
 

 

Deep Reinforcement Learning for Engineering Design through Topology 

Optimization of Elementally Discretized Design Domains  

Nathan Brown 1, Anthony Garland 2, Georges Fadel 1, Gang Li 1  
Clemson University 1, Sandia National Laboratory 2 

nkbrown@clemson.edu 1, agarlan@sandia.gov 2  
 
 

Abstract  

Machine learning (ML) can extract patterns in design-relevant data 
to detect trends or make predictions that may not be inherently vis-
ible to a human designer. However, most ML-based engineering 
design tools rely on supervised learning, which requires the pre-
fabrication of design domain data that may be challenging to derive 
or inherently biased by a human designer. This work addresses 
these limitations by investigating the implementation of reinforce-
ment learning (RL), a unique subset of ML that learns through ac-
cumulating past experiences in an interactive environment, into the 
engineering design problem of topology optimization. RL offers 
the design freedom and complexity of a human designer while 
maintaining the computational efficiency of more common ma-
chine learning paradigms. An RL environment was formatted to 
allow a deep RL agent to design 2D elementally discretized topol-
ogies based on a multi-objective reward function. After training, 
the agent was tested using progressive refinement on a variety of 
common load cases to validate the design capabilities and general-
ization of the agent. The results, which proved to be comparable to 
a traditional gradient-based topology optimization solver, show 
that a deep RL agent can learn generalized design strategies to sat-
isfy multi-objective design tasks and, therefore, shows promise as 
a design tool for arbitrarily complex design problems across many 
design domains. 

 Introduction   

 Machine learning (ML) can detect patterns within da-
tasets and use those patterns to make predictions or perform 
sequential strategic decisions (Chi et al. 2021). Thanks to 
improvements in computational capabilities, new algo-
rithms, and better transferring of data, ML techniques are 
more regularly being used to elevate the field of engineering 
design. ML models can act as integrated support for a human 
designer by extracting relationships and underlying trends 
within design-relevant data that the human designer may not 
intuitively discover. ML-based engineering design tools 
have led to improvements in additive manufacturing effi-
ciency (Jiang et al. 2020), material composition design 

 
Copyright © 2022, Association for the Advancement of Artificial Intelli-
gence (www.aaai.org). All rights reserved. 

(Wen et al. 2019), component design and optimization (Ro-
meo et al. 2020), and model building (Yang et al. 2018). 
 Incorporating ML into the engineering design process in-
troduces design automation to aid a human designer. This 
automation leads to enhancements in design accuracy and 
reliability while improving operational efficiency. Alterna-
tive design automation approaches can come in the form of 
objective-based optimization problems. These approaches 
rely on a design task being defined using an objective func-
tion that must be optimized given bounded parameters. Un-
fortunately, many design tasks cannot be defined using a 
function or may be subjected to severe suboptimal results 
given the bounded parameters. 
 ML researchers have successfully implemented ML into 
various engineering design domains (Jiang et al. 2020, Wen 
et al. 2019, Romeo et al. 2020, Yang et al. 2018, Liu et al. 
2017). However, this paper will specifically focus on the de-
sign task of sequential topology design and optimization. 
Topology optimization (TO) attempts to optimally place 
material within a domain to minimize an objective while sat-
isfying constraints based on weight and compliance (Sig-
mund and Maute 2013).  
  While ML has been used to improve the results and effi-
ciencies within several engineering design domains, includ-
ing TO (Wang et al. 2021), most ML-based design tools rely 
on supervised learning, a subset of ML that uses prefabri-
cated data to map relationships between sets of inputs and 
outputs. These prefabricated datasets can be challenging to 
derive for particular design problems or inherently biased by 
the designer (Jordan and Mitchell 2015). Therefore, this re-
search applies deep reinforcement learning (RL), a unique 
subset of ML that trains an agent by accumulating past ex-
periences within an interactive environment, to design ob-
jective-based topologies. An RL agent uses past experiences 
to learn a set of actions to best achieve some objective, sim-
ilar to how a human designer can use past experiences and 

 



knowledge to perform a set of actions to design an object 
that best satisfies a design objective. 
 RL has been used to aid in engineering design and opti-
mization, including microfluidic device design (Lee et al. 
2019), microchip floor planning (Mirhoseini et al. 2021), 3D 
shape modeling (Lin et a.l 2020), and metasurface design 
(Sajedian, Lee, and Rho 2019). However, to the best of the 
authors' knowledge, there has only been one other success-
ful attempt to use an RL agent to sequentially design optimal 
topologies. Hayashi and Ohsaki (Hayashi and Ohsaki 2020) 
successfully trained an RL agent to design optimal binary 
truss structures given TO objectives under various load 
cases. The results from this work proved the generalization 
capabilities of an RL agent when applied to truss-based TO. 
However, viewing the design domain as a truss structure se-
verely limits the design complexity that can be achieved 
compared to an elementally discretized design domain.  
 This paper attempts to bridge this gap by proposing an 
RL-based topology designer built through sequential inter-
actions with an elementally discretized topology. To the best 
of the authors' knowledge, this work is the first successful 
attempt to introduce an RL-based topology designer in such 
a design domain. This paper also takes a step towards vali-
dating that an RL agent can learn generic design strategies 
through interactions with a rich environment formatted to 
represent a particular engineering design problem.  

Topology Optimization as an RL Problem 

 The elementally discretized TO problem must be repre-
sented as a sequential RL task, specifically a Markov Deci-
sion Process (MDP). An MDP is a discrete-time stochastic 
process where state transitions and reward function solely 
depend on the current state and chosen action and are inde-
pendent of the previous states and actions. An MDP is built 
upon four elements, state-space (S), action space, A, transi-
tion probability function (P), and reward function (R) (Bell-
man 1997). If the TO problem can be expressed in terms of 
S, A, P, and R, then designing optimal topologies can be an 
MDP. 
 The elementally discretized environment is represented in 
Figure 1. The 2D environment is comprised of N-by-N dis-
crete elements. These discrete elements will either be 
viewed as material (light grey) or voided (white). In addi-
tion, certain elements and their corresponding nodes must 
be treated as bounded (black) or loaded (dark grey) to rep-
resent unique load cases. 

State Space  
The state-space, S, of an RL environment represents all the 
combinations of observations that an agent can experience 
while interacting with the environment. Individual observa-

tions from the state-space are used to define the current rep-
resentation of the environment. As the observation must be 
produced regularly during an RL task, the computational 
burden of generating the observation should be minimal.  
 Each observation is built as an NxNx3 3D array, with a 
mix of stress-based and boundary condition relevant infor-
mation assigned at each element. The observations are vari-
able in size depending on the desired topology size. The first 
NxN layer of the observation is the normalized inverse Von 
Mises Stress of each element. The Von Mises stress is com-
monly used within weight and compliance minimization TO 
problems to describe a topology's current stress state 
(Shimels 2017) and can be calculated using a simple 2D 
plane stress finite element analysis (FEA) solver. As the first 
layer uses the normalized inverse Von Mises stresses at each 
element, larger first layer values are associated with mini-
mally stressed elements and zero values for any voided ele-
ment. 
 The second layer of the observation is a Boolean repre-
sentation of the elements viewed as bounded. If an element 
is bounded, the corresponding observation space will be as-
signed a value of 1, otherwise 0. Finally, the third layer is 
the loaded element equivalent of the second layer. An ex-
ample of a simple 6x6x3 observation under a multi-loaded 
topology can be found in Figure A1 in Appendix A. 

a)  b)  
Figure 1. 2D Elementally Discretized 12x12 Cantilever 

Beam a) Starting Topology b) Optimal Topology 

Action Space  
 The action space entails all the possible actions the agent 
can take given a current observation. Thus, actions describe 
how an agent can interact with an environment. In the TO 
environment, an action corresponds to voiding a single ele-
ment, leading to a new topology and its corresponding ob-
servation. Within an NxN topology environment, the action 
space size is N2, with each action corresponding to the void-
ing of a single element.  
 Designing topologies (Figure 2) is completed by sequen-
tially selecting elements for removal from a starting solid 
block topology until an illegal action is taken or a termina-
tion criterion is met. The illegal actions, shown in Figure A2 
of Appendix A, include trying to remove a bounded, loaded, 
or previously voided element or trying to remove an element 
that would lead to a non-singular body. 



 
Figure 2. Element Removal Sequence of 6x6 Topology 

Reward Function 
 The reward function controls the positive reward or neg-
ative penalty assigned to an agent after taking an action. The 
reward function should be formatted to ensure the environ-
mental objective is being maximally satisfied. To satisfy the 
environmental objective of mimicking a TO solver, the au-
thors built the multi-objective reward function to reward the 
agent for achieving topologies with minimal weight and 
compliance. In the 2D topology representation, the weight 
is represented as the current volume fraction (VF), and com-
pliance is represented as the strain energy (SE). The VF will 
automatically decrease after any element is removed, and, 
therefore, the agent should be assigned more reward if it re-
moves an element that leads to a minimal increase in SE 
compared to the starting solid block topology. The reward 
function is defined in Equation 1.  

 𝑅𝑒𝑤𝑎𝑟𝑑 = 5 ∗ ൬
𝑆𝐸ூ௡௜௧௜௔௟
𝑆𝐸஼௨௥௥௘௡௧

൰
ଶ

+ 5 ∗ (1 − 𝑉𝐹)ଶ (1) 

where 𝑆𝐸ூ௡௜௧௜௔௟ is the SE of the starting solid block topology, 
𝑆𝐸஼௨௥௥௘௡௧  is the SE of a resulting topology after the agent 
selects an element to remove, VF is the current volume frac-
tion of the solid elements. A graphical representation of this 
multi-objective reward function is found in Figure A3 in Ap-
pendix A. Equation 1 was only used if the agent takes an 
action deemed "legal." If one of the illegal actions in Figure 
A2 is taken, the agent is penalized -1. 

Transition Probability Function 
 The transition probability function, also called the value 
function, selects the agent's action given a current observa-
tion and the predicted value for each action. The value func-
tion is built on a deep neural network using four convolution 
layers, with 16, 8, 4, and 1 3x3 filters, respectively. Convo-
lutional filters are not size-dependent and, therefore, can ad-
just to multiple topology sizes without retraining. The value 
function takes the environmental observation as an input and 
outputs the predicted value of each action in the action 
space. The TO environment's action and state spaces are too 
large for the value function to know the exact value of taking 
each action given each observation, and therefore, the deep 
neural network is necessary to predict the state-action values 

(Popova, Isayev, and Tropsha 2018). The deep neural net-
work architecture is shown in Figure A4 in Appendix A. 
 The value of each state-action pair is calculated using 
double Q-learning, an extension of generic Q-learning that 
helps combat overestimation and avoid sub-optimal policy 
convergence (Sutton and Barto 2015). 

Training the Agent 

 The previous section defined the TO problem within an 
RL environment, and therefore, the RL agent should be able 
to satisfy our design objectives. In order to achieve these ob-
jectives, the agent, specifically the deep neural network that 
defines the agent's transition probability function, must be 
trained through episodic interactions with the TO environ-
ment.  An episode in this environment is defined as a se-
quence of element removal actions starting at the initial solid 
block topology and continuing until one of the illegal moves 
is made or a termination criterion is met.  
 All training was completed on a 6x6 topology to limit the 
computational cost of running the FEAs needed to produce 
the agent's observations at each step. The training sequence 
assigns the RL agent randomly generated load cases to en-
sure thorough state-space exploration. The load cases were 
introduced by randomly assigning two elements on the ex-
terior edge of the topology to act as bounded elements and a 
single random element to serve as the loaded element. The 
loaded element was randomly assigned a horizontal or ver-
tical and compressive or tensile load. The training was run 
for 5000 episodes, taking approximately 1.5 hours using a 
PC with Intel® Core ™ i7-10510U CPU @ 1.80 GHz and 
16 GB of RAM. The successful training results are included 
in Figure B1 in Appendix B. 

Testing the Agent 

 The trained agent could now be tested to validate its ac-
curacy and generalization capabilities. As previously stated, 
the agent was only trained to design on 6x6 topologies to 
limit the computational burden of training. Attempting to 
design optimal topologies at the coarse 6x6 level will not 
yield practical results. Therefore, testing was completed on 
finer mesh size. The RL agent can interact with other topol-
ogy sizes because its value function is built solely on con-
volutional filters, which are not size-dependent. Progressive 
refinement was implemented to increase mesh complexity 
while maintaining computational efficiency. 
 Progressive refinement allows an increase in topology de-
tail over sequential. (Kim and Weck 2005). As a result, the 
equivalent topology shape progresses from 6x6 to 24x24 us-
ing an intermediate 12x12 size. This progressive refinement 
transition improves the efficiency compared to starting at 



the 24x24 size because the agent can start removing ele-
ments in the coarse 6x6 topology which corresponds to re-
moving 4 and 16 elements in the 12x12 and 24x24 topolo-
gies, respectively. The agent interacts with the simpler 6x6 
topology until an intermediate volume fraction (VF) is met, 
causing the agent to transition to the equivalent 12x12 
shape. Additional elements at the 12x12 size, corresponding 
to 4 elements at the 24x24 size, are removed to form low-
level details. Finally, the equivalent 24x24 topology is 
formed from which the agent can remove elements to pro-
duce the final detailed optimal topology. This process can 
be seen without the individual element removal actions in 
Figure 3. 

 
Figure 3. Sequential Elemental Removal with Variable 
Volume Fraction (VF) using Progressive Refinement 

 Several test cases have been presented to determine the 
accuracy and generalization capabilities of the presented 
method. Each test case introduces a unique combination of 
loaded and bounded elements and a user-specified final VF. 
The bounded and loaded elements were assigned based on 
their location within the 24x24 topology. During the pro-
gressive refinement steps, the equivalent elemental regions 
in the 6x6 and 12x12 topologies were treated as the loaded 
or bounded elements. The results in Table 1 show the final 
proposed 24x24 topology and intermediate 6x6 and 12x12 
topologies for each test case. A more in-depth test case re-
sult table, Table C1, is available in Appendix C. Table C1 
compares proposed topologies from the RL agent to those 
from a more traditional gradient-based TO solver, along 
with the final SE and VF of the topologies. 
 Tables 1 and C1 show that the RL agent has learned a 
generalized design strategy by satisfying the TO-based 
multi-objective reward function. Each proposed topology 
represents a feasible, objective-satisfying design solution.  
 The test cases validate that the RL agent has been able to 
generalize to the TO problem and did not memorize actions 
during training. The first indication of generalization is that 
the agent only interacted with 6x6 topologies during train-
ing, but during testing, the agent strategically removed ele-
ments on 6x6, 12x12, and 24x24 topologies without retrain-
ing. Thus, the agent used the same design strategy it learned 
during the 6x6 training and applied it to the larger environ-
ments. The second indication of generalization is that the 
last two test cases used multiple elements as loaded ele-
ments, whereas only a single element was randomly selected 

during training. Therefore, the agent could not have experi-
enced these load cases during training and must have gener-
alized to unpredicted circumstances. These two experiences 
indicate that the agent's design strategy is general enough to 
account for unique, unseen load cases. 
 

Load Case 
Schematic 

6x6 | 12x12 | 24x24  
Proposed Topologies 

 
     

      

       

       

 
     

Table 1. Test Case Results 

Conclusion 

 The presented work incorporated deep reinforcement 
learning into the optimization of 2D elementally discretized 
topologies. The reinforcement learning environment al-
lowed an agent to sequentially remove elements from a to-
pology and be rewarded for actions best satisfied the objec-
tive of a compliance minimization topology optimization 
problem. The agent, built on a deep neural network com-
prised of only convolutional filters, was trained to design 
optimal topologies at a 6x6 topology size with randomly se-
lected loaded and bounded elements. During testing, a two-
step progressive refinement approach was used to improve 
the detail representation of the topology from 6x6 to 12x12 
to 24x24 without retraining the agent. The agent was tested 
on a diverse series of load cases. The results showed that 
after training, the reinforcement learning agent adopted a 
generalized design strategy that could design objective-
based topologies. To the best of the authors' knowledge, this 
paper is the first successful attempt to design elementally 
discretized optimal topologies using reinforcement learning. 
This work is a crucial step towards validating reinforcement 
learning as a valuable engineering design tool.  
  



Appendices 

Appendix A: Topology Optimization as a Reinforcement Learning Problem Additional Figures 
and Comments  

a)  b)  

c)  d)  

Figure A1. Observation of a Starting 6x6 Topology a) Schematic b) First Layer: Elemental Normalized InversVon Mises 
Stress c) Second Layer: Boolean Representation of Bounded Elements d) Third  Layer: Boolean Representation of Loaded 

Elements 
 

The illegal actions, illustrated in Figure A2, include trying to remove a bounded, loaded, or previously voided element or 
trying to remove an element that would lead to a non-singular body. A non-singular body arises when the topology is held 
together by a hinge point. This single-node connection at a hinge point does not represent a feasible part of the design solution 
as it artificially inflates the stiffness of the topology while not representing a physical material connection. When an illegal 
action is made, the sequential design episode is terminated. 
 

a )  b)  
Figure A2. Illegal Actions a) Voided, Loaded, and Bounded b) Example of Non-Singular Body Action 

 
 

The quadratic representation of the reward surface in Figure A3 was selected through experimentation to help magnify the 
optimal rewards during the later stages of the design process when the removal of various elements could lead to a similar 
strain energy (SE) increase.  These additions helped distinguish the optimal action from a group of similar yet slightly inferior 
actions. The authors of this paper do not claim this approach represents an optimal function for RL-based TO, but the results 
from this paper demonstrate the successful implementation of this multi-objective reward function.



Figure A3. Graphical Representation of Multi-Objective Reward Function 
 
 

The value function's deep neural network was built upon four convolutional neural networks (CNN) layers, each with a 
varying number of 3x3 convolutional filters. The purpose of a CNN is to extract relevant features from an input matrix and use 
those features to make decisions about the data. Feature extraction takes place by training the filters to recognize data relation-
ships within an input. The initial layer filters capture generic, low-level features, whereas the later layer filters distinguish high-
level detailed features. The CNN architecture, represented in Figure A4, shows the NxNx3 observation is used as the input and 
passed through four convolutional layers comprised of 16, 8, 4, and 1 convolutional filters, respectively, to produce an output 
of the predicted value of taking each action. The action associated with the highest value is selected, and therefore that element 
is removed, leading to a new observation. Convolutional filters are not size-dependent and can extract features from any input 
size and adjust to multiple topology sizes without retraining.  
 

 

 
Figure A4. Deep Convolutional Neural Network Architecture 

 
 

Appendix B: Training the Agent Additional Figures and Comments 

Figure B1 shows that the average training reward increases as training progresses. The agent was trained using the Epsilon-
Greedy method. This method prompts the agent to start training by taking random actions to ensure the proper exploration of 
the observation space. As training continues, the agent takes fewer random actions and exploits the known value prediction 
from previous observations, leading to better actions and higher episodic rewards. The reward starts to generally converge 
towards a maximum as the agent takes nearly all exploitative actions and rarely takes explorative actions. The average reward 
in Figure B1 does not converge to a single value because the maximum reward the agent could accumulate during an episode 
changes depending on the load case and the corresponding number of elements that could be removed while not breaking the 



non-singular body specification. The increase in reward in Figure B1 indicates the agent has learned to make more strategic 
actions that lead to design topologies that better satisfy the design objectives.  

 

 
Figure B1. Average Reward During Training

 
Appendix C: Test Case Detailed Result Table  

Load Case 
Schematic 

6x6 |12x12 | 24x24 Topologies 

Final 
SE 

Final 
VF 

Gradient-
Based Solver 
Equivalent 

Gradient-Based  
Final SE 
Final VF 

A) 

 
     

864 
0.25 

 

964 
0.25 

B)

 
     

193 
0.25 

 

211 
0.25 

C)

 
     

629 
0.31 

 

806 
0.25 

D)

     

1853 
0.25 

 

929 
0.25 



E)

 
    

879 
0.25 

 

1000 
0.25 

F) 

 
    

1021 
0.16 

 

1245 
0.2 

 

Table C1. Detailed Test Case Table showing the RL-based and traditional gradient-based (Sigmund 2001) proposed topolo-

gies. The final strain energy (SE) and volume fraction (VF) of both sets of proposed topologies are included. This compari-

son shows that the RL agent can design similar topologies as gradient-based solvers and can achieve reduced strain energies, 

better satisfying the design objective. 

 

Acknowledgments  

The authors would like to acknowledge experimental facili-
ties provided by the Center for Integrated Nanotechnologies 
(CINT). Sandia National Laboratories is a multimission la-
boratory managed and operated by National Technology & 
Engineering Solutions of Sandia, LLC, a wholly-owned 
subsidiary of Honeywell International Inc., for the U.S. De-
partment of Energy's National Nuclear Security Administra-
tion under contract DE-NA0003525.  This paper describes 
objective technical results and analysis. Any subjective 
views or opinions that might be expressed in the paper do 
not necessarily represent the views of the U.S. Department 
of Energy or the United States Government. 

References  

Bellman, R. 1997. "Markovian decision processes," Mathematics 
in Science and Engineering 130(C): 172–187, doi: 10.1016/S0076-
5392(08)61190-X. 
 
Chi, H., Zhang, Y., Tang, T., Mirabell, L., Dalloro, L., Song, L., 
Paulin, G. 2021. "Universal machine learning for topology 
optimization," Comput. Methods Appl. Mech. Eng. 375:112739. 
doi: 10.1016/j.cma.2019.112739. 
 
Hayashi, K. and Ohsaki, M. 2020. "Reinforcement Learning and 
Graph Embedding for Binary Truss Topology Optimization Under 
Stress and Displacement Constraints," Front. Built Environ. 6: 1–
15. doi: 10.3389/fbuil.2020.00059. 
 
Jiang, J., Xiong, Y., Zhang, Z., and Rosen, D.W. 2020. "Machine 
learning integrated design for additive manufacturing," J. Intell. 
Manuf. 3. doi: 10.1007/s10845-020-01715-6. 
 

Jordan, M. I. and Mitchell, T.M. 2015. "Machine learning: Trends, 
perspectives, and prospects," Science. 349(6245). 
doi:10.1126/science.aaa8415. 
 
Kim, I. Y. and De Weck, O.L. 2005. "Variable chromosome length 
genetic algorithm for progressive refinement in topology 
optimization," Struct. Multidiscip. Optim. 29(6):445–456. doi: 
10.1007/s00158-004-0498-5. 
 
Lee, X.Y., Balu, A., Stoecklein, D., Ganapathysubramanian, B., 
and Sarkar, S. 2019. "A case study of deep reinforcement learning 
for engineering design: Application to microfluidic devices for 
flow sculpting," J. Mech. Des. Trans. ASME 141(11):1–10. doi: 
10.1115/1.4044397. 
 
Lin, C., Fan, T., Wang, W., and Nießner, M. 2020. "Modeling 3D 
Shapes by Reinforcement Learning," Lect. Notes Comput. Sci. 
(including Subser. Lect. Notes Artif. Intell. Lect. Notes 
Bioinformatics) 12355 LNCS: 545–561, doi: 10.1007/978-3-030-
58607-2_32. 
 
Liu, Y., Zhao, T., Ju, W., and Shi, S. 2017. "Materials discovery 
and design using machine learning," J. Mater. 3(3):159–177. doi: 
10.1016/j.jmat.2017.08.002. 
 
Mirhoseini, A., et al. 2021. "A graph placement methodology for 
fast chip design," Nature 594(7862): 207–212. doi: 
10.1038/s41586-021-03544-w. 
 
Popova, M., Isayev, O., and Tropsha, A. 2018. "Deep 
reinforcement learning for de novo drug design," Sci. Adv. 4(7): 1–
15. doi: 10.1126/sciadv.aap7885. 
 
 
Romeo, L., Loncarski, J., Paolanti, M., Bocchini, G., Mancini, A., 
and Frontoni, E. 2020. "Machine learning-based design support 
system for the prediction of heterogeneous machine parameters in 



industry 4.0," Expert Syst. Appl. 140. doi: 
10.1016/j.eswa.2019.112869. 
 
Sajedian, I., Lee, H., and Rho, J. 2019. "Double-deep Q-learning 
to increase the efficiency of metasurface holograms," Sci. Rep. 
9(1):1–8. doi: 10.1038/s41598-019-47154-z. 
 
Shimels, G. H., Engida W. D., and Mohd, H. F. 2017. "A compar-
ative study on stress and compliance based structural topology op-
timization," IOP Conf. Ser. Mater. Sci. Eng. 241(1). doi: 
10.1088/1757-899X/241/1/012003. 
 
Sigmund, O. 2001, "A 99 line topology optimization code written 
in Matlab," Struct. Multidisc Optim. 21: 120-127. doi: 
10.1007/s001580050176 
 
Sigmund, O. and Maute, K. 2013. "Topology optimization 
approaches: A comparative review," Struct. Multidiscip. Optim. 
48(6): 1031–1055, 2013. doi: 10.1007/s00158-013-0978-6. 
 
Sutton, R. and Barto, A. 2015. Reinforcement Learning: An 
Introduction. Cambridge: The MIT Press. 
 
Wang, D., Xiang, C., Pan, Y., Chen, A., Zhou, X., and Zhang, Y. 
2021. "A deep convolutional neural network for topology 
optimization with perceptible generalization ability," Eng. Optim. 
doi: 10.1080/0305215X.2021.1902998. 
 
Wen, C. et al. 2019. "Machine learning assisted design of high 
entropy alloys with desired property," Acta Mater., 170:109–117. 
doi: 10.1016/j.actamat.2019.03.010. 
 
Yang, Q., Suh, J., Chen, N.C., and Ramos, G. 2018. "Grounding 
interactive machine learning tool design in how non-experts 
actually build models," DIS 2018 - Proc. 2018 Des. Interact. Syst. 
Conf. 573–584, doi: 10.1145/3196709.3196729. 
 
 
 
 
 
 


