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ABSTRACT

Contrastive representation learning of videos highly rely on exhaustive data aug-
mentation strategies. Therefore, towards designing video augmentation for self-
supervised learning, we first analyze the best strategy to mix videos to create a
new augmented video sample. Then, the question remains, can we make use
of the other modalities in videos for data mixing? To this end, we propose
Cross-Modal Manifold Cutmix (CMMC) that inserts a video tesseract into an-
other video tesseract in the feature space across two different modalities. We
find that our video mixing strategy: Vi-Mix, i.e. preliminary mixing of videos
followed by CMMC across different modalities in a video, improves the qual-
ity of learned video representations. We exhaustively conduct experiments for
two downstream tasks: action recognition and video retrieval on three popular
video datasets UCF101, HMDB51, and NTU-60. We show that the performance
of Vi-Mix on both the downstream tasks is on par with the other self-supervised
approaches while requiring less training data.

1 INTRODUCTION

The recent advancements in self-supervised representation is credited to the success of using dis-
criminative contrastive loss such as InfoNCE (Gutmann & Hyvärinen, 2010). Given a data sample,
contrastive representation learning focus on discriminating its transformed version from a large pool
of other instances or their transformations. Thus, the concept of contrastive learning while applica-
ble to any domains, its effectiveness rely on the domain-specific inductive bias as the transformations
are obtained from the same data instance. For images, these transformations are usually standard
data augmentation techniques (Chen et al., 2020) while in videos, data artifacts that arise from tem-
poral segments within the same video clip (Lee et al., 2017b;a; Fernando et al., 2017; Pickup et al.,
2014; Misra et al., 2016).

Recently, data mixing strategies (Zhang et al., 2018; Shen et al., 2020; Yun et al., 2019) have emerged
as one of the promising data augmentation for supervised learning methods. These mixing strate-
gies when incorporated with contrastive learning, the quality of the learned representation improves
drastically as in Lee et al. (2021); Verma et al. (2021; 2019). Such augmentations introduce seman-
tically meaningful variance for better generalization which is crucial for learning self-supervised
representations. While these mixing strategies have been impactful for learning image representa-
tions, mixing strategies have been very limitedly explored in the video domain.

Therefore, in this paper, we study the various data mixing strategies for videos,and propose a new
approach to overcome their limitation by mixing across modalities. We first investigate and compare
the mixing strategies adopted from the the image domain, and we find that mixing videos by per-
forming simple interpolation of two video cuboids (Mixup) is more effective than inserting a video
cuboid within another (Cutmix). This is in contrast to the observations made in the image domain.
Furthermore, unlike learning image representations (Lee et al., 2021), these data mixing strategies
are prone to over-fitting when trained for longer, making them limited for videos.

Motivated by the success of previous self-supervised techniques exploiting multiple modalities to
learn discriminative video representation as in Arandjelovic & Zisserman (2017a); Chung & Zis-
serman (2016); Korbar et al. (2018); Arandjelovic & Zisserman (2017b); Owens & Efros (2018);
Piergiovanni et al. (2020); Miech et al. (2020), in this paper, we pose the following question: can we
take advantage of other modalities for mixing videos while learning self-supervised representation?
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Different modalities of a video like RGB, optical flow, etc. have different distributions and thus,
mixing them directly in the input space makes the task of discriminating similar instances from the
other instances easier limiting the quality of the learned representation. To this end, we propose
our Cross-Modal Manifold Cutmix (CMMC), that performs data mixing operation ‘across different
modalities’ of a video in their hidden intermediate ‘representations’. Given the video encoders from
different modalities pre-trained with contrastive loss in addition to mixup augmentation, CMMC
exploits the underlying structure of the data manifold. This is done by performing cutmix operation
in the feature space across space, time and channels. To the best of our knowledge, this is the
first attempt to perform mixing across channels. The channel mixing of the cross-modal feature
map enforces the encoder to learn better semantic concepts in the videos. Hence, we train video
encoders for different modalities in several stages including the use of mixup strategy in videos and
our proposed CMMC. We call this video augmentation strategy - Vi-Mix which stands for Video
instance-Mix for contrastive representation learning.

Empirically, we confirm that Vi-Mix being easy to implement, significantly improves contrastive
representation learning for videos. We show that Vi-Mix can effectively learn self-supervised repre-
sentation with small availability of data for pretext task and can also take advantage of other modal-
ities of the videos through manifold mixing strategy. We thoroughly evaluate the quality of the
learned representation on two downstream tasks action recognition and retrieval, on UCF101 and
HMDB51. We demonstrate the improvement in transferability of the representation learned with
Vi-Mix by conducting training on a large scale dataset Kinetics-400 and then finetuning on smaller
datasets. Furthermore, we corroborate the robustness of our video data augmentation strategy by
observing similar improvements on video skeleton sequences for the task of action recognition.

2 BACKGROUND

In this section, we first review a general contrastive learning mechanism used for learning self-
supervised video representation. Then, we review a data mixing formulation for self-supervision
in the image domain. Let X ∈ RT×3×H×W be a sequence of video. The objective is to learn a
mapping f : X → z where z ∈ RD, that can be effectively used to discriminate video clips for
various downstream tasks, e.g. action recognition , retrieval, etc.

Contrastive Learning. Assume a set of augmentation transformations A is applied to X . So, for
a particular video there exists a positive (say X̃ ) whereas the other transformed videos in a mini-
batch are considered as negatives. The encoder f(.) and its exponential average model f̃(.) maps
the positives and negatives respectively to embedding vectors. Therefore, the contrastive loss for a
sample Xi is formulated as

L(Xi) = −log
exp(zi · z̃i/τ)

exp(zi · z̃i/τ) +
∑
j∈N

exp(zi · zj/τ)
(1)

where τ is a scaling temperature parameter and N is the set of negatives. Note that the embedding
vectors zi and z̃i are L2-normalized before the loss computation. Thus, the loss L optimizes the
video instances such that the representation of the video instances with the same view are pulled
towards each other while pushing away from the other instances.

Data Mix for Contrastive Learning. We revisit the formulation proposed in i-mix (Lee et al.,
2021) for mixing data within a batch for contrastive representation learning. Let yi ∈ {0, 1}BS

be the virtual labels of the input Xi and X̃i in a batch, where yi,i = 1 and yi,j 6=i = 0. Then, the
(N + 1)− way discrimination loss for a sample in a batch is:

L(Xi, yi) = −yi,b · log
exp(zi · z̃b/τ)

exp(zi · z̃b/τ) +
∑
j∈N

exp(zi · zj/τ)
(2)

where b ranges from 0 to BS. Thus, the data instances are mixed within a batch for which the loss
is defined as:

LMix((Xi, yi), (Xr, yr), λ) = L(Mix(Xi,Xr;λ), λyi + (1− λ)yr) (3)

where λ ∼ Beta(α, α) is a mixing coefficient, r ∼ rand(BS), and Mix() is a mixing operator. In
the following, we will discuss the appropriate mixing operators in the video domain.
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Figure 1: Cross-Modal Manifold Cutmix (CMMC) trains a visual encoder for Modality 1 with X1 as input
while mixing with input X2. from modality 2. The mixing operation between the cross-modal feature maps
g1k and g2l is Cutmix which is illustrated at the right.

3 VI-MIX

In this paper, we use the same i-mix formulation (from the above section) for data mixing while
learning discriminative self-supervised representation. First, we investigate the best strategies to de-
fine the mixing operator for video domain. Furthermore, we introduce a manifold mixing strategy to
make use of the other modalities freely available in videos for data mixing. We integrate both these
data augmentation strategies, together called Video-instance Mix (Vi-Mix) for contrastive represen-
tation learning of Videos.

3.1 MIXING OPERATOR FOR VIDEOS

Unlike mixing operations in images as in Zhang et al. (2018); Verma et al. (2019); Shen et al.
(2020); Yun et al. (2019), videos have temporal dimension. We argue that handling temporal dimen-
sion in videos is not equivalent to handling spatial dimension in images. For the Mixing operation
defined in equation 3, it is straightforward to extend the existing image mixing strategies to videos.
Mixup (Verma et al., 2019) in videos perform weighted averaging of two spatio-temporal stack
of frames. In contrast to cutmix operator (Yun et al., 2019), mixup operator retains the temporal
information in videos and thus facilitates the contrastive representation learning. We empirically
corroborate this observation in the experimental analysis. In addition to this, videos possess differ-
ent modalities like optical flow that can be computed without any supervision. The question remains
that can we make use of other modalities in videos for mixing instances while learning contrastive
representation? To this end, we introduce Cross-Modal Manifold Cutmix (CMMC) strategy for
mixing video instances across different modalities which is discussed in the next section.

3.2 CROSS-MODAL MANIFOLD CUTMIX

Different modalities in videos is an additional information that are often exploited for self-supervised
learning as in (Han et al., 2020a; Linguo et al., 2021). In contrast to these approaches, we simply
propose to mix these different modalities as another data augmentation strategy for self-supervised
representation. However, the dissimilarity in distribution between the different modalities (say, RGB
and optical flow) in videos makes it harder to mix them at input space. Consequently, we propose
Cross-Modal Manifold Cutmix to mix such cross-modal representations in the hidden representation
space.

As an extension of the previous notation, we now consider two different modalities X1i and X2i

for a given video clip Xi. The objective of the self-supervised task is to learn discriminative video
representation, i.e. to learn functions f1(·) and f2(·). We decompose the encoder function by
f1(X1i) = f1k(g1k(X1i)), where g1k is a part of the video encoder for modality 1 with k layers that
maps the input data X1i to a hidden representation. Similarly, f1k maps the hidden representation
g1k(X1i) to the embedding vector z1i. Note that we already have trained video encoders f1i(·) and
f2i(·) by exploiting the above mentioned Mixup strategy among the video instances in a mini-batch
while optimizing the contrastive loss. Now, CMMC is trained in a 4 stage fashion. In the first stage,
we train the encoder f1i(·) of modality 1 in 5 steps as illustrated in figure 1. First, we select random
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layers k and l from a set of eligible layers in f1i(·) and f2i(·) respectively such that k ≤ l. This
set excludes the input space. Second, we fed a pair of input X1i and X2r to their respective video
encoders f1 and f2 until they reach layer k and layer l respectively. We obtain g1k(X1i) and g2l(X2r)
- a hidden representation (spatio-temporal tesseract) of both videos in modality 1 and 2. Third, we
perform a data mixing among the hidden representations across two modalities as:

gmix
1k , λ = CutMix(g1k, g2r;α) (4)

ymix
1k = λy1i + (1− λ)y2r (5)

where (y1i, y2r) are one-hot labels, hyper-parameter α = 1, and the mixing operator is cutmix as
in Yun et al. (2019) which returns the mixing coefficient λ along with the mixed data. For brevity,
we omit the input instances in the equation. Fourth, we continue the forward pass in f1(·) only from
layer k to the output embedding, now we denote by zmix

1i . Fifth, this embedding is used to compute
the (N + 1)-way discrimination loss which is reformulated as:

L(X1i, y1i) = −ymix
1i,b · log

exp(zmix
1i · z̃1b/τ)

exp(zmix
1i · z̃1b/τ) +

∑
j∈N

exp(zmix
1i · z1j/τ)

(6)

The computed gradients are backpropagated through the entire video encoder f1(·) of modality 1
only. It is to be noted that the video encoder f1(·) of modality 2 is not trained in this stage. In the
second stage, we train the video encoder f2(·) for modality 2 while freezing the updated learned
weights of f1(·). We continue this cycle twice for each modality, and hence 4 stages to learn the
self-supervised video representation in f1(·) and f2(·) . Algorithm 1 provides the pseudocode of one
stage of CMMC for training encoder f1(·). Thus, to sum up Vi-Mix consists of initially training

Algorithm 1 Pytorch-like style Pseudocode of One stage CMMC for modality 1
alpha, mix1 = 1., rand(1, L) # L is the layers in the encoder
mix2 = rand(mix1, L)
x1 q, x1 k = aug(rgb) # Two modalities of the RGB (modality 1)
data
x2 = aug(flow) # Flow data (modality 2)
g1 = f 1q.partial forward(x1 q, 0, mix1).
g2 = f 2q.partial forward(x2, 0, mix2)
g mix, labels new, lam = CutMix(g1, g2, alpha)
z1 = normalize(f 1q.partial forward(x1 q, mix1, L))
z2 = normalize(f 1k.forward(x1 k))
z2, g2 = z2.detach(), g2.detach() # no gradient flow
logits = matmul(z1, z2.T) / t
loss = lam * CrossEntropyLoss(logits, arange(len(x1 q)) +

(1 - lam) * CrossEntropyLoss(logits, labels new)

video encoders of modality 1 and modality 2 independently with infoNCE loss as in Chen et al.
(2020) and applying mixup augmentation. Then, we perform CMMC among the hidden representa-
tions of data from modality 1 and 2 in 4 stages. This is performed by alternation training strategy as
in Han et al. (2020a) to make use of the latest learned representations in the cross-modal network.
The final learned model is obtained after two cycles of training encoder of each modality.

CutMix in feature space. Here, we explain how the cutmix operator is applied on the video tesser-
acts in the feature space. Assume that the hidden representation of the input video sequence X1i in
modality 1, g1k ∈ Rc1×t1×h1×w1 , where c1 represents channel, t1 time, and s1 = h1 × w1 is the
spatial resolution. We generate a new representation gmix

1 by combining the hidden representations
g1k and g2l. These hidden representations g1k and g2l may differ such that (c1, t1, s1) ≥ (c2, t2, s2).
Therefore, we define a cutmix operation that combines the video tesseracts in space, time and across
channels. We define the combining operation as

gmix
1 =M � g1k + (1−M)� g2l (7)

where M ∈ {0, 1}c1×t1×h1×w1 is a binary tensor mask which is decided by sampling the bound-
ing box coordinates bbox = (bc1, bc2, bt1, bt2, bh1, bh2, bw1, bw2) from a uniform distribution. In
order to preserve the temporal information in a video, we fix (bt1, bt2) = (0, t2). Similarly, we pre-
serve the channel information processed by the video encoder f2(·) by fixing (bc1, bc2) = (0, c2).
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Thus, the bounding box selection follows a random sampling of a center coordinate (bwc, bhc) from
(U(0, w2), U(0, h2)). The corner points of the bounding box are determined by

bw1, bw2 = bwc −
w2

√
λ

2
, bwc +

w2

√
λ

2
bh1, bh2 = bhc −

h2
√
λ

2
, bhc +

h2
√
λ

2
(8)

where λ ∼ U(0, 1). Even by fixing (bt1, bt2) and (bc1, bc2), the resultant video tesser-
act in one modality may not match the dimension of the video tesseracts in other modal-
ity across channel and time, if k < l. So, we select a 4D bounding box with coordi-
nates (Mc1,Mc2,Mt1,Mt2,Mh1,Mh2,Mw1,Mw2) within the defined binary mask M . We ran-
domly sample a center coordinate (Mcc,Mtc,Mhc,Mwc) from (U(0, c1), U(0, t1)), (U(0, h1), and
U(0, w1)) respectively. The end points of the binary mask M are determined by

Mc1,Mc2 =Mcc − c2
2 ,Mcc +

c2
2 Mt1,Mt2 =Mtc − t2

2 ,Mtc +
t2
2

Mh1,Mh2 =Mhc − h2
2 ,Mhc +

h2
2 Mw1,Mw2 =Mwc − w2

2 ,Mwc +
w2
2

(9)

For the region within this bounding box, the values in the binary mask is filled with 0, otherwise 1. A
new mixing coefficient is computed by 1− λnew =

∑
c,t,w,hMc,t,w,h denoting the complementary

of the proportion of volume occupied by M . This new mixing coefficient λnew is returned by the
cutmix function to compute the mixed labels in equation 5.

Thus, we perform a mix operation in videos across all the dimensions including spatial, temporal
and channels. However, we preserve the temporal properties of the video instances by retaining a
proportion of channel information. This makes cutmix operation effective in the feature space.

4 EXPERIMENTS

In this section, we describe the datasets used in our experimental analysis, implementation details,
and evaluation setup. We present ablation studies to illustrate the effectiveness of Vi-Mix video data
augmentation and also, provide an exhaustive state-of-the-art comparison with our Vi-Mix models.

4.1 DATASETS

We use two video action recognition datasets: UCF101 (Soomro et al., 2012) and Kinetics-400 (Kay
et al., 2017) for self-supervised training of the video encoders. UCF101 contains 13k videos with
101 human actions and Kinetics-400 (K400) contains 240k video clips with 400 human actions.
We also use a skeleton action recognition dataset: NTU-RGB+D (Shahroudy et al., 2016) for self-
supervised training of a skeleton encoder. NTU-RGB+D (NTU-60) contains 58k videos with 60
human action, all performed indoors. Note that we use the videos or skeleton sequences from the
training set only for the self-supervised pre-training. Downstream tasks are evaluated on split1 of
UCF101 and HMDB51 (Kuehne et al., 2011), which contains 7k videos with 51 human actions. For
evaluation on skeletons, we evaluate on the validation set of NTU-60 on Cross-subject (xsub) and
Cross-View (xview) protocols.

4.2 IMPLEMENTATION DETAILS

Vi-Mix is a simple data augmentation strategy that requires cutmix operation in the feature space
which is adopted from (Yun et al., 2019) followed by our temporal and channel mixing. The input
modalities in our experiments consists of RGB, optical flow and skeletons (3D Poses). The optical
flow is computed with the un-supervised TV-L1 algorithm (Sánchez Pérez et al., 2013) and the same
pre-processing procedure is used as in Carreira & Zisserman (2017). For the skeleton experiments,
the skeleton data X ∈ RC×T×V is acquired using KinectV2 sensors, where coordinate feature
C = 3, # joints V = 25, and # frames T = 50. Following the pre-processing steps in Linguo
et al. (2021), we compute the joints and motion cues. For all the RGB and optical flow models,
we choose S3D (Xie et al., 2018) architecture as the backbone whereas for the skeleton model, we
choose ST-GCN (Yan et al., 2018) with channels in each layer reduced by 1/4 times as the backbone.
For self-supervised representation learning, we adopt a momentum-updated history queue to cache
a large number of video features as in MoCo (He et al., 2019). We attach a non-linear projection
head, and remove it for downstream task evaluations as done in SimCLR (Chen et al., 2020).

For our experiments with RGB and optical flow, we use 32 128 × 128 frames of RGB (or flow)
input,at 30 fps. For additional data augmentation, we apply clip-wise consistent random crops, hor-
izontal flips, Gaussian blur and color jittering. We also apply random temporal cropping from the
same video as used in Han et al. (2020a). For training a MoCo model with Vi-Mix data augmenta-
tion, we initially train the RGB and Flow networks for 300 epochs with mixup data augmentation
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Table 1: Different Video mixing strategies (at left) are
evaluated on downstream action classification and re-
trieval tasks. All the models are trained on training sam-
ples of UCF101 for 200 epochs with RGB input and
tested on the validation set of UCF101 and HMDB51.

Mixing Strategies
Action classification Retrieval

Linear probe R@1
UCF101 HMDB51 UCF101 HMDB51

MoCo (Baseline) 38.2 15.3 29.1 9.8
+ Mixup 49.6 24.9 36.2 16.2

+ Temporal cutmix 41.7 17.3 30.2 12.9
+ ST cutmix 19.8 14.3 32.6 14.3
+ VideoMix 45.5 21.2 34.5 15.2
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Figure 2: Accuracy graph illustrating the improve-
ments with CMMC compared to representative base-
lines without using mix, manifold mix, and alternate
training in CMMC.

independently. The mixup operation is applied in the input space. Then, we train these pre-train
networks with CMMC in 4 stages. In each stage, a network with one input modality is trained for
100 epochs by freezing the network with other modality. In the next stage, we reverse the cross-
modal networks and continue training the network with other modality. Finally, after the 4 stages,
the resultant models are hence trained for 500 epochs in total. For optimization, we use Adam with
10−3 learning rate and 10−5 weight decay. All the experiments are trained on 4 and 2 V100 GPUs
for K400 and others respectively, with a batch size of 32 videos per GPU.

For our experiments with skeleton sequence, we choose Shear with shearing amplitude 0.5 and Crop
with a padding ratio of 0.6 as the augmentation strategy as used in Linguo et al. (2021). Note that,
for CMMC on skeleton data, we perform cutmix operation only on skeleton vertices followed by
channel and temporal mixing. For training with CMMC, the GCN encoders are initially trained for
150 epochs on Joint and Motion cues. This is followed by 2 stage training each with 150 epochs,
where encoder with one modality is trained and the other is frozen. For optimization, we use SGD
with momentum (0.9) and weight decay (0.0001). The model is trained on 1 V100 with a batch size
of 128 skeleton sequences.

4.3 EVALUATION SETUP FOR DOWNSTREAM TASKS

For experiments with RGB and optical flow, we evaluate on two downstream tasks: (i) action classi-
fication and (ii) retrieval. For action classification, we evaluate on (1) linear probe where the entire
encoder is frozen and a single linear layer followed by a softmax layer is trained with cross-entropy
loss, and (2) finetune where the entire encoder along with a linear and softmax layer is trained with
cross-entropy loss. Note that the encoders are initialized with the Vi-Mix learned weights. More
details for training the downstream action classification framework is provided in the Appendix.
For action retrieval, the extracted features from the encoder pre-trained with Vi-Mix are used for
nearest-neighbor (NN) retrieval. We report Recall at k (R@k) which implies, if the top k nearest
neighbours comprise one video pertaining to the same class, a correct retrieval is counted.

4.4 ABLATION STUDIES ON VI-MIX

In this section, we empirically show the correctness of our data augmentation strategy for videos.
We also investigate the potential reasons behind the significant improvement of performance with
Vi-Mix by conducting relevant experiments.

Which mixing strategy is the best for uni-modal video understanding? In Table 1, we investigate
different video mixing strategies based on mixup and cutmix operator for downstream action classi-
fication and retrieval tasks. For the augmentations based on Cutmix (Yun et al., 2019), we randomly
select a sub-cuboid and plug it into another video. We also consider Videomix (Yun et al., 2020)
that performs a cutmix operation across all the frames clipwise consistent. For the virtual labels, we
perform label smoothing as defined in equation 3. In image domain, cutmix outperforms the mixup
strategy in supervised settings (Yun et al., 2019). However, we find that all strategies using cutmix in
temporal dimension (Temporal cutmix), spatio-temporal dimension (ST cutmix) and spatial cutmix
(VideoMix) performs worse than simple Mixup strategy. This is because cutmix operation destroys
the temporal structure of the videos which is crucial for understanding actions in videos. Similarly,
VideoMix where cutmix is performed spatially and not temporally, introduces new contextual infor-
mation in videos in arbitrary spatial locations. This not only hampers the motion patterns present
in the original video but also weakens the similarity between the positive samples in the contrastive
loss. Thus, video mixing operators must ensure retention of temporal characteristics in videos.
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Table 2: Comparison of different Cross-Modal manifold mixing strategies. Random CV mix layer indicates
if the feature map from the other modality is obtained from the same layer as the primary modality or not.
s = h × w, t, and c represents spatial, temporal and channel mixing of the feature maps. All the models are
trained on training samples of UCF101 for 500 epochs.M indicates use of cross-modal information.

Cross-Modal Random Action classification Retrieval
Manifold Mixing M CM mix s t c Linear probe R@1

strategies layer UCF101 HMDB51 UCF101 HMDB51
R

G
B

MoCo (Baseline) × × × × × 46.8 23.1 33.1 15.2
+ mixup × × X X X 52.8 24.4 37.6 17.6

+ CM mixup X × X X X 53.9 25.1 40.3 17.6

+ CM cutmix

X × X × × 54.6 25.5 40.4 17.8
X × X X × 55.1 27.1 40.6 16.5
X × X X X 55.2 27.8 41.6 18.6
X X X X X 55.8 28.3 42.8 19.1

O
pt

ic
al

Fl
ow

MoCo (Baseline) × × × × × 66.8 30.3 45.2 20.8
+ mixup × × X X X 68.6 33.1 48.7 19.5

+ CM mixup X × X X X 70.4 33.1 51.2 21.0

+ CM cutmix

X × X × × 70.4 33.3 51.4 21.0
X × X X × 71.8 34.7 52.7 23.1
X × X X X 71.5 33.9 53.1 21.5
X X X X X 72.4 34.9 53.9 23.1

Tw
o-

st
re

am

MoCo (Baseline) × × × × × 68.1 33.1 49.8 21.9
+ mixup × × X X X 71.3 36.3 53.8 24.5

+ CM mixup X × X X X 72.2 35.9 56.1 25.3

+ CM cutmix

X × X × × 72.1 35.8 56.9 25.1
X × X X × 73.1 37.2 56.9 27.3
X × X X X 73.4 37.2 56.4 26.5
X X X X X 74.0 38.1 58.1 27.1

Why do we need multi-modal mixing strategy for videos? In fig. 2, we illustrate the downstream
action classification accuracy vs # epochs plot. This plot clearly shows the importance of apply-
ing data mixing augmentation. However, the model trained without multi-modal mixing strategy
(CMMC) over-fits after 300 epochs, whereas the models training with multi-modal mixing are still
learning discriminative representation. We find that the mixing strategy on video representation
learning induces faster training and with CMMC, the models learn cross-modal knowledge without
using complicated knowledge distillation techniques as in Crasto et al. (2019); Garcia et al. (2018).
It is to be noted that training with cross-modal data augmentation is more beneficial when trained in
alternation strategy. In fig. 2, we show that the RGB model with alternate training outperforms the
RGB model which is trained for 200 epochs straightaway with the outdated optical flow model. The
alternate training strategy takes benefit of the most updated cross-modal model for data mixing and
hence learning more discriminative representation.

Diagnosis of CMMC. In Table 2, we provide the results for different configurations of data mixing
in the feature space. The objective is to understand the strategies responsible for boosting the perfor-
mance of the models on UCF101 and HMDB51 for downstream tasks. All the models are initialized
with weights obtained from pre-training with mixup for 300 epochs. First, we show that cross-modal
mixup (indicated by + mixup) in the feature space exploiting the cross-modal representation outper-
forms the traditional manifold mixup (indicated by + mixup) in the feature space (Verma et al., 2019)
on UFC-101 which does not make use of the cross-modal representation. However, we observe that
the action classification accuracy on HMDB51 using optical flow is equivalent for both strategies
with or without using cross-modality. This is because HMDB51 mostly consists of static actions
with improminent motion patterns which limits the optical flow model to learn motion dominated
representation. As a result, this also affects the action classification accuracy on HMDB51 when
evaluated with both the streams.

Next, we show the influence of mixing different dimensions in the hidden representation of a video.
We perform experiments with cross-modal cutmix occurring in the spatial dimension (s), spatial
and temporal (t) dimensions, and finally all the dimensions including channels (c). Note that the
manifold cutmix operation is performed within the same data manifold, i.e. the cutmix is performed
across the same random layer between RGB and Flow networks. In contradiction to our previous
observation of video mixing in the input space, here the temporal cutmix provides a minor boost to
the performance of the downstream tasks. This is supported by the fact that hidden representations
of a video retains temporal information due to the preceding convolutional operations on the input
sample. Also, the channel mixing further boosts the performance by retaining lost temporal infor-
mation in the resultant mixed feature map. Finally, we introduce more randomness in CMMC by
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Table 3: Comparison to the state-of-the-art methods for downstream action classification on UCF101 and
HMDB51 for different combination of modalities - video (V ), audio (A), text (T ) and flow (F ). For a fair
comparison with SOTA, we group the results based on the dataset used for pre-training. ’Frozen X’ indicates
linear probe evaluation and ’Frozen ×’ indicates end-to-end finetuning of the encoders.

Method Network Res. Depth Modality Dataset Frozen UCF101 HMDB51
CoCLR (Han et al., 2020a) S3D 128 23 V+F UCF101 X 72.1 40.2

Vi-Mix S3D 128 23 V+F UCF101 X 74.0 38.1
MemDPC (Han et al., 2020b) R-2D3D 224 33 V+F K400 X 54.1 30.5
VideoMoCo (Pan et al., 2021) R(2+1)D 112 26 V K400 X 78.7 49.2

CoCLR (Han et al., 2020a) S3D 128 23 V+F K400 X 77.8 52.4
CVRL (Qian et al., 2020) R3D 224 49 V K400 X 89.8 58.3

Vi-Mix S3D 128 23 V+F K400 X 79.1 50.4
OPN (Lee et al., 2017a) VGG 227 14 V UCF101 × 59.6 23.8
VCOP (Xu et al., 2019) R(2+1) 112 26 V UCF101 × 72.4 30.9

CoCLR (Han et al., 2020a) S3D 128 23 V+F UCF101 × 87.3 58.7
Vi-Mix S3D 128 23 V+F UCF101 × 87.5 59.1

XDC (Alwassel et al., 2020) R(2+1)D 224 26 V+A K400 × 84.2 47.1
AVTS (Korbar et al., 2018) I3D 224 22 V+A K400 × 83.7 53.0

MemDPC (Han et al., 2020b) R-2D3D 224 33 V+F K400 × 86.1 54.5
GDT (Patrick et al., 2021) R(2+1)D 112 26 V+A K400 × 89.3 60.0
CoCLR (Han et al., 2020a) S3D 128 23 V+F K400 × 90.6 62.9
CVRL (Qian et al., 2020) R3D 224 49 V K400 × 92.1 65.4

Vi-Mix S3D 128 23 V+F K400 × 91.1 62.3
CBT (Sun et al., 2019) S3D 112 23 V K600 × 79.5 44.6

MIL-NCE (Miech et al., 2019) S3D 224 23 V+T HTM × 91.3 61.0
ELO (Piergiovanni et al., 2020) R(2+1)D 224 65 V+A+F Youtube8M × 93.8 67.4
BraVe (Recasens et al., 2021) TSM-50 224 49 V+F K600 × 93.8 69.7
Supervised (Xie et al., 2018) S3D 128 23 V ImNet+K400 × 96.8 75.9

Table 4: Comparison to the state-of-the-art methods on Nearest-Neighbour video retrieval on UCF101 and
HMDB51. Testing set clips are used to retrieve training set videos and R@k is reported for k ∈ {1, 5, 10, 20}.

Method Dataset UCF101 HMB51
R@1 R@5 R@10 R@20 R@1 R@5 R@10 R@20

Jigsaw (Noroozi & Favaro, 2016) UCF 19.7 28.5 33.5 40.0 - - - -
OPN (Lee et al., 2017a) UCF 19.9 28.7 34.0 40.6 - - - -

RL-method (Büchler et al., 2018) UCF 25.7 36.2 42.2 49.2 - - - -
VCOP (Xu et al., 2019) UCF 14.1 30.3 40.4 51.1 7.6 22.9 34.4 48.8
VCP (Luo et al., 2020) UCF 18.6 33.6 42.5 53.5 7.6 24.4 36.3 53.6

MemDPC (Han et al., 2020b) UCF 20.2 40.4 52.4 64.7 7.7 25.7 40.6 57.7
SpeedNet (Benaim et al., 2020) K400 13.0 28.1 37.5 49.5 - - - -

CoCLR (Han et al., 2020a) UCF 55.9 70.8 76.9 82.5 26.1 45.8 57.9 69.7
Vi-Mix UCF 58.1 76.5 83.4 88.7 27.1 50.7 65.1 77.1

randomizing the selection of the cross-modal network layer (refer to mix2 in algorithm 1) where
the mixing takes place. This enables CMMC to take advantage of the features from later layers of
the cross-modal network.

4.5 COMPARISON TO THE STATE-OF-THE-ART

In this section, we compare Vi-Mix with previous self-supervised approaches for video/skeleton ac-
tion classification and video action retrieval. In Table 3, we provide the action classification results
on UCF101 and HMDB51 for linear-probing and full finetuning of video encoders with models
trained on UCF101 and K400. For linear probing, Vi-Mix only with its strong data augmentation
(mixup + CMMC) outperforms CoCLR which shares the same evaluation setting with Vi-Mix, by
1.9% on UCF101. Similar, observation is made for models trained with K400. We also note that
our finetuned Vi-Mix encoders outperform approaches using higher spatial resolution (XDC, AVTS,
MemDPC), deeper layers (XDC, MemDPC, GDT). However, the lower action classification accu-
racy of Vi-Mix on HMDB51 compared to CoCLR indicates the requirement of positive mining of
data samples in contrastive learning as performed in CoCLR. The large performance gap of Vi-Mix
with CVRL is owing to the deeper layers of R3D (49 vs 23) and the input spatial resolution (224 vs
128). Interestingly, our Vi-Mix model pre-trained on K400 performs on par with the models trained
on larger datasets substantiating the impact of simple cross-modal video augmentation.

In Table 4, we provide the video retrieval results on UCF101 and HMDB51 for the Vi-Mix models
trained on UCF101. This is a classical test for verifying if the pre-trained model learns semantic
information while learning self-supervised representation. We test if a query instance clip and its
nearest neighbours belong to the same category. Our Vi-Mix model outperforms all the representa-
tive baselines by a significant margin on both the datasets.
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Table 5: Comparison to the state-of-the-art methods on NTU-60 for action action classification using different
modalities. We indicate the type of pretext task used in the SOTA methods. ∗ indicates that results reproduced
on our settings.

Method Modality Network Pretext task NTU-60
xsub xview

LongTGAN (Zheng et al., 2018) Joint GRU reconstruction 39.1 48.1
MS2L (Lin et al., 2020) Joint GRU multi-tasks 52.6 -

AS-CAL (Rao et al., 2021) Joint LSTM contrastive 58.5 64.8
P&C (Su et al., 2020) Joint GRU reconstruction 50.7 76.3

SeBiReNet (Nie et al., 2020) Joint GRU reconstruction - 79.7
2s-CrosSCLR Linguo et al. (2021) Joint + Motion ST-GCN contrastive 74.5 82.1
3s-CrosSCLR Linguo et al. (2021) Joint + Motion + Bone ST-GCN contrastive 77.8 83.4

SkeletonCLR∗ (Baseline) Joint + Motion ST-GCN contrastive 70.1 77.2
SkeletonCLR + CMMC Joint + Motion ST-GCN contrastive 72.5 79.1

In Table 5, we generalize our Vi-Mix strategy for skeleton action representation on NTU-60. Since,
mixup in the input space hampers the spatial configuration of the skeletons processed by ST-GCN,
we only perform CMMC with hidden skeleton representations in the encoder. We treat Joints and
Motion as different input modalities of given skeleton data. Note that the cutmix operation across
spatial dimension represents the joint vertices (1-dimensional). The downstream action classifica-
tion results of a skeleton model pre-trained with contrastive learning (SkeletonCLR) using CMMC
outperforms its baseline by 2.4% on cross-subject and by 1.% on cross-view protocol. The superior
results of CrosSCLR is owing to its cross-modal positive mining which benefits the vanilla Skele-
tonCLR models. We believe that such positive mining approaches in contrastive learning such as
CoCLR or CrosSCLR can benefit by using our video mixing strategies.

5 RELATED WORK

Deep neural networks, especially the networks fabricated for processing videos are data-hungry.
While annotating large scale video data is expensive, recently many self-supervised video repre-
sentation learning approaches have been proposed to make use of the abundant web videos. On
one hand, some methods have exploited the temporal structure of the videos, such as predicting
if frames appear in order, reverse order, shuffled, color-consistency across frames, etc (Lee et al.,
2017b;a; Fernando et al., 2017; Pickup et al., 2014; Misra et al., 2016; Wang et al., 2019; 2017;
Vondrick et al., 2018; Recasens et al., 2021). On the other hand, some methods have been taking
advantage of the multiple modalities of videos like audio, text, optical flow, etc by designing pretext
tasks for their temporal alignment (Chung & Zisserman, 2016; Korbar et al., 2018; Arandjelovic &
Zisserman, 2017b; Owens & Efros, 2018; Piergiovanni et al., 2020; Miech et al., 2020; Arandjelovic
& Zisserman, 2017a).

Meanwhile, data mixing strategies have gained popularity in image-domain data augmentations for
supervised learning (Zhang et al., 2018; Shen et al., 2020; Yun et al., 2019) in addition to their
usage also for learning self-supervised image representation (Verma et al., 2019; Lee et al., 2021;
Verma et al., 2021). A recent work (unpublished), in the spirit of data mixing in the video domain,
VideoMix creates a new training video by inserting a video cuboid into another video in the super-
vised setting (Yun et al., 2020). In contrast, we focus on mixing video samples for self-supervised
representation. Different from the observations in VideoMix, we note that mixup in Vi-Mix is a
better augmentation tool rather than strategies involving removal of spatio-temporal sub-space from
the original videos. The most closest to our work, Manifold mixup (Verma et al., 2019) focuses
on interpolating hidden representation of the samples within a mini-batch, whereas, our proposed
CMMC in Vi-Mix performs cutmix operation in the data manifold across different modalities. In
addition, we also introduce the notion of channel mixing in the feature space. We find that Vi-Mix
is simple to implement while is a strong data augmentation tool for learning self-supervised video
representation even with small data size.

6 CONCLUSION

We have analyzed the augmentation strategies for learning self-supervised video representation. We
have introduced Vi-Mix which includes performing video mixup followed by Cross-modal manifold
mixup to take advantage of additional modalities present in videos. Vi-Mix improves the quality of
learned representation and thus brings significant improvement in the performance of downstream
tasks on UCF101, HMDB51 and NTU-60 datasets. We believe that Vi-Mix can be a standard video
augmentation tool while learning any multi-modal self-supervised video representation.
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A APPENDIX

A.1 MORE IMPLEMENTATION DETAILS

Training/Testing specification for downstream finetuning on UCF101 and HMDB51. At train-
ing, we apply the same data augmentation as in the pre-training stage mentioned in section 4.2,
except for Gaussain blurring. The model is trained with similar optimization configuration as in the
pre-training stage for 500 epochs. At inference, we perform spatially fully convolutional inference
on videos by applying ten crops (center crop and 4 corners with horizontal flipping) and temporally
take clips with overlapping moving windows. The final prediction is the average softmax scores of
all the clips.

Training/Testing specification for downstream finetuning on NTU-60. For training the pre-
trained ST-GCN along with the linear classifier, we apply the same data augmentation as in the
pre-training stage. We train for 100 epochs with learning rate 0.1 (multiplied by 0.1 at epoch 80).

History Queue in MoCo. We adopt momentum-updated history queue as in MoCo (He et al., 2019)
to cache a large number of visual features while learning contrastive representation. For our pre-
training experiments, we use a softmax temperature τ = 0.07, and a momentum m = 0.999. The
queue size of MoCo for pre-training experiments on UCF101, K400 and NTU-60 are 2048, 16384
and 32768 respectively.

A.2 REGULARIZATION EFFECT OF VI-MIX

In fig. 3, we provide (1) a plot of training loss of two models, one using Vi-Mix and the other model
is using standard data augmentations, and (2) the (K+1)-way accuracy of the pretext task of the
models learning contrastive representation. We observe a disparity between the training losses (at
left of the figure) in both the models with and without using Vi-Mix. This is owing to the hardness of
the pretext task which can be directly correlated with the difficulty of the data transformation, via Vi-
Mix data augmentation. Meanwhile, we also note that the (K+1)-way accuracy of the Vi-Mix model
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Figure 3: Training on UCF101 dataset. At left, we present the training loss of two models, one using video
augmentation: Vi-Mix and the other not. At right, we provide the (K+1)-way accuracy on the pretext task while
learning contrastive representation.

while training on contrastive loss is lower than that of the model without using Vi-Mix (at the right
of the figure). However, the performance gain of the Vi-Mix model on downstream classification
and retrieval tasks shows the regularizing capability of using Vi-Mix type data augmentation.
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