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ABSTRACT

Ensuring algorithmic fairness remains a significant challenge in machine learning,
particularly as models are increasingly applied across diverse domains. While
numerous fairness criteria exist, they often lack generalizability across different
machine learning problems. This paper examines the connections and differences
among various sparsity measures in promoting fairness and proposes a unified
sparsity-based framework for evaluating algorithmic fairness. The framework
aligns with existing fairness criteria and demonstrates broad applicability to a wide
range of machine learning tasks. We demonstrate the effectiveness of the proposed
framework as an evaluation metric through extensive experiments on a variety of
datasets and bias mitigation methods. This work provides a novel perspective to
algorithmic fairness by framing it through the lens of sparsity and social equity,
offering potential for broader impact on fairness research and applications.

1 INTRODUCTION

Algorithmic fairness has been a key research challenge in machine learning. On the one hand,
the growing adoption of automated machine learning models has streamlined decision-making in
fields such as healthcare and finance. On the other hand, these models may produce biased and
unfavorable outcomes for certain groups or individuals. This may be due to intrinsic biases in
real-world datasets, which are influenced by societal biases against historically marginalized groups
(Leel, [2018; [ Buolamwini & Gebrul 2018)).

Research on mitigating model biases has led to the development of numerous fairness criteria and
algorithms, along with extensive comparative studies evaluating their performance (Bellamy et al.,
2018; [Friedler et al.l 2019; [Wei et al., |2021; |Alghamdi et al.l 2022). However, most existing works
focus on classification problems with binary targets (Agarwal et al., 2018} [Zeng et al.,2022;|Gaucher
et al., [2023) or binary group membership (Denis et al.,2024)), while fewer studies address fairness in
regression problems (Agarwal et al 2019; [Chzhen et al} |2020; [Xian et al.l 2024). Moreover, the
majority of existing group fairness notions are confined to a limited set of widely adopted criteria
(Calders et al., [2009; [Hardt et al., 2016} |Agarwal et al., 2019), restricting their applicability to
many real-world scenarios. Recent works by |Alghamdi et al.|(2022) and Xian et al.| (2023 extend
bias mitigation algorithms to multi-class problems and broaden the definition of existing fairness
criteria. However, a universal fairness framework applicable across a broad range of machine learning
problems remains absent.

Inspired by the Gini Index (Gini, |1912)), widely used to evaluate sociological inequality in economics,
and recent advances in sparsity measures (Diao et al., [2023), we connect algorithmic fairness
assessment to the quantification of group vector sparsity by considering the full value distribution.
In this work, we bridge the gap by introducing a unified, sparsity-based framework for quantifying
algorithmic fairness. Our contributions can be summarized as follows:

1. For sparsity measures, we focus on the recently proposed PQ Index (Diao et al., [2023))
and provide a theoretical guarantee of its effectiveness in measuring fairness (Section [3)).
Furthermore, we highlight its connection to the Maximum Pairwise Difference (MPD), a
widely used method in algorithmic fairness, and the Gini Index, a well-established measure
of inequality (unfairness) in economics.
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2. We introduce a novel, unified framework for measuring algorithmic fairness based on the
sparsity of the full distribution of group-wise outputs (Section ). Through decoupling
of MPD from fairness evaluation, this framework integrates existing fairness criteria and
provides the flexibility for multi-group, multi-class, and regression problems, which are
typically treated separately in existing studies.

3. To evaluate the performance of the proposed framework, we conduct extensive experiments
across multiple datasets and bias mitigation techniques (Section[5)). We demonstrate the
framework’s effectiveness by aligning the proposed metrics with established ones across
benchmarks, and its broader applicability through analysis in intersectional fairness settings.

2 RELATED WORK

Sparsity Measures. Sparsity embodies the idea that a vector’s magnitude is primarily determined
by a few large components, reflecting inequality in the distribution of the vector components (Gini,
1912). It is important and widely utilized in various fields such as statistics and signal processing
(Tibshirani, |1996} [Donoho, 2006; |Ak¢akaya & Tarokh, [2008). Various measures of sparsity have
been proposed from different perspectives (Hurley & Rickard, 2009). The Gini Index (Gini, |[1912)
is a well-established measure of inequality in wealth or welfare distribution in economics (Dalton,
19205 [Porath & Gilboal [1994; Rickard & Fallon, |2004)). Another type of sparsity measure is based on
£, norms. For instance, £;-norm-based constraints are frequently applied in function approximation
(Barron, |[1993)), model regularization, and variable selection (Tibshirani, |[1996;|Chen et al.| 2001]).
The PQ Index, defined as a ratio of £, norms, has been used for pruning deep neural networks (Hurley
& Rickard, 2009; |Diao et al., |2023). Motivated by the desirable properties of the PQ Index, this paper
explores its theoretical foundations and applies it in the proposed fairness framework.

Algorithmic Fairness. Group fairness evaluates model predictions in relation to sensitive attributes.
Among various group fairness criteria, statistical parity (Calders et al., 2009) and equalized odds
(Hardt et al., 2016) are the most widely recognized in the fairness literature. In addition, statistical
learning methods, including mutual information (Mary et al., 2019; |Steinberg et al., 2020; |Roh
et al., [2020) and correlation (Beutel et al.| 2019} [Baharlouei et al.l [2019; |Grari et al.| [2021), have
been employed to quantify the extent of fairness violations. [Han et al.| (2023) recently proposed a
distribution-level metric for classification using the total variation distance between the predicted
probabilities of two sensitive groups. In contrast, our framework extends and unifies existing group-
level fairness notions and can be applied to various machine learning problems.

Bias Mitigation. Fairness-promoting algorithms are generally categorized into three families
(Angwin et al.| [2016): pre-processing, in-processing, and post-processing. Pre-processing algorithms
focus on transforming the data through feature editing (Feldman et al., 2015} |Calmon et al., 2017) or
reweighting (Kamiran & Calders, [2012). In-processing approaches consider a fair risk minimization
problem and impose the fairness constraint during model optimization (Agarwal et al.| 2018} Zhang
et al.,[2018} |Baharlouei et al., 2019} |Cho et al.| 2020a; |Lowy et al.l 2021). Post-processing methods
take in a biased base model and project its outputs to satisfy fairness constraints (Hardt et al.|
20165 [Kamiran et al., 2012} [Pleiss et al.,[2017). We include recent works under in-processing and
post-processing to validate our proposed framework.

3  SPARSITY

Letw = [wy,...,wq)" € RY be a vector from the d-dimensional space of non-negative real numbers,

I3 L)

where “r” denotes the transpose of a vector. Denote the values of the largest and smallest components

of w bY Wynae and wi,y,, respectively. Let 14 2 [1,...,1]". A sparsity measure S(w) quantifies
the mass distribution among components of w, with a larger value indicating higher sparsity. Existing
fairness metrics often focus on measuring outcome gaps for the worst-case. A key observation is that
many of these metrics can be decomposed into two components: a per-group evaluation metric and
a Maximum Pairwise Distance (MPD) used for group comparisons. In this section, we explore the
theoretical connections among the MPD and two sparsity measures, the Gini Index and the PQ Index.

Definition 3.1 (Maximum Pairwise Difference). The Maximum Pairwise Difference of w is

MPD(w) 2 max |w; — wjl.
i,5€{1,...,d}
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Definition 3.2 (Gini Index). The Gini Index of w is
d d
A die1 Zj:l lwi — wj
24 Y w;
Definition 3.3 (PQ Index). For any 0 < p < ¢, the PQ Index of w is

11 flwllp
I, (w)=1—da"» ,
P |wl[q

Gini(w)

where ||w||, = (Zle w;[”) P 55 the £p-norm of w for any p > 0.

By definition, all the above sparsity measures attain their minimum value of 0 when the components
of w are equal. Both the PQ Index and the Gini Index are scale-invariant in the sense that multiplying
w by a positive factor does not change the values of I, ,(w) or Gini(w). However, the Maximum
Pairwise Difference lacks this property.

Relation to Fairness. Fairness metrics in machine learning (Dwork et al., [2012; |Hardt et al., 2016)
and the Gini Index both reflect distributive justice (Everett & Everett, 2015), particularly Rawls’
principle (Tao et al.,[2014; Rawls| 2017)). Originally an economic measure of inequality (Gini,|1912;
Senl [1997; Cowell, 2011), the Gini Index is well-suited to fairness analysis in machine learning due
to its ability to capture disparities across the full distribution (Do & Usunier; [2022; [Li et al., |2023).
However, criteria such as Statistical Parity (MPD among sensitive groups) (Alghamdi et al., [2022;
Xian & Zhao, |2024) may overlook small-scale relative differences. The Gini Index and the PQ Index,
which satisfy all six ideal sparsity properties (Hurley & Rickard, [2009)), address this limitation by
evaluating the entire output distribution, where higher sparsity indicates lower fairness.

3.1 PROPERTIES OF PQ INDEX

Diao et al.{(2023) have shown that 0 < I, ,(w) < 1— di~ %, anda larger I, ;(w) indicates a sparser
vector. Additionally, PQ Index satisfies the six properties of an ideal sparsity measure proposed by
Dalton| (1920); Rickard & Fallon|(2004)). These properties require the sparsity to remain unchanged
when w is multiplied by a positive scalar or appended by a duplicate. Moreover, adding a positive
constant to each component of w, or transferring o € (0, (w; — w;) /2) from w; to w; where
i, € {1,...,d} and w; > w; reduce the sparsity. Additionally, appending w with a zero or adding
a positive constant to a component that is sufficiently large will increase the sparsity. The details of
them can be found in Appendix [B.1]

In this work, we deepen the understanding of the PQ Index by providing the following theoretical
properties. Theorems 3.1-3.4 characterize the properties of the PQ Index in quantifying fairness.
Theorem 3.5 and 3.6 demonstrate connections and differences among MPD, Gini Index, and PQ
Index. The proofs are presented in the Appendix[B.2] The theorems bridges the proposed sparsity
measure and fairness metrics commonly used in the machine learning literature, such as Statistical
Parity (SP) and Equalized Odds (EO), both of which involve Maximum Pairwise Difference (MPD)
as a component.

Theorem 3.1. For w, if there exists k € {1,...,d} such that wy, # 0 and wj = 0 (j # k), then:

1

1
Ipg(w)=1-da"»
Remark 3.1. The above theorem indicates that the PQ Index reaches its maximum value when the
vector contains only a single nonzero component.
Theorem 3.2. I, ,(w) is minimized if and only if w = c - 14, where c is any positive constant.

Remark 3.2. The above theorem indicates that the minimizer of I, ,(w) has equal components. This
minimizer is unique up to a scalar factor c.

Theorem 3.3. Forp=1andq=2,

1

A"z -1y

w
H Tl = V2haw).

2
Remark 3.3. The above theorem shows that I; »(w) quantifies the distance between the w, scaled
to have unit /5 norm, and the unit vector with equal components. Thus, as Il’g(w) decreases, the

normalized w approaches d=2 14
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Theorem 3.4. Let p = 1, ¢ = 2. Assume that one component of w is strictly larger than the others.
We remove ¢ (0 < ¢ < wy) from that component and add ¢/(d — 1) to the remaining components
and denote the resulting vector by w. Without loss of generality, suppose w1 = Wmar and wi > w;
(i=2,...,d). Then,

w = [wl —57’LUQ+E/<d— 1),...,wd+é/(d— 1)]
If W = Wpqq, we have

1172(’111) < 1172 (w)

Remark 3.4. 1deally, a sparsity metric should decrease if we remove part of the largest component
and distribute its value to the remaining components, while ensuring that the largest component
remains the largest. This aligns with the property of PQ Index stated in the above theorem. Since
W —W; < wy —w; and W; — W = w; —wj (4,5 € {2,...,d}), the Gini Index and the Maximum
Pairwise Difference also have the above property.

3.2 A COMPARISON AMONG THE SPARSITY MEASURES

First, we show the connection among the PQ Index, the Gini Index, and the Maximum Pairwise
Difference by the following theorem.

Theorem 3.5. Let p =1 and q = 2. We have

. d
MPD(w) < 2||w||2y/211 2(w), )
I 2 (w) < Gini(w). 3)

Remark 3.5. The above theorem shows that for vectors w with a fixed ||w||2, any one sparsity measure
can be bounded in terms of the others. We need to fix ||w]|2 since M PD(w) is not scale-invariant.
Bounding the PQ Index by the Gini Index, or vice versa, does not impose this requirement.

Second, we analyze the differences between the Maximum Pairwise Difference, PQ Index, and Gini
Index. The main difference between the Maximum Pairwise Difference and the latter two is that
M PD(w) depends on the largest and the smallest components of w, whereas I, ,(w) and Gini(w)
also depend on the values of the other components. Specifically, the following theorem holds for PQ
Index:

Theorem 3.6. Denote w as the (d — 2)-dimensional vector obtained by removing the components of
w that are equal t0 Wyaz OF Wynin. Let w® and w® be two d-dimensional vectors with the same
number of largest components and the same number of smallest components. If

Ip,q(w(l)) < Ip-,q('w(Q))a
wih )./l g = w3, /llw® |,

max max

1 2
wit) Nw Oy = wl) /w®],

we also have 1, ,(w()) < I, , ().

Remark 3.6. The above theorem shows that for two unit vectors with the same largest and smallest
components, their relative sparsity, as measured by PQ Index, is determined by the values of their
remaining components after removing the largest and smallest ones. In contrast, for two such vectors,
their Maximum Pairwise Difference is always the same.

We also highlight the differences between the PQ Index and the Gini Index. We restrict w such that
|lw]ly = 1. When wy > - -+ > wy, it can be shown that

d
Gini(w) = 2 > (d+1 = 2i)w;.
1=1

For a different ordering of the components of w, we replace (w1, . .., wq)" in the above formula with
w after rearranging its components in decreasing order. Therefore, given that ||w|; = 1, Gini(w) is
a piece-wise linear function of w. In contrast, I,, ,(w) is a smooth function. We visualize Gini(w)
and Iy 5(w) in Figure[l|for d = 3. As highlighted in Remark [3.1]and 3.2 when the sparsity of the
vector reaches its maximum (i.e., a one-hot vector), the MPD also attains its maximum. Conversely, a
uniform vector minimizes both sparsity and MPD. These relationships illustrate how sparsity reflects
group-level disparities, thereby supporting its role as a fairness-relevant measure.

4
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4 UNIFYING GROUP FAIRNESS WITH SPARSITY

In this section, we formulate a unified fairness
framework based on the idea that sparsity is the
inverse of fairness. In general, we replace the

Maximum Pairwise Difference used in existing ‘ N ‘
fairness metrics with a sparsity measure over % W ‘

w, where the length of the vector w equals the  °, 7 e ¢

.2 . . %2 %
number of sensitive groups in the input. De- o . ” % o 2
note the input vector as X € X, the target w2 ¥ RS 2 T owm Y & % T W
vector as Y € ), and the sensitive attribute N Nl
vector as A € A, where A may or may not (a) Gini Index (b) PQ Index

be a subset of X. Let X, and Y, be the data

points belonging to a subgroup a € A. Let Figure 1: The plots of (a) Gini(w) and (b) Iy o(w)
|| and |A| be the cardinalities of Y and A, re- for d = 3 and ||w|; = 1. In each plot, the
spectively. For a function f : X — f(X), let horizontal axes correspond to wy and wy (wWhere
St f(X)— S(f(X)) be any sparsity measure w3 = 1 —w; — wy). The vertical axis shows the
imposed on f, and g : f(X) — g(f(X)) bea value of Gini Index or PQ Index. Since there are
model performance evaluation metric based on, 6 possible permutations of [wy, we, w3], Gini(w)
e.g., the Confusion Matrix for classification or is composed of subsets of 6 distinct planes. In
Mean Squared Error for regression. contrast, I o(w) has a smooth surface. Both

Gini Ind d PQ Index attain their mini
We denote the sparsity based metrics in the form atH:; :n [g)_( 1a%—1 %—{I]Tex attain Hhett minmum

S-*, where*“x” is a placeholder for an existing
fairness criterion, such as statistical parity. Let a be a vector with components a; € A (i =
1,...,]A|). Let m; € R represent outputs from a function that depends on the index . Specifically,

m; can be f(X,,) or g(f(X,,),Ys,). Define [mz]‘Al1 = [m1,...,my4]". Then, S-x can be

expressed as S ([ml]‘zéll) We summarize the criteria discussed in this paper in Table

Table 1: Group fairness criteria discussed in the main text. For classification, we focus on Statistical
Parity and Equalized Odds. For regression, we use Statistical Parity based on Kolmogorov-Smirnov
(KS) distance and propose EO definition in MPD form. We then reformulated these criteria incorpo-
rating sparsity measure S(-). Fairness criteria proposed in this work are highlighted in gray, with
details in Sectiond] A complete table of criteria can be found in Appendix [B3|

Problem Criteria Expression
Statistical Parity maXycy MaXg, o/ c A ‘E(f(Xa) =y) - E(f(Xo) = y)‘
S-Statistical Parity maxyey S(E(f(X ;)= y)LA‘l)
Classification
Equalized Odds na(F(X) =y) =Py o (f(X) = y)’
S-Equalized Odds maxyey S([g(f( )Y, )liZ 2 )
Statistical Parity Pa(f(X) <y) —Po(f(X) < y)‘
S-Statistical Parity sup, ey S ([Pa; (f(X) < )]lAl )
Regression
Equalized Odds maXg, q/c A .g(f( a), Ya) — 9(f(Xar), Yar)
S-Equalized Odds S(l9(f(Xa,), Yo )II2))

4.1 STATISTICAL PARITY (SP)

Statistical Parity (a.k.a. Demographic Parity) assesses whether the predicted outcome of a model
is independent of sensitive attributes (e.g., race, gender, or education). Enforcing statistical parity
ensures that the likelihood of a specific model outcome is equal across different sensitive groups,
regardless of group membership.

Classification. Statistical Parity has been used extensively in classification problems to quantify
algorithmic fairness for classification |Calders et al.|(2009). Although its oracle form is proposed for
binary classification problems, recent work |Alghamdi et al.|(2022); [Xian et al.| (2023)); Denis et al.
(2024) has advanced its usage to multi-classification problems.
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Definition 4.1 (Statistical Parity (classification)). A classifier f: X — ) satisfies SP if the following
quantity is equal to O:

E(f(Xa) = 1) ~ E(f(Xa) = 9)|.
mase max [E(f(X.) =) ~ E(f(Xa) = 9)
The Maximum Pairwise Difference (Definition[3.T) is calculated among group-wise outputs, and then
the maximum value is taken over all classes.

Definition 4.2 (S.-Statistical Parity). The sparsity-based statistical parity is measured by
S(IE(f(X,) = )],
maxc S ([E(f(Xa,) = 9)151)

If S(-) in the above expression is the Maximum Pairwise Difference, the classifier reduces to
Definition The suffix “c” stands for classification. One may also consider replacing the max
operation over multiple classes with other measures, such as mean or sum. (See Appendix [D.T)

Regression. In the context of fair regression, the following definition of (strong) statistical parity
has been used frequently in the literature (Agarwal et al., 2019} Jiang et al., 2020 Silvia et al., 2020
Chzhen et al.} 2020). For regression models, we assume that ) C R.

Definition 4.3 (Statistical Parity (regression)). A regression model f: X — ) is considered to
satisfy SP if the following quantity is equal to O:

sup max |Po(f(X) <y) —Pu (f(X) <y)|,

yey a,a’€A
where P, (-) denotes the probability conditional on A = a. Here, the difference between P, (f(X) <
y) and Py (f(X) < y) is measured using the Kolmogorov-Smirnov distance (Lehmann & Romano,
2000).

The above is considered a stronger fairness criterion than general statistical parity, since it accounts
for the entire shape of the distribution (Silvia et al., [2020), ensuring that the distributions remain
similar across different groups.

Definition 4.4 (S,.-Statistical Parity). The sparsity-based statistical parity is measured by

A
sup S([Ba, (£(X) < )]2)) @
yey
This definition borrows the idea from the Kolmogorov-Smirnov (KS) distance and finds the maximum
sparsity among group CDFs. If S(-) is taken to be the Maximum Pairwise Difference, the above
expression reduces to Definition[4.3]

In practice, the closed form of each conditional CDF is often unknown. To address this issue, we may
approximate them with empirical cumulative distribution functions.

4.2 EQUALIZED ODDS (EO)

Hardt et al.|(2016) introduced the concept of Equalized Odds (EO) that incorporates the distribution
of the ground truth label by enforcing f(X) L A |Y, where L denotes the independence between
two random variables. Consequently, when the sensitive attribute A is related to the ground truth
label Y, EO requires that the predictions f(X) reveal no additional information about A beyond
what is already contained in Y (Woodworth et al.,[2017).

Classification. In classification, EO measures fairness from a different perspective. Compared
with SP, it has the following two key differences (Dwork et al., 2012} |Agarwal et al.,[2018): 1) A
classifier can achieve a low SP score by matching P(f(X) = 1) across groups, even if it makes
accurate predictions for the majority group of A while producing random predictions for the others.
2) A perfect classifier may violate SP if Y is dependent on A.

Definition 4.5 (Equalized Odds). For a classifier f: X — ), equalized odds (Hardt et al., 2016
Xian & Zhao, 2024) considers

max, max |Py.q(f(X) =y) = Py.o(f(X) =y)|,

where P, ,(f(X) = y) denotes P(f(X) =y | Y = y, A = a). In multi-class scenarios, y and 3/’
are vectors of class labels.
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Next, we propose a more general definition for EO by incorporating sparsity measures. Let g :
(Y, f(X)) — g(Y, f(X)) € R be an arbitrary model performance evaluation metric. For example,
g(+) can be the accuracy of the model or the model loss such as Cross Entropy (CE) Loss.

Definition 4.6 (S.-Equalized Odds). The sparsity-based equalized odds for classifiers considers:

mase S (Ig(/ (X, ). Yo JEA)). ©)

In multi-class classification, we evaluate equation [5for each class separately and take the maximum
value. Following Definition and previous work |Alghamdi et al.| (2022), we define g(-) as the
average of the True Positive Rate (TPR) and False Positive Rate (FPR).

Regression. To the best of our knowledge, there is no existing fairness criterion similar to the
formulation of EO in regression problems. We define EO in regression as follows for completeness:

Definition 4.7 (Equalized Odds (regression)). For regression data (X,,,Y,,) in each group, the EO
can be expressed as

max [g(F(Xa),Ya) = g(£(Xar). Yar)|

This naturally extends to S-EO by incorporating sparsity measures.

Definition 4.8 (S,-Equalized Odds). The sparsity-based equalized odds for regression models

considers

where g : (Y, f(X)) — ¢(Y, f(X)) € R is model performance evaluation metric for regression
models. The function g(-) can be the Mean Squared Error (MSE) or, when additional information
about the distribution of Y is available, the log-likelihood.

5 EXPERIMENTS

5.1 EXPERIMENTAL SETUP

In this section, we conduct experiments to validate our proposed criteria in comparisons with other
established fairness notions and evaluate them across different bias mitigation algorithms. We aim to
address the following research questions:

* Q1: Do sparsity-based metrics align with MPD-based metrics across different benchmarks?
* Q2: In which scenarios do the two evaluation frameworks exhibit divergent behaviors?

We apply the PQ Index (p = 1,¢q = 2) (Diao et al., 2023) as the sparsity measure S(-) for all the
primary results. On each of the problem and dataset, we evaluate bias mitigation algorithms using our
proposed criteria and compare the results against the existing criteria. Following previous practice
(Agarwal et al.| 2018}, [Wei et al., 2021} [Alghamdi et al.,[2022)), we include the sensitive attribute A in
the input X for consistent comparisons in all of our experiments, except for the simulated data in the
regression setting. The detailed configurations are provided in Appendix[C.2]

Datasets. For the classification task, we follow prior work in fair classification (Agarwal et al.|
2018} [Cho et al., [2020b; Jeong et al., [2022} |Alghamdi et al.l 2022 [Xian et al., [2023)) and include
datasets such as UCI Adult, COMPAS, HSLS, ACSIncome, and Enem. And for regression, we consider
Communities & Crimes and LawSchool, which have been commonly used as benchmarks in fair
regression studies (Agarwal et al., 2019; |(Chzhen et al., 2020; Xian et al., [2024). Details on each
dataset can be found in Appendix

Baselines. For the classification setting, we include the following bias mitigation algorithms:
Reduction (Agarwal et al.l [2018), Rejection (Kamiran et al., 2012)), EgOdds (Hardt et al., [2016)),
CalEqOdds (Pleiss et al., 2017), FairProj (Alghamdi et al., 2022) and LinearPost (Xian et al.,
2023). Among those existing algorithms, only FairProj and LinearPost are capable of handling
multi-classification problem. For FairProj, we test both Kullback-Leibler divergence (KL) and Cross
Entropy (CE) as the divergence measure used in the algorithm.

In contrast to classification, fairness in regression has received relatively less attention. In our
benchmark experiments, we evaluate three representative bias mitigation algorithms for regression:
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FairReg (Agarwal et al.| 2019), WassBC (Chzhen et al.,|2020), LinearPost (Xian et al.| [2024). We
include details on the hyperparameter selections in Appendix [C.2}

Most of these algorithms belong to the post-processing category, except for Reduction and Fair-
Reg, which are in-processing methods. A logistic regression model is used as the base model for
classification benchmarks, while a linear regression model is used for regression.

5.2 EXPERIMENTAL RESULTS
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Figure 2: Comparison of sparsity criteria with baseline criteria in two classification dataset. The top
row shows results from baseline criteria; the bottom row shows results from the proposed sparsity
criteria. The x-axis of each plot represents the value of various criteria.
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Figure [2]illustrates the comparison between the
proposed fairness criteria (S-+) and their exist-
ing counterparts for two classification datasets:
UCI Adult (|Y| = 2, |A| = 2) and ACSIncome
(|Y] = 5, |A| = 5). For methods that gener-
ate fairness-accuracy trade-off curves, we se-
lect a range of fairness budgets corresponding
to the respective fairness criteria to illustrate
their effects. The results reveal similar trends
in the trade-off curves between the S-* metrics
and existing fairness metrics across the bench-
mark methods. These observations hold for both
binary-class/binary-group problems and multi-
class/multi-group problems.

Furthermore, the proposed notions do not alter
the trade-off patterns. For instance, the Linear-

Post algorithm achieves the best trade-off curves for SP and EO, and the same trend is observed for
S-SP and S-EO. These findings suggest that in classification tasks, sparsity-based metrics effectively
capture the characteristics of the original fairness criteria while ensuring equal consideration for
all groups within the sensitive attribute. Notably, sparsity-based criteria sometimes yield different
trade-offs for a method, such as Rejection for EO in Figure Qka), leading to a more intuitive curve.
Consequently, S-* represent a valuable alternative for measuring fairness in classification problems.

In Figure 3] we demonstrate similar comparisons for regression dataset Communities & Crime
(|A] = 2). In this data set, we observe that S-SP and S-EO resemble the trade-offs of the bench-
mark algorithms compared to the MPD versions. Across experiments, we see that FairReg, as an
in-processing reduction algorithm, always reduces to the unconstrained case. Instead, LinearPost
and WassBC directly search for the Bayes Optimal regressor under the fairness constraint through
post-processing and disregard the unconstrained model fit. While these methods are not deliberately
designed for mitigating EO violations in regression, LinearPost successfully produces points achiev-
ing the desired RMSE and S-EO values. Recall in Section [3]that the elements in w are required to
be non-negative. However, quantities passed into the sparsity measure may contain negative, zero,
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or extreme small values, which cause instability in the fairness criteria. We adopt an exponential
transformation to enforce the positivity and show the result in S-EO in Figure 3] We further examine
the exponential transformation under different settings in Appendix

5.3 INTERSECTIONAL FAIRNESS

Intersectional fairness considers multiple sensitive attributes at the same time (Crenshaw, [2013)),
whereas most prior research on group fairness has focused on a single dimension of group identity
(Yang et al.| |2020). In this section, we target a common scenario in intersectional fairness where
the number of sensitive groups becomes large. Using both simulated data and real-world example
(Adult), we observe similarities and differences for MPD and S-* metrics. For the simulated
binary classification dataset, we interpolate the class weight by adjusting the available training
samples for each group and fix the maximum class weight difference as the group size increases.
To achieve large sensitive groups in the Adult dataset, we utilize intersections of gender, race and
descretized age. (See Appendix [C.I)). Experiments are conducted with three random data splits.

For the unconstrained model (Base), 0175 + Reducionosons
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Furthermore, in the simulated setting, we observe that existing bias mitigation algorithms exhibit
inconsistent debiasing performance for SP as the group size increases, while they remain effective
for S-SP across various sensitive group sizes. This discrepancy appears to stem from the algorithms
successfully balancing predictions for most groups but failing for a few under large number of groups.
It leads to substantial effect on SP but only a minimal impact on the sparsity-based measure.

In the multi-group Adult dataset results, we observe that both the SP and the S-SP values increase as
the grouping granularity increases. Specifically, when the number of groups becomes large, edge
cases may arise where one class is entirely absent within certain groups. In such cases, SP can produce
extreme values (e.g., the result of LinearPostg go1 at a group size of 50), whereas S-SP provides a
more stable evaluation by incorporating group distribution through sparsity. Across both experiments,
we demonstrate that the sparsity-based metric captures subtle group disparities overlooked by MPD
and exhibits greater robustness under severe class imbalance within groups.

6 CONCLUSION

In this paper, we propose to unify various fairness criteria in machine learning with a sparsity measure.
We highlight that sparsity, inherently designed as a measure of inequality, can also serve as a viable
definition of fairness. Our work provides deeper insight into the properties of the PQ Index and
a theoretical comparison of MPD, the Gini Index, and the PQ Index. Building on this foundation,
we propose a unified framework that incorporates sparsity measures into fairness criteria such as
statistical parity (SP) and equalized odds (EO). Through comprehensive benchmarking across multiple
datasets and bias mitigation algorithms, we demonstrate that the proposed framework aligns well
with the state-of-the-art approaches. Future research directions include developing fair algorithms
that utilize PQI or other sparsity measures for bias mitigation.
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ETHICS STATEMENT
We acknowledge several important ethical concerns related to fairness research in machine learning.

Dataset limitations We recognize the limitations of commonly used benchmark datasets, may
include outdated labels ( i.e. income information in Adult), inherent biases in data collection (racial
bias in COMPAS), which limits their ability to fully reflect real-world decision-making contexts.
While such datasets are widely used for comparative analysis, we caution against interpreting
empirical results in isolation from these known limitations. Throughout this paper, we focus on
illustrating the behavior of different fairness metrics, rather than promoting specific deployment-ready
solutions.

Broader society impact Beyond technical contributions, our work has potential societal impact
by promoting fairness measures that are more aligned with social equity principles. By connecting
perspectives from the social sciences with algorithmic fairness, we aim to support the development of
more inclusive and responsible Al systems that better serve diverse populations. However, we are
aware that sparsity-based fairness measures, like any fairness criterion, must be applied with context.
In particular, optimizing for sparsity may carry the risk of underrepresenting smaller or marginalized
subgroups if applied without careful consideration. Our framework is designed to surface structural
relationships between fairness metrics, not to prescribe a universal approach. There is a risk that
over-reliance on a single measure, such as sparsity, may oversimplify complex social dynamics or
overlook harms not captured by the chosen formalism. We emphasize that any fairness intervention
should be guided by domain knowledge, stakeholder input, and sensitivity to the social and legal
implications in deployment scenarios.

Access to sensitive features Our experimental framework assumes access to demographic attributes
(e.g., race, gender) for the purpose of fairness evaluation. In real-world systems, however, such
sensitive attributes are often unavailable due to legal restrictions, data privacy concerns, or lack
of user consent. We acknowledge that collecting and using such data requires careful attention to
regulatory frameworks (e.g., GDPR), informed consent, and community norms. We do not advocate
for indiscriminate collection of sensitive attributes, and we recognize the risk that their misuse can
exacerbate harms rather than mitigate them. In settings where sensitive attributes are not accessible,
fairness evaluation may need to rely on proxy features, post-hoc audits, or participatory methods
involving stakeholders. We encourage future work to explore fairness-aware learning under limited
or uncertain demographic information, and engage with communities impacted by algorithmic
decision-making.

REPRODUCIBILITY STATEMENT

We provide the complete source code in the supplementary materials. Further details on the theoretical
analysis, experimental setup including hyperparameters and datasets, and results are documented in
the Appendix.
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Appendix

A DISCUSSION

A.1 LIMITATIONS

Although our theoretical analysis and empirical results suggest that sparsity possesses desirable
properties for measuring fairness in machine learning and aligns well with current algorithmic
fairness research, several limitations warrant further discussion.

First, while our work primarily focuses on the technical alignment between fairness and sparsity,
its broader applicability to Al or social fairness remains to be explored. A more comprehensive
evaluation is needed to identify practical scenarios where the S-x metric may be better suited than
MPD-based metrics.

Second, as noted in the main text, sparsity-based metrics may introduce numerical instability com-
pared to MPD-based measures. While we employ an exponential transformation to mitigate this
issue, alternatives beyond heuristic approaches require further investigation.

A.2 BROADER IMPACT

This work draws inspiration from the Gini Index, a well-established measure in the social sciences, to
bridge algorithmic fairness with broader notions of equity observed under real-world contexts. By
grounding our approach in sparsity, we offer a norm-based fairness evaluation framework that is not
only interpretable but also directly optimizable. Unlike previous approaches that rely on indirect
surrogates such as mutual information due to the non-optimizable nature of MPD, our formulation
enables straightforward integration of norm-based regularization into learning objectives.

A.3 USE OF LARGE LANGUAGE MODELS

In this work, we used large language models (LLMs) to assist with manuscript editing. LLMs
were used to help polish the language of the manuscript. This includes surface-level edits such
as improving clarity, grammar, and conciseness of English expressions. All technical content,
algorithmic designs, and empirical results were authored and validated by the authors. No part of the
scientific contributions was generated by or delegated to an LLM.

B THEORETICAL ANALYSIS

B.1 IDEAL PROPERTIES FOR SPARSITY MEASURES

Hurley & Rickard (2009) have outlined the following desirable properties for sparsity measures,

which were originally introduced in the works of Dalton| (1920); Rickard & Fallon|(2004):

(D1) Robin Hood: For any w; > wj (i,j € {1,...,d}) and « € (0, (w; — wj) /2), we have

S([wiyeoywi — oy wi+ o, we) ") < S(w).

(D2) Scaling: S(aw) = S(w) for any o > 0.

(D3) Rising Tide: S(w + «) < S(w) for any o > 0 and w; not all the same.

(D4) Cloning: S(w) = S([w™, w™]").

(P1) Bill Gates: For any ¢ = 1, ..., d, there exists 3; > 0 such that for any > 0 we have
S([wlv"'7wi+ﬂi+aa"'7wd]T) > S([wlv"'7wi+ﬁi7"'7wd}T) .

(P2) Babies: S ([w™,0]") > S(w) for any non-zero w.

Hurley & Rickard (2009) showed that the Gini Index satisfies the aforementioned six properties, and

Diao et al.|(2023)) proved that the same holds for the PQ Index as well. For the Maximum Pairwise

Difference, only properties (D4) and (P1) are satisfied. The above results are summarized in Table
and the explanations for the Maximum Pairwise Difference are as follows:
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1. For (D1), when w; < Wpae and w; > Wiy (recall that wy,q, and wy,;;, are the values of
the largest and smallest components of w, respectively), we have

MPD ([wy,...,w; —a,...,w; + a,...,wg") = MPD(w).

Therefore, Robin Hood does not hold for the Maximum Pairwise Difference.

2. For (D2),
MPD(aw) = aMPD(w), Ya > 0.

Therefore, Scaling does not hold for the Maximum Pairwise Difference.

3. For (D3),

MPD(w+ «a) = I?ax 0 |w; + a —w; —a| = MPD(w), Ya > 0.
ijefl,...,

Therefore, Rising Tide does not hold for the Maximum Pairwise Difference.

4. For (D4), since the largest components of w equals the ones of [w™, w"|", and the same
holds for their smallest components,

MPD(w) = MPD([w™,w™]").
Therefore, Cloning holds for the Maximum Pairwise Difference.
5. For (P1), we may take 8; = Wyqr — w; + 1. Then,
MPD ([wl,...,wi + B; +a,...,wd]T) =a+ 1+ Wnar — Wmin-

Since
MPD ([wl,...,wi —|—5Z‘,...,wd]T) =1+ Wmaz — Wmin,

we have that Bill Gates holds for the Maximum Pairwise Difference.

6. For (P2), when one of the components of w is 0, we have
MPD ([wT, O]T) = MPD(w).

Therefore, Babies does not hold for the Maximum Pairwise Difference.

(D1) Robin Hood  (D2) Scaling (D3) Rising Tide (D4) Cloning (P1) Bill Gates (P2) Babies

I, (w) 4 4 4 4 v 4
Gini(w) v v v v v v
MPD(w) v v

Table 2: A Comparison of PQ Index (I, ;(w)), Gini Index (Gini(w)), and the Maximum Pairwise
Difference (M P D(w)), in terms of the six ideal properties for sparsity measures (Hurley & Rickard|
2009). All six properties hold for the PQ Index and the Gini Index, whereas the Maximum Pairwise
Difference only satisfies properties (D4) and (P1).

B.2 PROOFS

Proof of Theorem[3.1] When wy, # 0 and w; = 0 (j # k),

s il

I (w)=1—di"
Pt = wllq

1 1
=1—da r.
Thus, we complete the proof. O

Proof of Theorem We utilize the property of Hoder’s inequality to prove the theorem:
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Lemma B.1 (Holder’s inequality). For a;,b; € R (i = 1,...,d), and r1,r2 > 1 such that 1/r1 +
1/ry = 1, we have

d d % d %
> laibil < <Z |az‘|“> (Z |bi|r2> :
i=1 i=1 i=1

The equality holds if and only if there exists A € R, such that

\ai|” =\ |bi|7"27 1= 1,...777“

Take r1 = ¢/(¢ — p). r2 = q¢/p, a; = 1,and b; = w? (i = 1,...,d). By Holder’s inequality,

d P

d
— q
wagd(T( wf)

i=1 %
1

a 11
=dr " a[jwl|,

=1
d

q
2 v

. |w||p§dié(
=1

— I, ,(w) >0,

where the equality holds only when

Thus, we finish the proof. O

Proof of Theorem[3.3] Since
L 2(w) = T2 (w/[|w]2),
it suffices to show

[w —d™% - 14 = /2L 5 (w) ©)
holds for a w with ||w||2 = 1.
Let
m 2 \/&(1 - Ip7q(w)>'
Then,

w1 =wi 4+ +wg=m @)

The intersection between the unit hypersphere and the above hyperplane is a hypersphere in R4,
Denote it by

A
C=A{w|[wl =m,[lwlz =1}
The normal vector of equation [7|is /2 - 14. The intersection between the normal vector and the
hyperplane is the foot of the normal, which satisfies:

1. Its coordinates have the same value.

2. Its [ norm equals m.

Therefore, the foot of normal is (m/d)14. Next, we will show that the foot of the normal is the
center of C. The proof will then be completed using the Pythagorean theorem, based on the distance
between w and the foot of normal, as well as the distance between the foot of normal and d—1/2.1 d-
We have for each point w € C,

2

m m 2m
- = 2 1 _
=50 =l + 10| = 2 ol
g m_2m?

B d d
™

d

17
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namely, the distance from w to the foot of normal is 1/1 — m? /d. Since the distance for all w € C
to the foot of normal are the same, this point is the center of the hypersphere. The distance between
the foot of normal and d—1/21, is

_Vd-m

ld_i )
2 Vd

[ 72
d Nz

=
= 71d
5 d

where m < v/d since m = V/d(1 — I, ,(w)). Therefore, by Pythagorean theorem, the distance from
eachw € Ctod %1, is

(5 () = o -

Therefore, we obtain Equation equation [|and complete the proof. [

Proof of Theorem We prove this theorem by contradiction. First, we will show that if I; o(w) =
I 2(w),

d
- 1 2(d —1)?
‘ (wl d_li_zwz) d?—d+1 ®)
Then, we will prove that the above contradicts with the assumption that Wy = W;qz.
We have

d - -
- N 2¢ &
— wf—2cw1+62+ E <w3+d w; + _1)2) :||w||§
i=2

d d
- 1 d>—d+1_
< E ’wz2 — 26<’LU1 — m E ’LUZ> + WCQ = ||w||%

=1 =2
Lodil, . 1 <
< WC 2C(w1d_1§w1)_0
Let
ad?—d+1
TS

By the quadratic formula, we have

2
2(“’1 - ﬁ 25:2 wi) + \/4 <w1 - ﬁ Z;i:2 w,)

2q

2 7ty )
= (we require ¢ # 0).
q

6:

Therefore, we obtain Equation equation

18
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Recall that after the transformation, w; will decrease by ¢ and the average of ws, . . . , wq will increase
by é¢/(d — 1). Since

~ d
_ ¢ 1 (d—1)? d—1
‘i (wl d—lzw’> (d2—d+1+d2—d+1>

1=2
d
1 d?> —d
_2<w1_d—1§wi> ' <d2—d+1>

d
1
> wy — 1 ;wi (we assume d > 2),

w; is smaller than the average of ws, ..., wy, which gives a contradiction. Thus, we finish the
proof. O

Proof of Theorem[3.5] We first prove Inequality equation [I] then Inequality equation [2] finally In-
equality equation [3]

Proof of Inequality equation [T We have
d d
_ >iet Zj:l lwi — w|
2d Z?:l w;
d d
< >ie1 Zj:l MPD(w)
- 24 Y0, w;
_ d*MPD(w)
2d||wl|y
_ dMPD(w)
2[Jwlly

Gini(w)

Since ||w||2 < ||w|1, we obtain Inequality equation [t}

Proof of Inequality equation 2| By Theorem[3.3]

|wma:r/||wH2 - d_%’ < \/ 21, 4 (w),

1
‘wmm/Hsz —d > ’ < \/ 21, 4(w).
By triangular inequality,

il *MPD(w) = [wmaa/||wllz = win/w]l
< wma /w2 = d™% | + [winin/|wl]l2 — d~*
<24/2I, 4 (w).
Therefore, we obtain Inequality equation 2]

Proof of Inequality equation 3] Since both PQ Index and Gini Index are scale-invariant, it suffices to
show that the inequality holds for w satisfying ||w||; = 1. We will first prove that I; 5(w) is convex.

Next, we will show that each w can be expressed as a convex combination of 11, ..., wy € R?,
where

W 2[1,0,0...,0]",
wy = [1/2,1/2,0...,0]7,
ws 21[1/3,1/3,1/3...,0]",

Wy 2 [1/d,1/d,1/d... 1/d]",
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and that

I o(wj) < Gini(ay), Vj € {1,...,d}.
1) Convexity of 11 2 (w):
We define

f(z) 29 —d_l/QL x>0,

which is monotonic increasing, and
A
g(w) = w2
Because the Hessian matrix of g(w) is I, g(-) is a convex function. Since
L 2(w) = f og(w),
which is the composition of a monotonic increasing function and a convex function, it is also convex.

2) Properties of W, . . ., wy: Without the loss of generality, we assume w; > we > --- > wy. Each
w can be expressed as
w = a1W; + - + agy,

where
ag = dwg,
ag—1 = (d —1)(wg—1 — wq),
ag—s = (d —2)(wg—2 — wg—1),
a1 — w1, — wa.
Since wy > we > - -+ > wy, the coefficients oy, ..., aq > 0. Also, by our assumption,
|wlly = [[willy = -+ = [lwal1 =1,
we have > | a; = 1. Therefore, w is a convex combination of s, ..., %Wy. By convexity of
PQI(w), we have
Lio(w) <aqlyo(wy) + - - + agly o(wa). ©)]
since
14
Gini(w =7 Z (d+1—-2)w

is a linear function of w, we have

Gini(w) = a1 Gini(wy) + - - - + agGini(wy). (10)

According to Inequality equation [9] and Equation equation [I0] it remains to show for each j €

1,...,d},

Foreach j € {1,...,d}, we have

.. 1 1 j
J Vd G2 d
and
1 < 1 < j
1 . 1
Gini(w;) = E wlfa ;:1 (20 —1)j 717g.;:1(21—1)] flfg.
Since
i J
= > = 1 d
25 Jedl....d}

we complete the proof.
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Proof of Theorem[3.6] Since both PQ Index and Gini Index are scale-invariant, without loss of
generality, we assume |[w( |, = [|w®||,. Then,

Ip,q('w( )) < Ip,q(w@))

= JwD |, > w®,
d d
< Z(wfl))p > Z(w§2))p.
i=1 i=1

o _ .

. 1 2
Since wﬁm)w = wr(m)m andw, ! = w

1™ > [l @],
Therefore, we obtain I, ,(w")) < I, ,(w?) and complete the proof. O

B.3 OVERVIEW OF FAIRNESS CRITERIA

Problem Criteria Expression
Statistical Parity maxyecy MaXgq, o/ A ’IE‘, f(Xa ) = y) E(f(Xa) = y))
S-Statistical Parity maXyey S( (f( = y)LAll)
Classification
Equalized Odds maxy /ey MaxXq, e |Py o (f(X) =y) — Py o (f(X) = y)‘
S-Equalized Odds maxy,cy s( [g( F(Xap), Ya)II2)
Statistical Parity (weak) MaXg, q/c A ‘E(f(Xa)) — E(f(Xa/))’
S-Statistical Parity (weak) S(E(f(Xa,))]2)
Statistical Parity SUP, ¢y MAX, /e 4 ‘]P’a( F(X) < y) — P (f(X) < y)’
. . A
Regression S-Statistical Parity SUP,cy S([Pa, (f(X) < y)u:‘l)
Statistical Parity (W) Jyey maxq e [Ba(f(X) < y) — Por (F(X) <) ‘dy
. . A
S-Statistical Parity (W) fyey 5([19’% (f(X) < )]\ \ )dy
Equalized Odds MaXg,q/c A ‘g(f(X,l), Ya) — 9(f(Xar),Yar)
S-Equalized Odds S([g(f(Xar), Ya )12

Table 3: Sparisty-based criteria (S-*) and their Maximum Pairwise Distance (MPD) counterparts.

We populate fairness criteria in Table [3|above for completeness. Formally, we define the following
criteria under the Maximum Pairwise Difference and Sparsity.

Definition B.1 (Statistical Parity (weak)). Given the regression output f(X), the weak statistical
parity is defined as

max, [B(£(X0)) ~ B(F(X0),

where E(-) stands for the expectation over the input.
Next, we introduce three types of sparsity-based statistical parities for regression models: a weak

statistical parity based on the model output f(X), a statistical parity based on the cumulative
distribution function (CDF) of f(X), and a statistical parity that combines the CDF with integration.

Definition B.2 (S,.-Statistical Parity (weak)). The weak sparsity-based statistical parity is measured
by

A
S(E(F(Xa DI
Definition B.3 (S,.-Statistical Parity (W)). The integral sparsity-based statistical parity is defined as

| S0 < ) K)ay an
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This statistical parity measure is inspired by the Wasserstein distance (Kantorovich, |1960; |Villani &
Societyl 2003)), which quantifies the difference between two probability distributions by integrating
the difference between their CDFs.

C EXPERIMENT IMPLEMENTATION

C.1 DATASET DETAILS

Classification. For classification task we benchmark on six datasets, with four binary classification
datasets and two multi-classification datasets:

* UCI Adult (Murphy & Aha, [1996): The task in dataset is to use provided demographic
features to predict whether someone’s income is above 50k or not. Gender in the dataset is
treated as the sensitive attribute. This dataset contains 48,842 instances. (|| = 2, | A| = 2)

* COMPAS (Angwin et al., 2016): The task involves predicting whether an individual is likely
to reoffend based on their criminal history, time spent in prison, demographic information,
and risk scores, with race (Caucasian vs. African-American) serving as the sensitive attribute.
The dataset comprises 7,918 instances. (|| = 2, | A| = 2)

* HSLS (Ingels et al.,|2011): High School Longitudinal Study contains 23,000+ education-
related surveys collected from parents and students. It contains features such as demographic
and school information of the students, as well as their academic performances from different
school years. The binary target is whether a student’s test score is among top 50% performer
or not (Jeong et al.,[2022), with a binary sensitive attribute race (Under represented minorty
vs Asian/White). We use an preprocessed version encompassing 14,509 instances provided
from |Alghamdi et al.[(2022) which filtered out entries with missing values from original

data. (|Y]| =2, |A| =2)

* Enem (INEP,|2020): This publicly available dataset is collected from 2020 Brazilian high
school national exam and is consist of student demographics, socioeconomic questionnaire
answers and exam scores. We preprocessed and randomly sampled 50k instances from
the original dataset which contains around 5.8 million records, following the procedure in
Alghamdi et al|(2022). Race is treated as the sensitive feature and binned grade as the target.
(V=54 =5)

* ACSIncome (Ding et al.,|2021): While UCI Adults datasets has been the major source for
fairness research, this data is a superset of Adults derived from US Census survey and
encompasses 1,664,500 entries. We construct this data with 5 races categories and 5 income
categories. (|[Y| = 5, |A| = 5)

» Simulation: Besides real world data, we include a simulated binary classification dataset
with two groups and 10 features, each group contains 2,500 examples and examples in each
group is drawn from Bernoulli distributions with p = 0.5 and p = 0.8. (|| = 2, |A| = 2)

 Simulation (Multigroup): We simulated a binary classification dataset with an arbitrary
number of sensitive groups to examine different criteria under intersectional fairness. Specif-
ically, we aim to highlight the differences between metrics based on Maximum Pairwise
Distance (MPD) and those based on sparsity. The total number of samples was fixed at
100,000, and we varied the number of groups (n,) to generate corresponding datasets. For
each group, the binary class weights were set to 0.5 — 0.4 x nggjl and 0.5+ 0.4 x n;’il,
where g; is the group index. This setup ensures that the maximum class weight difference
across all groups remains 0.4 for both classes, with varying intermediate values depending
on group size.

* Adult (Multigroup): To evaluate intersectional fairness on the Adult dataset, we consider
gender (|A| = 2), race (|A| = 2), and age (continuous) as candidate sensitive attributes. For
the continuous variable age, we discretize observations into quantile-based bins to ensure
approximately equal sample sizes across intervals. We experiment with age bins of sizes 2,
3, 4, and 5. To increase the number of sensitive groups, we construct attribute combinations:
gender, gender X race, and gender X race X age, yielding dataset variants with 2, 10, 20,
30, 40, and 50 sensitive groups.
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Regression. As for regression, we benchmark on two commonly used fair regression dataset, plus
one simulated dataset:

* Communities & Crime (Redmond & Bavejal |2002)): This dataset is about socioeconomics,
crime data of US communities. The task is to predict number of violent crimes per 100,000
population using the provided features. We use race as the binary sensitive attribute (White
vs non-White). The dataset contains in total 1,994 instances. (|.4| = 2)

* LawSchool (Ramsey & Wightman, [1998)): This dataset is from Law School Admissions
Councils National Longitudinal Bar Passage Study. The original datasets contains 22,407
records. After filtering out records with missing value and unknown races, it ends up
having 20,053 instances. We make race as the sensitive attribute and predict the student’s
undergraduate GPA. (| A| = 4)

» Simulation: Like classification, we include a simulated regression dataset with 1 feature.
For each group, the feature is drawn from different gaussian distributions ( A(30,4) vs
N(10,4)) and target Y is produced using the same coefficient but different Var(e) (10 vs
D. (Al =2)

C.2 EXPERIMENTS DETAILS

For all datasets, we use an 80/20 split for training and testing, and conduct 10 independent ex-
periments with different random seeds to evaluate performance. During model training, we apply
feature normalization to improve training stability. Additionally, for regression tasks, a min-max
transformation is applied to the target variable to standardize its range.

We used existing implementations for different bias-mitigation algorithms as they are available.
Specifically, we use implementations from AIF 360 library|'|for Reduction, Rejection, EqOdds and
CalEqOdds in classification and FairReg in regression. For the other benchmark algorithms, we adapt
implementations from their public code repositories P[P

Below, we provide the hyperparameter range selected for each method that produces a trade-off curve
in our benchmark. For those methods, the hyperparameter controls the tolerance of a fairness criteria
violation.

Method Hyperparameter
Reduction (SP) 0.0001, 0.01,0.05,0.5,1, 3, 5, 10, 50, 100, 500
Reduction (EO) 0.0001,0.01,0.05,0.5,1, 3,5, 10, 50, 100, 500
Rejection (SP) 0.001, 0.005,0.01,0.02,0.05,0.1,0.2,0.5,1, 2
Rejection (EO) 0.001, 0.005,0.01,0.02,0.05,0.1,0.2,0.5,1, 2
FairProjk 1. (SP) 0.00,0.001,0.005,0.01,0.05,0.1,0.3,0.5,1.0
FairProjk 1, (EO) 0.00,0.001,0.005,0.01,0.05,0.1,0.3,0.5,1.0
FairProjc g (SP) 0.00,0.001,0.005,0.01,0.05,0.1,0.3,0.5,1.0
FairProjc g (EO) 0.00,0.001,0.005,0.01,0.05,0.1,0.3,0.5,1.0
LinearPostc (SP) 0.001,0.01,0.02,0.04,0.06,0.08,0.1,0.12,0.14, 0.16, 1000
LinearPostc (EO) 0.001,0.01,0.02,0.04,0.06,0.08, 0.1, 1000
LinearPostr 0.00,0.005,0.01,0.02,0.05,0.10,0.15, 0.25,0.30, 0.35,0.45,0.5, 1.0
FairReg 0.001, 0.005,0.01,0.02,0.05,0.1,0.4,0.8,0.99

LAIF360: https://github.com/Trusted-AI/AIF360

2FairProj: https://github.com/HsiangHsu/Fair-Projection

3LinearPostr: https://github.com/rxian/fair-regression

*WassBC: https://github.com/rxian/fair-regression (The LineaPost code repo also provides the python imple-
mentation for it)

>LinearPostc: https://github.com/uiuctml/fair-classification
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D ADDITIONAL RESULTS

D.1 ABLATION STUDIES

In this section we conduct ablation studies for the proposed S-* metric from the following perspec-
tives: 1) Ensuring input values are positive, 2) Different p and ¢ in PQI, 3) Different performance

metric g(-), 4) Different S(-), 5) Different multi-class aggregations.
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Figure 5: Results of applying w = exp(w) to ensure positivity in different dataset and metrics.

Positivity. Sparsity measure like the PQ Index is sensitive to the existence of 0 or extremely small
values in the input, as they are measuring the ratio deviation. In addition, S(-) does not support
negative values. In this ablation, we demonstrate the results when we ensure the positivity of the
input values by applying the transformation w = exp(w).

As shown in the Figure 5] the curves LinearPost and Rejection exhibit inconsistencies and high
variability in the sparsity measure across multiple experiments due to extremely small values in
confusion matrix (Compas), RMSE (LawSchool) or MSE loss (LawSchool) within a group. We show
that by applying an exponential function to ensure all values are moderately positive, the expected
trade-off curves can be recovered. Note that while this is a feasible solution in practice, other possible
transformations still need further study.

Performance Metric. We perform ablation studies on g(-) in S-EO by replacing it with other
classification metrics computed from the F1 score, Area Under the Receiver Operating Characteristic
Curve (AUROC) or a cross entropy loss function. We assess whether existing bias mitigation methods

still work under these settings. From the HSLS experiment results (Figure [6| (a)), we observe the
trade-off curves when g(+) is specified as accuracy, F1 score or cross entropy loss. However, since

the base classifier is already considered fair when performance metric g(-) is AUROC as the PQI
Index is small, such a trade-off is not observed.

We include additional results from the remaining binary classification datasets in Figure@ (b)-(d).
As we empirically observe from the figure, these bias mitigation trade-off curves are generally
preserved if the base classifier is not considered adequately fair (e.g., S-EO < 10~%). In summary,
understanding the robustness of these bias mitigation methods across various performance metrics
g(+) still requires further efforts.

Besides the ablation study of g(-) in classification tasks, we also ablate g(-) in regression by replacing
MSE with Mean Absolute Error (MAE) and R-squared (R?). As shown in Figure|[7] the results across
multiple regression datasets suggest that different g(-) functions may present similar trade-off curves
for S-EO when ¢(+) is specified as MAE. However, for R2, the similar pattern is only observed in
LinearPost and WassBC.
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Figure 6: Replacing g(-) with other metrics in S-EO on various binary classification dataset. LinerPost
does not provide outputs in probability space for CE loss calculation.
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Figure 7: Replacing g(-) with other metrics in S-EO on regression datasets.

PQ Ablation.

We incrementally change the values of p and g to check their effects on the resulting
metrics. We include one example of ablating p from 0.1 to 0.9 and ¢ from 1.1 to 2.5 in two
classification datasets from applying LinearPost to examine the effects on the trade-offs. The results
are shown in Figure[8] From the results we can see when p and ¢ are closer to each other, it generates
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Figure 8: Ablation of p and ¢ value on the output from LinearPost algorithm for the UCI Adult dataset
(1Y =2, |A| = 2) and COMPAS dataset (| = 2,|A| = 2).

values with a smaller scale. We also observe that the results have a smaller standard error across
random data splits if p and q are closer.

Gini Index. In Figure[9] we demonstrate the effect of switching S(-) from PQ Index to Gini Index
and show the effects on the simulated classification dataset. We observe almost identical pattern
between the two sparsity measures, suggesting these two sparsity measures are intrinsically similar
(Table2).
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Figure 9: S(-) ablation comparisons on the Enem classification dataset (|} = 5, | 4| = 5).

We present the trade-off curves on other datasets by switching PQ Index in S-* to Gini Index and
also observe the identical patterns between these two sparsity measures. Results are presented in

Figure[I0]

Multi Class Aggregation. In this ablation, we replace max with mean or sum for multi-class
aggregations as previously mentioned (Section[d.T)). In Figure[IT|and Figure[I2] we present results
for one binary classification dataset, UCI Adult (]| = 2, |.A| = 2), and one multi-class classification
dataset, Enem (|Y| = 5, |A| = 5). The results suggest that, for all the classification fairness criteria we
consider, their trade-off patterns remain invariant regardless of the multi-class aggregation operation
used.

D.2 ADDITIONAL EXPERIMENTAL RESULTS
We include additional results for the classification dataset (Figure [T3)) and regression dataset (Fig-

ure [T4) in this section. Figure [I3]demonstrates the comparison of different criteria on COMPAS
(¥ =2, A =2|), Enem (¥ =5, A = 5|), HSLS (] = 2, A = 2|) and simulated classification
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Figure 10: Comparison using PQ Index and Gini Index as S(-) in metric S-x*.

(|Y = 2, A = 2|) datasets. The results of LawSchool (| A = 4|) and the simulated regression dataset
(|.A = 2|) are shown in Figure [[4jm
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Figure 13: Comparison of sparsity criteria with baseline criteria in classification datasets.
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Figure 14: Comparison of all proposed sparsity criteria with baseline (MPD) criteria in three
regression datasets.
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