://papers.nips.cc/paper_files/paper/2024/hash/
9d0947107ea92d6ce369dce7749180dd-Abstract-Conference.html.

Christopher Hahn, Frederik Schmitt, Jens U. Kreber, Markus Norman Rabe, and Bernd Finkbeiner.
Teaching temporal logics to neural networks. In 9th International Conference on Learning Rep-
resentations, ICLR 2021, Virtual Event, Austria, May 3-7, 2021. OpenReview.net, 2021. URL
https://openreview.net/forum?id=dOcQK-f4byz.

IEEE-Commission. IEEE standard for property specification language (PSL). IEEE Std 1850-2005,
2005.

Ilker Isik, Ramazan Gokberk Cinbis, and Ebru Aydin Gol. Interchangeable token embeddings for
extendable vocabulary and alpha-equivalence. CoRR, abs/2410.17161, 2024. doi: 10.48550/
ARXIV.2410.17161. URL https://doi.org/10.48550/arXiv.2410.17161.

Swen Jacobs, Guillermo A. Pérez, Remco Abraham, Véronique Bruyère, Michaël Cadilhac, Max-
imilien Colange, Charly Delfosse, Tom van Dijk, Alexandre Duret-Lutz, Peter Faymonville,
Bernd Finkbeiner, Ayrat Khalimov, Felix Klein, Michael Luttenberger, Klara J. Meyer, Thibaud
Michaud, Adrien Pommellet, Florian Renkin, Philipp Schlehuber-Caissier, Mouhammad Sakr,

11

https://openreview.net/forum?id=0t1O8ziRZp
https://doi.org/10.1007/978-3-031-37703-7_18
https://doi.org/10.1007/978-3-031-37703-7_18
https://openreview.net/forum?id=SEcSahl0Ql
https://doi.org/10.1007/978-3-031-57256-2_3
http://papers.nips.cc/paper_files/paper/2024/hash/56a225639da77e8f7c0409f6d5ba996b-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2024/hash/56a225639da77e8f7c0409f6d5ba996b-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2024/hash/9d0947107ea92d6ce369dce7749180dd-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2024/hash/9d0947107ea92d6ce369dce7749180dd-Abstract-Conference.html
https://openreview.net/forum?id=dOcQK-f4byz
https://doi.org/10.48550/arXiv.2410.17161


594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Salomon Sickert, Gaëtan Staquet, Clément Tamines, Leander Tentrup, and Adam Walker. The re-
active synthesis competition (SYNTCOMP): 2018-2021. CoRR, abs/2206.00251, 2022. doi: 10.
48550/ARXIV.2206.00251. URL https://doi.org/10.48550/arXiv.2206.00251.

Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In Yoshua
Bengio and Yann LeCun (eds.), 3rd International Conference on Learning Representations, ICLR
2015, San Diego, CA, USA, May 7-9, 2015, Conference Track Proceedings, 2015. URL http:
//arxiv.org/abs/1412.6980.

Jan Kretı́nský, Tobias Meggendorfer, Maximilian Prokop, and Ashkan Zarkhah. Semml: Enhancing
automata-theoretic LTL synthesis with machine learning. In Arie Gurfinkel and Marijn Heule
(eds.), Tools and Algorithms for the Construction and Analysis of Systems - 31st International
Conference, TACAS 2025, Held as Part of the International Joint Conferences on Theory and
Practice of Software, ETAPS 2025, Hamilton, ON, Canada, May 3-8, 2025, Proceedings, Part I,
volume 15696 of Lecture Notes in Computer Science, pp. 233–253. Springer, 2025. doi: 10.1007/
978-3-031-90643-5\ 12. URL https://doi.org/10.1007/978-3-031-90643-5_
12.

Markus Alexander Kuppe, Leslie Lamport, and Daniel Ricketts. The TLA+ toolbox. In Rose-
mary Monahan, Virgile Prevosto, and José Proença (eds.), Proceedings Fifth Workshop on
Formal Integrated Development Environment, F-IDE@FM 2019, Porto, Portugal, 7th October
2019, volume 310 of EPTCS, pp. 50–62, 2019. doi: 10.4204/EPTCS.310.6. URL https:
//doi.org/10.4204/EPTCS.310.6.

Gil Lederman, Markus N. Rabe, Sanjit Seshia, and Edward A. Lee. Learning heuristics for quantified
boolean formulas through reinforcement learning. In 8th International Conference on Learning
Representations, ICLR 2020, Addis Ababa, Ethiopia, April 26-30, 2020. OpenReview.net, 2020.
URL https://openreview.net/forum?id=BJluxREKDB.

Wenda Li, Lei Yu, Yuhuai Wu, and Lawrence C. Paulson. Isarstep: a benchmark for high-
level mathematical reasoning. In 9th International Conference on Learning Representations,
ICLR 2021, Virtual Event, Austria, May 3-7, 2021. OpenReview.net, 2021. URL https:
//openreview.net/forum?id=Pzj6fzU6wkj.

Zhaoyu Li, Jinpei Guo, and Xujie Si. G4satbench: Benchmarking and advancing SAT solving with
graph neural networks. Trans. Mach. Learn. Res., 2024, 2024. URL https://openreview.
net/forum?id=7VB5db72lr.

Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. In 7th International
Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019.
OpenReview.net, 2019. URL https://openreview.net/forum?id=Bkg6RiCqY7.

Weilin Luo, Hai Wan, Jianfeng Du, Xiaoda Li, Yuze Fu, Rongzhen Ye, and Delong Zhang. Teaching
ltlf satisfiability checking to neural networks. In Luc De Raedt (ed.), Proceedings of the Thirty-
First International Joint Conference on Artificial Intelligence, IJCAI 2022, Vienna, Austria, 23-
29 July 2022, pp. 3292–3298. ijcai.org, 2022. doi: 10.24963/IJCAI.2022/457. URL https:
//doi.org/10.24963/ijcai.2022/457.

Daniel Mendoza, Christopher Hahn, and Caroline Trippel. Translating natural language to temporal
logics with large language models and model checkers. In Nina Narodytska and Philipp Rümmer
(eds.), Formal Methods in Computer-Aided Design, FMCAD 2024, Prague, Czech Republic, Oc-
tober 15-18, 2024, pp. 1–11. IEEE, 2024. doi: 10.34727/2024/ISBN.978-3-85448-065-5\ 17.
URL https://doi.org/10.34727/2024/isbn.978-3-85448-065-5_17.

Philipp J. Meyer, Salomon Sickert, and Michael Luttenberger. Strix: Explicit reactive synthesis
strikes back! In Hana Chockler and Georg Weissenbacher (eds.), Computer Aided Verification
- 30th International Conference, CAV 2018, Held as Part of the Federated Logic Conference,
FloC 2018, Oxford, UK, July 14-17, 2018, Proceedings, Part I, volume 10981 of Lecture Notes
in Computer Science, pp. 578–586. Springer, 2018. doi: 10.1007/978-3-319-96145-3\ 31. URL
https://doi.org/10.1007/978-3-319-96145-3_31.

12

https://doi.org/10.48550/arXiv.2206.00251
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1412.6980
https://doi.org/10.1007/978-3-031-90643-5_12
https://doi.org/10.1007/978-3-031-90643-5_12
https://doi.org/10.4204/EPTCS.310.6
https://doi.org/10.4204/EPTCS.310.6
https://openreview.net/forum?id=BJluxREKDB
https://openreview.net/forum?id=Pzj6fzU6wkj
https://openreview.net/forum?id=Pzj6fzU6wkj
https://openreview.net/forum?id=7VB5db72lr
https://openreview.net/forum?id=7VB5db72lr
https://openreview.net/forum?id=Bkg6RiCqY7
https://doi.org/10.24963/ijcai.2022/457
https://doi.org/10.24963/ijcai.2022/457
https://doi.org/10.34727/2024/isbn.978-3-85448-065-5_17
https://doi.org/10.1007/978-3-319-96145-3_31


648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Azalia Mirhoseini, Anna Goldie, Mustafa Yazgan, Joe Wenjie Jiang, Ebrahim M. Songhori, Shen
Wang, Young-Joon Lee, Eric Johnson, Omkar Pathak, Azade Nazi, Jiwoo Pak, Andy Tong, Kavya
Srinivasa, William Hang, Emre Tuncer, Quoc V. Le, James Laudon, Richard Ho, Roger Car-
penter, and Jeff Dean. A graph placement methodology for fast chip design. Nat., 594(7862):
207–212, 2021. doi: 10.1038/S41586-021-03544-W. URL https://doi.org/10.1038/
s41586-021-03544-w.

Walter Lau Neto, Matheus Trevisan Moreira, Luca G. Amarù, Cunxi Yu, and Pierre-Emmanuel
Gaillardon. Read your circuit: Leveraging word embedding to guide logic optimization. In
ASPDAC ’21: 26th Asia and South Pacific Design Automation Conference, Tokyo, Japan, January
18-21, 2021, pp. 530–535. ACM, 2021. doi: 10.1145/3394885.3431560. URL https://doi.
org/10.1145/3394885.3431560.

Emils Ozolins, Karlis Freivalds, Andis Draguns, Eliza Gaile, Ronalds Zakovskis, and Sergejs Ko-
zlovics. Goal-aware neural SAT solver. In International Joint Conference on Neural Networks,
IJCNN 2022, Padua, Italy, July 18-23, 2022, pp. 1–8. IEEE, 2022. doi: 10.1109/IJCNN55064.
2022.9892733. URL https://doi.org/10.1109/IJCNN55064.2022.9892733.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. Pytorch: An imperative style, high-
performance deep learning library. Advances in neural information processing systems, 32, 2019.

Amir Pnueli. The temporal logic of programs. In 18th Annual Symposium on Foundations of
Computer Science, Providence, Rhode Island, USA, 31 October - 1 November 1977, pp. 46–57.
IEEE Computer Society, 1977. doi: 10.1109/SFCS.1977.32. URL https://doi.org/10.
1109/SFCS.1977.32.

Amir Pnueli and Roni Rosner. On the synthesis of a reactive module. In Conference Record of
the Sixteenth Annual ACM Symposium on Principles of Programming Languages, Austin, Texas,
USA, January 11-13, 1989, pp. 179–190. ACM Press, 1989. doi: 10.1145/75277.75293. URL
https://doi.org/10.1145/75277.75293.

Stanislas Polu and Ilya Sutskever. Generative language modeling for automated theorem proving.
CoRR, abs/2009.03393, 2020. URL https://arxiv.org/abs/2009.03393.

Stanislas Polu, Jesse Michael Han, Kunhao Zheng, Mantas Baksys, Igor Babuschkin, and Ilya
Sutskever. Formal mathematics statement curriculum learning. In The Eleventh International
Conference on Learning Representations, ICLR 2023, Kigali, Rwanda, May 1-5, 2023. OpenRe-
view.net, 2023. URL https://openreview.net/forum?id=-P7G-8dmSh4.

Michael Oser Rabin. Automata on Infinite Objects and Church’s Problem. American Mathematical
Society, USA, 1972. ISBN 0821816632.

Florian Renkin, Philipp Schlehuber-Caissier, Alexandre Duret-Lutz, and Adrien Pommellet.
Dissecting ltlsynt. Formal Methods Syst. Des., 61(2):248–289, 2022. doi: 10.1007/
S10703-022-00407-6. URL https://doi.org/10.1007/s10703-022-00407-6.

Baptiste Rozière, Jonas Gehring, Fabian Gloeckle, Sten Sootla, Itai Gat, Xiaoqing Ellen Tan, Yossi
Adi, Jingyu Liu, Tal Remez, Jérémy Rapin, Artyom Kozhevnikov, Ivan Evtimov, Joanna Bitton,
Manish Bhatt, Cristian Canton-Ferrer, Aaron Grattafiori, Wenhan Xiong, Alexandre Défossez,
Jade Copet, Faisal Azhar, Hugo Touvron, Louis Martin, Nicolas Usunier, Thomas Scialom, and
Gabriel Synnaeve. Code llama: Open foundation models for code. CoRR, abs/2308.12950, 2023.
doi: 10.48550/ARXIV.2308.12950. URL https://doi.org/10.48550/arXiv.2308.
12950.

Stefan Schaal. Learning from demonstration. In Michael Mozer, Michael I. Jordan, and Thomas
Petsche (eds.), Advances in Neural Information Processing Systems 9, NIPS, Denver, CO, USA,
December 2-5, 1996, pp. 1040–1046. MIT Press, 1996. URL http://papers.nips.cc/
paper/1224-learning-from-demonstration.

Sven Schewe and Bernd Finkbeiner. Bounded synthesis. In Kedar S. Namjoshi, Tomohiro Yoneda,
Teruo Higashino, and Yoshio Okamura (eds.), Automated Technology for Verification and Analy-
sis, 5th International Symposium, ATVA 2007, Tokyo, Japan, October 22-25, 2007, Proceedings,

13

https://doi.org/10.1038/s41586-021-03544-w
https://doi.org/10.1038/s41586-021-03544-w
https://doi.org/10.1145/3394885.3431560
https://doi.org/10.1145/3394885.3431560
https://doi.org/10.1109/IJCNN55064.2022.9892733
https://doi.org/10.1109/SFCS.1977.32
https://doi.org/10.1109/SFCS.1977.32
https://doi.org/10.1145/75277.75293
https://arxiv.org/abs/2009.03393
https://openreview.net/forum?id=-P7G-8dmSh4
https://doi.org/10.1007/s10703-022-00407-6
https://doi.org/10.48550/arXiv.2308.12950
https://doi.org/10.48550/arXiv.2308.12950
http://papers.nips.cc/paper/1224-learning-from-demonstration
http://papers.nips.cc/paper/1224-learning-from-demonstration


702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

volume 4762 of Lecture Notes in Computer Science, pp. 474–488. Springer, 2007. doi: 10.1007/
978-3-540-75596-8\ 33. URL https://doi.org/10.1007/978-3-540-75596-8_
33.

Frederik Schmitt, Christopher Hahn, Markus N. Rabe, and Bernd Finkbeiner. Neural cir-
cuit synthesis from specification patterns. In Marc’Aurelio Ranzato, Alina Beygelz-
imer, Yann N. Dauphin, Percy Liang, and Jennifer Wortman Vaughan (eds.), Advances
in Neural Information Processing Systems 34: Annual Conference on Neural Informa-
tion Processing Systems 2021, NeurIPS 2021, December 6-14, 2021, virtual, pp. 15408–
15420, 2021. URL https://proceedings.neurips.cc/paper/2021/hash/
8230bea7d54bcdf99cdfe85cb07313d5-Abstract.html.

Frederik Schmitt, Matthias Cosler, and Bernd Finkbeiner. Neural circuit synthesis with pre-trained
language models. In First International Workshop on Deep Learning-aided Verification, 2023.
URL https://openreview.net/forum?id=Q2171WADNTT.

Daniel Selsam and Nikolaj S. Bjørner. Guiding high-performance SAT solvers with unsat-core
predictions. In Mikolás Janota and Inês Lynce (eds.), Theory and Applications of Satisfiabil-
ity Testing - SAT 2019 - 22nd International Conference, SAT 2019, Lisbon, Portugal, July 9-
12, 2019, Proceedings, volume 11628 of Lecture Notes in Computer Science, pp. 336–353.
Springer, 2019. doi: 10.1007/978-3-030-24258-9\ 24. URL https://doi.org/10.1007/
978-3-030-24258-9_24.

Daniel Selsam, Matthew Lamm, Benedikt Bünz, Percy Liang, Leonardo de Moura, and David L.
Dill. Learning a SAT solver from single-bit supervision. In 7th International Conference on
Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019. OpenReview.net,
2019. URL https://openreview.net/forum?id=HJMC_iA5tm.

Vighnesh Leonardo Shiv and Chris Quirk. Novel positional encodings to enable tree-
based transformers. In Hanna M. Wallach, Hugo Larochelle, Alina Beygelzimer, Flo-
rence d’Alché-Buc, Emily B. Fox, and Roman Garnett (eds.), Advances in Neural Infor-
mation Processing Systems 32: Annual Conference on Neural Information Processing Sys-
tems 2019, NeurIPS 2019, December 8-14, 2019, Vancouver, BC, Canada, pp. 12058–
12068, 2019. URL https://proceedings.neurips.cc/paper/2019/hash/
6e0917469214d8fbd8c517dcdc6b8dcf-Abstract.html.

Abhinav Shrivastava, Abhinav Gupta, and Ross B. Girshick. Training region-based object detectors
with online hard example mining. In 2016 IEEE Conference on Computer Vision and Pattern
Recognition, CVPR 2016, Las Vegas, NV, USA, June 27-30, 2016, pp. 761–769. IEEE Computer
Society, 2016. doi: 10.1109/CVPR.2016.89. URL https://doi.org/10.1109/CVPR.
2016.89.

Christophe Stammet, Prisca Dotti, Ulrich Ultes-Nitsche, and Andreas Fischer. Analyzing büchi
automata with graph neural networks. CoRR, abs/2206.09619, 2022. doi: 10.48550/ARXIV.
2206.09619. URL https://doi.org/10.48550/arXiv.2206.09619.

Ilya Sutskever, Oriol Vinyals, and Quoc V. Le. Sequence to sequence learning with neural net-
works. In Zoubin Ghahramani, Max Welling, Corinna Cortes, Neil D. Lawrence, and Kilian Q.
Weinberger (eds.), Advances in Neural Information Processing Systems 27: Annual Confer-
ence on Neural Information Processing Systems 2014, December 8-13 2014, Montreal, Que-
bec, Canada, pp. 3104–3112, 2014. URL https://proceedings.neurips.cc/paper/
2014/hash/a14ac55a4f27472c5d894ec1c3c743d2-Abstract.html.

Shailja Thakur, Baleegh Ahmad, Hammond Pearce, Benjamin Tan, Brendan Dolan-Gavitt, Ramesh
Karri, and Siddharth Garg. Verigen: A large language model for verilog code generation.
ACM Trans. Design Autom. Electr. Syst., 29(3):46:1–46:31, 2024. doi: 10.1145/3643681. URL
https://doi.org/10.1145/3643681.

Shobha Vasudevan, Wenjie Jiang, David Bieber, Rishabh Singh, Hamid Shojaei, Richard Ho, and
Charles Sutton. Learning semantic representations to verify hardware designs. In Marc’Aurelio
Ranzato, Alina Beygelzimer, Yann N. Dauphin, Percy Liang, and Jennifer Wortman Vaughan

14

https://doi.org/10.1007/978-3-540-75596-8_33
https://doi.org/10.1007/978-3-540-75596-8_33
https://proceedings.neurips.cc/paper/2021/hash/8230bea7d54bcdf99cdfe85cb07313d5-Abstract.html
https://proceedings.neurips.cc/paper/2021/hash/8230bea7d54bcdf99cdfe85cb07313d5-Abstract.html
https://openreview.net/forum?id=Q2171WADNTT
https://doi.org/10.1007/978-3-030-24258-9_24
https://doi.org/10.1007/978-3-030-24258-9_24
https://openreview.net/forum?id=HJMC_iA5tm
https://proceedings.neurips.cc/paper/2019/hash/6e0917469214d8fbd8c517dcdc6b8dcf-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/6e0917469214d8fbd8c517dcdc6b8dcf-Abstract.html
https://doi.org/10.1109/CVPR.2016.89
https://doi.org/10.1109/CVPR.2016.89
https://doi.org/10.48550/arXiv.2206.09619
https://proceedings.neurips.cc/paper/2014/hash/a14ac55a4f27472c5d894ec1c3c743d2-Abstract.html
https://proceedings.neurips.cc/paper/2014/hash/a14ac55a4f27472c5d894ec1c3c743d2-Abstract.html
https://doi.org/10.1145/3643681


756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

(eds.), Advances in Neural Information Processing Systems 34: Annual Conference on Neu-
ral Information Processing Systems 2021, NeurIPS 2021, December 6-14, 2021, virtual,
pp. 23491–23504, 2021. URL https://proceedings.neurips.cc/paper/2021/
hash/c5aa65949d20f6b20e1a922c13d974e7-Abstract.html.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez,
Lukasz Kaiser, and Illia Polosukhin. Attention is all you need. In Isabelle Guyon, Ulrike von
Luxburg, Samy Bengio, Hanna M. Wallach, Rob Fergus, S. V. N. Vishwanathan, and Roman
Garnett (eds.), Advances in Neural Information Processing Systems 30: Annual Conference on
Neural Information Processing Systems 2017, December 4-9, 2017, Long Beach, CA, USA, pp.
5998–6008, 2017. URL https://proceedings.neurips.cc/paper/2017/hash/
3f5ee243547dee91fbd053c1c4a845aa-Abstract.html.

Yue Wang, Weishi Wang, Shafiq R. Joty, and Steven C. H. Hoi. Codet5: Identifier-aware uni-
fied pre-trained encoder-decoder models for code understanding and generation. In Marie-
Francine Moens, Xuanjing Huang, Lucia Specia, and Scott Wen-tau Yih (eds.), Proceedings of
the 2021 Conference on Empirical Methods in Natural Language Processing, EMNLP 2021, Vir-
tual Event / Punta Cana, Dominican Republic, 7-11 November, 2021, pp. 8696–8708. Associ-
ation for Computational Linguistics, 2021. doi: 10.18653/V1/2021.EMNLP-MAIN.685. URL
https://doi.org/10.18653/v1/2021.emnlp-main.685.

Zhihai Wang, Jie Wang, Qingyue Yang, Yinqi Bai, Xing Li, Lei Chen, Jianye Hao, Mingx-
uan Yuan, Bin Li, Yongdong Zhang, and Feng Wu. Towards next-generation logic synthe-
sis: A scalable neural circuit generation framework. In Amir Globersons, Lester Mackey,
Danielle Belgrave, Angela Fan, Ulrich Paquet, Jakub M. Tomczak, and Cheng Zhang (eds.),
Advances in Neural Information Processing Systems 38: Annual Conference on Neural In-
formation Processing Systems 2024, NeurIPS 2024, Vancouver, BC, Canada, December 10 -
15, 2024, 2024. URL http://papers.nips.cc/paper_files/paper/2024/hash/
b3ac808c09f98444090a8f6c2d4bd1dc-Abstract-Conference.html.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement Delangue, Anthony Moi,
Pierric Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz, Joe Davison, Sam Shleifer, Patrick
von Platen, Clara Ma, Yacine Jernite, Julien Plu, Canwen Xu, Teven Le Scao, Sylvain Gug-
ger, Mariama Drame, Quentin Lhoest, and Alexander M. Rush. Transformers: State-of-the-art
natural language processing. In Proceedings of the 2020 Conference on Empirical Methods in
Natural Language Processing: System Demonstrations, pp. 38–45, Online, October 2020. As-
sociation for Computational Linguistics. URL https://www.aclweb.org/anthology/
2020.emnlp-demos.6.

Zijian Wu, Suozhi Huang, Zhejian Zhou, Huaiyuan Ying, Jiayu Wang, Dahua Lin, and Kai Chen.
Internlm2.5-stepprover: Advancing automated theorem proving via expert iteration on large-
scale LEAN problems. CoRR, abs/2410.15700, 2024. doi: 10.48550/ARXIV.2410.15700. URL
https://doi.org/10.48550/arXiv.2410.15700.

Huajian Xin, Z. Z. Ren, Junxiao Song, Zhihong Shao, Wanjia Zhao, Haocheng Wang, Bo Liu, Liyue
Zhang, Xuan Lu, Qiushi Du, Wenjun Gao, Haowei Zhang, Qihao Zhu, Dejian Yang, Zhibin Gou,
Z. F. Wu, Fuli Luo, and Chong Ruan. Deepseek-prover-v1.5: Harnessing proof assistant feedback
for reinforcement learning and monte-carlo tree search. In The Thirteenth International Confer-
ence on Learning Representations, ICLR 2025, Singapore, April 24-28, 2025. OpenReview.net,
2025. URL https://openreview.net/forum?id=I4YAIwrsXa.

Huaiyuan Ying, Zijian Wu, Yihan Geng, Jiayu Wang, Dahua Lin, and Kai Chen. Lean workbook: A
large-scale lean problem set formalized from natural language math problems. In Amir Glober-
sons, Lester Mackey, Danielle Belgrave, Angela Fan, Ulrich Paquet, Jakub M. Tomczak, and
Cheng Zhang (eds.), Advances in Neural Information Processing Systems 38: Annual Conference
on Neural Information Processing Systems 2024, NeurIPS 2024, Vancouver, BC, Canada, De-
cember 10 - 15, 2024, 2024. URL http://papers.nips.cc/paper_files/paper/
2024/hash/bf236666a2cc5f3ae05d2e08485efc4c-Abstract-Datasets_
and_Benchmarks_Track.html.

Ziyang Zheng, Shan Huang, Jianyuan Zhong, Zhengyuan Shi, Guohao Dai, Ningyi Xu, and Qiang
Xu. Deepgate4: Efficient and effective representation learning for circuit design at scale. In

15

https://proceedings.neurips.cc/paper/2021/hash/c5aa65949d20f6b20e1a922c13d974e7-Abstract.html
https://proceedings.neurips.cc/paper/2021/hash/c5aa65949d20f6b20e1a922c13d974e7-Abstract.html
https://proceedings.neurips.cc/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
https://proceedings.neurips.cc/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
https://doi.org/10.18653/v1/2021.emnlp-main.685
http://papers.nips.cc/paper_files/paper/2024/hash/b3ac808c09f98444090a8f6c2d4bd1dc-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2024/hash/b3ac808c09f98444090a8f6c2d4bd1dc-Abstract-Conference.html
https://www.aclweb.org/anthology/2020.emnlp-demos.6
https://www.aclweb.org/anthology/2020.emnlp-demos.6
https://doi.org/10.48550/arXiv.2410.15700
https://openreview.net/forum?id=I4YAIwrsXa
http://papers.nips.cc/paper_files/paper/2024/hash/bf236666a2cc5f3ae05d2e08485efc4c-Abstract-Datasets_and_Benchmarks_Track.html
http://papers.nips.cc/paper_files/paper/2024/hash/bf236666a2cc5f3ae05d2e08485efc4c-Abstract-Datasets_and_Benchmarks_Track.html
http://papers.nips.cc/paper_files/paper/2024/hash/bf236666a2cc5f3ae05d2e08485efc4c-Abstract-Datasets_and_Benchmarks_Track.html


810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

The Thirteenth International Conference on Learning Representations, ICLR 2025, Singapore,
April 24-28, 2025. OpenReview.net, 2025. URL https://openreview.net/forum?id=
b10lRabU9W.

Keren Zhu, Hao Chen, Walker J. Turner, George F. Kokai, Po-Hsuan Wei, David Z. Pan, and
Haoxing Ren. TAG: learning circuit spatial embedding from layouts. In Tulika Mitra, Evan-
geline F. Y. Young, and Jinjun Xiong (eds.), Proceedings of the 41st IEEE/ACM International
Conference on Computer-Aided Design, ICCAD 2022, San Diego, California, USA, 30 October
2022 - 3 November 2022, pp. 66:1–66:9. ACM, 2022. doi: 10.1145/3508352.3549384. URL
https://doi.org/10.1145/3508352.3549384.

A FULL HIERARCHICAL TRANSFORMER RESULTS

A.1 SEMANTIC REINFORCEMENT

Table 5: Pass rates across datasets, highlighting the effect of varying the number of Expert Iteration
(EI) steps and Supervised Learning (SL) steps.

Dataset # SL Steps # EI Steps pass@1 pass@4 pass@8 pass@16

Testset

10k 2k 70.4 80.0 82.6 85.3
10k 5k 68.7 79.3 82.2 85.6
15k 2k 67.3 78.6 83.2 86.6
15k 5k 69.1 79.9 82.9 85.5

SYNTCOMP

10k 2k 53.8 62.1 65.5 66.9
10k 5k 53.8 64.8 67.6 70.3
15k 2k 57.2 63.4 68.3 68.3
15k 5k 57.9 68.3 71.0 71.7

Timeouts

10k 2k 24.0 31.7 34.2 36.5
10k 5k 25.2 32.1 34.4 36.9
15k 2k 22.3 29.0 31.5 34.1
15k 5k 24.5 31.5 33.8 35.6

A.2 HARD NEGATIVE MINING

Table 6: Results for a hierarchical transformer trained for 10 000 steps on the full dataset and for
2 000 steps on the subset of specification–circuit pairs it could not solve up to that point.

Dataset pass@1 pass@4 pass@8 pass@16

Testset 55.2 72.9 78.1 82.5

SYNTCOMP 51.7 63.4 67.6 70.3

Timeouts 12.7 22.6 26.7 32.3

16

https://openreview.net/forum?id=b10lRabU9W
https://openreview.net/forum?id=b10lRabU9W
https://doi.org/10.1145/3508352.3549384


864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

A.3 EXPERT ITERATION

Table 7: Pass rates across datasets, showing the effect of varying the beam search size alongside the
number of Expert Iteration (EI) steps and Supervised Learning (SL) steps.

Dataset # SL Steps # EI Steps Beam Size pass@1 pass@4 pass@8 pass@16

Testset
10k 2k 1 70.4 80.0 82.6 85.3
5k 2k 4 66.1 78.5 82.0 85.0

10k 2k 4 75.0 84.4 87.2 89.2

SYNTCOMP
10k 2k 1 53.8 62.1 65.5 66.9
5k 2k 4 41.1 56.6 63.4 65.5

10k 2k 4 57.2 66.9 69.0 71.7

Timeouts
10k 2k 1 24.0 31.7 34.2 36.5
5k 2k 4 24.5 35.4 38.8 41.4

10k 2k 4 29.9 39.4 42.1 44.9

A.4 CIRCUIT MINIMIZATION RESULTS

0 5k 10k 15k 20k
·104

0

0.2

0.4

0.6

0.8

step

ev
al

ac
cu

ra
cy

syntactic accuracy, optimized for size
semantic accuracy, optimized for size

syntactic accuracy
semantic accuracy

Figure 4: Comparison of semantic and syntactic accuracy during training for Expert Iteration, with
and without size optimization.

Table 8: Evaluation of the hierarchical transformer models optimized for size vs. optimized for
correctness

Dataset Criterion pass@1 pass@4 pass@8 pass@16

Testset
Correctness 76.4 84.0 86.7 88.8

Size 76.5 83.8 86.9 89.1

SYNTCOMP
Correctness 59.8 66.9 69.9 72.6

Size 57.2 62.8 68.0 71.0

Timeouts
Correctness 31.5 39.9 42.9 45.5

Size 31.9 39.8 43.1 45.7

17



918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

Table 9: Evaluation of the CodeT5 models optimized for size vs. optimized for correctness

Dataset Criterion pass@1 pass@4 pass@8 pass@16

Testset
Correctness 74.8 84.4 87.2 89.3

Size 75.0 82.7 85.9 88.4

SYNTCOMP
Correctness 56.1 67.8 69.1 72.4

Size 55.4 59.3 64.4 68.3

Timeouts
Correctness 32.1 41.3 43.9 46.5

Size 31.6 38.3 41.8 44.9

Table 10: Comparison of circuit sizes (gates and latches) on CodeT5 for the SYNTCOMP benchmark,
restricted to samples solved by both methods

Method eval@1 eval@4 eval@8 eval@16

CodeT5 Fine-tuning 5.13 4.53 4.4 4.29
+ Expert Iteration 4.49 4.12 4.15 4.09

HT Training 4.4 4.48 4.53 4.27
+ Expert Iteration 3.98 4.2 4.11 4.14

Table 11: Circuit sizes (gates and latches) on CodeT5 for the SYNTCOMP benchmark, restricted to
samples solved by both our method and Strix.

Method eval@1 eval@4 eval@8 eval@16

CodeT5 Fine-tuning 5.36 4.99 5.2 4.83
Strix 9.93 9.25 9.7 9.41

Expert Iteration on CodeT5 4.63 4.39 4.16 4.12
Strix 10.2 9.81 9.57 9.15

HT Training 4.71 4.76 4.86 4.53
Strix 9.45 9.51 9.32 9.12

Expert Iteration on HT 4.53 4.4 4.64 4.59
Strix 9.16 9.59 9.65 9.2

18



972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

B FULL CODET5 RESULTS

B.1 SEMANTIC REINFORCEMENT

Table 12: Accuracy of pre-trained CodeT5 across varying numbers of Supervised Learning (SL),
Expert Iteration (EI) steps and beam sizes.

Dataset SL Steps EI Steps pass@1 pass@4 pass@8 pass@16

Testset

30k 0 61.2 75.5 80.7 83.9
50k 0 65.9 74.6 81.5 84.8
10k 2k 66.4 78.7 83.0 85.9
10k 5k 70.1 80.0 83.4 86.7
20k 2k 67.2 82.3 85.5 87.3
20k 5k 74.2 84.3 87.5 89.4
30k 2k 70.4 82.8 86.2 88.4
30k 5k 71.7 81.4 86.4 88.3

SYNTCOMP

30k 0 59.3 62.8 66.2 68.3
50k 0 57.9 64.1 67.6 70.3
10k 2k 43.4 58.6 62.1 66.2
10k 5k 50.3 62.1 65.5 66.2
20k 2k 51.7 64.1 67.6 71.0
20k 5k 57.2 64.1 65.5 69.0
30k 2k 56.5 64.8 70.3 75.9
30k 5k 56.5 63.4 65.5 71.7

Timeouts

30k 0 13.7 24.2 30.4 36.3
10k 2k 25.8 35.4 38.6 41.0
10k 5k 29.7 38.6 40.5 43.1
20k 2k 27.3 35.6 38.4 42.0
20k 5k 30.2 37.7 40.4 43.7
30k 2k 25.3 34.6 38.3 41.3
30k 5k 29.0 37.2 40.1 42.4

B.2 EXPERT ITERATION

Table 13: CodeT5 circuit minimization.
Dataset Criterion pass@1 pass@4 pass@8 pass@16

Testset
Correctness 76.0 85.1 87.6 89.6

Size 75.0 82.7 85.9 88.4

SYNTCOMP
Correctness 55.6 67.1 70.8 73.8

Size 55.4 59.3 64.4 68.3

Timeouts
Correctness 32.8 41.4 44.0 46.5

Size 31.6 38.3 41.8 44.9

19



1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

B.3 ITERATING ON OPEN PROBLEMS

Table 14: Pass rates for CodeT5 on evaluation datasets after 20 000 steps of fine-tuning and 2 000
steps of expert iteration with beam size 4 comparing different probabilities ptimeout of including
timeouts. Results are averaged over 3 runs.

Dataset ptimeout pass@1 pass@4 pass@8 pass@16

Testset
0.0 74.8 84.4 87.2 89.3
0.25 75.2 84.3 87.6 89.6
0.5 74.5 84.8 87.4 89.3

SYNTCOMP
0.0 56.1 67.8 69.9 72.4
0.25 55.0 68.1 71.2 73.8
0.5 53.5 68.3 70.8 71.5

Timeouts
0.0 32.1 41.3 43.9 46.5
0.25 38.0 45.6 48.4 50.7
0.5 40.1 47.4 49.9 51.9

20


	Introduction
	Related Work
	Background
	Method
	Experiments
	Experimental Setup
	Reinforcing Learned Semantics
	Expert Iteration
	Iterating on Open Synthesis Problems

	Conclusion
	Reproducibility Statement
	LLM Use Statement
	Full Hierarchical Transformer Results
	Semantic Reinforcement
	Hard Negative Mining
	Expert Iteration
	Circuit Minimization Results

	Full CodeT5 Results
	Semantic Reinforcement
	Expert Iteration
	Iterating on Open Problems


