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Abstract

Recent breakthroughs and rapid integration of generative001
models (GMs) have sparked interest in the problem of model002
attribution and their fingerprints. For instance, service003
providers need reliable methods of authenticating their mod-004
els to protect their IP, while users and law enforcement seek005
to verify the source of generated content for accountability006
and trust. In addition, a growing threat of model collapse is007
arising, as more model-generated data are being fed back008
into sources (e.g., YouTube) that are often harvested for009
training (“regurgitative training”), heightening the need to010
differentiate synthetic from human data. Yet, a gap still exists011
in understanding generative models’ fingerprints, we believe,012
stemming from the lack of a formal framework that can de-013
fine, represent, and analyze the fingerprints in a principled014
way. To address this gap, we take a geometric approach and015
propose a new definition of artifact and fingerprint of GMs016
using Riemannian geometry, which allows us to leverage017
the rich theory of differential geometry. Our new definition018
generalizes previous work [60] to non-Euclidean manifolds019
by learning Riemannian metrics from data and replacing020
the Euclidean distances and nearest-neighbor search with021
geodesic distances and kNN-based Riemannian center of022
mass. We apply our theory to a new gradient-based algo-023
rithm for computing the fingerprints in practice. Results024
show that it is more effective in distinguishing a large array025
of GMs, spanning across 4 different datasets in 2 different026
resolutions (64×64, 256×256), 27 model architectures, and027
2 modalities (Vision, Vision-Language). Using our proposed028
definition significantly improves the performance on model029
attribution, as well as a generalization to unseen datasets,030
model types, and modalities, suggesting its practical efficacy.031

032

1. Introduction033

In recent years, we have seen a rapid development and inte-034
gration of generative models (GMs) into our society. Vision035
generative models like Stable Diffusion [54] and Sora [7]036
are revolutionizing image and video synthesis, and Large-037
Language Models (LLMs) [1, 8] are changing how people038

work in business and science, including software develop- 039
ment, entertainment, and scientific discovery. Despite this 040
advancement, there is still a big gap in understanding what 041
makes these models behave as they do and how one model 042
differs from another. In particular, a rapidly arising question 043
regarding GMs is model attribution and fingerprints, i.e., 044
what makes their synthetic data different from natural data 045
(e.g., GAN-generated images vs. real images), as well as 046
from synthetic data generated by different models (e.g., texts 047
generated by GPT-4 [1] vs. by Gemini [62]). While this 048
question has been partially studied in the context of deep- 049
fake detection [65, 69], its full extension, i.e., distinguish- 050
ing amongst different methods of data generation (model 051
attribution) remains mostly under-explored. In this paper, 052
we address the problem of fingerprinting and attributing 053
generative models in a theoretically-grounded way using 054
Riemannian geometry [39] and manifold learning [3, 4, 23]. 055

The problem of fingerprinting and attributing GMs bears 056
increasingly critical significance in both practice and theory. 057
First, in practice, service providers are looking for a reli- 058
able method of authenticating their proprietary models (e.g., 059
Google’s Gemini [62], OpenAI’s GPT [1]) to protect their IP, 060
while users and law enforcement seek to verify the source of 061
generated content for the trustworthiness of synthetic data 062
and AI regulation [42, 51]. In addition, a growing threat of 063
model collapse [13, 59] is arising as more model-generated 064
data are being fed back into sources (e.g., YouTube) that are 065
often harvested for training (“regurgitative training”), height- 066
ening the need to detect and differentiate synthetic from 067
human data. Secondly, on the theoretical front, model attri- 068
bution and fingerprints provide a formal, analytical way of 069
studying the differences between various GMs and revealing 070
their unique characteristics and limitations, thereby promot- 071
ing the development of new models that overcome current 072
limitations (e.g., artifact-reduced GMs [10, 21, 30, 58]). 073

In this paper, we study the problem of fingerprinting GMs 074
based on their samples and provide a formal framework that 075
can define, represent, and analyze the fingerprints to study 076
and compare GMs in a principled way. Recent works on 077
deepfake detection [49, 56] and model biases [58, 65] have 078
suggested that GMs leave distinct traces of computations on 079
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Figure 1. Overview of our fingerprint estimation. We learn the latent data manifold M from the dataset of real images as a Riemannian
manifold equipped with the pullback metric G. To pullback the metric of X to the latent manifold M, we train a VAE (with mean and
variance estimation functions (θµ, θσ)) on the real dataset, and define the length of a curve on M to be the length of a decoded curve on X ,
on which we know how to measure a length (i.e. a Euclidean norm of a vector). From the length of a curve, we define the geodesic distance
of two points on M as the shortest distance of a curve connecting them.

their samples that differentiate model-generated data from080
human data (e.g., GM-generated images vs. images by cam-081
eras). Such traces have been observed in both the pixel space082
(e.g., checkerboard patterns by deconvolution layers [50], se-083
mantic inconsistencies like asymmetric eye colors [47]) and084
the frequency space (e.g., spectral discrepancies [15, 16]).085
Despite these observations that hint at the existence of ar-086
tifacts and fingerprints of GMs, an explicit definition of087
fingerprints themselves remains unclear. A recent work [60]088
proposes the first definition of fingerprints, but its applica-089
bility to real-world data is limited due to its assumption that090
the embedding space of data is Euclidean, which is often091
violated in real data like images and videos which follow092
non-Euclidean geometry [6]. This lack of a proper definition093
hinders a systematic study of GM fingerprints (that goes094
beyond showing their mere existence), and development of095
fingerprinting methods for real-world model attribution.096

To this end, the aim of this work is to (i) give a proper def-097
inition of GM fingerprints that generalizes to non-Euclidean098
spaces using Riemannian geometry, (ii) apply our theory099
to a new gradient-based algorithm for computing the finger-100
prints, by learning Riemannian metrics from data and re-101
placing the Euclidean distances and nearest-neighbor search102
with geodesic distances and kNN-based Riemannian center103
of mass, and finally (iii) study their efficacy in differentiat-104
ing a large variety of GMs and generalizing across datasets,105
model types and modalities. We find that our proposed defi-106
nition provides a useful feature space for fingerprinting GMs,107
including state-of-the-art (SoTA) models, and outperforms108
existing methods on both attribution and generalization.109

By providing a formal definition of GM fingerprints, we110
address another important gap in literature, i.e., the lack of111
studies on fingerprints across different modalities. While112

SoTA GMs are being developed on multimodal data (e.g., a 113
combination of images, texts and audios), studies on GM fin- 114
gperints have been limited to a single-modality (e.g., images 115
only [60, 65, 69] or texts only [68]). To bridge this gap and 116
encourage research on cross-modal fingerprints, we intro- 117
duce an extended benchmark dataset (Tab. 2) that includes 118
SoTA multimodal GMs (i.e., text-to-image models). Our 119
contributions can be summarized as following: 120
• We formalize a definition of fingerprints of GMs that gener- 121

alizes to non-Euclidean data using Riemannian geometry. 122
• We propose a practical algorithm to compute the finger- 123

prints from finite samples by learning a latent Riemannian 124
metric as pullback metric from the data space and estimat- 125
ing the fingerprints via a gradient-based algorithm. 126

• We conduct extensive experiments to show the attributabil- 127
ity and generalizability of our fingerprints, outperform- 128
ing existing attribution methods. In particular, we con- 129
sider a large array of GMs from all four main families 130
(GAN, VAE, Flow, Score-based), spanning across 4 dif- 131
ferent datasets (CIFAR-10 [37], CelebA-64 [40], CelebA- 132
HQ [29] and FFHQ [31]) of 2 different resolutions (64×64, 133
256×256), 27 model architectures, and 2 modalities (Vi- 134
sion, Vision-Language). This, to our knowledge, is the 135
most comprehensive model-attribution study to date. 136

• Our results show that our generalized definition makes sig- 137
nificant improvements on attribution accuracy and gener- 138
alizability to unseen datasets, model types and modalities, 139
suggesting its efficacy in real-world scenarios. 140

2. Riemannian-Geometric Fingerprints of GMs 141

As discussed in Sec. 1, explicit formal definitions of artifacts 142
and fingerprints of GMs remain unclear or constrained to 143
a specific data geometry despite many existing works that 144
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Figure 2. Estimating the projection of xG onto the manifold M as Riemannian center of mass of k-nearest neighbors. (left) Definition
and fingerprint estimation proposed in [60]. Here, the projection of zG is estimated the nearest-neighbor (1-NN) in the observed real dataset,
based on the standard Euclidean distance. (middle) Baseline method using k-nearest neighbors (k>1; k=3 in this figure): we estimate the
artifact of zG by finding the k-nearest neighbors of zG in the real dataset using the Euclidean distance, and computing their center of mass
(also in L2). (right) Our proposed method (R-gmftps: RCM) that estimates the artifact a(xG,M) using a Riemannian center of mass of
k-nearest neighbors, based on the geodesic distances learned from data (Sec. 2.2). Note zcm does not lie on the manifold M (which is
manifested on the synthetic artifacts in zcm (decoded) in the center), while the projection zRCM estimated as Riemannian center of mass
(right column) does lie on M, thus corresponding to an actual real image. (Background manifold image modified with permission [23])

observed their existence across various classes of GMs. In145
particular, the first definition of GM fingerprints proposed146
in [60] assumes the data manifold to be Euclidean, but such147
assumption is often violated in the high-dimensional data we148
encounter in the real world (e.g., images, videos, and texts).149

Motivated by this limitation, in this section, we propose150
an improved formal definitions of artifacts and fingerprints151
of generative models that generalize to non-euclidean data by152
taking into account their geometry. We then describe a prac-153
tical algorithm for computing them from observed samples,154
by (i) learning a Riemannian metric from data as a pullback155
metric [3, 4], and (ii) estimating the projection of generated156
samples to this learned manifold as a Riemannian center of157
mass (RCM) [2] of k-nearest neighbors in geodesics.158

2.1. Definitions of GM artifacts and fingerprints159

The artifacts and fingerprints of generative models intuitively160
correspond to the models’ defects in matching the generative161
process of real data, which are manifested consistently in162
the samples they generate. As per the manifold learning163
hypothesis [9, 18], which assumes real-world data, including164
images and texts, lie on a lower-dimensional manifold, we165
can formalize such deficiencies of GMs as how their gener-166

ated samples deviate from the true data manifold. Formally, 167
let G be a generative model trained on the dataset XR of real 168
samples that lie on a lower-dimensional data manifoldM, 169
PG its induced probability distribution, SG its support, and 170
xG its sample: 171

Definition 2.1 (Artifact). An artifact left by generative 172
model G on its sample xG (denoted as a(xG;M)) is de- 173
fined as the difference between xG and its projection x∗ onto 174
the manifoldM of the real data used to train G: 175

x∗ := Projection(xG,M) (1) 176

a(xG;M) := xG − x∗ (2) 177

Definition 2.2 (Fingerprint). The fingerprint of a generative 178
model G with respect to the data manifoldM is defined as 179
the set of all its artifacts over its support SG: 180

Fingerprint(G;M) = {a(xG;M)|x ∈ SG} (3) 181

Figure 1 (left) illustrates our proposed definitions. 182

2.2. Estimation of Riemannian GM artifacts and 183
fingerprints 184

Our estimation of GM artifacts and fingerprints consist of 185
two main steps: (i) We first learn the latent data manifoldM 186
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from the dataset of real images as a Riemannian manifold187
equipped with proper metric tensor g. (ii) We then estimate188
the artifact on xG according to this metric, by computing the189
projection of xG ontoM as a Riemannian Center of Mass190
(RCM) of xG’s k-nearest neighbors inM, and the artifact as191
the difference between xG and its projection onM. Finally,192
the fingerprint of G is computed as the set of artifacts for193
each xG in its sample set XG. Algorithm 1 describes the194
workflow of our fingerprint estimation (notations in Tab. 1).195

Algorithm 1 Compute Riemannian GM fingerprints

Input: Set of real images (XR) and images generated by
model G (XG)

1: function COMPUTE-FINGERPRINT(XG |XR)
2: Fingerprint(G;R) ← {}
3: for xG ∈XG do ▷ Runs in parallel
4: a(xG)← COMPUTE-ARTIFACT(xG | XR)
5: Fingerprint(G;R).add(a(xG))
6: return Fingerprint(G;R)

7: function COMPUTE-ARTIFACT(x | XR)
8: (M, g) ← LEARN-RIEMANNIAN-MANIFOLD(XR)

▷ Learned data manifold with metric tensor g
9: x⋆ ← PROJECT(x,M) ▷ Project x ontoM

10: a(x,M) ← x− x⋆ ▷ Artifact as a difference
vector

11: return a(x,M)

196
Step 1. Learning the Riemannian manifold from data.197
Since we do not have access to the data manifoldM on198

which the real images lie (i.e., the natural image manifold),199
we need to estimate it using the observed samples at hand.200
To this end, we use real images in the training datasets of the201
generative models, and map them to a suitable embedding202
space to construct a collection of features to be used as an203
estimated image manifold. Unlike the previous definition204
in [60], which used either the pixel space, its FFT space, or205
the embedding spaces of pretrained networks (ResNet and206
Barlow-Twin pretrained on ImageNet), we learn the latent207
data manifold from the observed real dataset.208

The key idea in our approach to learning the latent data209
manifold from the observed real dataset (e.g., real images)210
with metric is to pull back the geometry in the observation211
space (e.g., L2 distances in the image pixel space) to the la-212
tent manifold, using generative models. This metric learning213
based on a pullback is proposed in [3, 4]. In our work, we214
choose as the generative model a VAE with the mean and215
variance estimators and train it on the real dataset with the216
standard VAE loss function. Its learned encoder functions as217
the embedding map from the data space to the latent space,218
and its decoder as a vehicle to define the geometry of the219

latent space (e.g., length of a curve and geodesic distances 220
on the manifold) by pulling back the geometry of the data:(i). 221
Train VAE with mean and variance parameters (θµ, θσ) with 222
the standard VAE loss, using the real dataset XR: Note 223
that both the mean and variance parameters are required for 224
proper learning of Riemannian metrics [4, 23], and we train 225
such VAE by (i) first training its inference network with the 226
variance parameter fixed, and (ii) training the variance pa- 227
rameter as in [4] (Sec 4.1). This step provides the embedding 228
map fenc : X →M, and fdec :M→ X . 229

(ii). Define the metric onM by pulling back the metric on 230
X (i.e., L2 in the standard generative modeling setup [35]), 231
toM: To do so, we first define the “length” of a curve in M 232
to be the “length“ of its decoded curve on X, i.e., 233

lengthM(c) := lengthX (f dec(c)) (4) 234

and define the pullback metric as the metric tensor g onM: 235

g := JT
µ Jµ + JT

σ Jσ [4] (5) 236

Step 2. Estimating the artifact of G in its sample. The 237
artifact of G in its sample xG is computed in two steps: 238
1. Estimate the projection x⋆ as the RCM of xG’s k-nearest 239

neighbors on the data manifold: 240
• Compute kNNdZ (xG,M), the set of k-nearest neigh- 241

bors (kNNs) on the data manifold, according to the 242
distance metric dZ of Z 243

• Estimate x⋆ as RCM(kNNdZ (xG, M): compute the 244
Riemannian center of mass of the kNNs using the met- 245
ric on the latent Riemannian manifold, learned in Step.1 246
(see Alg. 2). 247

2. Compute the artifact as a difference vector between xG 248
and x∗: a(xG;M) = xG − x∗ 249

Algorithm 3 describes how to compute the projection of xG 250
ontoM using its k-nearest neighbors of xG inM and the 251
Riemannian center of mass of the kNNs. 252

Computing Riemannian center of mass (RCM) on the 253
latent manifold. Please see details on how we define and 254
compute the RCM on the latent manifold in B.2. 255

Step 3. Computing the fingerprint of a generative model. 256
Given a set of model-generated samples XG = {xi}Ni=1 257
where xi ∼ PG, we estimate its fingerprint w.r.t. real data 258
XR by computing an artifact of each sample in XG, i.e. 259
Fingerprint(G;XR) = {a(x;XR) | x ∈ XG}. 260

2.3. Attribution network 261

We train a ResNet50-based classifier to predict source mod- 262
els given our artifact representations. See C for details. 263

3. Experiments 264

We show that using our proposed definition significantly 265
improves the performance on model attribution and zero-shot 266
generalization to unseen datasets, models and modalities. 267
Please see E for details on our experiments. 268
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A. Background on Riemannian geometry and543

Riemannian manifold learning544

To establish a common language and context for introducing545
our Riemannian-geometric definition of fingerprints, we start546
with a brief recap of Riemannian geometry [19, 39, 57].547
Riemannian manifold and its metric. A Riemannian mani-548
fold is a well-studied metric space that locally resembles a549
Euclidean space, allowing geometric notions such as lengths,550
distance and curvature to be (locally) defined on a curved551
(i.e. non-Euclidean) space. A formal definition is as follows:552

Definition A.1. A Riemmanian manifold is a smooth man-553
ifoldM, whose tangent space TpM at each point p ∈ M554
is equipped with an inner product (Riemannian metric)555
gp : TpM× TpM→ IR in a smooth way.556

Riemannian metric. A Riemannian metric g onM assigns557
to each p an inner product gp : TpM× TpM→ IR, which558
induces a norm (i.e., length of a vector) || · ||p : TpM→ IR559

defined by ||v||p =
√
gp(v, v).560

Inituitively, a Riemannian metric functions as a measur-561
ing stick on every tangent space of M, dictating how to562
measure the lengths of vectors and curves (and other derived563
geometric quantities) onM.564
Geometric calculations on Riemannian manifolds.565
• Measuring lengths on a Riemannian manifold: The inner566

product structure on (M, g) is sufficient for defining the567
length of a smooth curve c : [0, 1]→M as:568

Length(c) :=

∫ 1

0

√
gc(t)(ċ(t), ċ(t))dt (6)569

where ċ = ∂tc denotes the curve velocity.570
• Measuring distances on a Riemannian manifold: Given571
p, q ∈M, the distance from p to q is defined as:572

d(p, q) := inf{Length(c)|c : [0, 1]→M, (7)573

c(0) = p, c(1) = q}574

Such a minimum-distance curve from p to q is called a575
“geodesic” and its distance the “geodesic distance”.576

Learning Riemannian manifold from data. In the context577
of this paper we focus on Riemannian manifolds whose578
structure and Riemannian metrics are learned from observed579
data (i.e., images). In particular, we employ the method of580
pulling back the metric on the observed data space to the581
latent manifold [3, 4, 23] by training a generative model582
(e.g., VAE) with its encoder and decoder functions.583

More specifically, given the data space X and a VAE584
(fenc, fdec) trained with a latent space Z , where its decoder585
function fdec models both the mean and variance, i.e.,586

fdec(z) = µ(z) + σ(z)⊙ ϵ, (8)587

µ : Z → X , σ : Z → IR+, ϵ ∼ N (0, IID)588

(X , dX ) Observed data space as (IRD, dL2)
(Z, dZ) Latent space of VAE as (IRd, dL2)
(M, dM) Latent Riemannian manifold immersed in

X with dM := gpullback s.t. gp : TpM×
TpM→ IR

VAE Generative model that learns a latent man-
ifold of real dataset; (fenc , fdec)

XR, XG real dataset, and synthetic dataset gener-
ated by a generative model G

x(k)
NN

kth nearest neighbors of x on the mani-
fold (M, dM)

kNN(x;XR) the set of K nearest neighbors of x on
(M, dM)

xRCM Riemannian center of mass of
kNN(x;XR) on (M, dM)

a(xG;M) Artifact of xG with respect to (M, dM)

Table 1. Our notation: data and latent spaces as metric spaces and
points involved in estimating GM fingerprints.

we can construct a Riemmanian metric g on Z from the 589
metric on X (which is, conveniently, Euclidean), as [4]: 590

g := JTµ Jµ + JTσ Jσ (9) 591

where Jµ and Jσ are the Jacobians of µ(.) and σ(.). These Ja- 592
cobians can be estimated from the standard backpropagation 593
through the trained decoder [4]. 594

In our approach (Sec. 2), we use this pullback approach 595
to learn a latent (Riemannian) geometric structure of real 596
image datasets, and estimate “artifacts” of a GM on model- 597
generated data using this learned, real data manifold as a 598
reference of a true data distribution. Additionally, the learned 599
metric aids in computing a more geometrically appropriate 600
notion of “projection” to the manifold, using geodesic dis- 601
tances and Riemannian center of mass. We now introduce 602
our new definition and implementation of GM fingerprints. 603

B. Our Method: Riemannian-Geometric Fin- 604

gerprints of GMs 605

B.1. Algorithms for computering fingerprints 606

Algorithm 4 Compute RCM: Gradient Descent for finding
the Riemannian Lp center of mass of {xi}Ni=1

Input: {xi}Ni=1 ⊂M, {wi}Ni=1 and choose x0 ∈M
1: if ∇fp(xk) = 0 then stop, else set

xk+1 ←− expxk(−tk∇fp(xk)) (10)

where tk > 0 is an “appropriate” step-size and ∇fp(·)
is defined in (12).

2: repeat step 1
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Algorithm 2 Learn Riemannian manifold from real dataset

Input: Set of real images, XR

1: function LEARN-RIEMANNIAN-MANIFOLD(XR)
2: # Train VAE with mean and variance parameters

(θµ, θσ) using XR with standard VAE losses.
3: VAE = (fenc , fdec) ← TrainVAE(XR) ▷ fenc :
X → Z, fdec : Z → X

4: # Pullback metric from the data space X toM
5: g ← JT

µ Jµ + JT
σ Jσ ▷ Riemannian metric on

M, pulled back through fdec
6: M← fenc(XR)
7: return (M, g),VAE = (fenc, fdec)

Algorithm 3 Compute projection of xG ontoM as RCM

Input: A model-generated sample xG, and Riemannian
manifoldM

1: function PROJECT(xG,M)
2: # Compute the projection of xG ontoM as RCM of

kNNs inM
3: QK ← kNNdZ (x,XR) ▷ k-nearest neighbors

of x onM using the metric dZ
4: RCM(QK) ← COMPUTE-RCM(QK , G) ▷ Rie-

mannian center of mass of kNNs onM
5: return RCM(QK)

B.2. Computing Riemannian center of mass (RCM)607
on the latent manifold.608

We first define the RCM as following [2]:609

Definition B.1. Given the dataset {xi}Ni=1 ⊂ M and610
Lp-distance dp on M, its Riemannian Lp center of mass611
(a.k.a. Fréchet mean) with respect to weights 0 ≤ wi ≤ 1612
(
∑N

i=1 wi = 1) is defined as the minimizer(s) of613

fp(x) =

{
1
p

∑N
i=1 wid

p(x, xi) 1 ≤ p <∞
maxi d(x, xi) p =∞

[2] (11)614

inM. By convention, the weights are assumed to be equally615
distributed unless specified [2]. Our method adopts an itera-616
tive, gradient-based algorithm [2, 38, 43] for computing this617
Riemannian center of mass, using the metric g learned in618
Step 1 (Eqn. 5). Alg. 4 describes how we compute a local619
RCM given a set of query points Q ⊂ M on our learned620
data manifoldM, using the pullback metric g as the distance621
d in Eq. 11. In particular, we follow until convergence the622
gradient of fp using the k-nearest neighbors of xG on XR:623

∇fp(x) = −
K∑
i=1

wid
p−2(x, xi) exp

−1
x xi [2] (12)624

This gradient is valid for any x ∈ M as long as it is not in 625
the small open neighborhood of other data points [2]. For our 626
purposes, we assume that this condition is achieved due to 627
the sparsity of our observed sample, i.e., the dimensionality 628
of our data manifold (i.e., image manifold) is much higher 629
than our sample size (i.e., number of observed images). In 630
Algo. 4, we initialize x0 with a random data point in XR, 631
and set tk for each k as in [38]. 632

C. Method: Attribution network 633

Our attribution network takes as input our artifact repre- 634
sentation of an image (computed in Step 2) and predicts 635
the identity of its source generative model: First, we repre- 636
sent the input image as an artifact feature by computing its 637
deviation from the learned data manifold, as discussed in 638
Sec. 2.2. Note that we do not learn the Riemannian mani- 639
fold (and its metric) at the inference time, since this step is 640
done only once per given real data during training or data- 641
preprocessing steps. Next, the artifact feature is fed into our 642
ResNet-based classifier to perform multi-class classification 643
over the generative models. To train this classifier, we use 644
the pretrained ResNet50 [25] as the backbone and finetune it 645
with the cross-entropy loss accruing from classifying images 646
in the training split of our dataset in Tab. 2. 647

D. Experiments: Dataset Creation 648

ManiFPT [60] provides an extensive benchmark dataset for 649
evaluating model attribution across a large array of GMs, 650
spanning 4 different training datasets and all 4 main GM 651
familys (GAN, VAE, Flow, Diffusion). However, what it 652
is currently lacking is the inclusion of multimodal models 653
such as vision-language models. To bridge this gap, and to 654
evaluate model attribution methods on a wider variety of 655
models, we created an extended benchmark dataset that in- 656
cludes SoTA vision-language GMs. In particular, we include 657
4 SoTA models (last row of Tab. 2) that can generate images 658
given input text prompts: Flux.1-dev, Stable-Diffusion-3.5, 659
Dall-E-3, and Openjourney. For all these models, we used 660
pre-trained models that are available either on Huggingface 661
or on public Github repositories. 662

D.1. Details on dataset creation 663

GM-CelebA dataset. To construct a dataset of faces that 664
resemble images in CelebA [40], we use the text prompt of "a 665
face of celebrity" to each of the vision-language models. For 666
example, for Flux.1-dev model, we use the Huggingface’s 667
‘diffuser‘ library to download the model weights, and used 668
each pretrained model with default sampling configurations 669
to generate 10k images with this prompt. 670
GM-CIFAR10 dataset. To generate images like the data 671
in CIFAR10, we created a text prompt for each class in 672
CIFAR10 (i.e., airplane, automobile, bird, cat, deer, dog, 673
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Family GM-CIFAR10 GM-CelebA GM-CHQ GM-FFHQ

Real CIFAR-10 [37] CelebA [40] CelebA-HQ (256) [29] FFHQ (256) [31]

GAN BigGAN-Deep [5] plain GAN [20] BigGAN-Deep [5] BigGAN-Deep [5]

StyleGAN2 [32] DCGAN [53] StyleGAN2 [32] StyleGAN2 [32]

LSGAN [44] StyleGAN3 [30] StyleGAN3 [30]

WGAN-gp [22] WGAN-gp/lp [22] VQ-GAN [17] VQ-GAN [17]

DRAGAN-gp/lp [36] StyleSwin [70]

DDGAN [67] DDGAN [67]

VAE β-VAE [26]

DFC-VAE [28] StyleALAE [52]

NVAE [63] NVAE [63] NVAE [63] NVAE [63]

VAE-BM [66] VAE-BM [66] VAE-BM [66]

Eff-VDVAE [24] Eff-VDVAE [24] Eff-VDVAE [24] Eff-VDVAE [24]

Flow GLOW [34] GLOW [34]

MaCow [41] MaCow [41]

Residual Flow [11]

Score DDPM [27] DDPM [27] DDPM [27]

NCSN++ [61] NCSN++ [61]

RVE [33] RVE [33] RVE [33]

LSGM [64] LSGM [64]

LDM [55] LDM [55]

Vision-Language Flux.1-dev Stable-Diffusion-3.5 Dall-E-3 Openjourney

Table 2. Our experimental dataset of generation models. We
introduce an extended benchmark dataset for model attribution that
includes SoTA multimodal GMs (i.e., text-to-image models) in ad-
dition to the large array of SoTA GMs trained on 4 different datasets
(CIFAR10, CelebA, CelebA-HQ(256), FFHQ(256)) in 2 different
resolutions (64×64, 256×256) from [60]. We evaluate the model
fingerprints on their attributability and cross-data/model/modality
generalization. Real: training datasets of the generative models.
Score: score-based (a.k.a. diffusion) models.

frog, horse, ship, truck ), as “an image of {cifar10-class}”.674
We then provided this prompt to each of the vision-language675
models we added in Tab. 2, and used each pretrained model676
with its default sampling configurations to generate a total677
of 10k images per prompt per CIFAR10 class.678

E. Experiments679

We evaluate our proposed fingerprint definitions and attri-680
bution method on model attribution and generalization to681
unseen datasets, generative models and modalities. Sec. E.1682
explains our experimental setup. Sec. E.2 and Sec. E.3 eval-683
uate the attributability of GM fingerprints on a large array of684
generative models via (multi-class) model attribution and fea-685
ture space analysis. Sec. E.4 studies the generalizability of686
our fingerprints across dataset, model type, and modalities.687

E.1. Experimental setup688

Datasets. To evaluate the performance of different finger-689
prints on model attribution for a multi-class classification,690
we use the GM datasets from [60] – GM-CIFAR10, GM-691
CelebA, GM-CHQ and GM-FFHQ – constructed from real692
datasets and generative models trained on CIFAR-10 [37],693
CelebA-64 [40], CelebA-HQ(256) [29] and FFHQ(256) [31],694
respectively. This dataset includes 100k images from each695
generative model, collectively covering GAN, VAE, Flow,696
and diffusion families, and state-of-the-art generative models697
(e.g., NAVE, NCSN++, LSGM) that have not been consid-698
ered before. In addition, we extend this dataset to include699

SoTA multimodal GMs (vision-language models) to eval- 700
uate fingerprints’ generalization across a wider variety of 701
modalities. Tab. 2 summarizes our datasets, organized in 702
column by the training datasets, with the last row indicating 703
the vision-language models. We emphasize that each dataset 704
in the column exclusively consists of images from models 705
trained on the same training dataset, which is crucial for 706
evaluating the effects of model architectures and datasets on 707
attribution and cross-dataset generalization independently, 708
which we study in Sec. E.2 and Sec. E.4. 709

Baselines We consider the three main categories of existing 710
model attribution methods: color-based, frequency-based 711
and supervised-learning methods. We evaluate represen- 712
tative methods from each group and compare them to our 713
proposed method. Additionally, we include the SoTA finger- 714
printing method based on a data manifold (ManiFPT [60]) 715
in our comparison. 716

• Color-based methods: Histogram of saturated and under- 717
exposed pixels [47], Color co-occurrence matrix [48] 718

• Frequency-based methods: 1-dim power spectrum via az- 719
imuthal integration on DCT [15], high-frequency decay 720
parameters fitted to normalized reduced spectra [12, 16] 721

• Supervised learning methods: InceptionNet-v3 [45], Xcep- 722
tionNet [45], Yu et al. [69], Wang et al. [65] 723

• Manifold-based methods (Euclidean): ManiFPTRGB , 724
ManiFPTFREQ [60] which use RGB and frequency (FFT) 725
spaces, respectively, as their embedding spaces 726

For comparison, we consider two variants of our attribution 727
method, R-GMfpts which computes the RCM on M us- 728
ing Euclidean distances, and R-GMfptsRCM which uses the 729
learned geodesic distances. 730

E.2. Attribution of generative models 731

We test the attributability of fingerprints by training a clas- 732
sifier for model attribution based solely on our computed 733
artifacts. For other baselines, the inputs to the classifier may 734
be a full image or frequency spectrum, depending on their 735
expected representations. A high test accuracy implies the 736
classifier is able to predict source models from the finger- 737
prints, thereby supporting the existence of their fingerprints. 738

Metrics. We evaluate the attributability of the baseline 739
methods listed in Sec. E.1 and our proposed methods on 740
our GM datasets (Tab. 2). The performance is measured in 741
classification accuracy (%). 742

Evaluation Protocol. Each dataset in Tab. 2 consists of real 743
images and synthetic images from GMs trained on those 744
real images. Each image is labeled with the ID of its source 745
model (e.g., 0 for Real, 1 for G1, ..., M for GM ). We split 746
the data into train, val, test in ratio of 7:2:1, train the methods 747
on the train split and measure the accuracies on the test split. 748

Results. Tab. 3 shows the result of model attribution. 749
First, we observe that our attribution methods (R-GMfpts, 750
R-GMfptsRCM) outperform all compared methods on all 751
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GM-CIFAR10 GM-CelebA GM-CHQ GM-FFHQ
Methods Acc.(%)↑ FDR↑ Acc.(%)↑ FDR↑ Acc.(%)↑ FDR↑ Acc.(%)↑ FDR↑
McCloskey et al. [47] 40.22± 1.10 32.4 62.6± 0.31 70.2 57.4± 0.81 36.3 50.8± 0.34 26.3
Nataraj et al. [48] 46.29± 1.43 36.7 61.1± 0.91 74.0 56.3± 0.32 37.9 51.3± 0.58 35.3
Durall et al. [15] 57.29± 0.93 46.5 62.2± 0.24 75.5 59.1± 0.80 38.8 60.9± 0.25 37.9
Dzanic et al. [16] 56.12± 1.21 43.1 61.6± 1.02 88.1 56.9± 1.21 38.2 55.7± 0.32 30.3
Corvi et al. [12] 60.12± 0.14 47.2 59.2± 0.59 46.5 60.5± 0.76 48.2 59.3± 0.53 49.2
Wang et al. [65] 62.23± 0.84 53.6 62.2± 1.20 89.8 59.5± 1.25 30.3 64.2± 0.31 37.9
Marra et al. (MIPR) [45] 55.94± 1.09 41.2 63.1± 1.10 83.4 51.3± 1.28 20.5 53.2± 0.21 30.4
Marra et al. (WIFS) [46] 60.71± 1.24 47.2 61.1± 1.72 101.4 59.1± 0.75 34.9 51.8± 0.23 30.9
Yu et al. [69] 62.01± 0.79 50.1 60.6± 1.10 111.4 61.1± 1.12 73.3 60.5± 0.10 35.1
ManiFPTRGB [60] 69.48± 1.08 55.2 70.5± 1.56 115.3 63.7± 0.63 64.2 63.3± 0.12 50.1
ManiFPTFREQ [60] 70.19± 0.96 57.2 72.8± 1.32 120.9 54.8± 0.32 70.1 63.8± 0.20 43.8
R-GMfpts (ours) 72.01± 0.92 58.9 73.6± 0.70 168.0 64.3± 0.72 77.2 65.2± 0.30 58.8
R-GMfptsRCM (ours) 78.17 ± 0.53 60.1 74.7 ± 0.62 125.9 65.8 ± 0.75 74.5 67.1 ± 0.20 60.8

Table 3. Model attribution results. We evaluate different artifact features on predicting the source generative model of a generated sample.
Separability of the feature spaces are measured in Fréchet distance ratio (FDR). Higher FDR means better separability. Our methods based
on the proposed definition of artifacts outperform all baseline methods on all datasets (results from [60] and our evaluations).

datasets with significant margins. In particular, our method752
achieves higher accuracies across all dataset than the753
Euclidean-based method (ManiFPT [60]), supporting that754
taking the Riemannian geometry structure of data when esti-755
mating the GM fingerprints improves their estimation.756

Secondly, we note that our method that takes full advan-757
tage of the learned Riemannian metric on the data manifold758
(R-GMfptsRCM) outperforms the one that does not and uses759
a standard Euclidean metric instead (R-GMfpts). This result760
suggests that computing the projection of xG as a Rieman-761
nian center of mass using the learned geodesics contributes762
the estimation to lie closer to the data manifold, minimizing763
potential errors in the artifact computation. We visualize this764
point in Figure 3 (center vs. right) where zCM (center) lies765
off the manifold whereas zRCM (right) on the manifold.766

E.3. Feature space analysis767

Separability (FD ratio). We measure the separability of768
fingerprint representations using the ratio of inter-class and769
intra-class Fréchet Distance (FDR) [14] as done in [60]. The770
larger the ratio, the more attributable the fingerprints are771
to their source models. Tab. 3 shows the FD ratios com-772
puted for the fingerprints on the test datasets. We observe773
that the FDRs are significantly higher for learned represen-774
tations (Row of Wang et al. and below) than color-based775
(McCloskey [47], Nataraj [48]) and frequency-based discrep-776
ancies (Durall [15], Dzanic [16], Corvi [12]). In particular,777
the feature spaces based on our new Riemannian definitions778
achieve improved FDRs, in alignment with the attribution779
results in classification accuracy.780

Methods C10→CA CA→C10 CHQ→FFHQ FFHQ→CHQ

McCloskey et al. [47] 52.3± 0.14 43.2± 0.08 34.2± 0.13 31.2± 0.10
Nataraj et al. [48] 56.2± 0.11 46.1± 0.19 42.1± 0.07 40.4± 0.19
Durall et al. [15] 60.1± 0.14 53.5± 0.12 51.9± 0.09 42.6± 0.12
Dzanic et al. [16] 56.9± 0.13 54.7± 0.11 45.2± 0.22 42.5± 0.17
Corvi et al. [12] 59.2± 0.21 59.3± 0.14 48.1± 0.35 46.6± 0.14
Wang et al. [65] 62.5± 0.15 60.1± 0.10 61.4± 0.13 53.4± 0.12
Marra et al. (MIPR) [45] 57.0± 0.14 58.4± 0.33 50.2± 0.17 35.9± 0.27
Marra et al. (WIFS) [46] 61.0± 0.15 58.6± 0.23 54.3± 0.12 30.3± 0.17
Yu et al. [69] 60.5± 0.13 60.4± 0.20 55.2± 0.17 50.3± 0.13
ManiFPTRGB [60] 62.7± 0.14 60.2± 0.15 58.1± 0.22 53.2± 0.11
ManiFPTFREQ [60] 65.8± 0.12 62.1± 0.11 57.6± 0.20 53.5± 0.18

R-GMfpts (ours) 68.2 ±0.11 62.3± 0.16 63.5 ±0.14 56.9 ±0.28
R-GMfptsRCM (ours) 67.8 ±0.21 65.0 ±0.12 67.3 ±0.24 54.3 ±0.32

Table 4. Generalization of model attribution across datasets.
We evaluate how well baselines and our fingerprints generalize
across training datasets. We consider two scenarios: (i) generaliza-
tion across GM-CIFAR10 and GM-CelebA, and (ii) generalization
across GM-CHQ and GM-FFHQ. For each case, we train attribution
methods on one set of generative models (e.g., GM-CIFAR10) and
test on a different set of models (e.g., GM-CelebA). Our artifact-
based attribution method outperforms all baseline methods in both
scenarios. C10: CIFAR-10. CA: CelebA. CHQ: CelebA-HQ.

E.4. Cross-dataset generalization 781

We evaluate the generalizability of fingerprinting methods 782
across datasets. Since new models are developed constantly 783
by training or fine-turning on new datasets, this cross-dataset 784
generalizability is crucial in practice. We consider two sce- 785
narios whose data semantics are meaningfully different: gen- 786
eralization (i) between GM-CIFAR10 and GM-CelebA, and 787
(ii) between GM-CHQ and GM-FFHQ. 788
Evaluation. In each case, we train attribution methods on the 789
training dataset (e.g., GM-CelebA) and test their accuracies 790
on the other unseen dataset (e.g., GM-CIFAR10). 791
Results. Tab. 4 shows the result of cross-dataset general- 792
izations for GM-CIFAR10 −→←− GM-CelebA and for GM- 793
CHQ −→←− GM-FFHQ. First, our attribution methods based 794
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on Riemannian fingerprints (R-GMfptsRCM, R-GMfpts)795
outperform all compared methods in both cases of cross-796
generalization. Note that CIFAR-10 and CelebA contain im-797
ages from different domains (CIFAR-10: objects and animals798
vs. CelebA: human faces).Therefore, the high accuracies in799
this particular scenario indicate that our new fingeprints gen-800
eralize not only across datasets of similar semantics (CHQ801
−→←− FFHQ), but also across of different semantics (CIFAR-10802
−→←− CelebA). Overall, these higher accuracies show that our803
methods are more generalizable in the midst of the changes804
of training datasets of various generative models, supporting805
the efficacy of our methods in practice where attribution is806
needed to address end users who can train new models using807
their own datasets.808

F. Conclusion809

Our work addresses an increasingly critical problem of at-810
tributing and fingerprinting GMs, by proposing fingerprints811
that generalize to non-Euclidean data using Riemannian ge-812
ometry. Our experiments on an extended SoTA dataset813
showed that our method is more effective in distinguish-814
ing a wider variety of GMs (4 datasets in 2 resolutions, 27815
model architectures, 2 modalities). Using our definition sig-816
nificantly improved performance on model attribution and817
generalization. We believe this generalized definition of GM818
fingerprints can help address gaps in the theory and practical819
understanding of GMs, by providing a geometric framework820
to systematically analyze the characteristics of GMs.821
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