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Abstract001

LLMs make distinguishing human from ma-002
chine text challenging, particularly via para-003
phrasing used for evasion, impacting academic004
integrity, IP, and misinformation. We introduce005
the novel Paraphrase-based LLM Detection006
Framework (PLD-4), formalizing four tasks to007
evaluate detection in nuanced scenarios, includ-008
ing identifying layered AI text. Using MRPC009
and HLPC datasets, we employ a dual approach010
with feature-based and transformer models011
(XGBoost, DeBERTa-v3, RoBERTa). While012
achieving high accuracy on tasks like Sentence013
Pair Paraphrase Source Detection (XGBoost014
96%) and Single Sentence Authorship Attribu-015
tion (RoBERTa 93.9%), distinguishing original016
vs. paraphrased LLM output proved signifi-017
cantly challenging (RoBERTa 83.28%), high-018
lighting limitations in detecting layered AI019
generation. PLD-4 provides a critical foun-020
dation for developing more robust detection021
techniques.022

1 Introduction023

The rapid advancements in Large Language Mod-024

els (LLMs) have fundamentally transformed natu-025

ral language processing, enabling the generation of026

text that often rivals human content in fluency and027

coherence (Wu et al., 2025; Brown et al., 2020).028

This remarkable progress, while offering substan-029

tial benefits, has introduced a significant challenge:030

reliably distinguishing between human-authored031

and machine-generated text (Huang et al., 2024;032

Fariello et al., 2024). The increasing prolifera-033

tion and seamless integration of high-quality LLM-034

generated content across digital mediums raise crit-035

ical concerns regarding academic integrity (e.g.,036

plagiarism), intellectual property (e.g., paraphrased037

code), and the fight against misinformation (Hunt038

et al., 2019; Park et al., 2025; Goldstein et al.,039

2023). Consequently, the imperative need for effec-040

tive and robust AI-generated text detection mech-041

anisms has become more pronounced than ever042

before (Huang et al., 2024), especially as human- 043

based detection is often unreliable (Yu et al., 2024). 044

A particularly complex facet of this challenge 045

lies in the detection of content that has been para- 046

phrased by LLMs (Park et al., 2025). LLMs 047

possess sophisticated capabilities to produce para- 048

phrased iterations of existing text, often mimicking 049

human writing styles (Wei et al., 2023), potentially 050

with the intent to obscure the original source or 051

circumvent detection (Park et al., 2025). While 052

paraphrase detection has a well-established history 053

(Park et al., 2025), the emergence of LLMs in- 054

troduces new complexities (Tripto et al., 2023). 055

Traditional methodologies, often prioritizing se- 056

mantic similarity (Wu et al., 2025), may prove in- 057

adequate as LLM paraphrases maintain semantic 058

equivalence but exhibit distinct stylistic character- 059

istics that evade detection (Tripto et al., 2023). In- 060

deed, a significant limitation of many current AI 061

text detection systems (Jawahar et al., 2020) is their 062

vulnerability to such paraphrase attacks (Weber- 063

Wulff et al., 2023), with notable performance drops 064

observed in studies (Krishna et al., 2023). This 065

underscores a critical gap and the urgent need for 066

more robust approaches. 067

To address this underexplored challenge, we 068

introduce the Paraphrase-based LLM Detection 069

framework (PLD-4 framework). This framework 070

systematically defines and facilitates the evalua- 071

tion of detection mechanisms across four core sub- 072

tasks representing nuanced real-world scenarios 073

with varying difficulty and contextual information, 074

thereby filling a crucial gap in research overlooking 075

paraphrase-driven evasion and fine-grained author- 076

ship attribution. 077

Building upon this framework, we develop 078

and rigorously evaluate a dual-pronged detection 079

approach tailored to address these tasks. This 080

approach leverages both extensive feature engi- 081

neering to train interpretable models like XG- 082

Boost (Chen and Guestrin, 2016), capturing lin- 083
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guistic and stylistic signals, and fine-tuned state-of-084

the-art transformer architectures such as DeBERTa-085

v3 (He et al., 2021). This dual strategy allows for a086

comprehensive evaluation considering both perfor-087

mance and explainability. Our initial experimental088

results on the PLD-framework demonstrate the ef-089

fectiveness of this approach, with the feature-based090

pipeline achieving 97% accuracy on Task 3, and091

the fine-tuned DeBERTa-v3 model attaining 92.7%092

accuracy on the same task.093

The remainder of this paper is structured as fol-094

lows: Section 2 reviews related work. Section095

3 describes our paraphrase-based LLM detection096

framework. Section 4 outlines the original data097

source and dataset construction. Section 5 presents098

the experimental setup. Section 6 reports empirical099

results and feature analysis. Section 7 discusses100

key insights derived from the results. Section 8101

concludes the paper with a summary of contribu-102

tions and directions for future research. Section 9103

highlights the limitations of the current study.104

2 Background105

Distinguishing AI-generated paraphrases from106

human-written text lies at the intersection of para-107

phrase detection and AI-generated text detection.108

We briefly review both areas and highlight the gap109

addressed by the PLD-4 framework.110

2.1 Paraphrase Detection111

Paraphrase detection determines whether two texts112

express the same meaning, regardless of word-113

ing. Applications include plagiarism detection,114

question answering, and summarization (Bhagat115

and Hovy, 2013). Early work relied on n-gram116

overlap, Jaccard similarity, and parse tree com-117

parison (Madnani et al., 2012; Qiu et al., 2006;118

Das and Smith, 2009). These approaches strug-119

gled with semantically similar texts with low lex-120

ical overlap. Traditional machine learning meth-121

ods used engineered features (e.g., WordNet, syn-122

tax, semantics) and classifiers like SVMs, often123

evaluated on datasets like MRPC (Ji and Eisen-124

stein, 2013; Filice et al., 2015). Neural mod-125

els such as Siamese LSTMs (Mueller and Thya-126

garajan, 2016), pretrained embeddings (Word2Vec,127

GloVe (Mikolov et al., 2013; Pennington et al.,128

2014)), and transformer-based architectures like129

BERT, RoBERTa, and DeBERTa (Devlin et al.,130

2019; Liu et al., 2019; He et al., 2021) have131

achieved state-of-the-art performance on datasets132

like MRPC and QQP (Wang et al., 2018). However, 133

they typically focus on semantic equivalence, not 134

the source of the paraphrase—an essential distinc- 135

tion in Tasks 1 and 2 of PLD-4. 136

2.2 AI-Generated Text Detection 137

The task of identifying text generated by AI mod- 138

els has gained prominence with the rise of increas- 139

ingly sophisticated LLMs. The goal is to deter- 140

mine whether a given piece of text was authored 141

by a human or a machine. Early detectors used 142

linguistic cues such as n-gram frequencies, per- 143

plexity, POS distributions, and readability met- 144

rics (Gehrmann et al., 2019). These methods often 145

struggled to generalize to new LLMs. More recent 146

work fine-tunes transformer-based models (e.g., 147

BERT, RoBERTa) for binary classification (So- 148

laiman et al., 2019; Zellers et al., 2020). Zero-shot 149

detection approaches, such as DetectGPT (Mitchell 150

et al., 2023) and Fast-DetectGPT (Bao et al., 2024), 151

aim to identify AI-generated text without task- 152

specific training. Watermarking methods embed 153

detectable signals within generated text to support 154

attribution (Kirchenbauer et al., 2024). Our Task 3 155

aligns with this domain. 156

Despite progress, AI text detection faces sig- 157

nificant challenges. Detectors often exhibit per- 158

formance degradation when applied to texts from 159

LLMs not seen during training or when confronted 160

with out-of-domain content (Weber-Wulff et al., 161

2023). A major vulnerability, highlighted in our 162

introduction, is the susceptibility of detectors to 163

adversarial attacks, particularly through paraphras- 164

ing. As demonstrated by prior work (Krishna et al., 165

2023; Chakraborty et al., 2023; Sadasivan et al., 166

2025), paraphrasing LLM-generated text, espe- 167

cially using another LLM like DIPPER, can drasti- 168

cally reduce the effectiveness of existing detectors. 169

Human editing of LLM outputs further complicates 170

detection. 171

2.3 Bridging the Gap: Detecting Paraphrased 172

AI-Generated Text 173

While prior work explores paraphrase detection 174

and AI-authorship detection independently, few 175

address the intersection—identifying paraphrased 176

LLM outputs. Existing detectors assume direct AI 177

output, and standard paraphrase tasks ignore au- 178

thorship. Our PLD-4 framework aims to fill this 179

gap by comprising four unique subtasks, each care- 180

fully designed to represent a specific real-world 181

detection scenario. These scenarios are character- 182
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ized by differing levels of contextual information183

and varying degrees of inherent difficulty, allow-184

ing for a thorough evaluation of LLM paraphrase185

detection methods across several applications.186

3 PLD-4: The Paraphrase-based LLM187

Detection Framework188

To address the growing challenge of detecting189

LLM-generated paraphrases, this paper introduces190

the Paraphrase-based LLM Detection Framework191

(PLD-4), as illustrated in Figure 1. It offers a struc-192

tured approach for evaluating detection methods193

across varied scenarios by defining four subtasks194

that reflect real-world conditions. These subtasks195

differ in contextual information and difficulty, en-196

abling a nuanced assessment of detection perfor-197

mance in diverse settings.198

3.1 Task 1: Sentence Pair Paraphrase199

Detection200

Definition: Given two input sentences, determine201

if the second sentence in the pair is paraphrased202

by Human or a Large Language Model (LLM).203

Scenario: This task assumes access to both the204

original and paraphrased sentences, common in le-205

gal, patent, and academic contexts. The focus is206

on identifying the paraphraser human or LLM by207

comparing stylistic and linguistic features. Exam-208

ple: Detecting AI-generated paraphrases in legal209

or patent documents that may obscure prior art.210

3.2 Task 2: Single Sentence Paraphraser211

Detection212

Definition: Given a single input sentence known to213

be a paraphrase, determine if the paraphrasing was214

generated by an LLM or by human. Scenario: This215

task models situations where the original source is216

unavailable and aims to attribute authorship based217

solely on the paraphrase’s linguistic and stylistic218

features. It is relevant in contexts such as plagia-219

rism detection or content moderation, where only220

the paraphrased text is accessible. Unlike tradi-221

tional paraphrase identification focused on seman-222

tic similarity, this task requires detecting subtle223

cues—such as vocabulary diversity, syntactic com-224

plexity, or LLM-specific linguistic patterns—that225

distinguish human and AI-generated paraphrases.226

Example: Spotting AI-generated content used in227

"content spinning" for SEO or bulk article genera-228

tion.229

3.3 Task 3: Single Sentence Authorship 230

Attribution 231

Definition: Determine whether a given sentence- 232

whether original or paraphrased-was authored by 233

a human or generated by an LLM. Scenario: This 234

represents the general, often challenging task of 235

AI-generated text detection at the sentence level. It 236

is broadly applicable in contexts where the origin 237

of any given piece of text needs to be ascertained 238

without prior knowledge of its nature (original vs. 239

paraphrase). Example: Detecting AI-written con- 240

tent in online reviews, news, or social media to 241

combat misinformation. 242

3.4 Task 4: Single Sentence AI Authorship 243

Attribution 244

Definition: Given a machine-generated sentence, 245

determine whether it was directly generated from a 246

LLM or is a paraphrased version of an LLM output 247

produced by another LLM. Scenario: This task iso- 248

lates the challenge of detecting layered or iterative 249

AI generation. It’s relevant for understanding how 250

LLMs modifies their own output and for identify- 251

ing content that has been specifically manipulated 252

by paraphrasing tools applied to pre-existing AI- 253

generated text. Example: Analyzing stylistic shifts 254

and information loss from paraphrasing to under- 255

stand AI-to-AI transformations. 256

4 Dataset 257

We evaluated the four tasks defined in the 258

PLD-4 framework using two benchmark datasets: 259

the Microsoft Research Paraphrase Corpus 260

(MRPC) (Dolan and Brockett, 2005) and the 261

Human-LLM Paraphrase Collection (HLPC) (Lau 262

and Zubiaga, 2024). For our paraphrase source 263

identification task, we created the MRPC-Source 264

Identification (MRPC-SI) dataset from MRPC, 265

containing 5,801 sentence pairs labeled by para- 266

phraser origin (Human or LLM). Human para- 267

phrases (for original MRPC pairs) were re- 268

tained, while LLM paraphrases (for original non- 269

paraphrase pairs) were generated using GPT-4o, re- 270

sulting in data formatted as (original sentence, 271

paraphrased_sentence, label). The HLPC 272

dataset is designed to capture a diverse range of 273

human and LLM paraphrases. It includes human 274

paraphrases (H-PP) of human-authored documents 275

(H-DOC) from MRPC and other datasets, along- 276

side LLM-generated paraphrases (LLM-PP) pro- 277

duced through iterative paraphrasing of GPT2-XL 278
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Figure 1: Paraphrase-based LLM Detection Framework (PLD-4)

and OPT-1.3B generated texts (LLM-DOC) using279

DIPPER and BART. While HLPC contains 600280

base documents across these categories, our study281

focused on GPT2-XL generated base documents282

and their non-watermarked paraphrases, in order to283

analyze linguistic cues indicative of AI authorship.284

5 Experiment285

This section presents the empirical evaluation con-286

ducted to assess the effectiveness of various com-287

putational approaches across the four PLD-4 tasks.288

For each task, we examined both traditional feature-289

based machine learning methods—specifically us-290

ing XGBoost classifiers—and deep learning mod-291

els based on transformer architectures, namely292

RoBERTa and DeBERTa-v3. The choice of which293

model’s results to emphasize for each task was in-294

formed by preliminary performance assessments,295

alignment between model characteristics and task296

requirements, and considerations such as inter-297

pretability and susceptibility to overfitting.298

5.1 Experiment Setup: Task 1299

For Task 1 (Sentence Pair Paraphrase Source De-300

tection), we primarily focused on a feature-based301

XGBoost classifier. This choice was motivated by302

its strong performance in sentence-pair classifica-303

tion and its interpretability—crucial for analyzing304

linguistic cues that differentiate human and LLM-305

generated paraphrases when the original sentence306

is provided. Although we initially experimented307

with deep learning models, they showed signs of308

overfitting due to the limited data and paired input309

format. 310

XGBoost was trained on a set of handcrafted 311

lexical, syntactic, and semantic features extracted 312

from each sentence pair. To address class im- 313

balance, we applied SMOTE (Synthetic Minority 314

Over-sampling Technique) (Chawla et al., 2002) 315

to the training portion of each fold during cross- 316

validation. We evaluated Task 1 using: Adapted 317

MRPC: 5,801 sentence pairs, with 3,900 human 318

and 1,901 LLM paraphrases; and HLPC: 1,800 319

sentence pairs, including 600 human and 1,200 320

LLM paraphrases. 321

To examine the impact of paraphrasing depth on 322

detectability, we conducted experiments using both 323

once-paraphrased and five-times-paraphrased 324

LLM outputs from HLPC. This allowed us to assess 325

whether deeper paraphrasing reduces detectable 326

signals and increases similarity to human-written 327

paraphrases. 328

5.1.1 Feature Engineering 329

To support the XGBoost classifier in Task 1, 330

we engineered 39 features designed to capture 331

lexical, syntactic, semantic, and stylistic differ- 332

ences between each sentence pair (sentence1, 333

paraphrased_sentence). These features include 334

sentence-level statistics (e.g., length, readability), 335

overlap measures, POS and tense distributions, 336

named entity counts, and a semantic similarity 337

score based on RoBERTa embeddings. Detailed 338

categories and representative examples are shown 339

in Table 1. 340
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Table 1: Overview of Engineered Features for Task 1

Category Count Example Features

Basic Properties 7 Word count, SMOG index and Flesch Reading Ease for each sentence, length difference
Lexical Overlap 3 Unigram Jaccard similarity, bigram overlap, trigram overlap
Readability & Diversity 4 Gunning Fog index, lexical diversity for each sentence
Syntactic Complexity 2 Dependency parse tree depth for each sentence
Sentiment Analysis 2 Sentiment polarity score for each sentence (TextBlob polarity)
Part-of-Speech Ratios 8 Fraction of nouns, verbs, adjectives, and adverbs in each sentence
Verb Tense Ratios 6 Past tense ratio, present tense ratio, modal verb ratio (per sentence)
Named Entity Counts 6 Count of PERSON, ORG, and LOC entities in each sentence
Semantic Similarity 1 Cosine similarity of sentence embeddings from RoBERTa

Total 39

5.2 Experiment Setup: Task 2, 3 and 4341

For the single-sentence classification challenges342

presented in Task 2 (Single Sentence LLM Para-343

phrase Detection), Task 3 (Single Sentence Au-344

thorship Attribution), and Task 4 (Original LLM345

vs. Paraphrase Model Output), which require cap-346

turing subtle intrinsic linguistic cues, we primar-347

ily utilized fine-tuned RoBERTa and DeBERTa-v3348

transformer models. These models significantly349

outperformed our feature-based methods on these350

nuanced single-sentence tasks; for instance, prelim-351

inary feature-based experiments on Task 2 yielded352

considerably lower performance (76% Accuracy)353

compared to transformers. The transformer mod-354

els were fine-tuned for each task using standard355

settings, including cross-entropy loss, the AdamW356

optimizer, early stopping based on validation ROC-357

AUC, and 5-fold cross-validation. Evaluation met-358

rics included Accuracy, F1 score, ROC-AUC, and359

TPR@1%FPR. As a baseline, we also report the360

performance of OpenAI’s RoBERTa-based classi-361

fier (Solaiman et al., 2019).362

Evaluation for these tasks was based on363

the Human-LLM Paraphrase Collection (HLPC)364

dataset. Task-specific datasets, each comprising365

1,800 instances, were independently constructed366

from HLPC content for training, validation, and367

testing. These datasets were formulated to align368

with the specific classification goals of each task:369

Task 2’s dataset included instances of Human-370

paraphrased and LLM-paraphrased sentences, aim-371

ing to classify the source of the paraphrase; Task372

3’s dataset comprised original Human-authored373

sentences and LLM-generated paraphrases, focus-374

ing on general authorship attribution; and Task 4375

evaluated the ability, given a machine-generated376

sentence, to determine whether it was originally377

generated by an LLM or is a paraphrased version378

produced by an LLM, with its dataset consisting of379

original LLM outputs and sentences generated by 380

paraphrasing those LLM outputs using models like 381

BART and Dipper. 382

5.2.1 Feature Engineering 383

For the preliminary XGBoost experiments con- 384

ducted on the single-sentence Tasks 2, 3, and 4 385

(with results briefly referenced in the Task 2 per- 386

formance comparison), a reduced set of 17 features 387

was employed. These features were derived by ap- 388

plying relevant single-sentence metrics—such as 389

length, readability, lexical diversity, dependency 390

depth, sentiment, part-of-speech ratios, verb tense 391

ratios, and named entity counts—to each input sen- 392

tence individually, without using any comparative 393

or relational features. 394

6 Result Analysis 395

This section presents the empirical results of the ex- 396

periments described in Section 5. We report the per- 397

formance of both the traditional machine learning 398

approach (XGBoost) and the deep learning mod- 399

els on the PLD-4 tasks. Additionally, we provide 400

findings from the feature analysis of the XGBoost 401

model, including feature importance rankings and 402

statistical comparisons between human- and LLM- 403

generated paraphrases for Task 1. 404

6.1 Result: Task 1 405

As presented in Table 2, the XGBoost model 406

demonstrated strong performance on the adapted 407

MRPC dataset, achieving an accuracy of 0.96 and 408

macro-averaged precision, recall, and F1-score of 409

0.95. It reached an AUC-ROC of 0.9876 on the 410

test set, with 5-fold cross-validation confirming 411

robustness (mean AUC-ROC = 0.9889 ± 0.0021). 412

These results highlight the discriminative power of 413

the engineered linguistic features. For the HLPC 414

dataset, we used the paraphrased outputs of LLM- 415
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Table 2: Task 1 Performance Results (MRPC and HLPC Datasets)

Metric MRPC (XGBoost) HLPC (1st Para) HLPC (5th Para)

Accuracy 0.96 0.88 0.88
Precision 0.95 0.87 0.86
Recall 0.95 0.85 0.86
F1-score 0.95 0.86 0.86
AUC-ROC 0.9876 0.9504 0.9517
CV AUC-ROC 0.9889 ± 0.0021 0.9472 ± 0.0074 0.9511 ± 0.0087
TPR@1%FPR 0.6927 0.4917 0.4917

Note: All results are reported on the test set partition, SMOTE was applied after the train/test split for the XGBoost model. The
reported AUC-ROC scores represent the mean ± standard deviation from 5-fold cross-validation.

DOC (GPT2-XL) as the paraphrased sentences (1st416

para and 5th Para ).417

Figure 2 presents the corresponding ROC curve,418

illustrating the trade-off between true positive rate419

(TPR) and false positive rate (FPR) across deci-420

sion thresholds. The area under the curve (AUC)421

reaches 0.9876, indicating excellent discrimina-422

tive performance. Notably, at the low-FPR region423

(FPR ≤ 1%), the model achieves a TPR of 0.6927424

using a threshold of 0.9349, demonstrating practi-425

cal reliability in high-precision scenarios.426

Distribution of true positives and true negatives427

for both datasets are provided in Appendix A (Fig-428

ure 6, Figure 7 and Figure 8).429

Figure 2: Task 1: ROC curve for the XGBoost model
on the adapted MRPC.

6.1.1 Feature Analysis430

To understand which linguistic characteristics drive431

the XGBoost model’s performance and how hu-432

man/LLM paraphrases differ, we analyzed the en-433

gineered features as follows:434

Feature Importance Figures 4 and 5 illustrate435

feature importance for the XGBoost model trained436

on adapted MRPC. Figure 4, a SHAP summary437

plot, shows both the magnitude and direction of438

each feature’s impact, ranking features by mean439

absolute SHAP value and using color to indicate440

feature value (red = high, blue = low). This high- 441

lights key linguistic cues for distinguishing human 442

and LLM paraphrases. 443

Figure 5 presents traditional feature importance 444

based on XGBoost’s gain metric, ranking the top 445

10 features by their contribution to decision splits, 446

offering a global view of feature utility. Despite 447

different theoretical bases, both SHAP and gain- 448

based methods showed broadly consistent results 449

in identifying the most impactful features. SHAP 450

additionally provides local interpretability and the 451

directionality of feature effects. For HLPC results, 452

see Appendix A (Figures 13, 14). 453

Feature Distribution Comparison Comple- 454

menting the model-based feature importance, we 455

conducted a direct statistical comparison of the 456

feature distributions distinguishing human- from 457

LLM-generated paraphrases. Welch’s t-tests were 458

performed across all 39 engineered features, reveal- 459

ing statistically significant differences (p<0.05) be- 460

tween the Human and LLM groups for 21 of these 461

features. Full details for these significant features, 462

including t-statistics, p-values, and effect sizes, are 463

presented in Appendix A (Table 4). 464

To visually examine the most pronounced differ- 465

ences, we highlight the distributions of the three 466

features with the largest absolute values of Cohen’s 467

d: word overlap, paraphrased sentence length, and 468

paraphrased sentence lexical diversity. Figure 3 469

presents the kernel density estimate plots compar- 470

ing these features for the Human and LLM classes 471

on the Adapted MRPC dataset. These distributional 472

differences provide visual evidence supporting the 473

statistical significance observed and reflect distinct 474

stylistic tendencies between the two groups. For 475

the HLPC dataset, the top 3 features (by absolute 476

Cohen’s d) are also visualized in Figure 15 and Fig- 477

ure 16, with corresponding Welch’s t-test results 478

detailed in Table 5 and Table 6 in Appendix. 479
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(a): word_overlap (b): para_length (c): para_lexical_diversity

Figure 3: Comparison of feature distributions for the top 3 most statistically significant features distinguishing
human vs. LLM-generated paraphrases on the Adapted MRPC dataset.

6.2 Results: Tasks 2, 3, and 4480

The performance of DeBERTa-v3 and RoBERTa on481

the HLPC-derived sentence-level tasks is summa-482

rized in Table 3. Overall, both models demonstrate483

strong classification performance, though their ef-484

fectiveness varies across tasks and evaluation met-485

rics. These results are consistent with the findings486

of (Wu et al., 2024), which highlight the robustness487

and generalization ability of RoBERTa-based mod-488

els for detecting LLM-generated text in real-world489

scenarios.490

Task 2 (Single Sentence LLM Paraphrase491

Detection): Both models perform well in distin-492

guishing between Human- and LLM-paraphrased493

sentences, with RoBERTa achieving slightly494

higher accuracy (92.44%) and F1-score (87.62%).495

DeBERTa-v3, while marginally behind on these496

metrics, remains competitive, suggesting that both497

models effectively capture stylistic and lexical cues498

indicative of LLM paraphrasing. The correspond-499

ing ROC curve is presented in Figure 17.500

Task 3 (Single Sentence Authorship Attribu-501

tion): In Task 3.1, which compares original human-502

written sentences with LLM paraphrases, both mod-503

els achieve strong performance. RoBERTa again504

leads slightly in accuracy (93.94%) and F1-score505

(90.47%), while DeBERTa-v3 records the highest506

AUROC (0.9866) and TPR@1%FPR (0.8224), in-507

dicating superior calibration and sensitivity under508

low false positive conditions. The ROC curve is509

shown in Figure 18.510

Task 3.2 introduces additional complexity by511

incorporating human-written paraphrases into the512

human-authored class and expanding the overall513

sample size to 2,400 instances, thereby increas-514

ing intra-class diversity. Despite this, both models515

maintain strong performance. Notably, DeBERTa-516

v3 slightly outperforms RoBERTa in F1-score517

(93.62% vs. 93.20%), suggesting enhanced ro- 518

bustness under more varied authorship scenarios. 519

In addition, compared to the results of Task 3.1, 520

the TPR@1%FPR shows a slight decrease for the 521

DeBERTa-v3 model and a slight increase for the 522

RoBERTa model, while the changes in AUROC 523

and overall accuracy are minimal. These findings 524

contrast with those reported by (Lau and Zubiaga, 525

2024), who directly applied OpenAI’s RoBERTa- 526

based detector and found that incorporating human- 527

written paraphrases improved TPR@1%FPR but 528

potentially reduced AUROC and overall accuracy. 529

The detailed results and ROC curves are presented 530

in Table 7 and Figure 19. 531

Task 4 (Distinguishing Original vs. LLM- 532

Paraphrased LLM Output): This task is the 533

most challenging, as it requires distinguishing be- 534

tween two types of LLM-generated text. Both 535

models exhibit performance degradation com- 536

pared to earlier tasks. RoBERTa outperforms 537

DeBERTa-v3 in accuracy (83.28%) and F1-score 538

(74.35%), while DeBERTa-v3 shows a marked 539

drop in TPR@1%FPR (0.2292). These results 540

suggest that identifying paraphrased variants of 541

machine-generated text may require more fine- 542

grained modeling capabilities than those offered by 543

current transformer architectures. The ROC curve 544

is shown in Figure 20. 545

Overall, modern transformer models demon- 546

strate strong performance in authorship attribution 547

and paraphrase source detection, especially in set- 548

tings with clear Human-vs-LLM distinctions. How- 549

ever, more nuanced scenarios—such as distinguish- 550

ing layered generations within LLM outputs—pose 551

greater difficulty, revealing limitations in current 552

models’ sensitivity to subtle semantic or stylistic 553

shifts. These findings highlight a promising yet 554

incomplete path toward fine-grained LLM prove- 555

nance detection. 556
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Table 3: Average 5-Fold Cross-Validation Performance of Transformer Models on HLPC Dataset Variants

Task 2 Task 3 Task 4

Model DeBERTa RoBERTa DeBERTa RoBERTa DeBERTa RoBERTa

Accuracy 0.9111 0.9244 0.9361 0.9394 0.8011 0.8328
F1-score 0.8469 0.8762 0.8970 0.9047 0.6967 0.7435
AU-ROC 0.9837 0.9681 0.9866 0.9893 0.8726 0.9125
TPR@1%FPR 0.7538 0.7667 0.8224 0.7750 0.2292 0.3158

Note: All tasks used variants of the HLPC dataset. Models are DeBERTa-v3 and RoBERTa. Metrics are averaged across 5-fold
cross-validation.

7 Discussion557

This study evaluated LLM paraphrase detection558

using feature-based (XGBoost) and deep learning559

(DeBERTa-v3, RoBERTa) models within our PLD560

framework, revealing varied performance across561

tasks.562

XGBoost, relying on linguistic features, demon-563

strated high accuracy (96%, 0.9876 AUC-ROC on564

adapted MRPC) in sentence-pair paraphrase source565

detection (Task 1) and maintained robustness even566

after five paraphrasing rounds on HLPC. Feature567

importance analysis highlighted word overlap, tri-568

gram overlap, and paraphrased sentence lexical di-569

versity as key discriminators, supported by statisti-570

cal tests across datasets, indicating persistent LLM571

stylistic signatures related to differences in human572

and LLM paraphrasing strategies concerning over-573

lap, length, and lexical richness. Notably, LLM574

paraphrases sometimes exhibited higher global lex-575

ical diversity—contrasting with prior observations576

of LLM text repetition (Gehrmann et al., 2019),577

suggesting LLMs may show complex, context-578

dependent stylistic patterns.579

Transformer models excelled in single-sentence580

LLM paraphrase detection (Task 2) and authorship581

attribution (Task 3), achieving over 90% accuracy.582

While their overall performance was comparable,583

specific metrics varied by subtask. Distinguish-584

ing between original and LLM-paraphrased LLM585

outputs (Task 4) proved significantly harder, with586

lower TPR@1%FPR scores suggesting reduced re-587

liability under strict precision. This indicates that588

further AI processing can obscure distinct LLM589

signals.590

In comparing approaches, XGBoost offered in-591

terpretability and strong performance on structured592

sentence-pair tasks with informative handcrafted593

features. Transformer models were more accurate594

on nuanced single-sentence tasks but less trans-595

parent. The choice depends on task complexity,596

interpretability needs, and resources. 597

Overall, our findings highlight that LLM para- 598

phrasing leaves detectable traces, even after mul- 599

tiple iterations, with implications for AI detection 600

in various content creation contexts. These results 601

also inform future LLM development regarding the 602

potential need to address or exploit these persistent 603

stylistic artifacts. 604

8 Conclusions and Future Directions 605

Detecting LLM-generated paraphrases is a growing 606

challenge in NLP, with implications for academic 607

integrity, IP protection, and content authenticity. 608

This work introduces the Paraphrase-based LLM 609

Detection Framework (PLD-4), which breaks down 610

detection into four subtasks, each with varying con- 611

text and difficulty. 612

Using the MRPC and HLPC datasets, we eval- 613

uate models across these tasks. For Task 1 (Sen- 614

tence Pair Source Detection), XGBoost achieved 615

high performance (Accuracy: 0.96, F1-score: 0.95, 616

AUC-ROC: 0.9876), and interpretability analysis 617

revealed key linguistic features useful for detection. 618

For Tasks 2–4, transformer models (DeBERTa-v3, 619

RoBERTa) performed well but struggled most on 620

Task 4—distinguishing between LLM-generated 621

and LLM-paraphrased text. RoBERTa achieved 622

83.28% accuracy and 74.35% F1-score, but perfor- 623

mance dropped significantly in fine-grained metrics 624

like TPR@1%FPR, underscoring the challenge of 625

layered AI paraphrasing. 626

Overall, PLD-4 provides a structured, inter- 627

pretable foundation for paraphrase detection by 628

combining feature-based and transformer models. 629

It reveals current limitations and paves the way for 630

future work involving more advanced LLMs, ad- 631

versarial robustness, hybrid modeling, and mixed- 632

authorship document detection. 633
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9 Limitations634

Despite promising results, this study has several635

limitations that should be acknowledged:636

• Scope of Language Models: The Large Lan-637

guage Models (LLMs) utilized for generating638

original content (specifically, GPT2-XL for639

the LLM-DOC component within the Human-640

LLM Paraphrase Collection, HLPC) and for641

paraphrasing tasks (BART and Dipper for642

HLPC) are potent; however, newer and po-643

tentially more sophisticated models are con-644

tinuously emerging (e.g., GPT-4, Claude 3,645

and their successors as of early 2025). Con-646

sequently, the findings herein might not fully647

generalize to text generated or paraphrased by648

these state-of-the-art models, which could pro-649

duce paraphrases that are even more human-650

like or challenging to detect.651

• Dataset and Framework Specificity: The652

Paraphrase-based LLM Detection framework653

(PLD-framework) introduced and employed654

in this research was constructed using spe-655

cific datasets: an adapted version of the Mi-656

crosoft Research Paraphrase Corpus (MRPC)657

and the Human-LLM Paraphrase Collection658

(HLPC). While this setup offers a controlled659

environment for evaluation, the framework’s660

performance can be influenced by the inher-661

ent characteristics of these datasets. Factors662

such as the source and domain of the original663

texts, the specific human paraphrasing styles664

represented, and the LLMs chosen for genera-665

tion and paraphrasing within HLPC invariably666

affect the outcomes. Therefore, the general-667

izability of the findings may be constrained668

by the particular nature and data distribution669

within these PLD-framework components.670

• Sample Size for HLPC-Derived Tasks:671

Tasks 2, 3, and 4, which utilized datasets de-672

rived from the HLPC, were conducted with673

a sample size of 1,800 instances. Although674

mitigation strategies such as 5-fold cross-675

validation, the use of early stopping callbacks676

during model training, and weight decay were677

implemented to enhance generalization and re-678

duce potential overfitting, this relatively mod-679

est sample size may still restrict the broader680

applicability or statistical robustness of the681

findings for these specific transformer-based682

tasks. More definitive insights could be gained 683

from larger and more diverse datasets for these 684

tasks. 685

• Focus on Sentence-Level Detection: This 686

study primarily concentrates on sentence-level 687

detection. The detection of LLM-paraphrased 688

content at the document level, or the identifi- 689

cation of AI-generated segments within doc- 690

uments containing a mix of human and AI 691

authorship, introduces additional complexi- 692

ties and challenges that were not addressed in 693

this work. The efficacy of the proposed fea- 694

tures and models when applied to longer texts 695

remains an area for future investigation. 696

• Nature of the Paraphrasing Task: The re- 697

search utilized paraphrases generated by spe- 698

cific models (BART and Dipper within the 699

HLPC) using their default or predetermined 700

configurations. Different paraphrasing strate- 701

gies, variations in the level of abstraction in 702

paraphrasing prompts (where applicable), or 703

outputs from alternative paraphrasing models 704

could produce text with distinct characteris- 705

tics, potentially affecting the performance of 706

the detection methods. 707

Overall, this work contributes to the understand- 708

ing and detection of LLM-generated paraphrases, 709

highlighting both the progress made and the chal- 710

lenges that lie ahead in accurately identifying AI- 711

modified text. 712

10 Ethics Statement 713

We use only publicly available datasets and pre- 714
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A Appendix935

A.1 Task 1 Additional Results936

Figure 4: Task 1: SHAP summary plot illustrating fea-
ture importance and impact for the XGBoost model on
the Adapted MRPC. The plot displays the top 20 fea-
tures ranked by mean absolute SHAP value.

A.1.1 Statistical Comparison of Features937

(Human vs. LLM)938

Tables 4, 5, and 6 present the results of Welch’s t-939

tests comparing the means of linguistic features be-940

tween human-generated and LLM-generated para-941

phrase pairs. Table 4 details findings for the942

Adapted MRPC dataset. Tables 5 and 6 detail find-943

ings for the HLPC dataset, using the first and fifth944

iterative paraphrase outputs, respectively. Only fea-945

tures showing a statistically significant difference946

(p<0.05) are listed, sorted by their original ascend-947

ing p-value. Significance levels are indicated using948

standard asterisk notation (*** p < 0.001, ** p949

< 0.01, * p < 0.05). Cohen’s d is included as a950

measure of effect size, indicating the magnitude of951

the difference (positive values indicate the mean is952

higher for the Human group, negative values indi-953

cate the mean is higher for the LLM group based on954

the Cohen’s d calculation order used in this study).955

Figure 5: Task 1: XGBoost Feature Importance scores
for the top 10 features, derived from the model trained
on the Adapted MRPC.

Figure 6: Task 1: Confusion matrix for the XGBoost
model predictions on the Adapted MRPC.
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Figure 7: Confusion matrix for the XGBoost model
predictions on HLPC (1st Para).

Figure 8: Confusion matrix for the XGBoost model
predictions on HLPC (5th Para).

Figure 9: ROC curve for the XGBoost model on
HLPC (1st Para).

Figure 10: ROC curve for the XGBoost model on
HLPC (5th Para).

Figure 11: SHAP summary plot for the XGBoost
model on HLPC (1st Para), showing the top 20 fea-
tures ranked by mean absolute SHAP value.

Figure 12: SHAP summary plot for the XGBoost
model on HLPC (5th Para), showing the top 20 fea-
tures ranked by mean absolute SHAP value.
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Figure 13: Top 10 feature importance scores from
the XGBoost model on HLPC (1st Para).

Figure 14: Top 10 feature importance scores from
the XGBoost model on HLPC (5th Para).

(a): para_lexical_diversity (b): word_overlap (c): bigram_overlap

Figure 15: Comparison of feature distributions for the top 3 most statistically significant features distinguishing
human vs. LLM-generated paraphrases on the Adapted HLPC dataset (First Paraphrase).

(a): word_overlap (b): trigram_overlap (c): bigram_overlap

Figure 16: Comparison of feature distributions for the top 3 most statistically significant features distinguishing
human vs. LLM-generated paraphrases on the Adapted HLPC dataset (Fifth Iterative Paraphrase).

A.2 Task 2, 3, and 4 Additional Results956
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Figure 17: Task 2: ROC Curve — DeBERTa vs.
RoBERTa vs. OpenAI Detector.

Figure 18: Task 3: ROC Curve — DeBERTa vs.
RoBERTa vs. OpenAI Detector.

Figure 19: Task 3.2: ROC Curve — DeBERTa vs.
RoBERTa vs. OpenAI Detector.

Figure 20: Task 4: ROC Curve — DeBERTa vs.
RoBERTa vs. OpenAI Detector.
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Table 4: Significant Features Distinguishing Human vs.
LLM Paraphrases on Adapted MRPC Dataset (Welch’s
t-test, p<0.05, sorted by p-value)

Feature t-statistic Cohen’s d Signif.

word_overlap 66.76 1.719 ***
para_length 24.47 0.671 ***
para_lexical_diversity -21.50 -0.561 ***
cosine_sim 19.99 0.557 ***
s1_length 12.58 0.349 ***
bigram_overlap 12.20 0.316 ***
trigram_overlap 12.20 0.316 ***
s1_gunning_fog 11.20 0.320 ***
s1_dep_depth 10.68 0.290 ***
length_diff 9.15 0.248 ***
s1_flesch -8.73 -0.249 ***
para_smog -6.76 -0.212 ***
s1_smog -5.83 -0.175 ***
s1_past_tense_ratio -4.75 -0.160 ***
para_flesch 4.65 0.135 ***
para_dep_depth 3.95 0.109 ***
s1_lexical_diversity -3.69 -0.103 ***
para_VERB_ratio -3.36 -0.095 ***
s1_modal_verb_ratio -2.61 -0.097 **
s1_VERB_ratio 2.45 0.071 *
para_sentiment 2.19 0.060 *

Note: Features sorted by original ascending p-value. Welch’s
t-test results comparing feature means between Human and
LLM groups. Significance codes: *** p < 0.001, ** p < 0.01,
* p < 0.05. Cohen’s d indicates effect size.

Table 5: Significant Features Distinguishing Human
vs. LLM Paraphrases on the HLPC Dataset (First Para-
phrase Outputs). Welch’s t-test, p<0.05, sorted by p-
value.

Feature t-statistic Cohen’s d Signif.

para_lexical_diversity 20.6839 0.8353 ***
word_overlap 20.5785 1.2773 ***
bigram_overlap 18.9607 1.1658 ***
trigram_overlap 18.9607 1.1658 ***
para_flesch -11.2761 -0.5374 ***
para_gunning_fog 9.4867 0.4764 ***
cosine_sim 8.0593 0.4285 ***
para_length -5.8078 -0.2960 ***
para_sentiment -4.9107 -0.2400 ***
para_ner_person 4.2959 0.2216 ***
para_smog -4.0234 -0.1696 ***
para_present_tense_ratio 3.3096 0.1700 ***
para_ADJ_ratio -2.9596 -0.1450 **

Note: Features sorted by original ascending p-value. Welch’s
t-test results comparing feature means between Human and
LLM groups. Significance codes: *** p < 0.001, ** p < 0.01,
* p < 0.05. Cohen’s d indicates effect size. Data based on
analysis of HLPC first paraphrase outputs.

Table 6: Significant Features Distinguishing Human vs.
LLM Paraphrases on the HLPC Dataset (Fifth Iterative
Paraphrase Outputs). Welch’s t-test, p<0.05, sorted by
p-value.

Feature t-statistic Cohen’s d Signif.

word_overlap 23.5635 1.4736 ***
para_lexical_diversity 14.6123 0.5948 ***
para_flesch -14.2612 -0.6830 ***
para_gunning_fog 13.2602 0.6602 ***
bigram_overlap 21.9905 1.3550 ***
trigram_overlap 21.9905 1.3550 ***
cosine_sim 10.0935 0.5328 ***
para_ner_person 6.4044 0.3414 ***
para_dep_depth 4.6873 0.2335 ***
para_ner_org 4.3942 0.2302 ***
para_present_tense_ratio 4.1584 0.2130 ***
para_length 3.9678 0.1989 ***
para_sentiment -3.5301 -0.1771 ***
para_NOUN_ratio 3.0496 0.1442 **
para_ner_loc 2.5881 0.1449 **

Note: Features sorted by original ascending p-value. Welch’s
t-test results comparing feature means between Human and
LLM groups. Significance codes: *** p < 0.001, ** p < 0.01,
* p < 0.05. Cohen’s d indicates effect size. Data based on
analysis of HLPC fifth iterative paraphrase outputs.

Table 7: Average 5-Fold Cross-Validation Performance
on Task 3.2 (HLPC Dataset)

Metric DeBERTa RoBERTa

Accuracy 93.71% 93.46%
F1-score 93.62% 93.20%
AU-ROC 0.9887 0.9896
TPR@1%FPR 0.7950 0.8048

Note: Results reflect average performance on Task 3.2 using
the HLPC dataset. Metrics were computed via 5-fold cross-
validation.
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