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Abstract

LLMs make distinguishing human from ma-
chine text challenging, particularly via para-
phrasing used for evasion, impacting academic
integrity, IP, and misinformation. We introduce
the novel Paraphrase-based LLM Detection
Framework (PLD-4), formalizing four tasks to
evaluate detection in nuanced scenarios, includ-
ing identifying layered Al text. Using MRPC
and HLPC datasets, we employ a dual approach
with feature-based and transformer models
(XGBoost, DeBERTa-v3, RoBERTa). While
achieving high accuracy on tasks like Sentence
Pair Paraphrase Source Detection (XGBoost
96%) and Single Sentence Authorship Attribu-
tion (RoBERTa 93.9%), distinguishing original
vs. paraphrased LLM output proved signifi-
cantly challenging (RoBERTa 83.28%), high-
lighting limitations in detecting layered Al
generation. PLD-4 provides a critical foun-
dation for developing more robust detection
techniques.

1 Introduction

The rapid advancements in Large Language Mod-
els (LLMs) have fundamentally transformed natu-
ral language processing, enabling the generation of
text that often rivals human content in fluency and
coherence (Wu et al., 2025; Brown et al., 2020).
This remarkable progress, while offering substan-
tial benefits, has introduced a significant challenge:
reliably distinguishing between human-authored
and machine-generated text (Huang et al., 2024;
Fariello et al., 2024). The increasing prolifera-
tion and seamless integration of high-quality LLM-
generated content across digital mediums raise crit-
ical concerns regarding academic integrity (e.g.,
plagiarism), intellectual property (e.g., paraphrased
code), and the fight against misinformation (Hunt
et al., 2019; Park et al., 2025; Goldstein et al.,
2023). Consequently, the imperative need for effec-
tive and robust Al-generated text detection mech-
anisms has become more pronounced than ever

before (Huang et al., 2024), especially as human-
based detection is often unreliable (Yu et al., 2024).

A particularly complex facet of this challenge
lies in the detection of content that has been para-
phrased by LLMs (Park et al., 2025). LLMs
possess sophisticated capabilities to produce para-
phrased iterations of existing text, often mimicking
human writing styles (Wei et al., 2023), potentially
with the intent to obscure the original source or
circumvent detection (Park et al., 2025). While
paraphrase detection has a well-established history
(Park et al., 2025), the emergence of LLMs in-
troduces new complexities (Tripto et al., 2023).
Traditional methodologies, often prioritizing se-
mantic similarity (Wu et al., 2025), may prove in-
adequate as LLM paraphrases maintain semantic
equivalence but exhibit distinct stylistic character-
istics that evade detection (Tripto et al., 2023). In-
deed, a significant limitation of many current Al
text detection systems (Jawahar et al., 2020) is their
vulnerability to such paraphrase attacks (Weber-
Waulff et al., 2023), with notable performance drops
observed in studies (Krishna et al., 2023). This
underscores a critical gap and the urgent need for
more robust approaches.

To address this underexplored challenge, we
introduce the Paraphrase-based LLM Detection
framework (PLD-4 framework). This framework
systematically defines and facilitates the evalua-
tion of detection mechanisms across four core sub-
tasks representing nuanced real-world scenarios
with varying difficulty and contextual information,
thereby filling a crucial gap in research overlooking
paraphrase-driven evasion and fine-grained author-
ship attribution.

Building upon this framework, we develop
and rigorously evaluate a dual-pronged detection
approach tailored to address these tasks. This
approach leverages both extensive feature engi-
neering to train interpretable models like XG-
Boost (Chen and Guestrin, 2016), capturing lin-



guistic and stylistic signals, and fine-tuned state-of-
the-art transformer architectures such as DeBERTa-
v3 (He et al., 2021). This dual strategy allows for a
comprehensive evaluation considering both perfor-
mance and explainability. Our initial experimental
results on the PLD-framework demonstrate the ef-
fectiveness of this approach, with the feature-based
pipeline achieving 97% accuracy on Task 3, and
the fine-tuned DeBERTa-v3 model attaining 92.7%
accuracy on the same task.

The remainder of this paper is structured as fol-
lows: Section 2 reviews related work. Section
3 describes our paraphrase-based LLLM detection
framework. Section 4 outlines the original data
source and dataset construction. Section 5 presents
the experimental setup. Section 6 reports empirical
results and feature analysis. Section 7 discusses
key insights derived from the results. Section 8
concludes the paper with a summary of contribu-
tions and directions for future research. Section 9
highlights the limitations of the current study.

2 Background

Distinguishing Al-generated paraphrases from
human-written text lies at the intersection of para-
phrase detection and Al-generated text detection.
We briefly review both areas and highlight the gap
addressed by the PLD-4 framework.

2.1 Paraphrase Detection

Paraphrase detection determines whether two texts
express the same meaning, regardless of word-
ing. Applications include plagiarism detection,
question answering, and summarization (Bhagat
and Hovy, 2013). Early work relied on n-gram
overlap, Jaccard similarity, and parse tree com-
parison (Madnani et al., 2012; Qiu et al., 2006;
Das and Smith, 2009). These approaches strug-
gled with semantically similar texts with low lex-
ical overlap. Traditional machine learning meth-
ods used engineered features (e.g., WordNet, syn-
tax, semantics) and classifiers like SVMs, often
evaluated on datasets like MRPC (Ji and Eisen-
stein, 2013; Filice et al., 2015). Neural mod-
els such as Siamese LSTMs (Mueller and Thya-
garajan, 2016), pretrained embeddings (Word2Vec,
GloVe (Mikolov et al., 2013; Pennington et al.,
2014)), and transformer-based architectures like
BERT, RoBERTa, and DeBERTa (Devlin et al.,
2019; Liu et al., 2019; He et al., 2021) have
achieved state-of-the-art performance on datasets

like MRPC and QQP (Wang et al., 2018). However,
they typically focus on semantic equivalence, not
the source of the paraphrase—an essential distinc-
tion in Tasks 1 and 2 of PLD-4.

2.2 Al-Generated Text Detection

The task of identifying text generated by Al mod-
els has gained prominence with the rise of increas-
ingly sophisticated LLMs. The goal is to deter-
mine whether a given piece of text was authored
by a human or a machine. Early detectors used
linguistic cues such as n-gram frequencies, per-
plexity, POS distributions, and readability met-
rics (Gehrmann et al., 2019). These methods often
struggled to generalize to new LL.Ms. More recent
work fine-tunes transformer-based models (e.g.,
BERT, RoBERTa) for binary classification (So-
laiman et al., 2019; Zellers et al., 2020). Zero-shot
detection approaches, such as DetectGPT (Mitchell
et al., 2023) and Fast-DetectGPT (Bao et al., 2024),
aim to identify Al-generated text without task-
specific training. Watermarking methods embed
detectable signals within generated text to support
attribution (Kirchenbauer et al., 2024). Our Task 3
aligns with this domain.

Despite progress, Al text detection faces sig-
nificant challenges. Detectors often exhibit per-
formance degradation when applied to texts from
LLMs not seen during training or when confronted
with out-of-domain content (Weber-Wulff et al.,
2023). A major vulnerability, highlighted in our
introduction, is the susceptibility of detectors to
adversarial attacks, particularly through paraphras-
ing. As demonstrated by prior work (Krishna et al.,
2023; Chakraborty et al., 2023; Sadasivan et al.,
2025), paraphrasing LLM-generated text, espe-
cially using another LLM like DIPPER, can drasti-
cally reduce the effectiveness of existing detectors.
Human editing of LLM outputs further complicates
detection.

2.3 Bridging the Gap: Detecting Paraphrased
Al-Generated Text

While prior work explores paraphrase detection
and Al-authorship detection independently, few
address the intersection—identifying paraphrased
LLM outputs. Existing detectors assume direct Al
output, and standard paraphrase tasks ignore au-
thorship. Our PLD-4 framework aims to fill this
gap by comprising four unique subtasks, each care-
fully designed to represent a specific real-world
detection scenario. These scenarios are character-



ized by differing levels of contextual information
and varying degrees of inherent difficulty, allow-
ing for a thorough evaluation of LLM paraphrase
detection methods across several applications.

3 PLD-4: The Paraphrase-based LLM
Detection Framework

To address the growing challenge of detecting
LLM-generated paraphrases, this paper introduces
the Paraphrase-based LLM Detection Framework
(PLD-4), as illustrated in Figure 1. It offers a struc-
tured approach for evaluating detection methods
across varied scenarios by defining four subtasks
that reflect real-world conditions. These subtasks
differ in contextual information and difficulty, en-
abling a nuanced assessment of detection perfor-
mance in diverse settings.

3.1 Task 1: Sentence Pair Paraphrase
Detection

Definition: Given two input sentences, determine
if the second sentence in the pair is paraphrased
by Human or a Large Language Model (LLM).
Scenario: This task assumes access to both the
original and paraphrased sentences, common in le-
gal, patent, and academic contexts. The focus is
on identifying the paraphraser human or LLM by
comparing stylistic and linguistic features. Exam-
ple: Detecting Al-generated paraphrases in legal
or patent documents that may obscure prior art.

3.2 Task 2: Single Sentence Paraphraser
Detection

Definition: Given a single input sentence known to
be a paraphrase, determine if the paraphrasing was
generated by an LLM or by human. Scenario: This
task models situations where the original source is
unavailable and aims to attribute authorship based
solely on the paraphrase’s linguistic and stylistic
features. It is relevant in contexts such as plagia-
rism detection or content moderation, where only
the paraphrased text is accessible. Unlike tradi-
tional paraphrase identification focused on seman-
tic similarity, this task requires detecting subtle
cues—such as vocabulary diversity, syntactic com-
plexity, or LLM-specific linguistic patterns—that
distinguish human and Al-generated paraphrases.
Example: Spotting Al-generated content used in
"content spinning" for SEO or bulk article genera-
tion.

3.3 Task 3: Single Sentence Authorship
Attribution

Definition: Determine whether a given sentence-
whether original or paraphrased-was authored by
a human or generated by an LLM. Scenario: This
represents the general, often challenging task of
Al-generated text detection at the sentence level. It
is broadly applicable in contexts where the origin
of any given piece of text needs to be ascertained
without prior knowledge of its nature (original vs.
paraphrase). Example: Detecting Al-written con-
tent in online reviews, news, or social media to
combat misinformation.

3.4 Task 4: Single Sentence AI Authorship
Attribution

Definition: Given a machine-generated sentence,
determine whether it was directly generated from a
LLM or is a paraphrased version of an LLM output
produced by another LLM. Scenario: This task iso-
lates the challenge of detecting layered or iterative
Al generation. It’s relevant for understanding how
LLMs modifies their own output and for identify-
ing content that has been specifically manipulated
by paraphrasing tools applied to pre-existing Al-
generated text. Example: Analyzing stylistic shifts
and information loss from paraphrasing to under-
stand Al-to-Al transformations.

4 Dataset

We evaluated the four tasks defined in the
PLD-4 framework using two benchmark datasets:
the Microsoft Research Paraphrase Corpus
(MRPC) (Dolan and Brockett, 2005) and the
Human-LLM Paraphrase Collection (HLPC) (Lau
and Zubiaga, 2024). For our paraphrase source
identification task, we created the MRPC-Source
Identification (MRPC-SI) dataset from MRPC,
containing 5,801 sentence pairs labeled by para-
phraser origin (Human or LLM). Human para-
phrases (for original MRPC pairs) were re-
tained, while LLM paraphrases (for original non-
paraphrase pairs) were generated using GPT-4o, re-
sulting in data formatted as (original sentence,
paraphrased_sentence, label). The HLPC
dataset is designed to capture a diverse range of
human and LLM paraphrases. It includes human
paraphrases (H-PP) of human-authored documents
(H-DOC) from MRPC and other datasets, along-
side LLM-generated paraphrases (LLM-PP) pro-
duced through iterative paraphrasing of GPT2-XL
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Figure 1: Paraphrase-based LLM Detection Framework (PLD-4)

and OPT-1.3B generated texts (LLM-DOC) using
DIPPER and BART. While HLPC contains 600
base documents across these categories, our study
focused on GPT2-XL generated base documents
and their non-watermarked paraphrases, in order to
analyze linguistic cues indicative of Al authorship.

S Experiment

This section presents the empirical evaluation con-
ducted to assess the effectiveness of various com-
putational approaches across the four PLD-4 tasks.
For each task, we examined both traditional feature-
based machine learning methods—specifically us-
ing XGBoost classifiers—and deep learning mod-
els based on transformer architectures, namely
RoBERTa and DeBERTa-v3. The choice of which
model’s results to emphasize for each task was in-
formed by preliminary performance assessments,
alignment between model characteristics and task
requirements, and considerations such as inter-
pretability and susceptibility to overfitting.

5.1 Experiment Setup: Task 1

For Task 1 (Sentence Pair Paraphrase Source De-
tection), we primarily focused on a feature-based
XGBoost classifier. This choice was motivated by
its strong performance in sentence-pair classifica-
tion and its interpretability—crucial for analyzing
linguistic cues that differentiate human and LLM-
generated paraphrases when the original sentence
is provided. Although we initially experimented
with deep learning models, they showed signs of
overfitting due to the limited data and paired input

format.

XGBoost was trained on a set of handcrafted
lexical, syntactic, and semantic features extracted
from each sentence pair. To address class im-
balance, we applied SMOTE (Synthetic Minority
Over-sampling Technique) (Chawla et al., 2002)
to the training portion of each fold during cross-
validation. We evaluated Task 1 using: Adapted
MRPC: 5,801 sentence pairs, with 3,900 human
and 1,901 LLM paraphrases; and HLPC: 1,800
sentence pairs, including 600 human and 1,200
LLM paraphrases.

To examine the impact of paraphrasing depth on
detectability, we conducted experiments using both
once-paraphrased and five-times-paraphrased
LLM outputs from HLPC. This allowed us to assess
whether deeper paraphrasing reduces detectable
signals and increases similarity to human-written
paraphrases.

5.1.1 Feature Engineering

To support the XGBoost classifier in Task 1,
we engineered 39 features designed to capture
lexical, syntactic, semantic, and stylistic differ-
ences between each sentence pair (sentencel,
paraphrased_sentence). These features include
sentence-level statistics (e.g., length, readability),
overlap measures, POS and tense distributions,
named entity counts, and a semantic similarity
score based on ROBERTa embeddings. Detailed
categories and representative examples are shown
in Table 1.



Table 1: Overview of Engineered Features for Task 1

Category Count Example Features

Basic Properties 7 Word count, SMOG index and Flesch Reading Ease for each sentence, length difference
Lexical Overlap 3 Unigram Jaccard similarity, bigram overlap, trigram overlap
Readability & Diversity 4 Gunning Fog index, lexical diversity for each sentence

Syntactic Complexity 2 Dependency parse tree depth for each sentence

Sentiment Analysis 2 Sentiment polarity score for each sentence (TextBlob polarity)
Part-of-Speech Ratios 8 Fraction of nouns, verbs, adjectives, and adverbs in each sentence
Verb Tense Ratios 6 Past tense ratio, present tense ratio, modal verb ratio (per sentence)
Named Entity Counts 6 Count of PERSON, ORG, and LOC entities in each sentence
Semantic Similarity 1 Cosine similarity of sentence embeddings from RoBERTa

Total 39

5.2 Experiment Setup: Task 2, 3 and 4

For the single-sentence classification challenges
presented in Task 2 (Single Sentence LLM Para-
phrase Detection), Task 3 (Single Sentence Au-
thorship Attribution), and Task 4 (Original LLM
vs. Paraphrase Model Output), which require cap-
turing subtle intrinsic linguistic cues, we primar-
ily utilized fine-tuned ROBERTa and DeBERTa-v3
transformer models. These models significantly
outperformed our feature-based methods on these
nuanced single-sentence tasks; for instance, prelim-
inary feature-based experiments on Task 2 yielded
considerably lower performance (76% Accuracy)
compared to transformers. The transformer mod-
els were fine-tuned for each task using standard
settings, including cross-entropy loss, the AdamW
optimizer, early stopping based on validation ROC-
AUC, and 5-fold cross-validation. Evaluation met-
rics included Accuracy, F1 score, ROC-AUC, and
TPR@1%FPR. As a baseline, we also report the
performance of OpenAl’s RoBERTa-based classi-
fier (Solaiman et al., 2019).

Evaluation for these tasks was based on
the Human-LLM Paraphrase Collection (HLPC)
dataset. Task-specific datasets, each comprising
1,800 instances, were independently constructed
from HLPC content for training, validation, and
testing. These datasets were formulated to align
with the specific classification goals of each task:
Task 2’s dataset included instances of Human-
paraphrased and LLM-paraphrased sentences, aim-
ing to classify the source of the paraphrase; Task
3’s dataset comprised original Human-authored
sentences and LLM-generated paraphrases, focus-
ing on general authorship attribution; and Task 4
evaluated the ability, given a machine-generated
sentence, to determine whether it was originally
generated by an LLM or is a paraphrased version
produced by an LLLM, with its dataset consisting of

original LLLM outputs and sentences generated by
paraphrasing those LLM outputs using models like
BART and Dipper.

5.2.1 Feature Engineering

For the preliminary XGBoost experiments con-
ducted on the single-sentence Tasks 2, 3, and 4
(with results briefly referenced in the Task 2 per-
formance comparison), a reduced set of 17 features
was employed. These features were derived by ap-
plying relevant single-sentence metrics—such as
length, readability, lexical diversity, dependency
depth, sentiment, part-of-speech ratios, verb tense
ratios, and named entity counts—to each input sen-
tence individually, without using any comparative
or relational features.

6 Result Analysis

This section presents the empirical results of the ex-
periments described in Section 5. We report the per-
formance of both the traditional machine learning
approach (XGBoost) and the deep learning mod-
els on the PLD-4 tasks. Additionally, we provide
findings from the feature analysis of the XGBoost
model, including feature importance rankings and
statistical comparisons between human- and LLM-
generated paraphrases for Task 1.

6.1 Result: Task 1

As presented in Table 2, the XGBoost model
demonstrated strong performance on the adapted
MRPC dataset, achieving an accuracy of 0.96 and
macro-averaged precision, recall, and F1-score of
0.95. It reached an AUC-ROC of 0.9876 on the
test set, with 5-fold cross-validation confirming
robustness (mean AUC-ROC = 0.9889 + 0.0021).
These results highlight the discriminative power of
the engineered linguistic features. For the HLPC
dataset, we used the paraphrased outputs of LLM-



Table 2: Task 1 Performance Results (MRPC and HLPC Datasets)

Metric MRPC (XGBoost) HLPC (1st Para) HLPC (5th Para)
Accuracy 0.96 0.88 0.88
Precision 0.95 0.87 0.86
Recall 0.95 0.85 0.86
F1-score 0.95 0.86 0.86
AUC-ROC 0.9876 0.9504 0.9517

CV AUC-ROC 0.9889 + 0.0021 0.9472 +0.0074 0.9511 +0.0087
TPR@ 1%FPR 0.6927 0.4917 0.4917

Note: All results are reported on the test set partition, SMOTE was applied after the train/test split for the XGBoost model. The
reported AUC-ROC scores represent the mean + standard deviation from 5-fold cross-validation.

DOC (GPT2-XL) as the paraphrased sentences (1st
para and 5th Para ).

Figure 2 presents the corresponding ROC curve,
illustrating the trade-off between true positive rate
(TPR) and false positive rate (FPR) across deci-
sion thresholds. The area under the curve (AUC)
reaches 0.9876, indicating excellent discrimina-
tive performance. Notably, at the low-FPR region
(FPR < 1%), the model achieves a TPR of 0.6927
using a threshold of 0.9349, demonstrating practi-
cal reliability in high-precision scenarios.

Distribution of true positives and true negatives
for both datasets are provided in Appendix A (Fig-
ure 6, Figure 7 and Figure 8).
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Figure 2: Task 1: ROC curve for the XGBoost model
on the adapted MRPC.

6.1.1 Feature Analysis

To understand which linguistic characteristics drive
the XGBoost model’s performance and how hu-
man/LLM paraphrases differ, we analyzed the en-
gineered features as follows:

Feature Importance Figures 4 and 5 illustrate
feature importance for the XGBoost model trained
on adapted MRPC. Figure 4, a SHAP summary
plot, shows both the magnitude and direction of
each feature’s impact, ranking features by mean
absolute SHAP value and using color to indicate

feature value (red = high, blue = low). This high-
lights key linguistic cues for distinguishing human
and LLM paraphrases.

Figure 5 presents traditional feature importance
based on XGBoost’s gain metric, ranking the top
10 features by their contribution to decision splits,
offering a global view of feature utility. Despite
different theoretical bases, both SHAP and gain-
based methods showed broadly consistent results
in identifying the most impactful features. SHAP
additionally provides local interpretability and the
directionality of feature effects. For HLPC results,
see Appendix A (Figures 13, 14).

Feature Distribution Comparison Comple-
menting the model-based feature importance, we
conducted a direct statistical comparison of the
feature distributions distinguishing human- from
LLM-generated paraphrases. Welch’s t-tests were
performed across all 39 engineered features, reveal-
ing statistically significant differences (p<0.05) be-
tween the Human and LLM groups for 21 of these
features. Full details for these significant features,
including t-statistics, p-values, and effect sizes, are
presented in Appendix A (Table 4).

To visually examine the most pronounced differ-
ences, we highlight the distributions of the three
features with the largest absolute values of Cohen’s
d: word overlap, paraphrased sentence length, and
paraphrased sentence lexical diversity. Figure 3
presents the kernel density estimate plots compar-
ing these features for the Human and LLM classes
on the Adapted MRPC dataset. These distributional
differences provide visual evidence supporting the
statistical significance observed and reflect distinct
stylistic tendencies between the two groups. For
the HLPC dataset, the top 3 features (by absolute
Cohen’s d) are also visualized in Figure 15 and Fig-
ure 16, with corresponding Welch’s t-test results
detailed in Table 5 and Table 6 in Appendix.
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Figure 3: Comparison of feature distributions for the top 3 most statistically significant features distinguishing
human vs. LLM-generated paraphrases on the Adapted MRPC dataset.

6.2 Results: Tasks 2, 3, and 4

The performance of DeBERTa-v3 and RoBERTa on
the HLPC-derived sentence-level tasks is summa-
rized in Table 3. Overall, both models demonstrate
strong classification performance, though their ef-
fectiveness varies across tasks and evaluation met-
rics. These results are consistent with the findings
of (Wu et al., 2024), which highlight the robustness
and generalization ability of RoBERTa-based mod-
els for detecting LLM-generated text in real-world
scenarios.

Task 2 (Single Sentence LLLM Paraphrase
Detection): Both models perform well in distin-
guishing between Human- and LLM-paraphrased
sentences, with RoBERTa achieving slightly
higher accuracy (92.44%) and F1-score (87.62%).
DeBERTa-v3, while marginally behind on these
metrics, remains competitive, suggesting that both
models effectively capture stylistic and lexical cues
indicative of LLM paraphrasing. The correspond-
ing ROC curve is presented in Figure 17.

Task 3 (Single Sentence Authorship Attribu-
tion): In Task 3.1, which compares original human-
written sentences with LLM paraphrases, both mod-
els achieve strong performance. RoBERTa again
leads slightly in accuracy (93.94%) and F1-score
(90.47%), while DeBERTa-v3 records the highest
AUROC (0.9866) and TPR@1%FPR (0.8224), in-
dicating superior calibration and sensitivity under
low false positive conditions. The ROC curve is
shown in Figure 18.

Task 3.2 introduces additional complexity by
incorporating human-written paraphrases into the
human-authored class and expanding the overall
sample size to 2,400 instances, thereby increas-
ing intra-class diversity. Despite this, both models
maintain strong performance. Notably, DeBERTa-
v3 slightly outperforms RoBERTa in Fl-score

(93.62% vs. 93.20%), suggesting enhanced ro-
bustness under more varied authorship scenarios.
In addition, compared to the results of Task 3.1,
the TPR @ 1%FPR shows a slight decrease for the
DeBERTa-v3 model and a slight increase for the
RoBERTa model, while the changes in AUROC
and overall accuracy are minimal. These findings
contrast with those reported by (Lau and Zubiaga,
2024), who directly applied OpenAI’'s RoBERTa-
based detector and found that incorporating human-
written paraphrases improved TPR@1%FPR but
potentially reduced AUROC and overall accuracy.
The detailed results and ROC curves are presented
in Table 7 and Figure 19.

Task 4 (Distinguishing Original vs. LLM-
Paraphrased LLM Output): This task is the
most challenging, as it requires distinguishing be-
tween two types of LLM-generated text. Both
models exhibit performance degradation com-
pared to earlier tasks. RoBERTa outperforms
DeBERTa-v3 in accuracy (83.28%) and F1-score
(74.35%), while DeBERTa-v3 shows a marked
drop in TPR@1%FPR (0.2292). These results
suggest that identifying paraphrased variants of
machine-generated text may require more fine-
grained modeling capabilities than those offered by
current transformer architectures. The ROC curve
is shown in Figure 20.

Overall, modern transformer models demon-
strate strong performance in authorship attribution
and paraphrase source detection, especially in set-
tings with clear Human-vs-LLM distinctions. How-
ever, more nuanced scenarios—such as distinguish-
ing layered generations within LLM outputs—pose
greater difficulty, revealing limitations in current
models’ sensitivity to subtle semantic or stylistic
shifts. These findings highlight a promising yet
incomplete path toward fine-grained LLM prove-
nance detection.



Table 3: Average 5-Fold Cross-Validation Performance of Transformer Models on HLPC Dataset Variants

Task 2 Task 3 Task 4
Model DeBERTa RoBERTa DeBERTa RoBERTa DeBERTa RoBERTa
Accuracy 09111 0.9244 0.9361 0.9394 0.8011 0.8328
F1-score 0.8469 0.8762 0.8970 0.9047 0.6967 0.7435
AU-ROC 0.9837 0.9681 0.9866 0.9893 0.8726 0.9125
TPR@ 1%FPR 0.7538 0.7667 0.8224 0.7750 0.2292 0.3158

Note: All tasks used variants of the HLPC dataset. Models are DeBERTa-v3 and RoBERTa. Metrics are averaged across 5-fold

cross-validation.

7 Discussion

This study evaluated LLM paraphrase detection
using feature-based (XGBoost) and deep learning
(DeBERTa-v3, RoBERTa) models within our PLD
framework, revealing varied performance across
tasks.

XGBoost, relying on linguistic features, demon-
strated high accuracy (96%, 0.9876 AUC-ROC on
adapted MRPC) in sentence-pair paraphrase source
detection (Task 1) and maintained robustness even
after five paraphrasing rounds on HLPC. Feature
importance analysis highlighted word overlap, tri-
gram overlap, and paraphrased sentence lexical di-
versity as key discriminators, supported by statisti-
cal tests across datasets, indicating persistent LLM
stylistic signatures related to differences in human
and LLM paraphrasing strategies concerning over-
lap, length, and lexical richness. Notably, LLM
paraphrases sometimes exhibited higher global lex-
ical diversity—contrasting with prior observations
of LLM text repetition (Gehrmann et al., 2019),
suggesting LLMs may show complex, context-
dependent stylistic patterns.

Transformer models excelled in single-sentence
LLM paraphrase detection (Task 2) and authorship
attribution (Task 3), achieving over 90% accuracy.
While their overall performance was comparable,
specific metrics varied by subtask. Distinguish-
ing between original and LLM-paraphrased LLM
outputs (Task 4) proved significantly harder, with
lower TPR@ 1%FPR scores suggesting reduced re-
liability under strict precision. This indicates that
further Al processing can obscure distinct LLM
signals.

In comparing approaches, XGBoost offered in-
terpretability and strong performance on structured
sentence-pair tasks with informative handcrafted
features. Transformer models were more accurate
on nuanced single-sentence tasks but less trans-
parent. The choice depends on task complexity,

interpretability needs, and resources.

Overall, our findings highlight that LLM para-
phrasing leaves detectable traces, even after mul-
tiple iterations, with implications for Al detection
in various content creation contexts. These results
also inform future LLM development regarding the
potential need to address or exploit these persistent
stylistic artifacts.

8 Conclusions and Future Directions

Detecting LLM-generated paraphrases is a growing
challenge in NLP, with implications for academic
integrity, IP protection, and content authenticity.
This work introduces the Paraphrase-based LLM
Detection Framework (PLD-4), which breaks down
detection into four subtasks, each with varying con-
text and difficulty.

Using the MRPC and HLPC datasets, we eval-
uate models across these tasks. For Task 1 (Sen-
tence Pair Source Detection), XGBoost achieved
high performance (Accuracy: 0.96, F1-score: 0.95,
AUC-ROC: 0.9876), and interpretability analysis
revealed key linguistic features useful for detection.
For Tasks 2—4, transformer models (DeBERTa-v3,
RoBERTa) performed well but struggled most on
Task 4—distinguishing between LLM-generated
and LLM-paraphrased text. RoBERTa achieved
83.28% accuracy and 74.35% F1-score, but perfor-
mance dropped significantly in fine-grained metrics
like TPR@ 1%FPR, underscoring the challenge of
layered Al paraphrasing.

Overall, PLD-4 provides a structured, inter-
pretable foundation for paraphrase detection by
combining feature-based and transformer models.
It reveals current limitations and paves the way for
future work involving more advanced LLMs, ad-
versarial robustness, hybrid modeling, and mixed-
authorship document detection.



9 Limitations

Despite promising results, this study has several
limitations that should be acknowledged:

* Scope of Language Models: The Large Lan-
guage Models (LLMs) utilized for generating
original content (specifically, GPT2-XL for
the LLM-DOC component within the Human-
LLM Paraphrase Collection, HLPC) and for
paraphrasing tasks (BART and Dipper for
HLPC) are potent; however, newer and po-
tentially more sophisticated models are con-
tinuously emerging (e.g., GPT-4, Claude 3,
and their successors as of early 2025). Con-
sequently, the findings herein might not fully
generalize to text generated or paraphrased by
these state-of-the-art models, which could pro-
duce paraphrases that are even more human-
like or challenging to detect.

* Dataset and Framework Specificity: The
Paraphrase-based LLM Detection framework
(PLD-framework) introduced and employed
in this research was constructed using spe-
cific datasets: an adapted version of the Mi-
crosoft Research Paraphrase Corpus (MRPC)
and the Human-LLM Paraphrase Collection
(HLPC). While this setup offers a controlled
environment for evaluation, the framework’s
performance can be influenced by the inher-
ent characteristics of these datasets. Factors
such as the source and domain of the original
texts, the specific human paraphrasing styles
represented, and the LLMs chosen for genera-
tion and paraphrasing within HLPC invariably
affect the outcomes. Therefore, the general-
izability of the findings may be constrained
by the particular nature and data distribution
within these PLD-framework components.

e Sample Size for HLPC-Derived Tasks:
Tasks 2, 3, and 4, which utilized datasets de-
rived from the HLPC, were conducted with
a sample size of 1,800 instances. Although
mitigation strategies such as 5-fold cross-
validation, the use of early stopping callbacks
during model training, and weight decay were
implemented to enhance generalization and re-
duce potential overfitting, this relatively mod-
est sample size may still restrict the broader
applicability or statistical robustness of the
findings for these specific transformer-based

tasks. More definitive insights could be gained
from larger and more diverse datasets for these
tasks.

* Focus on Sentence-Level Detection: This
study primarily concentrates on sentence-level
detection. The detection of LLM-paraphrased
content at the document level, or the identifi-
cation of Al-generated segments within doc-
uments containing a mix of human and Al
authorship, introduces additional complexi-
ties and challenges that were not addressed in
this work. The efficacy of the proposed fea-
tures and models when applied to longer texts
remains an area for future investigation.

* Nature of the Paraphrasing Task: The re-
search utilized paraphrases generated by spe-
cific models (BART and Dipper within the
HLPC) using their default or predetermined
configurations. Different paraphrasing strate-
gies, variations in the level of abstraction in
paraphrasing prompts (where applicable), or
outputs from alternative paraphrasing models
could produce text with distinct characteris-
tics, potentially affecting the performance of
the detection methods.

Overall, this work contributes to the understand-
ing and detection of LLM-generated paraphrases,
highlighting both the progress made and the chal-
lenges that lie ahead in accurately identifying Al-
modified text.

10 Ethics Statement

We use only publicly available datasets and pre-
trained models in this study, all of which are ac-
cessed and utilized strictly for research purposes.
The use of these resources complies with their orig-
inal licenses and terms of access. No personally
identifiable or sensitive information is present in
any of the data used.

Our code will be released under the MIT license
to support transparency and reproducibility.
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A Appendix
A.1 Task 1 Additional Results
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Figure 4: Task 1: SHAP summary plot illustrating fea-
ture importance and impact for the XGBoost model on
the Adapted MRPC. The plot displays the top 20 fea-
tures ranked by mean absolute SHAP value.

A.1.1 Statistical Comparison of Features
(Human vs. LLM)

Tables 4, 5, and 6 present the results of Welch’s t-
tests comparing the means of linguistic features be-
tween human-generated and LLM-generated para-
phrase pairs. Table 4 details findings for the
Adapted MRPC dataset. Tables 5 and 6 detail find-
ings for the HLPC dataset, using the first and fifth
iterative paraphrase outputs, respectively. Only fea-
tures showing a statistically significant difference
(p<0.05) are listed, sorted by their original ascend-
ing p-value. Significance levels are indicated using
standard asterisk notation (*** p < 0.001, ** p
< 0.01, * p < 0.05). Cohen’s d is included as a
measure of effect size, indicating the magnitude of
the difference (positive values indicate the mean is
higher for the Human group, negative values indi-
cate the mean is higher for the LLM group based on
the Cohen’s d calculation order used in this study).
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Figure 5: Task 1: XGBoost Feature Importance scores
for the top 10 features, derived from the model trained
on the Adapted MRPC.
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Figure 6: Task 1: Confusion matrix for the XGBoost
model predictions on the Adapted MRPC.
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Figure 7: Confusion matrix for the XGBoost model
predictions on HLPC (1st Para).
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Figure 9: ROC curve for the XGBoost model on
HLPC (1st Para).
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Figure 11: SHAP summary plot for the XGBoost
model on HLPC (1st Para), showing the top 20 fea-
tures ranked by mean absolute SHAP value.
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Figure 8: Confusion matrix for the XGBoost model
predictions on HLPC (5th Para).
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Figure 10: ROC curve for the XGBoost model on
HLPC (5th Para).
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Figure 12: SHAP summary plot for the XGBoost
model on HLPC (5th Para), showing the top 20 fea-
tures ranked by mean absolute SHAP value.

13



Top 10 Feature Scores (XGBoost) Top 10 Feature Importance Scores (XGBoost)

cosine_sim cosine_sim

para_lexical diversity word_overiap

s1_length para_lexical_diversity
s1_smog length_diff

word_overlap para _flesch

Feature
Feature

s1_ner_loc s1_length

length_diff 51_smog

para _flesch s1_ner_loc

para_present_tense_ratio para_gunning_fog

para_ner_loc bigram_overlap

0.00 0.02 0.04 0.06 0.08 0.10 012 0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14
Xosos et mparance S XGhao et mpatance S
Figure 13: Top 10 feature importance scores from Figure 14: Top 10 feature importance scores from

the XGBoost model on HLPC (1st Para). the XGBoost model on HLPC (5th Para).
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Figure 15: Comparison of feature distributions for the top 3 most statistically significant features distinguishing
human vs. LLM-generated paraphrases on the Adapted HLPC dataset (First Paraphrase).
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Figure 16: Comparison of feature distributions for the top 3 most statistically significant features distinguishing
human vs. LLM-generated paraphrases on the Adapted HLPC dataset (Fifth Iterative Paraphrase).

A.2 Task 2,3, and 4 Additional Results
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ROC Curve: DeBERTa vs. RoBERTa vs. OpenAl Detector
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Figure 17: Task 2: ROC Curve — DeBERTa vs.
RoBERTa vs. OpenAl Detector.
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Figure 19: Task 3.2: ROC Curve — DeBERTa vs.
RoBERTa vs. OpenAl Detector.
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Figure 18: Task 3: ROC Curve — DeBERTa vs.
RoBERTa vs. OpenAl Detector.
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Figure 20: Task 4: ROC Curve — DeBERTa vs.
RoBERTa vs. OpenAl Detector.
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Table 4: Significant Features Distinguishing Human vs.
LLM Paraphrases on Adapted MRPC Dataset (Welch’s
t-test, p<0.05, sorted by p-value)

Table 6: Significant Features Distinguishing Human vs.
LLM Paraphrases on the HLPC Dataset (Fifth Iterative
Paraphrase Outputs). Welch’s t-test, p<<0.05, sorted by

p-value.

Feature t-statistic Cohen’sd Signif.
word_overlap 66.76 1.719  *%*
para_length 24.47 0.671  ***
para_lexical_diversity -21.50 -0.561 Hkok
cosine_sim 19.99 0.557  kxE
s1_length 12.58 0.349  k**
bigram_overlap 12.20 0.316  ***
trigram_overlap 12.20 0.316  ***
s1_gunning_fog 11.20 0.320  *%*
s1_dep_depth 10.68 0.290 =
length_diff 9.15 0.248  kwE
s1_flesch -8.73 -0.249
para_smog -6.76 -0.212 sk
s1_smog -5.83 -0.175  *k¥*
s1_past_tense_ratio -4.75 -0.160  HE*
para_flesch 4.65 0.135  **x*
para_dep_depth 3.95 0.109  **=*
s1_lexical_diversity -3.69 -0.103  k®*
para_VERB_ratio -3.36 -0.095 k=
s1_modal_verb_ratio -2.61 -0.097 Hk
s1_VERB_ratio 2.45 0.071 *
para_sentiment 2.19 0.060 *

Note: Features sorted by original ascending p-value. Welch’s
t-test results comparing feature means between Human and
LLM groups. Significance codes: *** p < 0.001, ** p < 0.01,
*p < 0.05. Cohen’s d indicates effect size.

Table 5: Significant Features Distinguishing Human
vs. LLM Paraphrases on the HLPC Dataset (First Para-
phrase Outputs). Welch’s t-test, p<0.05, sorted by p-
value.

Feature t-statistic Cohen’sd Signif.
word_overlap 23.5635 1.4736  ***
para_lexical_diversity 14.6123 0.5948  ***
para_flesch -14.2612 -0.6830  ***
para_gunning_fog 13.2602 0.6602  ***
bigram_overlap 21.9905 1.3550  ***
trigram_overlap 21.9905 1.3550  ***
cosine_sim 10.0935 0.5328  #**
para_ner_person 6.4044 0.3414  ***
para_dep_depth 4.6873 0.2335  #*xk
para_ner_org 4.3942 0.2302  ***
para_present_tense_ratio 4.1584 0.2130  #**
para_length 3.9678 0.1989  ##%*
para_sentiment -3.5301 -0.1771  w**
para_NOUN_ratio 3.0496 0.1442 *%
para_ner_loc 2.5881 0.1449 w3k

Note: Features sorted by original ascending p-value. Welch’s
t-test results comparing feature means between Human and
LLM groups. Significance codes: *** p < 0.001, ** p < 0.01,
*p < 0.05. Cohen’s d indicates effect size. Data based on
analysis of HLPC fifth iterative paraphrase outputs.

Feature t-statistic Cohen’sd Signif.
para_lexical_diversity 20.6839 0.8353  H**k
word_overlap 20.5785 1.2773  ***
bigram_overlap 18.9607 1.1658  ***
trigram_overlap 18.9607 1.1658  ***
para_flesch -11.2761 -0.5374  wkx
para_gunning_fog 9.4867 0.4764  ¥**
cosine_sim 8.0593 0.4285  ##*
para_length -5.8078 -0.2960  ***
para_sentiment -4.9107 -0.2400  *k*
para_ner_person 4.2959 0.2216  ***
para_smog -4.0234 -0.1696  ***
para_present_tense_ratio 3.3096 0.1700  **=*
para_ADJ_ratio -2.9596 -0.1450 *k

Table 7: Average 5-Fold Cross-Validation Performance
on Task 3.2 (HLPC Dataset)

Metric DeBERTa RoBERTa
Accuracy 93.71% 93.46%
F1-score 93.62% 93.20%
AU-ROC 0.9887 0.9896
TPR@1%FPR 0.7950 0.8048

Note: Results reflect average performance on Task 3.2 using
the HLPC dataset. Metrics were computed via 5-fold cross-

Note: Features sorted by original ascending p-value. Welch’s
t-test results comparing feature means between Human and
LLM groups. Significance codes: *** p < 0.001, ** p < 0.01,
*p < 0.05. Cohen’s d indicates effect size. Data based on
analysis of HLPC first paraphrase outputs.
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