Under review as a conference paper at ICLR 2022

LEARNING MIXTURE OF NEURAL TEMPORAL POINT
PROCESSES FOR EVENT SEQUENCE CLUSTERING

Anonymous authors
Paper under double-blind review

ABSTRACT

Event sequence clustering applies to many scenarios e.g. e-Commerce and elec-
tronic health. Traditional clustering models fail to characterize complex real-
world processes due to the strong parametric assumption. While Neural Temporal
Point Processes (NTPPs) mainly focus on modeling similar sequences instead of
clustering. To fill the gap, we propose Mixture of Neural Temporal Point Pro-
cesses (NTPP-MIX), a general framework that can utilize many existing NTPPs
for event sequence clustering. In NTPP-MIX, the prior distribution of coefficients
for cluster assignment is modeled by a Dirichlet distribution. When the assign-
ment is given, the conditional probability of a sequence is modeled by the mix-
ture of series of NTPPs. We combine variational EM algorithm and Stochastic
Gradient Descent (SGD) to efficiently train the framework. Moreover, to further
improve its capability, we propose a fully data-driven NTPP based on the attention
mechanism named Fully Attentive Temporal Point Process (FATPP). Experiments
on both synthetic and real-world datasets show the effectiveness of NTPP-MIX
against state-of-the-arts, especially when using FATPP as a basic NTPP module.

1 INTRODUCTION

Many real-world processes can be characterized by time-stamped multi-typed event sequences, e.g.
e-Commerce (Xu et al., 2014) and electronic health records (Enguehard et al., 2020). Given a set of
event sequences, a natural task is to cluster them into groups such that sequences generated by sim-
ilar underlying dynamics are grouped. Event sequence clustering is important to many downstream
applications. For instance, clustering user’s behaviors in e-Commerce helps to categorize user habits
to promote recommendation system.

Despite the importance, research on event sequence clustering is very limited. Xu & Zha (2017)
propose a Dirichlet Mixture model of Hawkes Processes (DMHP) where event sequences are char-
acterized via Hawkes processes (Hawkes, 1971) with different parameters. However, as a traditional
Temporal Point Process (TPP), it is hard for Hawkes process to model complex real-world dynam-
ics due to its strong parametric assumption. Wu et al. (2020) take a reinforcement learning view of
event sequence clustering. But it only works for univariate event sequences.

With the development of deep learning, many Neural Temporal Point Processes (NTPPs) have been
developed. Recurrent Neural Networks (RNN) (Du et al., 2016; Mei & Eisner, 2016; Omi et al.,
2019), Neural Ordinary Differential Equations (Jia & Benson, 2019; Chen et al., 2021) and Trans-
formers (Zhang et al., 2020; Zuo et al., 2020) are used for event sequence modeling. Many Maxi-
mum Likelihood Estimation free (MLE-free) NTPPs are also developed (Xiao et al., 2017; Upad-
hyay et al., 2018; Yan et al., 2018; Li et al., 2018). Although these NTPPs are more flexible than
Hawkes process, they can not perform clustering because they assume all observed sequences are
generated by similar dynamics.

We propose mixture of neural temporal point processes (NTPP-MIX), a general framework which
can incorporate various MLE-based NTPPs for event sequence clustering. Specifically, the prior
of the mixing coefficients is modeled by a Dirichlet distribution. Then the coefficients are used to
model the prior of cluster assignment. For each sequence, its conditional probability on the given
assignment is modeled via series of NTPPs. We also propose a new algorithm based on variational
EM and Stochastic Gradient Descent (SGD) to train the framework. Moreover, we develop our Fully

Under review as a conference paper at ICLR 2022

Attentive Temporal Point Process (FATPP) which is a fully data-driven NTPP without parametric
assumption to further improve NTPP-MIX. The contributions of our work are:

1) We develop a general framework NTPP-MIX and a corresponding training algorithm for event
sequence clustering. NTPP-MIX is the first neural-network-based general framework for multi-
typed event sequence clustering and can utilize various previous MLE-based NTPPs as its modules.

2) We also propose FATPP based on attention mechanism to further improve NTPP-MIX. Different
from the peer methods (Zuo et al., 2020; Zhang et al., 2020; Gu, 2021) where attention is only used
for encoding the event sequence, the intensity function in FATPP is also formulated by attention
without parametric assumption. The hope is that this flexible model can better fit with various
dynamics to benefit the clustering of mixed sequences in the real world.

3) Experiments on synthetic and real-world benchmarks show the effectiveness of our NTPP-MIX
framework (especially with FATPP for modeling each cluster) against state-of-the-art methods.

2 PRELIMINARIES AND RELATED WORKS

2.1 TRADITIONAL TEMPORAL POINT PROCESSES

Temporal Point Process (TPP) (Daley & David, 2007) is a useful tool to model a set of similar event
sequences. We denote an event sequence as S = {(¢;,v;)}2, i, where t; € [0, is the timestamp
and v; € {1,2,...,C} is the event type. A TPP first define the conditional intensity function:

. P(N,(t+dt) — Nu(t) =1|H
A(@“W‘lt)Z(}égﬂ() (Nt +)dt (t) |Hy) W

where NV, (t) denotes the counting process which counts the number of events of type v until time ¢,
H: = {(t;,v;) : t; < t} represents the history up to t. The log likelihood of .S is defined as:

L C tr
logp(S) =Y log A(ti,vi|He,) = Y / Aty ulMy)dt 2)
i=1 u=1"70

Most traditional TPPs design a parametric form for intensity, which is often trained via MLE.

2.2 NEURAL TEMPORAL POINT PROCESSES

Neural Temporal Point Processes (NTPPs) have been recently proposed to capture complex dy-
namics. Du et al. (2016) use RNNs as the backbone and propose the first NTPP. Mei & Eisner
(2016) further improve NTPP by constructing continuous-time RNNs where hidden state exponen-
tially changes with time. Jia & Benson (2019); Chen et al. (2018) use the continuous-depth Neural
Ordinary Differential Equations (Chen et al., 2018) to achieve more flexible continuous-time state
evolution NTPPs (Shchur et al., 2021). Transformer or Attention mechanism is used in (Zhang et al.,
2020; Zuo et al., 2020) to capture long-term dependency and improve training speed.

The above NTPPs use networks to model the conditional intensity and then optimize networks via
MLE. There are also intensity-free (Shchur et al., 2020) and MLE-free (Xiao et al., 2017; Yan et al.,
2018; Lietal., 2018) NTPPs.

Although these NTPPs are more flexible and generalized than traditional TPPs, they can not directly
perform clustering as they assume observed sequences are generated by similar dynamics.

2.3 EVENT SEQUENCE CLUSTERING METHODS

Although event sequence modeling is well-studied, there are few studies about event sequence clus-
tering. Wu et al. (2020) propose a reinforcement learning model but it only works for univariate
event sequences (e.g. sequence without type mark v;) and can not select the number of clusters
automatically. To our best knowledge, the most related work to ours is DMHP (Xu & Zha, 2017)
which mixes several Hawkes processes for event sequence clustering. Different clusters are defined
as Hawkes processes with different parameters. However, real-world data may be complex and can
not be well modeled by Hawkes processes. For instance, occur of an event can inhibit other events
instead of the triggering assumption of Hawkes processes.

Under review as a conference paper at ICLR 2022

3 NTPP-MIX: MIXTURE OF NTPPS FOR EVENT CLUSTERING

In this section, we propose mixture of neural temporal point processes (NTPP-MIX) framework
which combines neural temporal point process and variational inference for event sequence cluster-
ing. The framework is described in Sec. 3.1. An efficient training algorithm is proposed in Sec. 3.2.

3.1 MODEL FRAMEWORK

Given a set of event sequences S = {S,})_,, where S, = {(ti,vi)}fz"l is a sequence de-
fined in Sec. 2.1. Our goal is to divide these IV sequences into K groups such that the se-
quences generated by similar dynamics are grouped. We assume for each S, there is a cor-
responding hidden vector z, € {0,1}%, 25:1 znk = 1 denoting the group it belongs to, i.e.
znk = 1 iff S, belongs to group k. Denote the hidden variables as Z = {z,...,zn} and
our goal is to give a probabilistic estimation of Z. We combine NTPPs and variational infer-
ence to enable a probabilistic framework for this clustering problem. Our NTPP-MIX is general
and can utilize various NTPPs as its basic component. Fig. 1 shows an overview of NTPP-MIX.

We first assume the prior of mixing coefficients NTPP({6,) .
7 follows a Dirichlet distribution: "
p(m) = Dir(m|ay) 3) iy
where agp = [ag,...,ap) € RE. Setting a E
prior for 7 results in a variational model that ,um]l 9 = 2E50)
helps to select K (Bishop & Nasrabadi, 2007). el ke
Given mixing coefficient m, the conditional o] 5
distribution of Z is formed as: p(Z|w) = ——d
Hf:;l Hle m;"* where Ty, is the k-th dimen-
sion of 7. This equals to p(z,; = 1|7) = 7. | | AD® Evenss
Given Z, we use K NTPPs to model the condi- T : | oBP(SIos)
tional probability of S: >Ny
Figure 1: Our NTPP-MIX framework for K = 3.
p(S|Z,0) H H p(Sn|0k)** After training, an event sequence is input into K
n=1k=1 4 NTPPs to get conditional probabilities. Adding
p(Sn|0r) =NTPP(S,,|0%) conditional probabilities with corresponding ex-

pectation of mixing coefficients, we can get the

where 6 = {6;};_, and each 6} denotes pa- approximated posterior of assignment. Index n is
rameters of the k-th NTPP model. For an event omitted. Details of the derivation is in Sec. 3.2.

sequence S, we input it into the k-th NTPP,

and get the conditional probability p(Sy,|0).

Note that NTPP here can be any MLE-based neural temporal point process such as RMTPP (Du
et al., 2016), NHP (Mei & Eisner, 2016), SAHP (Zhang et al., 2020), THP (Zuo et al., 2020), etc.

Summarizing above equations, we can get the joint distribution p(S, Z, 7|6). Our goal is to maxi-
mize marginal distribution p(S|0) with respect to 6 and get the posterior distribution p(Z|[S, 6,p)":

Oopt = argmeaxp(SW) = argmgmx//p(s, Z,w|0)dZd~
4)
p(S,Z,7|0) = p()p(Z|7)p(S|Z, 0) = Dir(r|ex) H H TeNTPP(S,, [0)] "
n=1k=1

3.2 TRAINING ALGORITHM

It is hard to optimize marginal probability p(S|#) and get the posterior p(Z|S, 6,) directly as the
model contains a probability term p(.S,,|0;) modeled by neural-network-based models. To address
this problem, we use a variational inference framework for training. We introduce a variational
distribution ¢(Z, 1) to approximate p(Z, 7|S, #). Using ¢(Z, 7), we can get:

L(q,0) = logp(S|0) — KL(q||p) (6)

'Z is discrete and we use integration for simplification

Under review as a conference paper at ICLR 2022

where we define:

// (Z, log[(S(ZZ 7’:)|9)] dZdm
L(qllp) = // Z,)log { (Z(ig)&)] dZdr

Therefore, maximizing £(q, 6) with respect to ¢ and 6 is equivalent to maximizing log p(S|6) and
minimizing KL(g||p). Maximizing log p(S|f) makes our model characterize observed sequences
well. Minimizing KL(q||p) gives an approximation of posterior. Then our goal changes to:

max L(q,) (3)

s

)

Using mean field approximation (Opper & Saad, 2001), we assume ¢(Z,) = ¢(Z)q(7) and max-
imize £(q,#) with respect to ¢(Z), ¢(7), 8 iteratively according to the following process. The de-
tailed derivation is presented in Appendix A.

Update ¢(Z) (E-step) Fixing ¢(7) and 6, the log of the optimized ¢(Z) is give by:
log ¢*(Z) :Eq(,,) [log p(S, Z, 7|)] + Const = Ey () [log p(Z|)] 4 log p(S|Z, #) + Const

N
= Z Znk {Eq(,,) [log] + logp(Sn|9k)} +Const)
k=L log pnk

Normalizing the above formulation, we obtain:

HHmw n:§@>— (10)

n=1k=1 j=1Pnj

As ¢(Z) is an approximation of p(Z|S, #), when the model is well-trained, p(z,5 = 1|Sn, Oopt) ~
Tnk, 1.€. the posterior probability that .S,, in group k is 7.

Update ¢(7) (M-step) Fixing ¢(Z) and 6, the log of the optimized ¢(7r) is give by:
log ¢*(m) =Eg(z)[log p(S, Z, 7|0)] 4 Const = log p(7) + Ez)[log p(Z|)] + Const

K N an
:Z o + Zrnk — 1] log 7y + Const

k=1 n=1
Normalizing the above formulation, we recognize ¢* (7r) is a Dirichlet distribution:

N
¢"(m) = Dir(w|a), ar=ao+ Nk, Ne=Y Tk (12)

Update 0 (M-step) Fixing ¢(Z) and ¢(7), optimize £(g,6) w.r.t. 6. Since 6 are parameters for
NTPPs, it is hard to get the optimal form like ¢(Z) and ¢(7r), we use SGD to optimize the following
objective function:

L(0) = Ey(z) [logp(S|Z,0)] + Const = Z Z Tk log p(S,,|0r) + Const (13)
n=1k=1

where £(0) denotes the term in £(q, §) that is only related to 6.

Update the cluster number X' When K is unknown, we initialize K as a large number and
remove redundant clusters during training. In our variational framework, ¢*(7r) is an approximation
of p(7|S, #), we can update K based on ¢*(7). In each iteration, we first run E-step and M-step for
optimization. After optimization, we can get ¢* (7r) and its parameter . A small «, indicates the
effective number of sequences corresponding to cluster & is small, so we remove it. The removement
also helps to speed up the training process as the number of NTPPs to fit is decreasing.

Detailed training is shown in Algorithm 1. We use mini-batch training for efficient optimization and
use multiple SGD steps in one M-step.

2R S T ST

10

11

12

13

14
15

Under review as a conference paper at ICLR 2022

Algorithm 1: Variational EM training algorithm for NTPP-MIX

Input: Sequences S = {5, }V_,. Initial number of clusters K (to be automatically updated).
Mini-batch size B. Training epochs 7. Number of SGD steps to perform in each
M-step M. ¢(7) update rate . Minimum cluster size e. Weights for prior p(7): «p.

Output: Cluster assignment ¢*(Z) ~ p(Z|S, Oopt).

Initialize {0; }/<, for K NTPPs. Initialize {c, = “t¥ 1K | for g(m);

Pre-train each NTPP on S by MLE to prevent bad initialization;

for epoch =1, --- ,T do

for iter =1,--- ,[%¥] do

Sample a batch of sequences S’ from S;

// E-step: update q(Z')

E, () log 7] = Digamma(oy) — Digamma(X:kK:1 ar) ke{l,...,K}

log p(Sy|0k) = log[NTPP(S,|0k)] Sn, €S ke{l,...,K}

exp (Eq () [log mi]+1log p(Sn |0k)

'k = K eEcp EELW[logm]-s-logp(sn\‘)%)) SneSikefl,. . K}

// M-step: update ¢(m)

ar = (1 —n)ak +n(ao + |S—N,| ZSneS' rae) ke{l,...,K}

// M-step: update 6

for step =1,--- , M do

L£(0) = s, esr Tiet nik 108 2(Snl00);
Update 6 using SGD with —£ () as loss function;

// Check and remove redundant clusters
| Vk, remove 6 and distribute ay; to other clusters equally if a < €;

Compute r,,n € {1,..., N}, k € {1,..., K} using the trained model (line 6 to 8);
Return ¢*(z,; = 1) = rp;

4 FATPP: FULLY ATTENTIVE TEMPORAL POINT PROCESS

In the clustering scenario, we hope basic NTPP modules are flexible enough to model diverse pro-
cesses. However, most NTPPs still make parametric assumptions about the intensity formulation,
which limits the flexibility and affects the performance of NTPP-MIX. To fill the gap, we propose
Fully Attentive Temporal Point Process (FATPP), a universal data-driven NTPP for event sequence
modeling in this section. The overview of FATPP is shown in Fig. 2. In Sec. 4.1, we encode the
sequence into hidden vectors. In Sec. 4.2, we use a general method to formulate the intensity.
4.1 HISTORY EVENTS ENCODING
In this section, we encode event sequence S,, = {(t;,v;)}=", into hidden vectors to extract features
(Fig. 2 left). We first embedding the (¢;, v;), then use self-attention for encoding.
Event embedding. We add the type and timestamp embedding to obtain the embedding of (¢;, v;):
x; =TYPE(v;) + TIME(i, ¢;)
Sin((ﬁ;ﬂ + wkt) k%4 =0
TYPE(v) = Wyypee”, TIME(i, t)[k] = < cos(¢pi 4 wit) k%4 =1
Tanh(Syt) k%4 =23

(14)

where Wy, € R4*C is a learnable embedding matrix and e is a one-hot matrix. ¢y is a fixed
parameter and wy, 3 are learnable parameters. The timestamp embedding is similar to Zhang et al.
(2020) except we add Tanh term to capture the non-periodicity pattern.

Self-Attention encoding. After embedding the sequence S, = {(t;,v;)}, into X =
[x15%2;...;x1] € REX4, we use Self-Attention to encode X for feature extraction:
. . QK'
Y = Attention(Q, K, V) Attention(Q, K, V) = Softmax(—=)V
Vd (15)

Q=XW?K=XWK v=xXxwV"

Under review as a conference paper at ICLR 2022

where W@ WX WV ¢ R are learnable parameters, Y = [y1;y2;...;yz] € REXL In
practice, we use multi-head attention. Masking is used to prevent getting future information.

4.2 ATTENTION-BASED UNIVERSAL INTENSITY FORMULATION

Having hidden vectors {y1,y2, ..., ¥}, we now use these hidden vectors to formulate the intensity
function A(t, u|H;), where t € (¢;, ;1] is the timestamp to compute intensity, is the event type.

Previous attention-based works design different forms for intensity: Zuo et al. (2020) assume that
the intensity changes linearly with time (ignoring softplus), Zhang et al. (2020) and Gu (2021)
assume it changes exponentially. These assumptions limit the generalization of attention as the
intensity is limited to fixed forms. One obvious limitation of the above three formulations is that
the monotonicity of the intensity can not change, i.e. the intensity between two events is either
increasing or decreasing. This can hardly hold in real-world cases especially for scattered events.

We use an attention based method to formu- A [ZI @ Different tvents - Attention-based intensity Formulation
late the intensity. We make no assumption in Intensity to Query 1 A(oulty)
our method and how intensity changes is fully History Events Encoding T R [
learned from data. The main ideais using (t,u) [~~~ —— , P :
to “query the past” as sketched in the right part | Vacked ! @ u_)l 2 h(tu)
of Fig. 2. Formally, we first embed (¢, u)(where iV x Mult-Head R Mt ead i
we want to compute the intensity) into a hidden Kk _V ¢ :
: i
. 1
1
1

vector irrelevant to the past using Eq. 14: : I Embe;ddmg : : T
h(t,u) = TYPE(u) + TIME(j 4+ 1,£) (16) —hﬁ ﬂ x

Embedding
1 Observed Events

Then h(¢,u) is used as the query in attention Figure 2: Overview of FATPP: we use attention to
mechanism and Yp.;; = [y1;y2;...;y;] is encode history (left). Then intensity at any time
used as keys and values to generate a hidden can be flexibly modeled by query (right).

vector relevant to the past:

h((t,u)|H:) = Attention(q, Kp,, V},)

)
a=Wph(t,u), K,=Y,; WK, V=Y, W/

In practice, we use multi-head attention. h(¢, u) and h((¢, u)|H;) are used to formulate intensity:
)‘(t7 U|Ht) = f (Wl—)[zseh(t> u) + WeTffh((tv U) ‘Ht)) (18)

Here f is the softplus function, wy,s. and w.s; are parameters to learn. The first term is only
relevant to current time and type and the second term reflects the effect of past events. There is no
explicit time ¢ as it is embedded into the two hidden vectors. This means that we make no assumption
about how intensity changes over time. Our FATPP is more flexible than semi-parametric NTPPs
and can model more diverse processes. Therefore, it is more suitable for our NTPP-MIX framework.
The efficiency analysis for FATPP compared with other Attention-based NTPP is in Appendix C.

From the perspective of intensity formulation, our FATPP is similar to Mei & Eisner (2016); Jia &
Benson (2019) and can be viewed as a continuous-time state evolution NTPP (Shchur et al., 2021):
at any time and type (¢, u), there are corresponding vectors representing states on continuous time
domain. The intensity formulation process is also similar to the Decoder in Transformer (Vaswani
et al., 2017), but our model “decodes” intensity at any timestamp and the length of output is unfixed.

5 EXPERIMENTS

We conduct experiments on both synthetic and real-world datasets. Sec. 5.1 compares the flexibility
of FATPP with other NTPPs. In Sec. 5.2 we evaluate the clustering ability of NTPP-MIX.

5.1 EXPERIMENTS ON SINGLE NTPPS FOR EVENT SEQUENCE MODELING

In this section, we compare FATPP with other NTPPs on modeling observed sequences to verify
its flexibility for modeling diverse processes. We generate five synthetic datasets using different
processes: 1) Homo Homogeneous Possion process. 2) In-homo In-homogeneous Possion process.
3) Inhibit Process in which events of different types inhibit each other. 4) Excite Process in which
events of different types excite each other (Hawkes). 5) In&Ex Process in which relation is either
inhibition or excitation. Each dataset contains 4,000 event sequences, and each sequence contains
L,, = 50 events with number of event types C' = 5.

Under review as a conference paper at ICLR 2022

Table 1: Average log likelihood estimation of single NTPPs on synthetic and real-world datasets.
Note that time intervals in eCommerce vary from seconds to hours, which makes THP crash.

Dataset \ Homo In-homo Inhibit Excite In&Ex \ Stock eCommerce Neuron
RMTPP -23.81 -23.95 -42.56 -40.46 26.07 | -98.44 -187.10 49.99
THP -23.80 -23.89 -41.35 -3990 2691 | -92.06 N/A 48.26
SAHP -23.70 -23.23 -43.63 -39.71 25.87 | -93.64 -121.86 66.34
LogNormMix | -23.50 -23.52 -42.01 -39.74 2625 | -77.47 -136.70 68.23
AMDN -23.38 -23.88 -42.09 -39.60 2595 | -77.19 -148.00 67.36
FATPP -23.71 -23.01 -40.99 -39.68 2629 | -76.91 -157.74 67.65

Alt)
Alt)

(a) In-homo (b) Inhibit (c) In&Ex
Figure 3: Estimated intensity function (summed over types for clarity) on synthetic datasets.

We also use three real-world datasets: 1) Stock contains daily stock prices of 31 companies. We
extract three types of event: ‘up’, ‘down’, ‘unchanged’ from each stock. 2) eCommerce contains
users’ behavior data from a cosmetics online store. Each user’s behaviors are categorized into four
types: ‘view’, ‘cart’, ‘remove-from-cart’, ‘purchase’. 3) Neuron contains spike record of 219 M1
neurons. Every time a neuron spikes is recorded as an event, these events form a univariate event
sequence. Details about synthetic and real-world datasets are reported in the Appendix B.

We compare our FATPP with RNN-based RMTPP (Du et al., 2016), Attention-based THP (Zuo
et al., 2020) and SAHP (Zhang et al., 2020), intensity free models LogNormMix (Shchur et al.,
2020) and AMDN (Sharma et al., 2021). In the context of clustering, our goal is to model observed
data. Therefore, we do not split test set and train models on a whole dataset. The average log
likelihood is reported in Table 1. We can see that our FATPP ranks top 1 in 3 datasets out of 8, ranks
top 2 in 6 datasets. This means our FATPP is flexible enough to model various diverse processes and
can further benefit our NTPP-MIX framework. We plot the modeled and true intensity in Fig 3. The
result shows that intensity of FATPP is very close to the ground truth and it is the only NTPP among
the four that can model the smooth change (Fig 3 (a)). We also do train-valid-test split to evaluate
the performance for modeling unobserved data, the result is shown in Appendix D.

5.2 EXPERIMENTS ON NTPP-MIX FOR EVENT SEQUENCE CLUSTERING
5.2.1 PROTOCOLS
We compare performance of the following clustering methods on synthetic and real-world datasets:

1) HKS+BGM. Learn a specific Hawkes process for each event sequence and apply Bayesian Gaus-
sian Mixture (BGM) model to the learned parameters for clustering. 2) ADM4+BGM. Learn a spe-
cific ADM4 (Zhou et al., 2013) for each event sequence and apply BGM to the learned parameters.
3) NPHC+BGM. Learn a specific Non Parametric Hawkes Cumulant (NPHC) (Xu et al., 2016) for
each event sequence and apply BGM to the learned parameters. 4) DIS+SC. Define the distance
for event sequence (Iwayama et al., 2017) and apply Spectral Clustering to the distance matrix of
all pairs of sequences. 5) DMHP (Xu & Zha, 2017). This is the most related method to our work,
which mixes several Hawkes processes together to generate a Dirichlet Mixture Model of Hawkes
Processes. 6) RMTPP-MIX. Our NTPP-MIX with RMTPP (Du et al., 2016) as the NTPP compo-
nent. 7) SAHP-MIX. Our NTPP-MIX with SAHP (Zhang et al., 2020) as the NTPP component. 8)
FATPP-MIX. Our NTPP-MIX with FATPP we proposed in Sec. 4 as the NTPP component.

The first four methods can be viewed as two-step pipelines which learn features of sequences and
use the extracted features for clustering. DMHP is a one-step joint model similar to our NTPP-MIX
which performs clustering directly. The difference is that the mixture components are Hawkes in
DMHP but NTPPs in our method. Detailed implementation of these models is shown in Appendix F.

We use the following three metrics to evaluate performance of different methods (the first two for
synthetic datasets, the third for real-world datasets): 1) Clustering Purity (CP) computes the fre-
quency of correct assignments. 2) Adjusted Rand index (ARI) measures the similarity of learned
and ground truth assignments. 3) Log Likelihood (LL) measures the goodness of fit for the observed
event sequences. Formal definition of these metrics can be found in Appendix E.

Under review as a conference paper at ICLR 2022

(a) Ground Truth (b) DMHP (c) RMTPP-MIX (d) FATPP-MIX
Figure 4: Binary similarity matrix of different models on synthetic dataset K* = 5 (Homo,In-
homo, Inhibit,Excite,In&Ex). Element A;; is in blue if sequence 7 and j are in the same cluster.

Table 2: CP and ARI estimation on synthetic datasets. For each model (except DIS+SC as it is very
stable), we run 5 trials with random initialization and report the mean and standard deviation.
Clustering Purity (CP): the higher the better

K* | HKS+BGM ADM4+BGM NPHC+BGM DIS+SC DMHP | RMTPP-MIX SAHP-MIX FATPP-MIX

5 0.5818 0.6476 0.5207 0.9534 0.9598 0.9898 0.9898 0.9886
+0.0805 +0.0812 +0.0164 — +0.0007 £0.0004 +0.0019 +0.0008

3 0.4892 0.4567 0.4384 0.9407 0.8789 0.9930 0.9891 0.9916
+0.0261 +0.0131 +0.0058 — +0.1069 £0.0006 +0.0008 +0.0023

4 0.4207 0.3896 0.3517 0.2557 0.5292 0.9532 0.9840 0.9844
£0.0320 +0.0135 +0.0146 — +0.0413 £0.0656 +0.0008 40.0023

5 0.4795 0.4801 0.3222 0.2225 0.6624 0.9273 0.9686 0.9834
£0.0037 +0.0064 £0.0037 — +0.0905 £0.0748 +0.0109 40.0037

Adjusted Rand Index (ARI): the higher the better

K* | HKS+BGM ADM4+BGM NPHC+BGM DIS+SC DMHP | RMTPP-MIX SAHP-MIX FATPP-MIX

5 0.0526 0.1134 0.0027 0.8222 0.8455 0.9597 0.9594 0.9550
+0.0852 +0.0851 +0.0023 — +0.0026 £0.0015 +0.0073 +0.0032

3 0.0893 0.0544 0.0378 0.8333 0.7473 0.9793 0.9677 0.9752
+0.0424 +0.0128 +0.0044 — +0.1327 £0.0018 £0.0023 +0.0068

4 0.0787 0.0465 0.0384 0.0001 0.2730 0.9079 0.9578 0.9591
£0.0258 +0.0074 +0.0108 — +0.0542 £0.1106 £0.0020 +0.0059

5 0.1923 0.1979 0.0441 0.0018 0.4753 0.8844 0.9248 0.9593
+0.0331 +0.0209 +0.0023 — +0.1142 +0.0885 +0.0241 +0.0037

5.2.2 EXPERIMENTS ON SYNTHETIC DATASETS

We conduct experiments on four synthetic datasets with different ground truth cluster number K*.
For K* = 2, we combine Homo and In-homo in Sec 5.1. For K* = 3, we add Inhibit. For K* = 4,
we add Excite. For K* = 5, we add In&Ex.

We first assume the ground truth cluster number K* is given and assign K = K™ for each method.
Table 2 shows the CP and ARI of different methods on synthetic datasets. In general, one-step joint
models (DMHP and NTPP-MIX) outperform two-step pipeline models. Two-step models decom-
pose clustering task into feature extraction and clustering the extracted feature. As these two steps
are relatively independent, the extracted feature may not be suitable for clustering. Moreover, the
first three models learn a unique process for each individual sequence, which may bring the risk of
overfitting. Performance of DIS+SC is satisfactory on K* = 2, 3 but drops sharply on K* = 4, 5.
This shows it is hard to define a universal distance for multi-typed event sequences (Wu et al., 2019).

For two joint models, our NTPP-MIX constantly outperforms DMHP, no matter what NTPP we
use. The mixture components in DMHP are Hawkes processes, i.e. different clusters are defined
as Hawkes processes with different parameters. This limits model capacity as dynamic behind data
can be much more complex than Hawkes processes. Moreover, when we add sequences generated
by Hawkes processes in K* = 4, performance of DMHP drops suddenly and the clustering result
collapses to one cluster. The mixture components of our NTPP-MIX are neural-network-based TPP
models, which are more general and flexible. Among three NTPP-MIXs, our FATPP-MIX performs
better when K* = 4,5, i.e. the dataset is complex. The standard deviation also shows our NTPP-
MIX is more stable than DMHP. We further visualize some clustering results on K* = 5 in Fig. 4.
It can be seen that result of our FATPP-MIX is the closest to ground truth, while DMHP fails to
separate cluster #4 out of #3 and #5, RMTPP-MIX assigns some sequences in cluster #4 to #5.

Under review as a conference paper at ICLR 2022

Aty

Alt)
[|=
es
25
§
g
Alt)

(a) Cluster #1 (b) Cluster #2 (c) Cluster #3
Figure 5: Clustered sequences and corresponding intensities of dataset Neuron using FATPP-MIX.
Table 3: LL estimation on three real-world datasets. Note that NPHC+BGM and DIS+SC are
likelihood-free methods. Complex time intervals in eCommerce makes RMTPP-MIX crash.

Dataset | HKS+BGM ADM4+BGM DMHP | RMTPP-MIX SAHP-MIX FATPP-MIX
Stock -109.03 -114.38 -102.19 -96.74 -90.93 -76.51
eCommerce -155.37 -127.61 -157.70 N/A -105.43 -122.61
Neuron 51.08 39.21 30.29 37.85 68.97 70.44

We further compare NTPP-MIX’s ability to choose Table 4: Number of clusters selected

the appropriate number of clusters with DMHP. We by DMHP and NTPP-MIX on synthetic
set the initial cluster number K = 2K™*, and run datasets. For each model, we run 10 trials.

10 trials with different random initialization, the se- “GroundTruh £+ | 2 3 4 5

lected number of clusters is shown in Table 4. We pwmnp | 355050 49+030 28+0.75 4.4+0.92
can find that number of clusters selected by our RMTPP-MIX 24+049 32£040 43+046 5.0+0.78
NTPP-MIX are closer to the ground truth and more FArppNix | 25:030 17075 46:066 50:000

concentrated (except on K* = 3).

5.2.3 EXPERIMENTS ON REAL-WORLD DATASETS

We evaluate our NTPP-MIX on the three real-world datasets in Sec 5.1. Table 3 shows the perfor-
mance of various methods. We can find that SAHP-MIX and FATPP-MIX outperform other methods
by a large margin on all three datasets. Two-step models perform poorly and are not as interpretable
as joint models: it is hard to explain what we get by clustering parameters of individual Hawkes
processes in Euclidean space. DMHP performs not very well on real-world datasets. The main rea-
son may be that the dynamics of real-world data can be much more complex than the assumption of
DMHP. Moreover, DMHP collapses on Neuron and assigns all sequences to the same cluster. Com-
pared with Table 1, we can see that the LL of SAHP-MIX and FATPP-MIX gets greater on all three
datasets than using a single NTPP, this demonstrates the necessity of using mixture model for event
sequence modeling. Fig. 5 shows some clustered sequences and corresponding intensities of Neuron
using FATPP-MIX. We can see that in Cluster #1, the intensity has a large constant base. When an
event occurs, it increases first then decreases slowly like traditional Hawkes process. In Cluster #2,
the intensity has a small constant base and spikes sharply when an event occurs. In Cluster #3, the
base intensity is not constant and changes with time. Occurrences of events have little influence.

Following (Xu & Zha, 2017), we also evaluate the Table 5: Clustering stability estimation of
Clustering Stability (see its formal definition in Ap- (0 joint models on real-world datasets.
pendix E) of DMHP and FATPP-MIX. The resultis N\ote that DMHP collapses on Neuron.

shown in Table 5. FATPP-MIX significantly out-
performs DMHP which mixes Hawkes processes,
showing our model is more stable and has stronger =~ DMHP 0.5347 0.3544 —
ability to discover underlying data distribution. FATPP-MIX | 0.6673 0.4819 0.6401

Methods \ Stock eCommerce Neuron

6 CONCLUSION

In this paper, we have proposed NTPP-MIX, a general framework that can utilize many existing
NTPPs for event sequence clustering. We combine variational EM algorithm and SGD to efficiently
train it. To further promote NTPP-MIX, we propose FATPP, a general data-driven NTPP based
on attention mechanism. Experiments show the effectiveness of our NTPP-MIX (especially with
FATPP) against state-of-the-arts on both synthetic and real-world datasets.

Under review as a conference paper at ICLR 2022

REFERENCES

Christopher M. Bishop and Nasser M. Nasrabadi. Pattern Recognition and Machine Learning. J.
Electronic Imaging, 2007.

Ricky T. Q. Chen, Brandon Amos, and Maximilian Nickel. Neural spatio-temporal point processes.
In International Conference on Learning Representations, 2021.

Tian Qi Chen, Yulia Rubanova, Jesse Bettencourt, and David Kristjanson Duvenaud. Neural ordi-
nary differential equations. In Advances in Neural Information Processing Systems, 2018.

D.J. Daley and Vere-Jones David. An Introduction to the Theory of Point Processes: Volume II:
General Theory and Structure. Springer Science & Business Media, 2007.

Nan Du, H. Dai, Rakshit S. Trivedi, U. Upadhyay, M. Gomez-Rodriguez, and Le Song. Recur-
rent marked temporal point processes: Embedding event history to vector. In ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining, 2016.

Joseph Enguehard, Dan Busbridge, Adam James Bozson, Claire Woodcock, and Nils Y. Hammerla.
Neural temporal point processes for modelling electronic health records. In Machine Learning
for Health,, 2020.

Anna Goldenberg. A survey of statistical network models. Foundations and Trends®) in Machine
Learning, 2009.

Yulong Gu. Attentive neural point processes for event forecasting. In AAAI Conference on Artificial
Intelligence, 2021.

Alan G. Hawkes. Spectra of some self-exciting and mutually exciting point processes. Biometrika,
1971.

Koji Iwayama, Yoshito Hirata, and Kazuyuki Aihara. Definition of distance for nonlinear time series
analysis of marked point process data. Physics Letters A, 2017.

Junteng Jia and Austin R Benson. Neural jump stochastic differential equations. In Advances in
Neural Information Processing Systems, 2019.

Shuang Li, Shuai Xiao, Shixiang Zhu, Nan Du, Yao Xie, and Le Song. Learning temporal point
processes via reinforcement learning. In Advances in Neural Information Processing Systems,
2018.

Hongyuan Mei and Jason Eisner. The neural hawkes process: A neurally self-modulating multivari-
ate point process. In Advances in Neural Information Processing Systems, 2016.

Takahiro Omi, naonori ueda, and Kazuyuki Aihara. Fully neural network based model for general
temporal point processes. In Advances in Neural Information Processing Systems, 2019.

Manfred Opper and David Saad. Advanced mean field methods: theory and practice. MIT press,
2001.

Karishma Sharma, Yizhou Zhang, Emilio Ferrara, and Yan Liu. Identifying coordinated accounts
on social media through hidden influence and group behaviours. In ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, 2021.

Oleksandr Shchur, Marin Bilos, and Stephan Giinnemann. Intensity-free learning of temporal point
processes. In International Conference on Learning Representations, 2020.

Oleksandr Shchur, Ali Caner Tiirkmen, Tim Januschowski, and Stephan Giinnemann. Neural tem-
poral point processes: A review. In International Joint Conference on Artificial Intelligence,
2021.

Ilya Sutskever, James Martens, George E. Dahl, and Geoffrey E. Hinton. On the importance of
initialization and momentum in deep learning. In International Conference on Machine Learning,
2013.

10

Under review as a conference paper at ICLR 2022

U. Upadhyay, Abir De, and Manuel Gomez-Rodriguez. Deep reinforcement learning of marked
temporal point processes. In Advances in Neural Information Processing Systems, 2018.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Lukasz Kaiser, and Illia Polosukhin. Attention is all you need. In Advances in Neural Infor-
mation Processing Systems, 2017.

Qitian Wu, Zixuan Zhang, Xiaofeng Gao, Junchi Yan, and Guihai Chen. Learning latent process
from high-dimensional event sequences via efficient sampling. In Advances in Neural Information
Processing Systems, 2019.

Weichang Wu, Junchi Yan, Xiaokang Yang, and Hongyuan Zha. Discovering temporal patterns for
event sequence clustering via policy mixture model. /IEEE Transactions on Knowledge and Data
Engineering, 2020.

Shuai Xiao, Mehrdad Farajtabar, Xiaojing Ye, Junchi Yan, Xiaokang Yang, Le Song, and Hongyuan
Zha. Wasserstein learning of deep generative point process models. In Advances in Neural
Information Processing Systems, 2017.

Hongteng Xu and Hongyuan Zha. A dirichlet mixture model of hawkes processes for event sequence
clustering. In Advances in Neural Information Processing Systems, 2017.

Hongteng Xu, Mehrdad Farajtabar, and Hongyuan Zha. Learning granger causality for hawkes
processes. In International Conference on Machine Learning, 2016.

Lizhen Xu, Jason A. Duan, and Andrew Whinston. Path to purchase: A mutually exciting point
process model for online advertising and conversion. Management Science, 2014.

Junchi Yan, Xin Liu, Liangliang Shi, Changsheng Li, and Hongyuan Zha. Improving maximum
likelihood estimation of temporal point process via discriminative and adversarial learning. In
International Joint Conference on Artificial Intelligence, 2018.

Qiang Zhang, Aldo Lipani, Omer Kirnap, and Emine Yilmaz. Self-attentive hawkes process. In
International Conference on Machine Learning, 2020.

K. Zhou, H. Zha, and L. Song. Learning social infectivity in sparse low-rank networks using multi-
dimensional hawkes processes. In Artificial Intelligence and Statistics, 2013.

Simiao Zuo, Haoming Jiang, Zichong Li, Tuo Zhao, and Hongyuan Zha. Transformer hawkes
process. In International Conference on Machine Learning, 2020.

11

Under review as a conference paper at ICLR 2022

APPENDIX

A CORRECTNESS AND CONVERGENCE PROOF OF TRAINING ALGORITHM

Due to page limitation, we present the derivation of our training algorithm here. Note that our model
is a semi-Bayesian model where 7 and Z are given prior distribution but 6 is not.

We first prove the correctness of Equation 6:

log p(S]0) = // 7) log p(S|0)dZdm
p(S|0)p(Z,=|S, 0
= //q(Z,ﬂ) log |()p(7r|sﬂ'|0))dZdﬂ'
S Z,7|0)
——— < dZd
// w[s,6) " (19)

s Z.7l0) q(Z.7)
= [[atz.m) (Z.7) p(z.xs.6) 2"

p(S,Z,m|0) q(Z,)
// Z,)) dZdﬂ'—i—//q(Z,w) log dedﬂ'
= L(q,0) + KL(g[lp)

Move KL(qg||p) to the left side, we can get Equation 6. Equation 6 tells us that maximizing £(q,)
equals to maximizing log p(S|#) and minimizing KL(g||p). Maximizing log p(S|#) is our original
optimization goal. Minimizing KL(q¢||p) gives us a good approximation of p(Z, 7|S,) which is the
posterior of cluster assignment. Assuming ¢(Z,w) = q(Z)q(w), our goal changes to maximizing
L(q,0) with respect to ¢(Z), ¢(7) and 6.

We now derive and prove the convergence of our training algorithm. We maximize £(q,) with
respect to ¢(Z), q(7), 6 iteratively. First, we fix g(7r), 0 and update ¢(Z), thus terms irrelevant to
q(Z) can be viewed as constant:

L(q,0) =L(q(Z), q(7),0)
(S Z,7|0)
// & @yt AT
= [¢(Z) (m)logp(S,Z, w|0)dwdZ — (m) (Z)log q(Z)dZdmw
/q /q p /q /q q 0)
//) log q(m)dZdm
:/q(Z)Eq(,,)[logp(S,Z,ﬂ'\&)]dZf /q(Z) log q(Z)dZ + Const
= — KL[q(Z)||p(S, Z|)] + Const
where we define a new distribution with logp(S,Z|0) = Eyxllogp(S,Z,w|0)], as

KL[¢(Z)||p(S,Z|6)] > 0 and the minimum occurs when ¢(Z) = p(S, Z|#). Thus in the ¢ round,
setting log ¢ (Z) = Eqe-1 (m [logp(S, Z, 7|0¢=1)] 4 Const (additive constant is set for normal-
ization), we can get:

L(g¥(Z), ¢V (), 047V) > £(g"V(Z), ¢V (mr), 007 Y) Q1)

12

Under review as a conference paper at ICLR 2022

Then, we fix ¢(Z),0 and update g(7), thus terms irrelevant to ¢(7r) can be viewed as constant.
Similarly, we can get:

L(q,0) =L(q(Z),q(x),0)

// EI(Z)Q(:")H) A

_ / o(m) / 4(Z) log p(S, Z, 7]0)dZdr — / 4(2Z) / o(r) log () dmdZ

// 7) log q(Z)dZdw

= / q(m)Eqy(z)[log p(S, Z, 7|0)]dm — /q(fr) log q(7)dm + Const
= — KL[q(7)||p(S, 7|0)] + Const

(22)

where logp(S,m|0) = Egz[logp(S,Z,m|0)], as KL[g(m)|[p(S,n[f#)] > 0 and the min-
imum occurs when ¢(w) = p(S,n|f). Thus in the t-th round, setting logq®(w) =
Eq (z)llogp(S, Z, |0¢=1)] + Const, we can obtain:

£(g(2),q0(w),67) > L(gV(Z),q") (), 00Y) 23)

Finally, we fix ¢(Z), ¢(7) and update 6, thus terms irrelevant to 6 can be viewed as constant. As 6
are parameters for neural networks, it is hard to directly get an optimal form like ¢(Z), g(7), we use
SGD for approximation:

ﬁ(q,9)
Z),q(w),0)
p(S,Z, |0
// ot gyt 2
// 7)logp(S, Z, w|0)dZdm — // 7)log (¢(Z)q(7)) dZd=
//) log (p(7)p(Z|m)p(S|Z,0)) dZdm + Const (24)
/ /) log p(S|Z, 0)dZd + / /) log (p(m)p(Z|)) dZd + Const

= / q(Z)log p(S|Z, 0)dm + Const
=Eyz) [log p(S|Z, #)] +Const

£(0)

We set 0() = SGD(—L(6)). However, as the optimization problem is non-convex, we can not
guarantee £ always gets greater after one-step in SGD. To address this problem, in each M-step,
we perform M > 1 SGD steps for optimization. Therefore, it is reasonable to assume that after M
steps:

L(q"(2),q" (m),60) > £(¢(Z), ¢V (), 07V) (25)

Summarize Equation 21, 23 and 25, we can get:
£(¢(2),¢"(m),600) = L(q"~V(2),¢" "V (x),607) (26)
This suggests that after each round, the objective function £(g,) gets greater. Perform these three

steps iteratively, we can get the optimal solution. In practice, we also use mini-batch training, details
can be find in Algorithm 1.

13

Under review as a conference paper at ICLR 2022

B DETAILS OF DATASETS

B.1 SYNTHETIC DATASETS

For synthetic datasets, we use five different processes to generate sequences. The corresponding
intensity functions are as follows:
1) Homogeneous Possion:

A(t, u|H) = 0.5u

2) Inhomogeneous Possion:

t
A(t,u|H:) = 1.5 + sin %
3) Inhibition:

)‘(t? u|Ht) = max {07 M + Z Qyy; CXP (_ﬂ(t - tz))}

ti<t
ty ~ Uniform(2,4) ayy, ~ Uniform(—1,0) S ~ Uniform(1,3)

note that ay,,,, < 0, thus the occurrence of a new event will cause the intensity to decrease.
4) Excitation (Hawkes):

At ulHe) = p + Z Oy, exp (=B(t — t;))
t; <t
oy ~ Uniform(0.2,0.4) v, ~ Uniform(0,1) /3 ~ Uniform(1, 3)

note that a,,,, > 0, thus the occurrence of a new event will cause the intensity to increase.
5) Excitation & Inhibition:

/\(t7 U|Ht) = max {07 M + Z Qyy; CXP (_ﬁ(t - tz))}

t, <t
iy, ~ Uniform(1,2) @y, ~ Uniform(—1,1) B ~ Uniform(1,2)

note that «v,,,,; can be negative or positive, thus relation between two type of events is either inhibition
or excitation.

For each of the above five processes, we generate 4,000 event sequences using python library tick?.
Each sequence contains L,, = 50 events with number of event types C' = 5.

We plot some sequences and the corresponding intensity function of the five processes in Fig 6.

B.2 REAL-WORLD DATASETS

The details of the three real-world datasets and the corresponding preprocessing methods are as
follows:

1) Stock® contains daily stock prices of 31 companies from 2006 to 2017. For each stock, an
up’ event is recorded when the closing price changes by more than +2% of its opening price, an
’down’ event is recorded when the closing price changes by more than —2% of its opening price,
an "unchanged’ event is recorded when the closing price changes by less than +1% of its opening
price. We further partition sequences by every season and obtain 1,488 sequences with average
length of 49.

2) eCommerce* contains users’ behavior data from a cosmetics online store in December 2019.
Each user’s behaviors are categorized into four types: ‘view’, ‘cart’, ‘remove-from-cart’, ‘purchase’.
In each day, we rank users by the number of actions they take and select users ranked 50 to 249 to
prevent the sequences from being too long or too short. This dataset contains 6,200 sequences with

Zhttps://x-datainitiative.github.io/tick/index.html
3The dataset is available on www.kaggle.com/szrlee/stock-time-series-20050101-to-20171231.
*The dataset is available on www.kaggle.com/mkechinov/ecommerce-events-history-in-cosmetics-shop.

14

https://x-datainitiative.github.io/tick/index.html
www.kaggle.com/szrlee/stock-time-series-20050101-to-20171231
www.kaggle.com/mkechinov/ecommerce-events-history-in-cosmetics-shop

Under review as a conference paper at ICLR 2022

t

=)

9 s oo e events | 25 events

2 ———— At Alt,u)

O 20 2.0

A

A o1s 1.5

=

o

Q 10 1.0

=]

]

Bn o5 05

©)

E oo 0.0

o . e e MO @weoew wewsw e e coeme o e ®eccems ® eecosm o ® 0 0000 o0 00 &

T 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 8
t t

=

o

o=

ZET oo e oo events{ 25 oo e events |

o ———— Alt,u) ————— Alt,u)

A 20 1 V| 20 1

= % %

g 15 154

Q

§0 1.0 1.0

g 05 05 ™ N

QS oo 0.04

,g -—e eC L L] e s mumesn o 20 - o - | ol om ame O o o . . . ol eB e

.E 0 1 2 3 a 5 6 7 0 1 2 3 4 5 6 7

events

Alt,u)

events

Inhibition

events

Alt, u)

events

Figure 6: Some event sequences and corresponding ground truth intensities of synthetic dataset. The

two sequences in each row are generated by the same process.

average length of 64.

3) Neuron® contains spike record of 219 M1 neurons. For each neuron, every time it spikes is
recorded as an event, these events form a univariate event sequence. We further partition sequences
by every 100ms and drop sequences with a length greater than 500. This dataset contains 3,718

>The dataset is available on www.kordinglab.com/spykes/index.html.

15

=

=}

=

<

S

.-

g o oo ee ® © me e © wsoeces e escre

m o 2 4 6 8 10 12 0 1 2 3 4 5 6 7 8
t t

=

8 7 esees eventsA 1z oo 0o events

3~ Alt, u) ————— At,u)

:.9 10

= N

= 8

0'8 6

g 4 N/

=} 2 [~

]

5 o

>< €y) . . L d . L d *e & Ll « L LN

m

www.kordinglab.com/spykes/index.html

Under review as a conference paper at ICLR 2022

sequences with average length of 265. Note that sequences in this dataset are univariate, which are
special cases of the data we study.

C THE EFFICIENCY ANALYSIS FOR FATPP

In this section, we analyze the efficiency of FATPP compared with other Attention-based NTPP, e.g.
AMDN (Sharma et al., 2021), THP (Zuo et al., 2020).

Table 6: Computation complexity of encoding, intensity formulation, overall training and minimum
number of sequential operations. L is the sequence length. K is the number of mixture components
in AMDN. S is the number of Monte Carlo samples. Assume K,.S < L.

Method \ Encoding Intensity Formulation = Overall Sequential

AMDN | O(L?) O(KL) O(L?) O(1)
THP O(L?) O(SL) O(L?) O(1)
FATPP O(L?) O(SL?) O(SL?) 0o(1)

We now consider an event sequence of length L and view d-dimensional (dimension of hidden state)
vector multiplication as an elementary operation. Table 6 shows the computation complexity of the
three models in different period. All three models need a forward pass of transformer to encode the
events, so the encoding complexity is O(L?). For intensity formulation, for each of the L time in-
tervals, AMDN uses a mixture of K log-normal distributions to model the PDF, thus its complexity
is O(K'L). THP uses S Monte Carlo samples to approximate the integration in Equation 2. The pa-
rameters in the intensity are only computed once, making each sample a O(1) operation. Therefore
the intensity formulation complexity of THP is O(SL). FATPP also uses .S Monte Carlo samples to
approximate the integration but each sample requires a query operation of transformer, so it’s com-
plexity is O(SL?). Jointly considering encoding and intensity formulation, assuming K, S < L,
the overall complexity is O(L?) for AMDN and THP and O(SL?) for FATPP. Theoretically, all
operations in these models can be parallelized, so the number of sequential operations is O(1) for
all three models.

Adding a factor of S to the complexity, we can model the intensity of each mark more accurately,
i.e. A(t,u|H;) for each u. On the contrary, AMDN is flexible enough to model the overall intensity
A(t|He) = >, A(t, u[H;), but assumes the probabilities of time ¢ and marker v are independent. In
other words, given the history, the conditional probability of which kinds of events to occur remains
constant. THP makes parametric assumptions about the intensity, which is not flexible enough.

We conduct experiments to confirm our above analysis. We use the Inhomogeneous Possion in
Appendix B.1 to generate synthetic data as its time and mark are dependent. We first generate a
dataset with 5,000 sequences to test the effect of Monte Carlo samples. We split the dataset into
training, validation, and testing sets at a ratio of 6:2:2 and train each model on the training set
and reports the corresponding negative log likelihood (NLL) on testing set. All models run on
a single RTX-2080Ti (11GB) GPU with equal hidden dimensions, attention heads, etc. Figure 7
shows the time cost and NLL on testing set with different sample times. We can see that number
of samples has little influence on THP. While the training time of FATPP increases linearly with
samples. However, the NLL of FATPP is the lowest among the three models and 10 samples result
in the best performance.

We then generate datsets with 10,000, 15,000, 20,000 sequences, split them and evaluate training
time and NLL. In this experiment, we fix the sample times as 10 for THP and FATPP. The result is
shown in Figure 8. The training time increases linearly with the size of dataset. While time cost of
FATPP is around four times that of other models, but it constantly outperforms other two models on
datasets with different size.

In general, FATPP is more time-consuming than AMDN and THP. But it models the intensity of
each individual marks more accurately.

D EXPERIMENTS ON SINGLE NTPPS FOR MODELING UNOBSERVED DATA

16

Under review as a conference paper at ICLR 2022

AMDN - a2 -
= e o ETTTTT T e .
g 204 ~®- THP S 2404 @
2 -#+- FATPP =
< 238
% 15 = x AMDN
£ * 256 -e- THP
—
1o ° -+~ FATPP
£ o 2234
= - = *
© * j=
=05]
= Z 23.2 \\ >
___________________ S -
d * 20l X : ‘ ‘ ‘ ‘ ‘
5 10 15 20 25 30 35 40 5 10 15 20 25 30 35 40
Monte Carlo Samples Monte Carlo Samples
(@) (b)

Figure 7: Results with respect to different Monte Carlo sample times. (a) Training time cost with
different sample times. (b)Negative log likelihood on testing set with different sample times.

AMDN
-o- THP -
-#+- FATPP T

&
@

AMDN
— THP
m— FATPP

w
o

N

n
o
o

N
o o
o =
& o

Training Time (s/epoch)
*
Negative Log Likelihood

&
o

o
o

N

n

N
o

4000 6000 8000 10000 12000) 3000.0 6000.0 9000.0 12000.0
Size of Training Set Size of Training Set

(@ (b)

Figure 8: Results with respect to different size of dataset. (a) Training time cost with different size
of dataset. (b)Negative log likelihood on testing set with different size of dataset.

In this section, we split each dataset in Sec 5.1 into training, validation, and testing sets at a ratio of
6:2:2. We train the model on training set and evaluate LL on testing set, other settings are same as
in Sec 5.1.

The result is shown in Table 7. We can see that our FATPP ranks top 1 in 5 datasets out of 8, ranks
top 3 in 7 datsets. Results under both observed and unobserved settings show that FATPP is able to
model various diverse processes, and further benefits NTPP-MIX.

Table 7: Average log likelihood estimation of single NTPPs on testing set.

Dataset \ Homo In-homo Inhibit Excite In&Ex \ Stock eCommerce Neuron
RMTPP -23.87 -24.65 -4430 -41.35 25.66 | -102.12 -168.57 46.00
THP -23.87 2492 4213 -41.45 25.80 -91.92 N/A 40.87
SAHP -23.88 -24.61 -43.77 -4047 25.71 -94.16 -116.04 58.69
LogNormMix | -23.92 2475 -42.64 -40.76 25.51 -74.60 -122.44 67.75
AMDN -23.99 -25.00 -42.32 -40.60 25.56 -73.07 -99.76 64.37
FATPP -23.86 -24.36 -41.29 -40.43 25.69 -68.75 -152.38 62.67

E DETAILS OF EVALUATION METRICS

1) Clustering Purity (CP). Given the ground truth cluster assignments, CP computes the frequency
of correct assignments. Formally:

K
1
CP— — ne 27
N};je{gﬁfm}lwk Gl 27)

where wy, is the set of sequences assigned to the k-th cluster by the model, ¢; is the real set of
sequences belonging to the j-th cluster, K and K* are learned and ground truth cluster number.
CP lies in [0, 1]. Higher CP indicates better clustering, a perfect clustering has a CP of 1, a bad
clustering has a CP close to 0.

17

Under review as a conference paper at ICLR 2022

2) Adjusted Rand Index (ARI). Given the learned and ground truth cluster assignments, ARI
measures the similarity of these two assignments. Formally:

a+ b . RI — E[RI}
o) AR (RI) — E[RT] (28)

RI =

where a is the number of pairs that are in the same set in both learned and real assignment, b is the
number of pairs in different sets in both learned and real assignment, E[R]] is the expected RI of
random assignments. The Rand Index (RI) measures the similarity, while ARI further adjusts it so
that a random assignment has a negative ARI or an ARI close to 0. ARI lies in [—1, 1]. Higher ARI
indicates better clustering, a perfect clustering has a ARI of 1.

3) Log Likelihood (LL). When the ground-truth assignment is unknown, we evaluate LL:

N
1
LL =+ > logp(Sul0) (29)

n=1

where z,, is the predicted cluster of S,,. For each sequence S,,, the model assigns it to cluster z,,
and use the corresponding basic model p(-|6z,) (e.g. Hawkes for HKS+BGM and DMHP, NTPP
for NTPP-MIX) to evaluate the likelihood. Higher LL indicates better clustering to a certain extent.

4) Clustering Stability (CS). CS measures the consistency and stability of a model via cross-
validation (Goldenberg, 2009).

In our experiments, we run J = 10 trails for each model. In trail 7, we randomly select 60%
sequences from the dataset and use them to train the model. Then the trained model is applied to
the whole dataset to get an assignment C;. As random selection somehow represents the underlying
distribution of the dataset, assignments of different trail should be similar for a stable model. Then

CS is defined as: J

1
CS=—> 3 ARI(C;,C)) (30)
(2) i=1 j#i
CS lies in [-1, 1]. Higher CS indicates more stable clustering but does not necessarily mean a better
model: assigning all sequences to one cluster will get a CS of 1. Therefore we only use CS as a
supporting metric for stability comparsion.

F IMPLEMENTATION DETAILS OF MODELS

1) HKS+BGM. Hawkes is implemented by python library tick. Hyper-parameter decay is set by
grid search in [100, 10, 1,0.1,0.01,0.001]. Other hyper-parameters are set as default values. BGM
is implemented by python library sklearn®, hyper-parameter max_iter is set to 500 and other hyper-
parameters are set as default values.
2) ADM4+BGM. ADM4 is implemented by python library tick. Hyper-parameter decay is set by
grid search in [1000, 100, 10,1, 0.1,0.01,0.001]. Other hyper-parameters are set as default values.
Implementation of BGM is same as HKS+BGM.
3) NPHC+BGM. NPHC is implemented by python library tick. Hyper-parameter integra-
tion_support is set to 0.2. Other hyper-parameters are set as default values. Implementation of
BGM is same as HKS+BGM.
4) DIS+SC. DIS is implemented by the matlab toolbox THAP 7, all parameters are set as default.
SC is implemented by python library sklearn.
5) DMHP. DMHP is implemented by the matlab toolbox THAP. On synthetic datasets, outer iter is
set to 10, inner iter is set to 5. On real-world datasets, outer iter is set to 20, inner iter is set to 4.
6) RMTPP-MIX. We implement RMTPP-MIX using PyTorch. On both synthetic and real-world
dataset, batch size B is set to 128, training epoch 7T is set to 100, number of SGD in M-steps is set
to 5, weights for prior «y is set to %, we pre-train each RMTPP for 5 epochs on the whole dataset.
On synthetic dataset, dimension of hidden state d is set to 32, ¢(7) update rate 7 is set to 0.01, min-
N

imum cluster size € is set to =, Adam with learning rate 0.005 is used for SGD optimization; On

®https://scikit-learn.org/stable/index.html
"https://github.com/Hongteng Xu/Hawkes-Process-Toolkit

18

https://scikit-learn.org/stable/index.html
https://github.com/HongtengXu/Hawkes-Process-Toolkit

Under review as a conference paper at ICLR 2022

real-world dataset, dimension of hidden state d is set to 64, ¢(7) update rate 7 is set to %, minimum

cluster size € is set to ﬁ, Adam with learning rate 0.0005 is used for SGD optimization.

7) SAHP-MIX. We implement SAHP-MIX using PyTorch. On both synthetic and real-world
dataset, we use 2-head attention, encoder layer is set to 1, batch size B is set to 128, training epoch
T is set to 100, number of SGD in M-steps is set to 5, weights for prior oy is set to %, we pre-train
each SAHP for 5 epochs on the whole dataset. On synthetic dataset, dimension of hidden state d is
set to 32, g(7r) update rate 7 is set to 0.01, minimum cluster size € is set to %, Adam with learning
rate 0.005 is used for SGD optimization; On real-world dataset, dimension of hidden state d is set to
64, q(7r) update rate 7 is set to %, minimum cluster size € is set to 10%}(, Adam with learning rate
0.0005 is used for SGD optimization.

8) FATPP-MIX. We implement FATPP-MIX using PyTorch. Hyper-parameter setting is same as

SAHP-MIX except training epoch 7' is set to 50 on synthetic datasets.

NTPP-MIX runs on a single RTX-2080Ti (11GB) GPU and other models run on Intel i9-7920X
CPU @ 2.90GHz with 128GB RAM.

G EXPERIMENTS ON HYPER-PARAMETER SETTING

There are some hyper-parameters in our NTPP-MIX which may affect model performance. In
this section, we conduct experiments to investigate their influence and give suggestions for hyper-
parameter setting. We conduct experiments on synthetic dataset K = 5 (Homo + In-homo + Inhibit
+ Excite + In&Ex) and use FATPP as the basic component.

G.1 NUMBER OF SGD STEPS IN ONE M-STEP: M

In Algorithm 1, we perform M SGD steps in one M-step. And in Appendix A, we assume after M
SGD steps, L£(6) gets greater so that the whole training algorithm can converge. We now conduct
experiments to verify it. We use FATPP-MIX with 2-head attention, dimension of hidden state d is

set to 32, encoder layer is set to 1, batch size B is set to 128, training epoch 7' is set to 50, g()

update rate 7 is set to 0.01, minimum cluster size € is set to 5>¢1<VK = 800, weights for prior «y is set

to %, Adam with learning rate 0.005 is used for SGD optimization, we pre-train each RMTPP for
5 epochs on the whole dataset. We then set M to [1,3, 5, 7] and evaluate the CP and ARI, result is
shown in Table 8.

We can see that FATPP-MIX performs poorly when M = 1 (but still much better than baselines
such as DMHP). Actually, the selected number of clusters is 4. This confirms that we need multiple
SGD steps in one M-step. Setting M = 3,5, 7, the model converges well and we get a series of
relatively close results. Fig 9 shows CP and ARI curves during training, which also confirm the
model’s convergence. Considering the training speed, we recommend setting M in {3, 4, 5}.

Table 8: Performance of FATPP-MIX with respect to hyper-parameter SGD steps M

M | 1 3 5 7
CP 07927 09886 0.9828 0.9797
ARI 0.7053 09729 0.9577 0.9503

Speed (seconds/epoch) 13.33 37.07 58.77 85.90

G.2 BATCH SIZE: B

In Algorithm 1, we use mini-batch training: randomly sample B sequences to represent the underly-
ing distribution and update model based on the sampled data. Therefore, the batch size B may affect
model performance, we now investigate it. We use FATPP-MIX with 2-head attention, dimension
of hidden state d is set to 32, encoder layer is set to 1, training epoch T’ is set to 50, number of SGD
steps M is set to 5, ¢(7) update rate 7 is set to 0.01, minimum cluster size ¢ is set to 5*LK = 800,
weights for prior «y is set to %, Adam with learning rate 0.005 is used for SGD optimization, we
pre-train each RMTPP for 5 epochs on the whole dataset. We then set B to [64, 128, 256, 512] and
evaluate the CP and ARI, result is shown in Table 9, CP and ARI curves during training are shown
in Fig 10.

19

Under review as a conference paper at ICLR 2022

1.0 — e ——

TXXX
o
Il N we

— M=1
— M=3
— M=5

M=7

o
S
o] —
"
o
o |
=)

0 10 20 30 40 20 30 40
t t

(a) CP (b) ARI

Figure 9: CP and ARI curves during training process with different M .

We can see that when the batch size is 64, the result falls significantly behind other settings. This
is because a small batch size may result in biased samples, which can not represent underlying
distribution well. When B > 128, the results are satisfactory and larger B gives relatively better
results. Therefore, we recommend setting B as large as possible within the reasonable range.

Table 9: Performance of FATPP-MIX with respect to batch size B
B | 64 128 256 512

CP | 09310 0.9828 0.9908 0.9892
ARI | 0.8444 0.9577 09773 0.9732

’f;cdgt\@% TR N~
/‘ 0.8 W\/—W\/—\A\/J\

o 4
o <
06 — B=64 o — B=64

os — B=128 — B=128

—— B=256 0.2 —— B=256

o4 B=512 B=512

0 10 20 30 40 50 0 10 20 30 40 50

t t
(a) CP (b) ARI

Figure 10: CP and ARI curves during training process with different batch size B.

G.3 UPDATE RATE FOR ¢(7): 1

In Algorithm 1, we sample a batch of data, compute parameters for ¢(7) on this batch. As new
parameters are computed on part of the dataset, we introduce 7 to determine how much to update.
acts as the momentum in machine learning (Sutskever et al., 2013), we now evaluate how it affects
the model.

We use FATPP-MIX with 2-head attention, dimension of hidden state d is set to 32, encoder layer
is set to 1, batch size B is set to 128, training epoch T is set to 50, number of SGD steps M is
set to 5, minimum cluster size € is set to % = 800, weights for prior «y is set to %, Adam with
learning rate 0.005 is used for SGD optimization, we pre-train each RMTPP for 5 epochs on the
whole dataset. We then set 7 to [0.1,0.05,0.01, 0.0064, 0.001], note that 0.0064 = %. CP and ARI

estimitation is shown in Table 10, CP and ARI curve is shown in Fig 11.

We can see that our model is not sensitive to 7, a wide range of 7 can give good results. For
interpretability, we recommend setting n = %: B sequences in IV cause an update of %.

20

Under review as a conference paper at ICLR 2022

CcpP

Table 10: Performance of FATPP-MIX with respect to update rate 7
n | 0.1 0.05 0.01 0.0064 0.001

CP | 09819 0.9819 0.9828 0.9851 0.9860
ARI | 09557 0.9558 0.9577 0.9633 0.9654

1.0 1.0

’ v VTSV
0.9 F
0.8
0.8
0.6
0.7 n=0.1 z — n=0.1
06 — n=005 < s — n=005
0.5 —— n=0.01 —— n=0.01
oa n=0.0064 02 n=0.0064
o —— n=0.001 5 —— n=0.001
0 10 20 30 40 50 0 10 20 30 40 50
t t
(a) CP (b) ARI

Figure 11: CP and ARI curves during training process with different update rate 7.

21

	Introduction
	Preliminaries and Related Works
	Traditional temporal point processes
	Neural temporal point processes
	Event sequence clustering methods

	NTPP-MIX: Mixture of NTPPs for event clustering
	Model Framework
	Training Algorithm

	FATPP: Fully Attentive Temporal Point Process
	History events encoding
	Attention-based Universal Intensity Formulation

	Experiments
	Experiments on single NTPPs for event sequence modeling
	Experiments on NTPP-MIX for event sequence clustering
	Protocols
	Experiments on Synthetic Datasets
	Experiments on Real-world Datasets

	Conclusion
	Correctness and Convergence Proof of Training Algorithm
	Details of Datasets
	Synthetic Datasets
	Real-world Datasets

	The efficiency analysis for FATPP
	Experiments on single NTPPs for modeling unobserved data
	Details of Evaluation Metrics
	Implementation details of models
	Experiments on Hyper-parameter setting
	Number of SGD steps in one M-step: M
	Batch Size: B
	Update rate for q():

