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Abstract

Latent diffusion models (LDMs) generate high-quality synthetic images from con-
ditioning inputs but often face a trade-off between sample diversity and conditional
fidelity, a tension that is acute in chest X-rays where subtle clinical cues must
be preserved for diagnosis while maintaining variability for downstream tasks.
We introduce a multi-conditional module that integrates multiple modalities into
the conditioning signal and remains effective with any subset of available inputs,
improving both diversity and fidelity. Notably, a classifier trained solely on our
synthetic images matches the performance of a real-data baseline, indicating that
the samples are both diverse and faithful to the conditioning. We further show
that our method yields samples that better cover the real data distribution than
strong baselines, and that combining our synthetic data with real images serves
as an effective data augmentation strategy, improving both in-distribution and
out-of-distribution generalization. These findings highlight the potential of our
conditioning method as a data augmentation approach for enhancing model perfor-
mance in other generative model applications, particularly in data-limited clinical
settings.

1 Introduction

Diffusion models, including Latent Diffusion (LDMs) [28], have shown strong success in high-quality,
controllable image synthesis. In medical imaging, persistent challenges in privacy, data scarcity, and
dataset bias [2} 116} 30] motivate exploring synthetic data as a potential way to alleviate these issues.

LDMs have been applied to medical image synthesis, particularly chest X-rays (CXR) [8, 14, [19,
24,31, 34]], where conditioning guides generation to match clinical findings. Most CXR work uses
a single conditioning modality [} |14} (19} |34]. This design underuses available data and can force
discarding samples when modalities are missing; for example, RoentGen [8] removed about 40% of
training images that lacked paired reports because the model required them. Some studies condition
only on diagnostic labels [[19], although large CXR datasets often contain imprecise, machine-derived
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Figure 1: Illustration of the Multi-Conditional Unit: Various conditioning inputs—disease labels,
X-ray images, and radiology reports—are processed by specialized encoders. A transformer then
integrates these representations into a unified conditioning signal that is injected into the U-Net via
cross-attention.

labels [13} [15]. We emphasize that incorporating multiple conditioning modalities (e.g., images,
reports, and structured labels) can fuse complementary clinical signals, reduce dependence on any
one source, and better capture the full content of an exam, leading to generations that are more
clinically diverse and accurate. Another common challenge in synthetic image generation is mode
collapse. In this scenario, the generative model produces highly similar, repetitive, or biased samples
[9) 1261 32] rather than capturing the full diversity of real-world data. Ensuring that generated CXR
images exhibit sufficient diversity to represent the real data distribution has not been a primary focus
of existing studies on CXR synthetic image generation [8, [14} 19} 24} |31} 34]. This is a significant
limitation, particularly in the medical image domain, given that disease prevalence varies across
demographics, institutions, and imaging protocols [1, 110, 35]] and insufficient diversity in generated
samples lead to biases [6} [17, 25, 29] which can be harmful for the patients [5, 33] and limits
the clinical utility of synthetic data in practical deployment. We present a Multi-Conditional Unit
that fuses radiographic images, clinical labels, and free-text reports via domain-specific encoders
and a transformer to produce a unified conditioning signal for a latent diffusion model (LDM). A
stochastic null-assignment mechanism handles missing modalities, enabling training and inference
under real-world data incompleteness. As a result of this design, the synthetic distribution more
completely covers the real data manifold and improves sample diversity and alignment with real data.
Experiments show that a classifier trained exclusively on our synthetic images performs on par with
one trained on real images for disease classification. Additionally, the model remains robust across
condition settings, and when a specific condition is absent, it leverages the remaining inputs to sustain
performance. Finally, augmenting real datasets with our synthetic images boosts the generalization of
disease classifiers in both in-distribution and out-of-distribution scenarios.

2 Related work

GANSs have been widely applied to synthetic chest X-ray generation [7,20]]. Early DCGANSs produced
convincing radiographs for dataset augmentation [18]]. Later comparisons found WGAN-GP improved
realism and training stability over DCGANSs [23]]. Conditional variants enabled task-specific synthesis;
during COVID-19, dedicated models generated positive cases to address data imbalance [21]]. These
tools proved particularly valuable for addressing the severe data imbalance that emerged during the
pandemic. Recent developments in Diffusion Models have emerged as a compelling alternative for
chest X-ray image generation [8, 14} |19, 24} 31} 34]. These models offer significant advantages over
traditional GANSs, particularly in overcoming the training instability, hyperparameter sensitivity, and
limited diversity that have long plagued adversarial approaches. The shift toward diffusion-based
architectures represents a notable advancement in medical image synthesis, promising more reliable
and comprehensive generation of chest radiographs. RoentGen [8]] conditions image generation on
text prompts derived from radiology reports. Cascaded LDMs utilize a hierarchical architecture to



generate high-resolution CXR images [34]. CXR-IRGen [31] focuses on generating image-report
pairs with clinical consistency. Packhiuser et al. [24] focus on privacy-preserving sampling strategies
to anonymize synthetic CXRs. DiNO-Diffusion [14] uses self-supervised learning to train LDMs
and address challenges related to limited annotated data. Ktena et al. [19] enhance the fairness of
medical image classifiers in the presence of distribution shifts with synthetic images. The primary
focus of these papers has been on image generation using single-modality data as the conditioning
input [8 14} (19} 34]. Moreover, the diversity of the generated images and the extent to which the
synthetic data covers the real data manifold have not been their target.

3 Method

3.1 Latent Diffusion Models

Diffusion models add Gaussian noise and learn to invert it; LDMs [28]] do so in a VAE latent zp = ¢(z)
with a Markov chain {z;}}4 . The forward process [12]] is

q(ze | z-1) :N(Zt;\/at Zt71,<1_04t)1)- (D
A U-Net denoiser €y predicts the injected noise, optionally conditioned on C', by minimizing
Lrom = Eeyyennvon)e[lle = 20zt O3] - 2

3.2 Multi-Conditional Unit

‘We introduce a multi-conditional add-on unit for LDMs, illustrated in Figurem This unit facilitates
image generation using an ensemble of heterogeneous conditions: (a) diagnostic labels, (b) images,
and (c) radiology reports. Each data point is associated with a condition tuple y = (¢, 4, r"), where £ is
a disease label, ¢ is an X-ray image, and r is a textual radiology report. Three distinct encoders, Ly (),
1(i), and T'(r), encode these respective inputs. To ensure our approach remains functional even when
some conditions are missing, we adopt a strategy inspired by classifier-free guidance [11]]. Specifically,
we randomly replace the outputs of the encoders with a fixed null token @ with probabilities py,,
pr1, and pp. Formally: Ly(¢) < @ w.p. pr, I(i) < @ w.p. pr, and T'(r) < & w.p. pp. This null
token is a fixed-value vector that allows for flexible conditioning, ranging from fully conditioned
to entirely unconditional generation using the same backbone. The outputs of the three encoders
are then concatenated and processed by a transformer 7y to yield a comprehensive conditioning
representation C':

C= 7-9([[/9(6); I(Z), T(’r)]) c R(”L+n1+nT)><dim. 3)

Here, ny, ny, and np denote the number of tokens produced by Ly, I, and T, each with a dimension
of dim. Finally, C is injected into U-Net blocks through cross-attention, and the loss function
remains the same as in Eq.[2] Additional implementation details, including the encoders, transformer
integration, and training hyperparameters, are provided in Appendix [A]

3.3 Evaluation and Metrics

Following prior work in synthetic image generation [4} 27], we adopt a synthetic-to-real evaluation
protocol in which classifiers are trained exclusively on synthetic images and tested on a held-out set
of real images. Strong performance in this setting serves as a proxy for the diversity and realism
of the generated data, highlighting their potential utility for downstream clinical applications. To
further assess generation quality, we report two Fréchet-style distances. The first is FID computed
with ImageNet-pretrained Inception-V3 features, and the second is FIDxgry computed with the
TorchXRayVision densenet121-res224-all embedding. These metrics capture fidelity from both
general-purpose and domain-aware perspectives. For diversity, we additionally report Coverage [22],
which estimates the fraction of the real data distribution support covered by generated samples (see

Appendix [A.3).



Table 1: Comparing the performance of models trained under various conditioning strategies. We
report the AUC (with 95% confidence intervals from five separate runs) for ten thoracic patholo-
gies—Atelectasis (Atl), Cardiomegaly (Crm), Consolidation (Cns), Edema (Edm), Lung Lesion (Lls),
Lung Opacity (Lop), No Finding (Nfd), Pleural Effusion (Ple), Pneumonia (Pnm) , and Pneumothorax
(Ptx). Boldfaced entries highlight the best performance among synthetic data methods. The "Avg"
column is the mean of the ten AUC values, the higher the better (1). The final column shows FID
scores (Inception v3) where lower values indicate better image quality and diversity ({.).
Training Data [ Atl Crm Cns Edm Lils Lop Nfd Ple Pnm Ptx| Avgf [FID]

Real Data 79 791 742 865 706 734 .845 .889 .684 .789|.784 £ .004| 1.7
CL.2.9) 757 7760 723 851 .664 718 .828 .871 .664 .763|.760 £.005| 17.2
C(2,1,9) 776 771 735 864 .688 .724 840 .874 .669 .767|.771£.002| 15.2
C(2,9,T}) 746 762 709 .834 .685 .701 .820 .865 .646 .771|.753 £.009| 18.1
C(L2,T) 72 782 735 866 .676 .729 .835 .873 .679 .767|.771 £ .003| 16.3
C(LI1o) 783 774 733 868 .678 .729 .842 .876 .687 .780|.775 4+ .002| 15.0
C(LLT) 75 776 742 869 .695 731 .840 .876 .677 .798|.777 £.002 | 14.8
Cheff(Ty)[34] |.759 775 723 853 .642 .711 .835 .878 .624 .754|.755+£.003| 19.1
RoentGen(Ty)[8]|.753 740 .694 .829 .583 .679 .790 .841 .626 .692|.723 4-.006| 52.1

Table 2: Diversity Comparison: Finding vs No Finding (1: higher is better, |: lower is better).

Data Source Finding No Finding

FIDxrv | Coveragey,, * FIDxrv | Coverageyp, T

Real Data 0.02 0.94 0.04 0.95
C(L,2,9) 0.27 0.84 0.32 0.86
C(w,1,9) 0.29 0.84 0.26 0.87
C(2,2,Ty) 0.31 0.81 0.33 0.87
C(L,I1,T) 0.29 0.84 0.26 0.88
Cheff(Ty) 11341 1.02 0.56 1.44 0.49
RoentGen(Ty ) 8l 6.50 0.16 8.10 0.14

4 Experiments and Results

Datasets and Baselines: In this work, we used frontal view images from the publicly available
MIMIC-CXR [15] dataset. MIMIC-CXR includes 377,110 image-report pairs from 227,827 stud-
ies, with 243,334 frontal images. Following its standard partitioning, we used P10-P18 for train-
ing/validation and P19 for testing. To evaluate out-of-distribution (OOD) generalization, we addi-
tionally employed the CheXpert [[13] test set, which contains 518 frontal samples. We re-evaluated
and compared our results with two publicly available diffusion models, RoentGen [8] and Cheff [34],
under conditions identical to those of our method. RoentGen is the most similar to ours in architecture
and data; it employs a Latent Diffusion backbone and is trained on MIMIC-CXR. Cheff is trained on
one of the largest open CXR corpora, and for our experiments we used their text-to-image checkpoint.

Generalization of Synthetic Data to Real Data: We train a DenseNet-121 classifier using fully
synthetic data and compare its performance with a baseline trained on real data, as shown in Table
The real baseline used split P10 of MIMIC-CXR (23,611 samples). For consistency, we generated
synthetic data based on the same split under conditioning schemes ranging from label-only C (L, &, &)
to full C'(L, I,T'), enabled by the null assignments described in the methods. Results (Table|1) show
that a model trained solely on synthetic data performs comparably to one trained only on real data,
validating the overall quality of the generated images. Ensembling multiple conditions with the Multi-
Conditional unit further improved performance; e.g., average AUC rose from 0.753 for C (2, &, T) to
0.777 for C(L,1,T). We also compared against RoentGen [8] and Cheff [34]], generating synthetic
images with their checkpoints under RoentGen’s criteria, which limit text prompts to 7-77 CLIP
tokens due to encoder constraints. The filtered text, denoted 7', is shown in Table|l| Since split
P10 alone did not yield enough samples (23,611) for fair comparison and FID calculation, we
supplemented it with part of split P18. Our model under full conditioning C(L, I, T') outperforms
other settings and baselines, achieving average AUC 0.777, only slightly below the real baseline of
0.784, and the best FID of 14.8 among synthetic methods, indicating superior visual fidelity.



Diversity of Synthetic Data. We assess clinical diversity using FIDxgy and Coverage (Section 3.3).
Real and synthetic data are split into “No Finding” and “Finding” groups: in MIMIC-CXR, “No
Finding” means absence of all pathologies in the label set; “Finding” indicates at least one. In
Table[2] we computed the FIDxgy and Coverage metrics for each group. Our method demonstrates
superior performance compared to all baseline approaches across both metrics, resulting in more
diverse image generation and broader coverage of the data distribution. The improved performance
is potentially rooted in our LDM training approach, which incorporates multi-modal conditioning
and random null assignments and enables the incorporation of more complex and diverse conditions
during training compared to our baselines’ single-modality conditioning. Specifically, we achieve an
FIDxgy score of 0.27 for pathological images when using label-only conditioning, and 0.26 for “No
Finding” images when utilizing our full conditioning C(L, I, T'). The Coverage metric reaches 0.88
under our full conditioning C'(L, I, T') approach. Across both metrics, baselines struggle especially
on diverse “No Finding” images, suggesting that generating varied normal chest X-rays (without
detectable pathologies) is more challenging for diffusion models.

Table 3: Average AUC for models trained on real, synthetic, and mixed data and tested on in- and
out-of-distribution datasets.

Test Set
Data MIMIC-CXR CheXpert
in-distribution  out-of-distribution

Real Data 0.784 0.794

Synthetic Data C(L,I,T) 0.777 (-0.007)  0.816

Mixed (Real + Synthetic) C(L,I,T) 0.797 0.831

Synthetic Data Chef f 0.755 (-0.029)  0.795

Mixed (Real + Synthetic) Cheff 0.791 0.830

Synthetic Data RoentGen 0.723 (-0.061)  0.725 (-0.069)
Mixed (Real + Synthetic) RoentGen 0.792 0.812

Effect of Synthetic Data Augmentation on Generalization: We investigate the role of synthetic data
in enhancing in-distribution and OOD generalization for disease classification tasks. Using the data
subset and model configuration outlined in Section Generalization of Synthetic Data to Real Data, ,
we evaluate the influence of synthetic augmentation on both in-distribution (MIMIC-CXR) and OOD
(CheXpert test set) performance, as summarized in Table[3] Our findings reveal three key insights:
First, augmenting real training data with synthetic samples improves classification performance in
both settings. Our full conditioning model C'(L, I, T) achieves AUC improvements of 0.013 (1.7%)
for in-distribution and 0.037 (4.6%) for OOD evaluation. Second, a classifier trained exclusively
on synthetic data using full conditioning C(L, I, T) achieves an AUC of 0.816 on the OOD test
set, surpassing its real-data counterpart. Third, even baseline models benefit from synthetic—real
data mixing. These results align with previous findings [19], which suggest that synthetic images
serve as canonical exemplars of clinical conditions, potentially enhancing robustness to prevalence
shifts. Despite these promising outcomes, further investigation is required to fully understand the
mechanisms driving these improvements and to address safety concerns in clinical applications.

5 Conclusion

In this work, we introduced a novel multi-conditional add-on unit for Latent Diffusion Models that
harnesses heterogeneous conditioning signals, including disease labels, X-ray images, and radiology
reports, to generate high-fidelity synthetic chest X-ray images. By integrating these diverse modalities,
our approach enhances the overall quality and diversity of the generated outputs. Experimental
evaluations demonstrate that leveraging multi-conditional information not only improves the visual
fidelity of synthetic images, as evidenced by lower FID scores and more comprehensive coverage
of the real data manifold, but also yields superior performance in disease classification. Moreover,
mixing synthetic data with real data improved model performance in both in-distribution and out-of-
distribution settings. These promising results highlight the potential of synthetic data as a powerful
tool for data augmentation.
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A Additional Implementation Details

A.1 Architecture

Our multi-conditional unit employs three specialized encoders to process heterogeneous input modal-
ities, with outputs subsequently integrated through a transformer module.

Label Encoder (Lg): We encode diagnostic labels and demographic information using a trainable
multilayer perceptron. The input consists of 17-dimensional vectors containing disease labels
(encoded as O for absent, 1 for present, and -1 for uncertain) along with patient demographic
information including age, gender, and race. The MLP maps these inputs to a 768-dimensional
representation, producing a single token (ny, = 1).

Image Encoder (I): For chest X-ray image encoding, we employ the pre-trained ELIXR-C image
encoder [36]], which was trained via contrastive learning to align CXR images with clinical text. We
extract features from the layer preceding the final classification head, yielding 1376-dimensional
representations. These features are then mapped to 768 dimensions using a trainable MLP, producing
a single image token (n; = 1). The ELIXR-C backbone remains frozen during training to preserve
clinically relevant features and prevent this encoder from learning to pass superficial visual patterns
from input image rather than extracting meaningful clinical cues.

Text Encoder (77): Radiology reports are processed using Bio-ClinicalBERT [3]], a domain-specific
language model pre-trained on clinical text. Due to context window limit constraints, we truncate
reports to the first 128 tokens. The encoder outputs the final hidden states for all tokens, resulting in a
128 x 768 representation (ny = 128). The Bio-Clinical BERT parameters remain frozen to retain
pre-trained clinical knowledge.

Integration Transformer (7y): The outputs from all three encoders are concatenated and processed
by a trainable transformer module with the following specifications: 768-dimensional embeddings, 8
attention heads, 3 layers, and a feed-forward dimension of 2048. This transformer learns to integrate
the multi-modal representations into a unified conditioning signal C' € R'39%768 During training,
only the label encoder MLP, image encoder projection MLP, integration transformer, and the U-Net
backbone are optimized, while the pre-trained ELIXR-C and Bio-ClinicalBERT models remain
frozen.

VAE and U-Net: We employ a conditional U-Net architecture following the same design as Rombach
et al. [28]]. For the VAE, we utilize pre-trained weights from Weber et al. [34], who specifically
trained a VAE for chest X-ray images to create latent representations for U-Net processing. The
conditioning signal C is integrated into the U-Net through cross-attention mechanisms in the U-Net
blocks.

A.2 Hyperparameters

We train our generative model using a base learning rate of 5.0 x 10~ with input images resized
to 256 x 256 resolution and processed in the latent space at 64 x 64 x 3 dimensions. The diffusion
process uses 1000 timesteps with a linear noise schedule ranging from 0.0015 to 0.0295. To enable
flexible conditioning during training, we implement classifier-free guidance with dropout probabilities
of pr, = 0.4 for labels, p; = 0.5 for image embeddings, and pr = 0.4 for text. Sampling was
performed with a CFG scale of 4 and 75 denoising steps.

A.3 Coverage Metric

We compute the Coverage metric [22]]. Coverage quantifies generative diversity by reporting the
proportion of real-image neighbourhoods that contain at least one generated sample.



Let B(X;,r;) denote the hypersphere centred on a real sample X; with radius r; = NND(X;),
defined as the distance to its k-th nearest real neighbour. Coverage is then given by

N
1 .
Coverage = — 1[3 jstY; eB(Xi,NNDk.(Xi))}, )

i=1

where 1[-] denotes the indicator function.
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