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Abstract: Monocular visual-inertial odometry (VIO) is a critical problem in
robotics and autonomous driving. Traditional methods solve this problem based
on filtering or optimization. While being fully interpretable, they rely on manual
interference and empirical parameter tuning. On the other hand, learning-based
approaches allow for end-to-end training but require a large number of training
data to learn millions of parameters. However, the non-interpretable and heavy
models hinder the generalization ability. In this paper, we propose a fully differ-
entiable, and interpretable, bird-eye-view (BEV) based VIO model for robots with
local planar motion that can be trained without deep neural networks. Specifically,
we first adopt Unscented Kalman Filter as a differentiable layer to predict the pitch
and roll, where the covariance matrices of noise are learned to filter out the noise
of the IMU raw data. Second, the refined pitch and roll are adopted to retrieve
a gravity-aligned BEV image of each frame using differentiable camera projec-
tion. Finally, a differentiable pose estimator is utilized to estimate the remaining
3 DoF poses between the BEV frames: leading to a 5 DoF pose estimation. Our
method allows for learning the covariance matrices end-to-end supervised by the
pose estimation loss, demonstrating superior performance to empirical baselines.
Experimental results on synthetic and real-world datasets demonstrate that our
simple approach is competitive with state-of-the-art methods and generalizes well
on unseen scenes.
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1 Introduction

Visual-inertial odometry (VIO) is a fundamental component of the visual-inertial simultaneous lo-
calization and mapping system with many applications in robotics and autonomous driving. As
a cheap and efficient solution, monocular VIO has attracted growing interest recently. However,
monocular VIO is a challenging task considering the limited sensory information.

Traditional monocular VIO approaches have demonstrated promising results based on classical fea-
ture detection and feature matching [1][2][3][4], see Fig. 1 (top). These methods are interpretable
and generalize well, but require manual interference and empirical parameter tuning. Moreover,
these methods only leverage sparse features, resulting in the degraded performance in textureless
regions [5].

More recently, learning-based approaches address these limitations by learning the ego-motion in
an end-to-end fashion from the raw, dense monocular images, as illustrated in Fig. 1 (middle).
However, they lack interpretability and thus pose a new challenge to generalization. While many
works improve the interpretability by predicting an intermediate optical flow [6][7][8][9] or depth
map [10][11][12][13], the following pose regression network remains uninterpretable. Furthermore,
existing learning-based approaches rely on a large number of training images to learn millions of
parameters while the ego-motion has essentially 6 DoF only. We thus ask the following question: Is
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Figure 1: Comparison of VIO methods. Top: the standard visual-inertial odometry that requires
manual tuning parameters, middle: Deep learning based VIO approaches learn depth or optical flow
prediction before a pose regression, and are loaded with tons of heavy parameters for training, and
bottom: our differential interpretable model based learning approach that solves the problem in an
end to end manner, training covariance matrices without deep neural networks.

it possible to obtain a fully interpretable model with a minimal set of parameters being learned end-
to-end? In this paper, we focus on the BEV based VIO for 5 DoF local planar motion with elevation
fixed. This is not trivial as such motion pattern is applicable for unmanned ground vehicles and au-
tonomous driving vehicles in urban, underground parking lots, tunnels and highways [14][15]. We
combine the advantages of the traditional methods with learning-based approaches. Several former
works [16][17] explore this possibility using traditional filtering for interpretable fusion, but leaving
the sensor model a plain regression network. Our key idea is to design a fully differentiable, inter-
pretable model that eliminates all black-box neural networks, yet allowing for replacing empirical
parameter tuning with learning from the data, see Fig. 1 (bottom). Additionally, our method ex-
ploits dense appearance information instead of sparse features. As it is difficult to differentiate the 6
DoF pose estimation that involves robust and non-linear optimization, we focus on the 3 DoF image
based pose estimation conditioned on the estimated pitch and roll angles.

More formally, we consider the BEV based monocular VIO as a function that outputs a relative pose
taking as input i) two consecutive frames, and ii) IMU data. First, we utilize a Differentiable Un-
scented Kalman Filter (DUKF) to filter out noise from the IMU raw measurements and retrieve pitch
and roll. As the covariance matrices of noise in both the motion model and the measurement model
are not known precisely in practice, classical UKF relies on empirical parameter tuning given a spe-
cific scene. In contrast, we exploit the fact that UKF is differentiable and optimize the covariance
matrices in an end-to-end manner leveraging the training data. This requires the estimator of the
remaining 3 DoF pose to be differentiable as well. Therefore, in the second step, we estimate the re-
maining 3 DoF poses by converting monocular images to bird-eye view conditioned on the denoised
pitch and roll [14]. The bird-eye view representation allows us to obtain a global optimal solution
using Differentiable Phase Correlation (DPC) [18] in a single forward pass. Note that DPC leverages
dense appearance information and does not introduce any trainable parameters. More importantly,
it allows for back-propagating the gradient to the DUKF module to update the covariance matrices.
The combination of DUKF and DPC provides us a fully differentiable, and interpretable BEV based
model for VIO, named BEVO, with the parameters of the covariance matrices as the only trainable
parameters and no deep neural networks involved. We emphasize that by carefully combining the
designed mechanistic model with learning approaches, the model is inherently interpretable. [19].
We summarize our contributions as follows:

* We present a fully differentiable and interpretable monocular VIO framework for planar moving
robots, e.g., autonomous driving or unmanned ground vehicles, that combines the advantages of
both traditional and learning-based approaches.

* We propose to use the Unscented Kalman Filter as a differentiable layer and leverage the Differ-
entiable Phase Correlation on BEV images for pose estimation. This novel combination allows
for learning the covariance matrices from data in an end-to-end manner.

» Extensive experiments on KITTI, CARLA, and AeroGround demonstrate that, surprisingly, our
simple approach shows competitive results compared to the state-of-the-art.
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Figure 2: The overall pipeline of the proposed BEVO. As a demonstration, the frequency of the
front image is 10Hz while the frequency of IMU is 100Hz. For each frame of IMU, the pitch rate,
roll rate, and 3D acceleration are fed into the differentiable UKF to learn noise filtering (elaborated
in the right part of the figure). Afterward, the filtered pitch and roll aid the differentiable BEV
projections which are further estimated for a pose to be supervised. However, due to the frequency
difference, only frames with front images have back-propagated gradients (red dashed lines) for the
Differentiable UKF (DUKEF) training.

2 Fully Differentiable and Interpretable Model for VIO

\ <&~~~ Back-Propagation

We aim to estimate the odometry with the input of one monocular camera and IMU data by a
differentiable and interpretable model. Following the pipeline in Fig. 2, we employ a trainable
UKEF to integrate IMU data for pitch and roll estimation. Then the denoised pitch and roll, together
with the corresponding front image are fed into the second differentiable module, for differentiable
pose estimation of the remaining 3 DoF pose. To this goal, we transform the image to the BEV
images conditioned on the denoised pitch and roll. Following the BEV projection, the SIM(2)
pose of two consecutive BEV images is estimated by the DPC. Note that the UKF is a continuous
forward function and is differentiable in essence. In this work, we emphasize its backward path by
referring to it as DUKEF, to distinguish it from the traditional UKF utilization which focuses only
on the forward path. As a result, the only trainable parameters are the 4 numbers that make up the
covariance matrices of motion and measurement in the DUKF and are trained end-to-end with the
pose loss altogether.

2.1 Differentiable Unscented Kalman Filter

For the DUKE, there are two basic models in the pipeline, namely, the motion model and the mea-
surement model. We follow the right-hand system through the paper.

Motion Model: Given the filtered pitch and roll in time ¢ — 1, we have the state in time ¢ — 1 as:

T

T = o1, Bia] (D

where «a, and [ are the pitch and roll angle respectively. Following the sampling theory of UKF

[20], the sampled state in t — 1 becomes X;_1 = I'(x4_1), where T is the sampling rule. Given the
motion model G, we have the initial guess of pitch and roll in time ¢ as:

X: = G(Xi_1) = [-1 +wa, AL, By +ws, Al]" )

=Y wa X, 60 =) we(X; — ) (X; — )" + O, 3)
where wq, and wg are the pitch and roll rate from the gyroscope, and ji; and o, are the mean and
variance of the initial guess of X}, respectively. At is the interval of the IMU data. Note that w,,
and w, are the weights for each sampled state in X based on the theory in [20], and O is the
covariance matrix for the noise of the motion model to be trained.

Measurement Model: After updating the covariance matrix Oy which is the motion prediction, we
retrieve a new sampled state X in time ¢:

=T
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where 7, satisfies the normal distribution. Given the measurement model H, the initial guess of
measurement is

Zy = H(Xy) = [ay, Bt}T (6)
Mt = Zmet (7)
E :ch(Zt—Mt)(Zt—Mt)T+Qt7 ®)

where M, and ¥, are the mean and variance of X, respectively, and Q) is the covariance matrix for
the noise of the measurement model to be trained.

Now, considering a real-world measurement is obtained:

22

Gy = —arctan(acc? J\/acc?® + acc??), By = arctan(acc! Jacc?), 7, = [y, ,BAJT
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where d@; and ﬂ} are the measurement of pitch and roll in time ¢ with respect to the raw acceleration
data in each axes accy, acc?, and acci. Altogether, the real-world measurement state is formed as
Zy.

By now, we come to the last stage of the DUKF, update the final state z; as follows:

2n
57 = S we (K] ) (2~ Mo)T 10)
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pe = fix + Ki(Zy — My), or =0y + K5 K, " (12)
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where if( 2K + are the cross-covariance and Kalman Gain respectively, u; and o, are the mean and
variance of x; which will also guide the sampling in the following time ¢ + 1.

2.2 Differentiable Bird-eye View Projection

To achieve the projection from the front view to the birds-eye view with DBEYV, we first define the
transformation matrix from the IMU to the ground beneath the vehicle considering its pitch, roll,
and elevation:

cosa 0 —sinog
sinagsinf;  cosfy  cosaysinfy
sinagcosfBy  —sinfy  cosacosPy

RIMU _ TIMU =0 0 const,], (14)
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the rotation matrix RV of the IMU at time t changes constantly with a; and (3; which are es-
timated by the DUKF. The translation vector T/*Y of the IMU is known and fixed since it is the
urban road and highway that we are considering in which the height of the IMU to the ground
const, stays unchanged through the journey [14]. Transformation matrices from camera to the
world [REAM TCAM] are obtained with the calibration from IMU to camera and [R/MU T/MU],

Besides the unchanged height, one more assumption can be made for a safe trip: there should
be sufficient distance ahead which should be about 10m at 34km/h according to the mounting
height and angle (similar to [14] [15]), forming that the center bottom part of the front image should
represent a plane ground, shown as the yellow dashed box in Fig. 2.

With the assumption above, we consider pixels within the yellow dashed box as a set of points in
the 3D space, and map them from the camera plane to the ground plane.

To begin with, we generate a set of even points P, on the ground plane that stands for the location
that the points {u, v} in the BEV should be projected to:

P2 (XY, Z}7, (15)
where X ,Y/, and Z are the coordinates of points. P, is then transformed to the camera coordinate
with:

Pt = REAMT(P, - TEAM) 24X, 2)T, (16)



and P! is projected to the camera plane with the focal lengths f,, f, and principal point (¢, ¢;):
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where (u;, v;) are the indexes on the front camera image of each corresponding point in P in time
t. Therefore, by remapping the original pixels (u, v) to (u;, v; ), we retrieve the BEV projection 17"
out of the yellow dashed box I, tf in Fig. 2:

177 ({u, o)) = I (F({ur, ), (18)
where {u;,v;} = F({us,v;}) is the remapping from BEV to front. Since DBEV is parameterized

by the pitch and roll, which is related to the variance of IMU data, with the help of DUKEF, the
gradient can be back-propagated to the variance.

2.3 Differentiable Phase Correlation . n . a G
g * 3 O ‘
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where ff ** is the rotation and scale part of &; between IP¢Y and IP¢%, § is the discrete Fourier
Transform, £ is the log-polar transform Log-Polar Transform), and € is the phase correlation solver.
Fourier Transformation § transforms images into the Fourier frequency domain of which the magni-
tude has the property of translational insensitivity, therefore the rotation and scale are decoupled with
displacements and are represented in the magnitude (Fig. 3 Magnitude of FFT). Log-polar transfor-
mation £ transforms Cartesian coordinates into log-polar coordinates so that such rotation and scale
in the magnitude of Fourier domain are remapped into displacement in the new coordinates, making
it solvable with the afterward phase correlation solver (Fig. 3. Phase correlation solver € outputs a
heatmap indicating the displacements of the two log-polar images, which eventually stands for the
rotation 6; and scale s; of the two input images 17} and 1PV (Fig. 3 Phase Correlation of Rotation).
Since we assume that the height of the robot does not change drastically along the trajectory, the
scale s; is fixed as 1. To make the solver differentiable, we use expectation E(-) as the estimation of

Then I2¢V is rotated and scaled referring to ff ** with the result of I7°V. In the same manner, trans-
lations &! between 1PV and IP¢Y is calculated with p(&!) = €(IP¢?, IY¢%) and t; = E(p(&})). With
the relative rotation 6;, scale s;, and translation t; between Itbfﬁ and Itb“’, and by consulting with
the fixed Distance per Pixzel (DPP), we finally arrive at the SIM(2) pose between frame ¢ — 1 and
t of vehicle:

St = [915, St, DPPtt] (21)
Note that the gradient in the part can be back-propagated all the way back to the variance of the IMU
data since the phase correlation is differentiable.

2.4 Loss Design, Back-Propagation, and Training

With DUKF, DBEV and DPC, we define a one-step VIO as a function:
{atv Sty DPP - tt7 Qg ﬂt} = VIOO,Q(It—h Ita w, CLCC), (22)

where VZOp q is fully differentiable and interpretable with 4 trainable parameters in Oy and Q.
I, w, and a are the front images, gyroscope data, and accelerometer data. Since the BEVO is fully
differentiable, it is trained end to end and supervised only with the ground truth of the odometry



between frames. Such supervision is applied to optimize the covariance matrices of noise in both
the motion model and the measurement model of DUKF.

Elaborately, we wish to supervise the distribution of the poses §f ** and £ and therefore, we calculate
the Kullback—Leibler Divergence loss K LD between {p(¢/*), p(¢!)} and the ground truth:

L= KLD(p()"),19) + KLD(p(£}), 1¢-), (23)

where 14+ and 1 are the Gaussian Blurred one-peak distributions centered at the ground truth 6*
and t* respectively.

Training Details: all trainings are conducted on a GPU server with NVIDIA RTX 3090. For the
initialization, we randomize all initial values of O and @ within the range of [0, 1] uniformly. Since
O and Q are 2 x 2 diagonal matrices, we consider the learning process of the spherical covariances of
them following [1][21] so that the number of trainable parameters will be reduced to 4. We supervise
the model only with 3 DoF ground truth (GT) data of the same frequency as the images, i.e. the high
frequency GT of the IMU is not needed. We set the BEV size to 100 x 100 as a trade-off between
speed and accuracy. The inference time is 21ms and takes up about 500M B of the resources. The
pseudocode for training BEVO will be given in Appendix L.

Plug into Map-Based Localization System: in addition to the odometry, we also explore the pos-
sibility of integrating BEVO with fully differentiable localization to achieve a drift-free system. We
show results as demonstration of the application along with the pseudocode shown in Appendix II.

3 Experiment

We conduct two main experiments: i) odometry estimation on the KITTI [22] odometry dataset on
which the experiments on ablation study, testing, generalization are conducted, and ii) heterogeneous
localization on CARLA [23] and the AeroGround Dataset [24].

Dataset and Corresponding Experiments:

KITTI & CUD: We evaluate BEVO on the KITTI odometry dataset using sequences 00-08 for train-
ing and 09-10 for the test following the same train/validate/test split as [25][26]. In addition to the
widely adopted train/validate split where 20% samples are randomly sampled from the training set
for validation, we also train our model in the first three quarters of each sequence of 00-08, and
evaluate the performance in the last quarter. This train/validate split is more realistic even though
it might present a worse result. Moreover, we further investigate the generalization ability by train-
ing BEVO with 20% data of each sequence. Note that sequence 03 cannot be used for training or
evaluation in this study since the raw data where we grab the IMU data is missing.

CARLA & AG: We further verify the plausibility of applying the BEVO as a front-end plugin for end-
to-end heterogeneous localization following the routine in [27]. Such experiments are conducted in
CARLA and on the real-world AeroGround Dataset. The setups are elaborated in Appendix III.

Evaluation Matrices: We evaluate our trajectories using t,¢; and r,.; from the standard KITTI
toolkit as in [26]. In our case, we do not estimate the elevation due to the assumption that the
vehicle will not leave the ground. However, we still record the initial elevation and keep it constant
through the journey for comparison, which might degrade our performance in ¢,.; to some extent.

Baselines: For the odometry experiment, we compare to both traditional method VINS [1] and
SOTA depth dependent learning-based methods DEEPVIO [5], SELFVIO [28], LT ET AL. [26],
GEONET [29], and depth independent learning-based method TARTANVO [30]. For the localization
experiments, we compare the performance with VINS-MoONO [1] and ORB-M [21].

3.1 Odometry Estimation

We now compare the odometry estimation performance of the proposed BEVO to the state-of-the-
art methods in two training settings as introduced in Dataset: i) following the train/validate splits
in [25][26] (Ours'), and ii) split each sequence by quarters, take the first three quarters of each
sequence to train and the last quarter to validate (Ours?). In addition to these two settings, we
further train BEVO using the first 20% of the training data of each sequence in Ours? to evaluate its
performance on insufficient data (Ours®).



TABLE 1: Quantitative results of odometry estimation on KITTI dataset from sequence 00 to 10.
Red indicates the best performance and Blue indicates the second best.

DeepVIO TartanVO Lietal. GeoNet SelfVIO VINS ORB-M Ours! Ours? Ours®
Seq frames  trer  Trer  bret Tret  tret  Trel  trel Tretl  trel  Trel  tret  Trel  lrel Trel  trel  Trel  trel  Trel  trel  Trel
00 4541 11.62 245 '\ \ 1421 593 4408 1489 124 045 1883 249 2529 1773 326 144 155 083 201 1.02
o1 1ot \ Voo 2136 462 4321 842\ \ v \ 562 395 117 166 176 213
02 4661 4.52 144\ \ 1621 260 7359 1253 0.80 025 21.03 261 2630 3.10 456 132 102 088 179 1.55
04 7\ VoL 908 441 1791 995\ \ v \ 379 105 204 092 312 LIS
05 2761 2.86 232\ \ 2482 633 3247 1312 089 0.63 2190 272 2601 10.62 205 157 072 101 155 180
06 1101 \ \ 472 295 9.77 3.58 4028 16.68 \ \ \ \ \ \ 386 2.08 1.07 156 277 199
07 1101 2.71 1.66 432 341 1285 230 37.13 1720 091 049 1539 242 2453 1083 358 147 088 135 1.15 179
08 4701 2.13 .02\ \ 27.10 7.81 1145 6245 1.09 036 3266 3.09 3240 1213 194 104 093 092 129 1.00
09 1591 1.38 .12 6.0 311 1521 528 13.02 67.06 195 1.15 4147 241 4552 3.10 122 105 129 112 132 131
10 1201 0.85 1.03 6.89 273 2563 7.9 5852 23.02 181 130 2035 273 6.39 3.20 1.01 1001 114 103 117 130
Ave 00-10 3.73 1.57 548 3.05 1602 460 3378 2230 124 067 21.61 264 2665 4.67 280 145 1.07 1.02 1.63 136
Ave 09-10 1.12 1.08 674 292 2042 649 3577 4504 188 123 3091 257 2596 3.15 112103 122 107 124 131

KITTI Odometry 09

KITTI Odometry 10

Fig.4 and Table 1 show the qualitative and

Gr

quantitative comparisons, respectively. Table 1 =
shows that when trained in the same settings as =
other baselines, Ours? outperforms most of the :»
baselines in validation results in sequence 00 to
08. However, regarding the unseen testing se-
quences, our Ours! beats all other baseline in
both t,.; and 7,.; except for the ¢,.; of DEEP-
VIO in sequence 10. This may be explained
by the fact that DEEPVIO utilizes stereo cam-
eras instead of monocular camera considered in
our method. The result of the testing sequence
shows that our method is better at generaliza-
tion compared to other learning-based meth-
ods. Fig. 4 also shows that, even though pitch
and roll are not directly supervised, but with
the low-frequency image-level supervision in 3
DoF only, they are still accurate. This proves
the effectiveness of the end to end training and
that the interpretability provides inductive bias,
which accounts for a good generalization.

Figure 4: The qualitative results of Top: the
evaluation on KITTI sequence 09, and 10, Bot-
tom: Noise filtering of the pitch and roll angle
through sequence 10. Visual results on other se-

quences can be found in Appendix I'V.

It is worth addressing that without employing

any nonlinear optimization such as sliding window, our method is surprisingly comparable with
others on sequences 00-08, and is even slightly better in testing on sequences 09 and 10. The result
of Ours?® suggests that, in contrast to learning-based approaches reliant on a large number of training
images, our method is more data-efficient thanks to the fully interpretable model.

3.2 Plugin for Heterogeneous Localization

In this part, we show the possibility of enabling an end-to-end localization with BEVO as the odom-
etry. Elaborations on the implementation details of the fully differentiable drift-free localization can
be found in the supplementary material. By combining BEVO with the heterogeneous localization
(denoted as BEVO+), the whole pipeline is fully differentiable, thus allowing for more accurate pose
estimation. We compare the localization BEVO+ with BEVO itself as well as the VINS-MONO (de-
noted as VINS in the table). Results in Fig. 5 and Table 2 prove that the BEVO is able to achieve
good performance even when it acts as a plugin in an end-to-end trainable localization framework.
It indicates a promising future for upcoming end-to-end autonomous driving, e.g., auto-wheelchair.

3.3 Ablation Study

Several experiments conducted on KITTI are designed for the ablation study to reassure the im-
portant role a DUKF plays in the BEVO as well as the role trainable covariance matrices play
in DUKF. First, we replace the learned covariance matrix O; by one that is empirically set in
[20]. The quantitative result in Table. 3 shows that the accuracy drops drastically when us-
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TABLE 2: Quantitative re-
sults of localization. Note: in
CARLA, we localize the vehi-
cle in different weathers against
a sunny satellite map. (S-sunny,
F-foggy, N-night)
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Dataset  tret  Tret  tret  Tret  tret  Trel
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Figure 5: The visual demonstration of localizing a front cam PN (S Rt S B

era’s BEV of a ground moving robot in drone’s map. More Qual- CARLAN 098 103 182 147 019 028
. . . . . AG 139 172 255 241 030 046
itative demonstration are shown in the Appendix V.

ing a manually tuned matrix, suggesting that the empirical parameter tuning leads to inaccurate
pitch and roll estimation, and subsequently deteriorates the BEV generation and odometry esti-
mation. Next, we restore O; with the learned matrix and replace @, with an empirical covari-
ance matrix as [20], and note it as “w/o Q,”. The quantitative result also verifies that train-
able covariance matrices for noise help to improve the performance of UKF. However, even
though the performances are degraded with empirical parameters, they are still competitive due
to the dense matching of DPC who seeks global optima. We further study the importance of
DUKF on the BEVO by eliminating the whole DUKF and feeding the raw pitch and roll (di-
rectly calculated from the accelerometer) to the BEV projection. We note it as “w/o DUKF”.
The quantitative result shown in Table. 3 proves

that when the filter is gone, the BEVO will en- TABLE 3: Quantitative results of ablation study
counter serious tracking failure in bumpy roads. conducted on KITTL All of the methods are
One more ablation study is conducted by re- trained in sequence 00-08 following the train spit
placing the output pitch and roll of DUKF with 11 [26] and tested in sequence 09-10.

the ground truth, denoted as “w/ GT”. The re-
sult that BEVO is comparable with “w/ GT” in- Seq o e P
dicates that by learning the covariance matri- 48; 4771 59; 51; 2;;5 71“;'8 12; 11; 10'5 1::;
ces, the error brought by DUKF is too small to g 566 457 626 562 2564 6854 1014 103 096 101
influence the odometry than the error by DPC,
showing the effectiveness of the training.

wilo Oy wlo Q, w/o DUKF BEVO w/ GT

3.4 Limitation

Though being competitive in odometry estimation for most of the ground mobile robots, BEVO,
limited by the assumption of constant elevation, is yet hardly applicable to robots that move with
large elevation changes, e.g. drones. However, since the phase correlation in Section 2.3 is able to
estimate the scale changes along with the rotation (yaw) between images, it should potentially serve
as a way to calculate the relative elevation changes. We will address the above limitations in future
works and hopefully make BEVO compatible in all scenarios.

4 Conclusion

We present a fully differentiable, interpretable and lightweight model for monocular VIO, namely,
BEVO. It comprises a UKF to denoise pitch and roll via trainable covariance matrices, a BEV pro-
jection, and phase correlation to estimate the SIM(2) pose on the BEV image. The differentiability
allows us to train the covariance matrices end-to-end, thus avoiding empirical parameter tuning. In
various experiments, BEVO presents a competitive performance in accuracy and generalization. We
believe our interpretable, simple approach provides an alternative perspective of traditional methods
and should be considered as a baseline for future works on learning-based monocular VIO.
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