
Under review as submission to TMLR

An advantage based policy transfer algorithm for reinforce-
ment learning with measures of transferability

Anonymous authors
Paper under double-blind review

Abstract

Reinforcement learning (RL) enables sequential decision-making in complex and high-
dimensional environments through interaction with the environment. In most real-world
applications, however, a high number of interactions are infeasible. In these environments,
transfer RL algorithms, which can be used for the transfer of knowledge from one or multiple
source environments to a target environment, have been shown to increase learning speed
and improve initial and asymptotic performance. However, most existing transfer RL algo-
rithms are on-policy and sample inefficient, fail in adversarial target tasks, and often require
heuristic choices in algorithm design. This paper proposes an off-policy Advantage-based
Policy Transfer algorithm, APT-RL, for fixed domain environments. Its novelty is in using
the popular notion of “advantage” as a regularizer, to weigh the knowledge that should
be transferred from the source, relative to new knowledge learned in the target, removing
the need for heuristic choices. Further, we propose a new transfer performance measure
to evaluate the performance of our algorithm and unify existing transfer RL frameworks.
Finally, we present a scalable, theoretically-backed task similarity measurement algorithm
to illustrate the alignments between our proposed transferability measure and similarities
between source and target environments. We compare APT-RL with several baselines, in-
cluding existing transfer-RL algorithms, in three high-dimensional continuous control tasks.
Our experiments demonstrate that APT-RL outperforms existing transfer RL algorithms
and is at least as good as learning from scratch in adversarial tasks.

1 Introduction

Real-world implementation of reinforcement learning (RL) often utilizes transfer learning as a practical
approach to solve sequential decision-making problems data efficiently. The concept of transfer learning in
the context of RL denotes the transfer of knowledge from one or multiple source environments to a target
environment (Kaspar et al., 2020; Zhao et al., 2020; Bousmalis et al., 2018; Peng et al., 2018; Yu et al.,
2017). Formally, this problem setting can be explained using two Markov decision processes (MDP), target
MDP MT = ⟨X ,A,RT ,PT ⟩ and source MDP MS = ⟨X ,A,RS ,PS⟩ where X is the state-space, A is the
action-space, RT and RS are the target and source reward functions, PT and PS are the target and source
transition dynamics. The source environment, MS , can be a simulated or physical environment which, if
learned, provides some sort of useful knowledge to be transferred to MT . While in general X and A could
be different between the source and target environments, we consider fixed domain environments, where a
domain is defined as ⟨X ,A⟩ and is assumed to be identical in the source and target.

For effective transfer of knowledge between fixed domain environments, one would expect RS and PS to be
similar RT and PT , by either intuition, heuristics, or by some codified metric. The similarity between these
MDP components may determine the effectiveness of knowledge transfer between the source and target. To
illustrate this, let us consider the single source transfer application to the four-room toy example (Fig. 1). The
objective is to learn a target policy, π∗

T , by utilizing knowledge from the source task. To demonstrate the effect
of target and source similarity, we consider two different target tasks that are slightly different in terms of the
dynamics and the goal in Fig. 1(b) and (c). The objective is to learn the optimal policies π∗

T1
and π∗

T2
in the

corresponding target environments, T1 and T2, by utilizing knowledge from the source task, S. Intuitively, T1

1

Under review as submission to TMLR

0 25 50 75 100 125 150 175 200
episode

0
10
20
30
40
50
60
70
80

τ t

τT1,t

τT2,t

(a) Source, S (b) Target, T1 (c) Target, T2 (d) τt trend

0 2 4 6 8 10 12
timestep, t

0.0

0.2

0.4

0.6

0.8

1.0

β
T 1 t

0 5 10 15 20
timestep, t

0.0

0.2

0.4

0.6

0.8

1.0

β
T 2 t

(e) regularization coefficient in task, T1 (f) regularization coefficient in task, T2

Figure 1: Knowledge transfer in the four-room toy problem. (a)–(c) show the source task S and two target
tasks T1, T2 (•: start, ⋆: goal). (d) shows the evaluation measure τt in the two target tasks. (e)–(f) show the
influence of the source policy on each target, plotted as regularization coefficient βt. Note that the source
can influence target T1 more than target T2 which matches the intuition of (d)

is more similar to the source task S when compared to T2. As a result, we expect that knowledge transferred
from S to T1 will be comparatively more useful. T2 is less similar to S and thus knowledge transferred from
S to T2 may be useful, but should be less effective than that transferred to T1. Based on this motivating
example, we can identify three fundamental challenges in developing efficient transfer RL algorithms; 1)
developing measure to quantify the effectiveness of knowledge transfer, 2) calculating the task similarity,
and finally 3) developing practical algorithms for effective knowledge transfer. In this study, we propose new
ways to address these major challenges.

To quantify the knowledge transfer in RL setting, different measures have been introduced in literature but
there is a lack of unified approach that can help us compare between multiple different transfer strategies. To
this end, one of our first contributions is the introduction of the notion of transferability evaluation measure,
τt (section 4.1). We propose transferability evaluation measure as a function of evaluation episode t and can
be considered as a generalized concept that can express different evaluation measure of transfer learning such
as sample complexity, reward accumulation etc. As an example, for the Four-room toy problem, Figure 1(d)
shows that the transferability evaluation measure τT2,t for T2 is useful (τT2,t > 0), but not as useful as the
transfer to T1 (τT1,t > τT2,t). This insight also supports the natural connection between transferability and
task similarity. Thus, we argue that task similarity measurement approach can provide critical insights about
the usefulness of the source knowledge, and as we show, can also be leveraged in comparing the performance
of different transfer RL algorithms. To illustrate this further, we propose a theoretically-backed, model-based
simple task similarity measurement algorithm, and use it to show that our proposed transferability measure
closely aligns with the similarities between source and target tasks (section 4.2.2).

Finally, we propose a new transfer RL algorithm that uses the popular notion of “advantage” as a regularizer,
to weigh the knowledge that should be transferred from the source, relative to new knowledge learned in
the target. The main benefit of our proposed transfer RL algorithm is to utilize the source policy while
learning the target policy without relying on manual hyperparameter. To achieve this, first we calculate the
advantage function based on actions selected using the source policy. Next, we use this advantage function as
a regularization coefficient to weigh the influence of the source policy on the target. As a motivating example,
we show the effectiveness of this idea in our earlier toy example in terms of regularization weight1, β. Figure
1(f) shows that βT1

t is lower than βT2
t . This result intuitively means that S can provide useful guidance for

1we use the exponential of the advantage function as the regularization weight, β = exp A(x, a)

2

Under review as submission to TMLR

most of the actions selected by the target policy except the last four actions in T1, whereas, in contrast,
the guidance is poor for the last thirteen actions in T2. We show that this simple yet scalable framework
can improve transfer learning capabilities in RL. Our proposed advantage-based policy transfer algorithm
is straightforward to implement and, as we show empirically on several continuous control benchmark gym
environments, can be at least as good as learning from scratch in adversarial source tasks.

Our main contributions are the following:

• We propose a novel advantage-based policy transfer algorithm, APT-RL, that performs better than pre-
vious policy transfer algorithms from literature for fixed-domain tasks in RL

• We propose a new relative transfer performance measure to evaluate and compare the performance of
transfer RL algorithms. Our idea extends the previously proposed formal definition of transfer in RL by
Lazaric (2012), and unifies previous approaches proposed by (Taylor et al., 2007; Zhu et al., 2020). We
provide theoretical support for the effectiveness of this measure (Theorem 1) and demonstrate its use in
the evaluation of APT-RL on different benchmarks and against other algorithms (Section 6).

• We propose a simple model-based task similarity measurement algorithm, and use it to illustrate the
relationship between source and target task similarities and our proposed transferability measure (Section
6). We motivate this algorithm by providing new theoretical bounds on the difference in the optimal
policies’ action-value functions between the source and target environments in terms of gaps in their
environment dynamics and rewards (Theorem 2).

• We demonstrate the performance of APT-RL in twelve high-dimensional continuous control tasks. In
terms of data efficiency, our algorithm performs better than zero-shot source policy transfer, SAC
(Haarnoja et al., 2018) without any source knowledge, fine-tuning the source policy with target data,
and REPAINT, a state-of-the-art transfer RL algorithm (Tao et al., 2020).

The paper is organized as follows: we begin by reviewing related work in section 2, We propose and explain
our off-policy transfer RL algorithm, APT-RL, in section 3. Next, we propose evaluation measures for APT-
RL and a scalable task similarity measurement algorithm between fixed domain environments in section 4.
We outline our experiment setup in section 5, and use the proposed transferability metric and task similarity
measurement algorithm to evaluate the performance of APT-RL and compare it against other algorithms in
section 6.

2 Related work

Traditionally, transfer in RL is described as the transfer of knowledge from one or multiple source tasks to
a target task to help the agent learn in the target task. Transfer achieves one of the following: a) increases
the learning speed in the target task, b) jumpstarts initial performance, and/or c) improves asymptotic
performance (Taylor & Stone, 2009). Transfer in RL has been studied extensively in the literature, as
evidenced by the three surveys (Taylor & Stone, 2009; Lazaric, 2012; Zhu et al., 2020) on the topic.

The prior literature proposes several approaches for transferring knowledge in RL. One such approach is
the transfer of instances or samples (Lazaric et al., 2008; Taylor et al., 2008). Another approach is learning
some representation from the source and then transferring it to the target task (Taylor & Stone, 2007b;
2005). Sometimes the transfer is also used in RL for better generalization between several environments
instead of focusing on sample efficiency. For example, Barreto et al. (2017); Zhang et al. (2017) used
successor feature representation to decouple the reward and dynamics model for better generalization across
several tasks with similar dynamics but different reward functions. Another approach considered policy
transfer where the KL divergence between point-wise local target trajectory deviation is minimized and an
additional intrinsic reward is calculated at each timestep to adapt to a new similar task (Joshi & Chowdhary,
2021). In contrast to these works, our proposed approach simply uses the notion of advantage function to
transfer policy parameters to take knowledge from the source policy to the target task and thus the transfer
of knowledge is automated without depending on any heuristic choice.

3

Under review as submission to TMLR

There have also been different approaches to comparing source and target tasks and evaluating task similarity.
A few studies have focused on identifying similarities between MDPs in terms of state similarities or policy
similarities (Ferns et al., 2004; Castro, 2020; Agarwal et al., 2021). A couple of studies also focused on
transfer RL where each of the MDP elements is varying (Taylor & Stone, 2007a; Gupta et al., 2017). Most of
these approaches either require a heuristic mapping or consider a high level of similarity between the source
and target tasks. In contrast to these works, we develop a scalable task similarity measurement algorithm
for fixed domain environments that does not require the learning of the optimal policy.

A few recent studies have focused on fixed domain transfer RL problems for high-dimensional control tasks
(Zhang et al., 2018; Tao et al., 2020). Most of these studies are built upon on-policy algorithms which
require online data collection and tend to be less data efficient than an off-policy algorithm (which we
consider here). Although Zhang et al. (2018) discussed off-policy algorithms briefly along with decoupled
reward and transition dynamics, a formal framework is absent. Additionally, learning decoupled dynamics
and reward models accurately is highly non-trivial and requires a multitude of efforts. More recently, Tao
et al. (2020) proposed an on-policy actor-critic framework that utilizes the source policy and off-policy
instance transfer for learning a target policy. This idea is similar to our approach, but different in two main
ways. First, we consider an entirely off-policy algorithm, unlike Tao et al. (2020), and second, our approach
does not require a manually tuned hyperparameter for regularization. Additionally, Tao et al. (2020) discards
samples collected from the target environment that do not follow a certain threshold value which hampers
data efficiency. Finally, Tao et al. (2020) only considers environments where source and target only vary by
rewards and not dynamics. In contrast, we account for varying dynamics, which we believe to be of practical
importance for transfer RL applications.

In addition to transfer RL, several recent studies have proposed algorithms for cross-domain policy adap-
tation. In particular, DARC (Eysenbach et al., 2020), VGDF (Xu et al., 2023), IGDF (Wen et al., 2024),
and PAR (Lyu et al., 2024) proposes algorithms that collect source data during target policy update for
adaptation. In contrast, we study transfer RL setting where we assume no access to the source environment
once the knowledge is transferred to the target.

3 APT-RL: An off-policy advantage based policy transfer algorithm

In this section, we present our proposed transfer RL algorithm. We explain two main ideas that are novel
to this algorithm: advantage-based regularization, and synchronous updates of the source policy. As our
proposed algorithm notably utilizes advantage estimates to control the weight of the policy from a source
task, we call it Advantage based Policy Transfer in RL (APT-RL). We build upon soft-actor-critic (SAC)
(Haarnoja et al., 2018), a state-of-the-art off-policy RL algorithm for model-free learning. We use off-policy
learning to re-use past experiences and make learning sample-efficient. In contrast, an on-policy algorithm
would require collecting new samples for each gradient update, which often makes the number of samples
required for learning considerably high. Our choice of off-policy learning therefore helps with the scalability
of APT-RL to higher dimensional problems, which we will show in the case studies.

3.1 Advantage-based policy regularization

The first new idea in our algorithm is to consider utilizing source knowledge during each gradient step of the
policy update. Our intuition is that the current policy, πϕ parameterized by ϕ, should be close to the source
optimal policy, π∗

S , when the source can provide useful knowledge. In contrast, when the source knowledge
does not aid learning in the target, then less weight should be put on the source knowledge. Based on this
intuition, we modify the policy update formula of SAC as follows: we use an additional regularization loss
with a temperature parameter, along with the original SAC policy update loss, to control the effect of the
added regularization loss. Formally, the policy parameter has the update formula:

ϕ← ϕ+ δπ

[
∇̂ϕJ1(ϕ) + βt∇̂ϕJ2(ϕ)

]
(1)

Pwhere J1(·) is the usual SAC policy update loss, which uses soft-Q values instead of Q-values, and Q-
function is parameterized by θ for the dataset DT , and entropy regularization coefficient α and learning rate

4

Under review as submission to TMLR

δπ,
J1(ϕ) = Ext∼DT

[
Eat∼πϕ [α log(πϕ(at|xt))−Qθ(xt,at)]

]
, (2)

and J2(·) is the cross-entropy loss, H(·, ·), between the source policy and the current policy,

J2(ϕ) = H(µψ(a|x), πϕ(a|x)) = Eµψ(a|x)[− log πϕ(a|x)], (3)

where µψ represents the optimal source policy π∗
S parameterized by ψ.

Thus, we are biasing the current policy πϕ to stay close to the source optimal policy π∗
S by minimizing the

cross-entropy between these two policies while using the temperature parameter β to control the effect of the
source policy. Typically, this type of temperature parameter is considered a hyper-parameter and requires
(manual) fine-tuning. Finding an appropriate value for this parameter is highly non-trivial and maybe even
task-specific. Additionally, if the value of β is not appropriately chosen, then the effect of the source policy
may be detrimental to learning in the target task.

To overcome these limitations, we propose an advantage-based control of the temperature parameter, β. The
main motivation here is to make the source influence adaptive, which means that we do not treat β as a
hyper-parameter. The core intuition of our idea is that the second term of Equation 1 should have more
weight when the average action taken according to µψ is better than the random action. If the source policy
provides an action that is worse than a random action in the target, then µψ should be regularized to have
less weight. This is equivalent to taking the difference of the advantages based on the current policy and
the source policy, respectively. In addition, we consider the exponential, rather than the absolute value, of
this difference, so that the temperature approaches zero when the source provides adversarial knowledge.
Formally, our proposed advantage-based temperature parameter is determined as follows:

βt = eA
t
S−AtT , AtT = Qθ(xt, πϕ(xt))− V (xt), AtS = Qθ(xt, µψ(xt))− V (xt) (4)

Note that we can leverage the relationship between the soft-Q values and soft-value functions to represent
the advantages from Equation 4 in a more convenient way that follows from (Haarnoja et al., 2018):

AtT = Qθ(xt, πϕ(xt))− E[Qθ(xt, µψ(xt))− α logµψ(at|xt)]
AtS = Qθ(xt, πϕ(xt))− E[Qθ(xt, πϕ(xt))− α log πϕ(at|xt)]

(5)

3.2 Synchronous update of the source policy

We propose an additional improvement over the advantage-based policy transfer idea to further improve
sample efficiency. As we consider a parameterized source optimal policy, µψ, it is possible to update the
parameters of the source policy with the target data, DT , by minimizing the SAC loss. The benefits of this
approach is two-fold: 1) If the source optimal policy provides useful information to the target, then this will
accelerate the policy optimization procedure by working as a regularization term in Equation 1, and 2) This
approach enables sample transfer to the target policy. This is because the initial source policy is learned
using the source data; when this source policy is further updated with the target data, it can be viewed as
augmenting the source dataset with the latest target data. Formally, the source policy will be updated as
follows: ψ ← ψ + δψ∇̂ψJ1(ψ), where J1(ψ) is the typical SAC loss for the source policy with parameters ψ
and learning rate δψ. The pseudo-code for APT-RL is shown in Algorithm 1.

4 An evaluation framework for transfer RL

To formally quantify the performance of APT-RL, including against other algorithms, in this section, we
propose notions of transferability and task similarity, as discussed in Section 1. First, we propose a formal
notion of transferability and use this notion to calculate a “relative transfer performance” measure. We
demonstrate how this measure can be utilized to assess and compare the performance of APT-RL and
similar algorithms. Then, we propose a scalable task similarity measurement algorithm for high-dimensional
environments. We motivate this algorithm by providing a new theoretical bound on the difference in the
optimal policies action-value functions between the source and target environments in terms of gaps in their

5

Under review as submission to TMLR

Algorithm 1 APT-RL: Advantage based Policy Transfer in Reinforcement Learning
1: Given: parameterized source optimal policy µψ, source learning rate δS , target learning rate δπ
2: Initialize: current target policy, πϕ, target buffer DT = ∅
3: for each iteration do
4: for each target environment step do
5: a ∼ πϕ(at|xt)
6: x′ ∼ p(x′|x,a)
7: DT ← DT ∪ {(x,a,R(x,a),x′)}
8: end for
9: for G gradient updates do

10: ψ ← ψ + δS∇̂ψJ1(ψ) where J1 is defined in Equation 2
11: calculate AtT and AtS using Equation 5
12: βt ← eA

t
S −AtT

13: ϕ← ϕ+ δπ

[
∇̂ϕJ1(ϕ) + βt∇̂ϕJ2(ϕ)

]
14: end for
15: end for

environment dynamics and rewards. This task similarity measurement algorithm can be used to identify
the best source task for transfer. Further, we use this algorithm in the experiment section, to illustrate how
our proposed relative transfer performance closely aligns with the similarities between the source and target
environment.

4.1 A measure of transferability

We formally define transferability as a mapping from stationary source knowledge and non-stationary target
knowledge accumulated until timestep t, to learning performance, ρt.
Definition 4.1 (Single-task transferability). Let KS be the transferred knowledge from a source task MS
to a target task MT , and let KT ,t be the available knowledge in MT at timestep t. Let ρt ∈ R denote a
measure that evaluates the learning performance in MT at timestep t. Then, transferability is defined as
the mapping,

Λ : KS ×KT ,t → R .

Intuitively, this means that Λ(·) takes prior source knowledge and accumulated target knowledge to evaluate
the learning performance in the target task.

As an example, if the collection of source data samples DS are utilized as the transferred knowledge and
the average returns using the latest target policy, Gt = EπT ,t

[∑∞
k=0 γ

krk|x0
]
, is used as the evaluation

performance of a certain transfer algorithm i, then the transferability of algorithm i, Λi, at episode t, can
be represented using DS as KS , DT ,t as KT ,t, and finally Gt as ρt.

source knowledge, KS target knowledge, KT ,t
samples, DS samples, DT ,t
policy, µψ current policy, πT ,t

models RS ,PS models, RT ,t,PT ,t
value functions Q∗

S , V
∗

S value functions QT ,t, VT ,t

evaluation measure, ρt
average returns, Gt = EπT ,t

[∑H
k=0 rk

]
samples required for reward threshold, nth

area under the reward curve, ∆t

samples required for asymptotic returns, n∞

Table 1: A list of potential source knowledge, target knowledge and evaluation performance measures. Target
knowledge and evaluation performance are represented for episode t, and πT ,t denotes the optimal target
policy at evaluation episode t.

Notice that we leave the choice of input and output of this mapping as user-defined task-specific parameters.
Any traditional transfer methods can be represented using the idea of transferability. Potential choices for
source and target knowledge and evaluation measures are listed in Table 1. Our idea extends the previously

6

Under review as submission to TMLR

proposed formal definition of transfer in RL by Lazaric (2012), and unifies previous approaches proposed
by Taylor et al. (2007); Zhu et al. (2020). Expressing transfer learning algorithms in terms of this notion
of transferability has a number of advantages. First, this problem formulation can be easily extended to
unify other important RL settings. For example, this definition can be extended to offline RL (Levine et al.,
2020) by considering KS = Dsource, and KT ,t = ∅, ∀t. Second, the comparison of two transfer methods
becomes convenient if they have the same evaluation criteria. For instance, one way to construct evaluation
criteria may be to use sample complexity in the target task to achieve a desired return. Subsequently, the
transferability measure can be used to assess “relative transfer performance”, which can act as a tool for
comparing two different transfer methods conveniently.
Definition 4.2 (Relative transfer performance, τ). Given the transferability mapping of algorithm i, Λi,
the relative transfer performance is defined as the difference between the corresponding learning performance
ρit and learning performance from a base RL algorithm ρbt at evaluation episode t. Formally, τt = ρit − ρbt ,
where the base RL algorithm represents learning from scratch in the target task (meaning KS = ∅), and ρit,
ρbt are the same evaluation criteria of learning performances.

4.1.1 Theoretical support

We first formally show that, with an appropriate definition of the evaluation measure, non-negative relative
transfer performance leads to a policy in the target task which is at least as good as learning from scratch.
Theorem 1. (Relative transfer performance and policy improvement) Consider ρit =
Eπi,t

[∑∞
k=0 γ

krk|x0
]

for policy πi and ρbt = Eπb,t
[∑∞

k=0 γ
krk|x0

]
for policy πb, where x0 is the starting

state and each policy is executed until termination condition. Then, the learned policy, πi,t using algorithm
i, in the target at episode t is at least as good as the source optimal policy πb,t if τt ≥ 0.

The proof can be found in the Appendix A.

4.1.2 Revisiting the toy problem

We also leverage the toy example presented in Fig. 1 to explain the proposed concepts. The performance
evaluation is chosen as the average returns, collected from an evaluation episode t, that is ρt =

∑H
k=0 rk.

For transfer, we choose the low-level direct knowledge Q-values. At first, we initialize the target Q-values
with pre-trained source Q-values, Q∗

S . Thus, at each episode, t, the updated Q-values in the target are a
combination of both source and target knowledge. Thus, the transferability mapping can be expressed as
ΛQ-learning : KS×KT ,t → R. We calculate ρt after every 10 timestep by executing the greedy policy from the
updated Q-values for a fixed time horizon. Relative transfer performance, τt, remains non-negative for both
the target tasks T1 and T2, for up to around 125 evaluation episodes. Intuitively this means that the learning
performance of both policies is better than a base algorithm for all of the evaluation episodes. Also, τt is
higher for T1 than T2 which means that transferring knowledge from S leads to better learning performance
in T1 compared to T2. This can be explained by the fact that the dynamics in T1 are more similar to S than
T2.

4.2 Measuring task similarity

As seen in the toy problem above, a measure of task similarity would help us illustrate the close alignment
of our proposed transferability metric with the similarities of the source and target tasks. Beyond this,
measuring task similarity can provide additional insights into why a particular source task is more appropriate
to transfer knowledge to the target task. Motivated by these, we propose an algorithm for measuring task
similarity in this section.

4.2.1 Theoretical motivation

To motivate the idea behind our proposed algorithm, we first investigate theoretical bounds on the expected
discrepancies between the policies learned in the source and target environments. One effective way for this
analysis is to calculate the upper bound on differences between the optimal policies’ action-values. Previously,
action-value bounds have been proposed for similar problems by Csáji & Monostori (2008); Abdolshah et al.

7

Under review as submission to TMLR

(2021). The simulation lemma (Kearns & Singh, 2002; Jiang, 2020) also shows the value-function bound
between two MDPs for any policy where one MDP is a sufficient approximation of another MDP. Motivated
by previous literature, we demonstrate the action-value bound between target MDP with target optimal
policy and target MDP with source optimal policy.

We extend these ideas to the transfer learning setting where we derive the bound between the target action-
values under target optimal policy, π∗

T and target action-values under source optimal policy, π∗
S .

Theorem 2. (Action-value bound between fixed-domain environments) If π∗
S and π∗

T are the optimal
policies in the MDPs MS = ⟨X ,A,RS ,PS⟩ and MT = ⟨X ,A,RT ,PT ⟩ respectively, then the corresponding
action-value functions is upper bounded by

||Qπ∗
T

T −Qπ∗
S

T ||∞ ≤
2δrST
1− γ + 2γδTVST (Rmax,S +Rmax,T)

(1− γ)2 (6)

where δrST = ||RS(x,a) − RT (x,a))||∞, δTVST is the total variation distance between PS and PT , γ is the
discount factor and Rmax,S = ||RS(x,a)||∞, Rmax,T = ||RT (x,a)||∞.

The proof of this theorem can be found in the Appendix B. Note that as we propose APT-RL for fixed-domain
environments, the bound can be expressed in terms of differences in the remaining environment parameters:
the total variation distance between the source and target transition probabilities, and the maximum reward
difference between the source and the target. Intuitively this bound means that a lower total variation
distance between the transition dynamics can provide a tighter bound on the deviation between the action-
values from the target and source optimal policies. Similarly, having a smaller reward difference also helps
in getting lower action-value deviations in the target. Also note that, if the reward function or transition
dynamics remain identical between source and target, then the corresponding term on the right side of
Equation 6 vanishes.

Next, motivated by this bound, we propose a task similarity measurement algorithm that assesses the
differences between source and target dynamics and rewards in order to evaluate their similarity.

4.2.2 A model-based task similarity measurement algorithm

Previous attempts for measuring task similarity include behavioral similarities in MDP in terms of state-
similarity or bisimulation metric, and policy similarity (Ferns et al., 2004; Castro, 2020; Agarwal et al.,
2021). Calculating such metrics in practice is often challenging due to scalability issues and computation
limits. Additionally, our key motivation is to find a similarity measurement that does not require solving
for the optimal policy apriori, as the latter is often the key challenge in RL. To this end, we propose a new
model-based method for calculating similarities between tasks.

We propose an encoder-decoder based deep neural network model at the core of this idea. For any source or
target task, a dataset, D = {(x,a, r,x′)}, is collected by executing a random policy. Next, a dynamics model,
fP
i (x,a), for task i is trained by minimizing the mean-squared-error (MSE) loss using stochastic gradient

descent, Ldyn = ||x′ − fP
i (x,a)||2. Similarly, a reward model, fR(x,a) is trained using the collected data to

minimize the following MSE loss, Lrew = ||r− fR
i (x,a)||2. The encoder portion of the neural network model

encodes state and action inputs into a latent vector. Then, the decoder portion uses this latent vector for
the prediction of the next state or reward. We consider decoupled models for this purpose, meaning that we
learn separate models for reward and transition dynamics from the same dataset. This allows us to identify
whether only reward or transition dynamics or both vary between tasks. Once these models are learned,
the source model is used to predict the target data and calculate the L2 distance between the predicted and
actual data as the similarity error. If ξP

k and ξR
k are the similarity errors in target dynamics and rewards,

respectively, we can calculate the dynamics and reward similarity separately as follows,

dynamics similarity: ΞP
S,T = 1

|DT |

|DT |∑
k=1

ξP
k , reward similarity: ΞR

S,T = 1
|DT |

|DT |∑
k=1

ξR
k (7)

8

Under review as submission to TMLR

Our approach is summarized in Algorithm 2. This approach can be viewed as a modern version of (Ammar
et al., 2014), but instead of using Restricted Boltzmann Machines, we use deep neural network-based encoder-
decoder architecture to learn the models, and we do it in a decoupled way.

Algorithm 2 Model-based task similarity measurement
1: Collect m data samples from source MS using a random policy, DS = {(xS ,aS , rS ,x′

S)}
2: Collect m data samples from target MT using a random policy, DT = {(xT ,aT , rT ,x′

T)}
3: Learn target dynamics and reward models by minimizing ||x′ − fP

T (x,a)||2, ||r − fR
T (x,a)||2 using DT

4: Learn source dynamics and reward models by minimizing ||x′ − fP
S (x,a)||2, ||r − fR

S (x,a)||2 using DS
5: for each (xT ,aT , rT ,x′

T) ∈ DT do
6: x̂′

T = fP
T (xT ,aT), r̂T = fR

T (xT ,aT)
7: ξP

k = ||x̂′
T − x′

T ||2, ξR
k = ||r̂T − rT ||2

8: end for
9: dynamics similarity, ΞP

S,T = 1
|DT |

∑|DT |
k=1 ξP

k

10: reward similarity, ΞR
S,T = 1

|DT |
∑|DT |
k=1 ξR

k

5 Experiment Setup

We apply the described methods to three popular high-dimensional continuous control benchmark gym
environments (Brockman et al., 2016): 1) ‘HalfCheetah-v3’, 2) ‘Ant-v3’, and 3) ‘Humanoid-v3’. The vanilla
Gym environments are not suitable for transfer learning settings. We change the original parameters of the
task to create four different perturbations of the dynamics of each environment. For the HalfCheetah-v3
environment, we consider the original task as the source with standard gym values for damping while the
four target environments have different values of damping increased gradually in each task. As a result, the
least similar task has the highest damping values in the joints. For the Ant-v3 environment, the source task
has the standard gym robot and the four target environments have varied dynamics by changing the leg
lengths of the robot. Similarly, for the Humanoid-v3 environment, the source task has the standard gym
robot and the four target environments have varied dynamics by changing the leg length as well as the size
of the hands, legs and shin length. For the HalfCheetah-v3 environment, we create additional four tasks
by changing the reward function to show reward variation. Details of the environments and the algorithm
hyperparameters can be found in Appendices C and D.

For each environment, the knowledge transferred is the source optimal policy π∗
S , data collected from the

target task DT ,t is used as the target knowledge, and average returns during each evaluation episode,
EπT ,t [

∑
k rk], are used as the performance evaluation metric. To obtain the source optimal policy, the

SAC algorithm is utilized to train a policy from scratch in each source environment. In each of these exper-
iments, we perform and compare our algorithm APT-RL against one of the recent benchmarks on transfer
RL, the REPAINT algorithm proposed by Tao et al. (2020). We also compare APT-RL against zero-shot
source policy transfer, policy fine-tuning on the target task, and SAC without any source knowledge.

6 Experiment Results

6.1 Task similarity

We leverage Algorithm 2 to calculate the task similarity between the source and each of the target tasks.
The empirical task similarity is shown in Fig. 2. Fig. 2(a) shows the similarity in tasks for the half-cheetah
environment with varying rewards. For reward similarity, we can see the highest dissimilarity when the robot
is provided a negative reward instead of a positive reward. Similarly, for the half-cheetah environment with
varying dynamics in Fig. 2(b), we can see an approximately linear trend in the similarity of the dynamics.
This makes sense as the change in joint damping is gradual and constant. In Fig. 2(c) we show the task
similarity in the Ant environment with varying dynamics. As we change the dynamics of each of the target
environments by changing the length of the legs of the robot, the similarity between each target and the

9

Under review as submission to TMLR

source task reduces monotonically. Finally, task similarity of the humanoid environments are shown in Fig.
2(d) where first two tasks are relatively more similar to the source and the final two tasks are less similar.

(a) Halfcheetah (reward) (b) Halfcheetah (dynamics) (c) Ant (dynamics) (d) Humanoid (dynamics)

Figure 2: Task dissimilarity: Empirical task similarity between several variations of Half-cheetah, Ant,
and Humanoid environments

.

6.2 Transferability of APT-RL, ΛAPT-RL

6.2.1 Half-cheetah-v3

Fig. 3 (a)-(c) shows the transfer evaluation performance for three target tasks with varying dynamics and
Fig. 3(d) shows the performance for one target task with negative reward. In all cases, APT-RL learns
faster and also achieves higher average returns than learning from scratch. While fine-tuning the source
policy performs better than APT-RL in task T1, it performs worse than both APT-RL and learning from
scratch in rest of the tasks in T2, T3, T4. Most importantly, APT-RL performs as good as learning from
scratch for target task T4 with a negative reward. Note that, this is an adversarial source task as the robot
needs to learn to run in the opposite direction in the target task. In contrast, the REPAINT algorithm
fails to achieve similar evaluation performance and in most cases, obtains evaluation performance lower than
learning from scratch using SAC. As REPAINT is a PPO-based on-policy algorithm, this result aligns with
the previously reported performance of SAC and PPO algorithms (Haarnoja et al., 2018). The performance
of APT-RL may be explained by the fact that the source optimal policy jumpstarts the target policy. This
increase in learning performance, in turn, provides a positive relative transfer measure over time in tasks
T1, T2, T3 as shown in Fig. 4. Note that τ remains higher for the most similar task T1 and relatively lower
for the least similar task T2. Temperature parameter β decreases quickly initially, then increases slightly
and stays approximately constant over time. This can be explained by the fact that more weight is put
into the regularization loss initially and once the target policy becomes better the effect reduces. As we
keep utilizing the target data to update the source policy, the source policy improves over time and provides
useful information during the later timesteps. Finally, we observe that the effect of the source policy remains
almost constant with respect to task similarity. This makes sense due to the particular change in dynamics
of the environment. We anticipate that changing only the damping values make the tasks less adversarial to
the source in terms of dynamics.

6.2.2 Ant-v3

For the ant environment, we observe significant performance gain of APT-RL in the target task against
learning from scratch, zero-shot policy transfer, fine-tuning, and the REPAINT algorithm (Fig. 3). For
target tasks that are very similar to the source, we observe a fast convergence of the policy in the target.
For less similar source and target, APT-RL can even achieve higher learning performance than learning
from scratch. This might happen due to the jumpstart of the target policy and also due to the synchronous
improvement of the source policy. The latter characteristic of APT-RL accelerates policy updates. Similar
to the half-cheetah environment, we observe that the temperature parameter decreases with timesteps and
decreases more when task similarity is lower (Fig. 4). In all of these examples, APT-RL outperforms the
REPAINT algorithm.

10

Under review as submission to TMLR

H
al

f-C
he

et
ah

0.0 0.2 0.4 0.6 0.8 1.0

Epoch (in millions) ×106

1000

2000

3000

4000

5000

6000
ρ
t

apt

fine-tune

repaint

sac

zero-shot

0.0 0.2 0.4 0.6 0.8 1.0

Epoch (in millions) ×106

1000

2000

3000

4000

5000

ρ
t

apt

fine-tune

repaint

sac

zero-shot

0.0 0.2 0.4 0.6 0.8 1.0

Epoch (in millions) ×106

0

1000

2000

3000

ρ
t

apt

fine-tune

repaint

sac

zero-shot

0.0 0.2 0.4 0.6 0.8 1.0

Epoch (in millions) ×106

−5000

−2500

0

2500

5000

7500

10000

12500

ρ
t

apt

fine-tune

repaint

sac

zero-shot

A
nt

0.0 0.2 0.4 0.6 0.8 1.0

Epoch (in millions) ×106

0

500

1000

1500

2000

2500

3000

3500

ρ
t

apt

fine-tune

repaint

sac

zero-shot

0.0 0.2 0.4 0.6 0.8 1.0

Epoch (in millions) ×106

0

1000

2000

3000

4000

ρ
t

apt

fine-tune

repaint

sac

zero-shot

0.0 0.2 0.4 0.6 0.8 1.0

Epoch (in millions) ×106

0

1000

2000

3000

4000

5000

6000

ρ
t

apt

fine-tune

repaint

sac

zero-shot

0.0 0.2 0.4 0.6 0.8 1.0

Epoch (in millions) ×106

0

1000

2000

3000

4000

5000

ρ
t

apt

fine-tune

repaint

sac

zero-shot

H
um

an
oi

d

0.0 0.2 0.4 0.6 0.8 1.0

Epoch (in millions) ×106

1000

2000

3000

4000

ρ
t

apt

fine-tune

sac

zero-shot

0.0 0.2 0.4 0.6 0.8 1.0

Epoch (in millions) ×106

1000

2000

3000

4000

5000

ρ
t

apt

fine-tune

sac

zero-shot

0.0 0.2 0.4 0.6 0.8 1.0

Epoch (in millions) ×106

0

1000

2000

3000

4000

5000

ρ
t

apt

fine-tune

sac

zero-shot

0.0 0.2 0.4 0.6 0.8 1.0

Epoch (in millions) ×106

0

1000

2000

3000

4000

5000

6000

ρ
t

apt

fine-tune

sac

zero-shot

(a) Target task, T1 (b) Target task, T2 (c) Target task, T3 (d) Target task, T4

Figure 3: APT-RL transferability, ΛAPT-RL: APT-RL is compared against vanilla SAC (learning from
scratch), REPAINT, zero-shot policy, and fine-tuned policy. Average return during the evaluation episode
is taken as ρt, meaning ρt = Eπ

∗
Ti [

∑
t rk]. We do not show Repaint for the humanoid environment as it fails

to solve the tasks. Results are shown with one standard deviation range.

6.3 Humanoid-v3

For the humanoid environment, APT-RL outperforms all the baselines with significant initial performance
gain (Fig. 3). For the final target task, T4, APT-RL performs similarly to learning from scratch. We
anticipate that this behavior is mainly due to the difficulty of the task. The change in the dynamics of the
environment make the target an adversarial task which is relatively more difficult to solve than the rest of the
tasks. This can be also supported by the fact that T4 is the least similar task among all of the target tasks.
Similar to the ant and half-cheetah environments, we observe that the temperature parameter decreases with
less task similarity (Fig. 4). We do not show results from the REPAINT algorithm as it fails to solve even
the source task.

Finally, we show an ablation study on the effect of the temperature parameter, β, in Fig. 5. Notice that
APT-RL outperforms manual choice of β in all tasks except the halfcheetah environment where β = 1.0
performs slightly better than APT-RL. Interestingly, Fig. 4 shows that APT-RL also converges to β = 1.0
without any manual choice. We argue that it shows further evidence on the strength of APT-RL where we
do not need to manually choose the temperature parameter.

7 Limitations

The task similarity algorithm presented in section 4.2.2 uses the random policy to learn models for the
dynamics and the reward. While using a random policy for model learning is fairly common in the literature
Zhang et al. (2018); Moerland et al. (2023), a key challenge is to learn a reasonable model for complex tasks.
We anticipate that the task similarity algorithm might not be effective in environments where a random
policy cannot efficiently capture the underlying complexities of the dynamics and the reward. We would

11

Under review as submission to TMLR

H
al

f-C
he

et
ah

0.0 0.2 0.4 0.6 0.8 1.0

timesteps (×106)

0

250

500

750

1000

τ t
0.0 0.2 0.4 0.6 0.8 1.0

timesteps (×106)

0

1

2

3

β
t

0 1000 2000 3000 4000 5000

0

2

ΞS,T2
= 26.85 ΞS,T3

= 41.84 ΞS,T4
= 52.93

A
nt

0.0 0.2 0.4 0.6 0.8 1.0

timesteps (×106)

0

1000

2000

τ t

0.0 0.2 0.4 0.6 0.8 1.0

timesteps (×106)

0.5

1.0

1.5

2.0

β
t

0 1000 2000 3000 4000 5000

1.0

1.5

ΞS,T1
= 2.41 ΞS,T2

= 8.95 ΞS,T3
= 24.39 ΞS,T4

= 33.73

H
um

an
oi

d

0.0 0.2 0.4 0.6 0.8 1.0

timesteps (×106)

−1000

0

1000

2000

τ t

0.0 0.2 0.4 0.6 0.8 1.0

timesteps (×106)

0.5

1.0

1.5

2.0

β
t

0 1000 2000 3000 4000 5000

1

2

ΞS,T1
= 887.72 ΞS,T2

= 993.31 ΞS,T3
= 7732.52 ΞS,T4

= 8059.76

Figure 4: Left: Relative transfer performance, τt are shown with corresponding mean similarity scores.
Right: Regularization co-efficient, βt, is shown for all tasks with corresponding mean similarity scores.

0.0 0.2 0.4 0.6 0.8 1.0

Epoch (in millions) ×106

1500

2000

2500

3000

3500

ρ
t

β = 0.5

β = 1.0

β = 2.0

apt

0.0 0.2 0.4 0.6 0.8 1.0

Epoch (in millions) ×106

−2000

0

2000

4000

ρ
t

β = 0.5

β = 1.0

β = 2.0

apt

0.0 0.2 0.4 0.6 0.8 1.0

Epoch (in millions) ×106

0

1000

2000

3000

4000

5000

6000

ρ
t

β = 0.5

β = 1.0

β = 2.0

apt

(a) Half-Cheetah (b) Ant (c) Humanoid

Figure 5: Ablation study of β parameter in APT-RL: manual tuning of hyperparameter β is shown against
APT-RL in the least similar tasks for all three environments.

also like to focus on the limitations of APT-RL. One of the key challenges of transfer RL is to identify
useful source tasks and reduce the impact of adversarial sources. While APT-RL shows strong performance
in most of the cases, as shown in the Fig. 3(a) for the ’Half-Cheetah-V3’ environment, simple transfer
approaches such as fine-tuning the source policy is more convenient. This behavior can be explained by the
close similarity of the source to the target. Therefore, identifying measures of when to opt for more advanced
transfer algorithms such as APT-RL remains an interesting challenge. Additionally, we anticipate that APT-
RL might be less effective in knowledge transfer where the source and optimal policies differ greatly due to
the policy regularization.

8 Conclusion

In this paper, we proposed the APT-RL algorithm to transfer knowledge from a source task in an off-policy
fashion. Through advantage-based regularization, our algorithm does not require any heuristic or manual

12

Under review as submission to TMLR

fine-tuning of the objective function. We also introduced a new relative transfer performance measure, which
can help evaluate and compare transfer learning approaches in RL. We also provided a simple, theoretically-
backed algorithm to calculate task similarity, and demonstrated the alignment of our proposed transfer
performance measure with source and target task similarities. We demonstrated the effectiveness of APT-RL
in continuous control tasks and showed its superior performance against benchmark transfer RL algorithms.
Future directions may include considering similar concepts for multi-task transfer learning scenarios, as well
as benchmarking the performance of various transfer learning algorithms with the help of the transferability
measures introduced in this paper.

References
Majid Abdolshah, Hung Le, Thommen Karimpanal George, Sunil Gupta, Santu Rana, and Svetha Venkatesh.

A new representation of successor features for transfer across dissimilar environments. In International
Conference on Machine Learning, pp. 1–9. PMLR, 2021.

Rishabh Agarwal, Marlos C Machado, Pablo Samuel Castro, and Marc G Bellemare. Contrastive behavioral
similarity embeddings for generalization in reinforcement learning. arXiv preprint arXiv:2101.05265, 2021.

Haitham Bou Ammar, Eric Eaton, Matthew E Taylor, Decebal Constantin Mocanu, Kurt Driessens, Gerhard
Weiss, and Karl Tuyls. An automated measure of mdp similarity for transfer in reinforcement learning.
In Workshops at the Twenty-Eighth AAAI Conference on Artificial Intelligence, 2014.

André Barreto, Will Dabney, Rémi Munos, Jonathan J Hunt, Tom Schaul, Hado P van Hasselt, and David
Silver. Successor features for transfer in reinforcement learning. Advances in neural information processing
systems, 30, 2017.

Konstantinos Bousmalis, Alex Irpan, Paul Wohlhart, Yunfei Bai, Matthew Kelcey, Mrinal Kalakrishnan,
Laura Downs, Julian Ibarz, Peter Pastor, Kurt Konolige, et al. Using simulation and domain adaptation
to improve efficiency of deep robotic grasping. In 2018 IEEE international conference on robotics and
automation (ICRA), pp. 4243–4250. IEEE, 2018.

Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John Schulman, Jie Tang, and Wojciech
Zaremba. Openai gym. arXiv preprint arXiv:1606.01540, 2016.

Pablo Samuel Castro. Scalable methods for computing state similarity in deterministic markov decision
processes. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 34, pp. 10069–10076,
2020.

Balázs Csanád Csáji and László Monostori. Value function based reinforcement learning in changing marko-
vian environments. Journal of Machine Learning Research, 9(8), 2008.

Benjamin Eysenbach, Swapnil Asawa, Shreyas Chaudhari, Sergey Levine, and Ruslan Salakhutdinov.
Off-dynamics reinforcement learning: Training for transfer with domain classifiers. arXiv preprint
arXiv:2006.13916, 2020.

Norm Ferns, Prakash Panangaden, and Doina Precup. Metrics for finite markov decision processes. In UAI,
volume 4, pp. 162–169, 2004.

Abhishek Gupta, Coline Devin, YuXuan Liu, Pieter Abbeel, and Sergey Levine. Learning invariant feature
spaces to transfer skills with reinforcement learning. arXiv preprint arXiv:1703.02949, 2017.

Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft actor-critic: Off-policy maximum
entropy deep reinforcement learning with a stochastic actor. In International conference on machine
learning, pp. 1861–1870. PMLR, 2018.

Nan Jiang. Notes on tabular methods, 2020.

Girish Joshi and Girish Chowdhary. Adaptive policy transfer in reinforcement learning. arXiv preprint
arXiv:2105.04699, 2021.

13

Under review as submission to TMLR

Manuel Kaspar, Juan D Muñoz Osorio, and Jürgen Bock. Sim2real transfer for reinforcement learning
without dynamics randomization. In 2020 IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS), pp. 4383–4388. IEEE, 2020.

Michael Kearns and Satinder Singh. Near-optimal reinforcement learning in polynomial time. Machine
learning, 49:209–232, 2002.

Alessandro Lazaric. Transfer in reinforcement learning: a framework and a survey. In Reinforcement Learn-
ing, pp. 143–173. Springer, 2012.

Alessandro Lazaric, Marcello Restelli, and Andrea Bonarini. Transfer of samples in batch reinforcement
learning. In Proceedings of the 25th international conference on Machine learning, pp. 544–551, 2008.

Sergey Levine, Aviral Kumar, George Tucker, and Justin Fu. Offline reinforcement learning: Tutorial, review,
and perspectives on open problems. arXiv preprint arXiv:2005.01643, 2020.

Jiafei Lyu, Chenjia Bai, Jingwen Yang, Zongqing Lu, and Xiu Li. Cross-domain policy adaptation by
capturing representation mismatch. arXiv preprint arXiv:2405.15369, 2024.

Thomas M Moerland, Joost Broekens, Aske Plaat, Catholijn M Jonker, et al. Model-based reinforcement
learning: A survey. Foundations and Trends® in Machine Learning, 16(1):1–118, 2023.

Xue Bin Peng, Marcin Andrychowicz, Wojciech Zaremba, and Pieter Abbeel. Sim-to-real transfer of robotic
control with dynamics randomization. In 2018 IEEE international conference on robotics and automation
(ICRA), pp. 3803–3810. IEEE, 2018.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy optimiza-
tion algorithms. arXiv preprint arXiv:1707.06347, 2017.

Yunzhe Tao, Sahika Genc, Jonathan Chung, Tao Sun, and Sunil Mallya. Repaint: Knowledge transfer in
deep reinforcement learning. arXiv preprint arXiv:2011.11827, 2020.

Matthew E Taylor and Peter Stone. Behavior transfer for value-function-based reinforcement learning. In
Proceedings of the fourth international joint conference on Autonomous agents and multiagent systems,
pp. 53–59, 2005.

Matthew E Taylor and Peter Stone. Cross-domain transfer for reinforcement learning. In Proceedings of the
24th international conference on Machine learning, pp. 879–886, 2007a.

Matthew E Taylor and Peter Stone. Representation transfer for reinforcement learning. In AAAI Fall
Symposium: Computational Approaches to Representation Change during Learning and Development, pp.
78–85, 2007b.

Matthew E Taylor and Peter Stone. Transfer learning for reinforcement learning domains: A survey. Journal
of Machine Learning Research, 10(7), 2009.

Matthew E Taylor, Peter Stone, and Yaxin Liu. Transfer learning via inter-task mappings for temporal
difference learning. Journal of Machine Learning Research, 8(9), 2007.

Matthew E Taylor, Nicholas K Jong, and Peter Stone. Transferring instances for model-based reinforcement
learning. In Machine Learning and Knowledge Discovery in Databases: European Conference, ECML
PKDD 2008, Antwerp, Belgium, September 15-19, 2008, Proceedings, Part II 19, pp. 488–505. Springer,
2008.

Xiaoyu Wen, Chenjia Bai, Kang Xu, Xudong Yu, Yang Zhang, Xuelong Li, and Zhen Wang. Con-
trastive representation for data filtering in cross-domain offline reinforcement learning. arXiv preprint
arXiv:2405.06192, 2024.

Kang Xu, Chenjia Bai, Xiaoteng Ma, Dong Wang, Bin Zhao, Zhen Wang, Xuelong Li, and Wei Li. Cross-
domain policy adaptation via value-guided data filtering. Advances in Neural Information Processing
Systems, 36:73395–73421, 2023.

14

Under review as submission to TMLR

Wenhao Yu, Jie Tan, C Karen Liu, and Greg Turk. Preparing for the unknown: Learning a universal policy
with online system identification. arXiv preprint arXiv:1702.02453, 2017.

Amy Zhang, Harsh Satija, and Joelle Pineau. Decoupling dynamics and reward for transfer learning. arXiv
preprint arXiv:1804.10689, 2018.

Jingwei Zhang, Jost Tobias Springenberg, Joschka Boedecker, and Wolfram Burgard. Deep reinforcement
learning with successor features for navigation across similar environments. In 2017 IEEE/RSJ Interna-
tional Conference on Intelligent Robots and Systems (IROS), pp. 2371–2378. IEEE, 2017.

Wenshuai Zhao, Jorge Peña Queralta, and Tomi Westerlund. Sim-to-real transfer in deep reinforcement
learning for robotics: a survey. In 2020 IEEE symposium series on computational intelligence (SSCI), pp.
737–744. IEEE, 2020.

Zhuangdi Zhu, Kaixiang Lin, and Jiayu Zhou. Transfer learning in deep reinforcement learning: A survey.
arXiv preprint arXiv:2009.07888, 2020.

15

Under review as submission to TMLR

A Proof of Theorem 1

Theorem 1. (Relative transfer performance and policy improvement) Consider ρit =
Eπi,t

[∑∞
k=0 γ

krk|x0
]

for policy πi and ρbt = Eπb,t
[∑∞

k=0 γ
krk|x0

]
for policy πb, where x0 is the starting

state and each policy is executed until termination condition, then the learned policy, πi,t using algorithm i,
in the target at episode t is at least as good as the source optimal policy, πb,t if τt ≥ 0.

Proof. Let us consider τt = Eπi,t [G|x0] − Eπb,t [G|x0] where πi is the current policy in the task i and πb is
the optimal base policy and x0 is the initial state drawn from the same distribution. Using this definition of
τ , we can write the following for any starting state s0:

τt ≥ 0
⇒ Eπi,t [G|x0]− Eπb,t [G|x0] ≥ 0
⇒ Vπi,t(x0)− Vπb,t(x0) ≥ 0
⇒ Vπi,t(x0) ≥ Vπb,t(x0)

Following the policy improvement theorem, we can say that πi,t is at least as good as πb,t.

B Proof of Theorem 2

Theorem 2. (Action-value bound between fixed-domain environments) If π∗
S and π∗

T are the optimal
policies in the MDPs MS = ⟨X ,A,RS ,PS⟩ and MT = ⟨X ,A,RT ,PT ⟩ respectively, then the corresponding
action-value functions can be upper bounded by

||Qπ∗
T

T −Qπ∗
S

T ||∞ ≤
2δrST
1− γ + 2γδTVST (Rmax,S +Rmax,T)

(1− γ)2 (8)

where δrST = ||RS(x,a) − RT (x,a))||∞, δTVST is the total variation distance between PS and PT , γ is the
discount factor and Rmax,S = ||RS(x,a)||∞, Rmax,T = ||RT (x,a)||∞.

Proof. Let us consider the following notations for simplicity, Q
π∗
i
i (x,a) ≡ Qii(x,a), Qπ

∗
j

j (x,a) ≡
Qjj(x,a), Qπ

∗
j

i (x,a) ≡ Qji (x,a). Now we can write the following,

|Qii(x,a)−Qji (x,a)| =|Qii(x,a)−Qjj(x,a) +Qjj(x,a)−Qji (x,a)|
≤ |Qii(x,a)−Qjj(x,a)|︸ ︷︷ ︸

(a)

+ |Qjj(x,a)−Qji (x,a)|︸ ︷︷ ︸
(b)

Our strategy is to find bounds for (a) and (b) separately and then combine them to get the final bound.

16

Under review as submission to TMLR

(a)

|Qii(x,a)−Qjj(x,a)|

=
∣∣∣∣∣ri(x,a) + γ

∑
x′

pi(x′|x,a) max
b

Qii(x′,b)− rj(x,a)− γ
∑
x′

pj(x′|x,a) max
b

Qjj(x′,b)
∣∣∣∣∣

≤|ri(x,a)− rj(x,a)|+ γ

∣∣∣∣∣∣∣
∑
x′

pi(x′|x,a)︸ ︷︷ ︸
pi

max
b

Qii(x′,b)−
∑
x′

pj(x′|x,a)︸ ︷︷ ︸
pj

max
b

Qjj(x′,b)

∣∣∣∣∣∣∣
=|ri(x,a)− rj(x,a)|+ γ

∣∣∣∣∣∑
x′

pi max
b

Qii(x′,b)− pj max
b

Qii(x′,b) + pj max
b

Qii(x′,b)− pj max
b

Qjj(x′,b)
∣∣∣∣∣

=|ri(x,a)− rj(x,a)|+ γ

∣∣∣∣∣∑
x′

(pi − pj) max
b

Qii(x′,b) + pj

(
max

b
Qii(x′,b)−max

b
Qjj(x′,b)

)∣∣∣∣∣
≤|ri(x,a)− rj(x,a)|+ γ

∑
x′

∣∣∣∣(pi − pj) max
b

Qii(x′,b) + pj

(
max

b
Qii(x′,b)−max

b
Qjj(x′,b)

)∣∣∣∣
≤ |ri(x,a)− rj(x,a)|︸ ︷︷ ︸

T1

+γ
∑
x′

∣∣∣∣(pi − pj) max
b

Qii(x′,b)
∣∣∣∣︸ ︷︷ ︸

T2

+γ
∑
x′

∣∣∣∣pj (
max

b
Qii(x′,b)−max

b
Qjj(x′,b)

)∣∣∣∣︸ ︷︷ ︸
T3

Let us consider each term of the above equation individually to calculate the bound. For convenience, we
can consider the following vector notations,

Qi
i =

[
maxb Q

i
i(x′,b), . . .

]T ∀x′ ∈ X

Qj
j =

[
maxb Q

j
j(x′,b), . . .

]T
∀x′ ∈ X

Ri =
[
ri(x,a), . . .

]T ∀x ∈ X ,a ∈ A

Rj =
[
rj(x,a), . . .

]T ∀x ∈ X ,a ∈ A

Pi =
[
pi(x′|x,a), . . .

]T ∀x′ ∈ X ,a ∈ A

Pj =
[
pj(x′|x,a), . . .

]T ∀x′ ∈ X ,x ∈ A

Using these notations, we can rewrite T2 as the following,∑
x′

∣∣∣∣(pi − pj) max
b

Qii(x′,b)
∣∣∣∣

=
∥∥(Pi −Pj) ·Qi

i

∥∥
1

≤ ∥Pi −Pj∥1
∥∥Qi

i

∥∥
∞ using Hölder’s inequality, ||fg||1 ≤ ||f ||p||g||q where 1

p
+ 1
q

= 1

= 2δTVij
∥∥Qi

i

∥∥
∞ where δijp is the total variation distance, δTij = DTV (Pi,Pj)

Similarly, we can write for T3, ∑
x′

∣∣∣∣pj (
max

b
Qii(x′,b)−max

b
Qjj(x′,b)

)∣∣∣∣
≤ ∥Pj∥1

∥∥∥Qi
i −Qj

j

∥∥∥
∞

=
∥∥∥Qi

i −Qj
j

∥∥∥
∞

because ∥Pj∥1 = 1

17

Under review as submission to TMLR

Thus we can write the following,

|Qii(x,a)−Qjj(x,a)| ≤ ∥Ri −Rj∥∞ + 2γδTVij Qi
i + γ

∥∥∥Qi
i −Qj

j

∥∥∥
∞

Because this is true for all a ∈ S, a ∈ A, we can write the following,

||Qi
i −Qj

j ||∞ ≤∥Ri −Rj∥∞ + 2γδTVij Qi
i + γ

∥∥∥Qi
i −Qj

j

∥∥∥
∞

⇒ ||Qi
i −Qj

j ||∞ ≤
δrij

1− γ +
2γδTVij
1− γ ||Q

i
i||∞

⇒ ||Qi
i −Qj

j ||∞ ≤
δrij

1− γ +
2γRmax,iδTVij

(1− γ)2

(b)

|Qjj(x,a)−Qji (x,a)|

=
∣∣∣∣∣rj(x,a) + γ

∑
x′

pj(x′|x,a) max
b

Qjj(x′, πj(x))− ri(x,a)− γ
∑
x′

pj(x′|x,a) max
b

Qij(x′, πj(x))
∣∣∣∣∣

≤ |rj(x,a)− ri(x,a)|+ γ

∣∣∣∣∣∑
x′

pj(x′|x,a) max
b

Qjj(x′, πj(x))−
∑
x′

pi(x′|x, πi(x)) max
b

Qij(x′, πj(x))
∣∣∣∣∣

≤ |rj(x,a)− ri(x,a)|+ γ
∑
x′

∣∣∣∣pj max
b

Qjj(x′, πj(x))− pi max
b

Qij(x′, πj(x))
∣∣∣∣

≤ |rj(x,a)− ri(x,a)|+ γ
∑
x′

∣∣∣∣pj max
b

Qjj(x′, πj(x))− pi max
b

Qjj(x′, πj(x)) + pi max
b

Qjj(x′, πj(x))− pi max
b

Qij(x′, πj(x))
∣∣∣∣

= |rj(x,a)− ri(x,a)|+ γ
∑
x′

∣∣∣∣(pj − pi) max
b

Qjj(x′, πj(x)) + pi

(
max

b
Qij(x′, πj(x))−max

b
Qij(x′, πj(x))

)∣∣∣∣
≤ |rj(x,a)− ri(x,a)|+ γ

∑
x′

∣∣∣∣(pj − pi) max
b

Qjj(x′, πj(x))
∣∣∣∣ + γ

∑
x′

∣∣∣∣pi (
max

b
Qij(x′, πj(x))−max

b
Qij(x′, πj(x))

)∣∣∣∣
≤ ∥Ri −Rj∥+ γ ∥Pi − Pj∥1

∥∥∥Qj
j

∥∥∥
∞

+ γ ∥Pi∥1

∥∥∥Qj
j −Qj

i

∥∥∥
∞

≤ δrij +
2γδTVij Rmax,j

1− γ + γ
∥∥∥Qj

j −Qj
i

∥∥∥
∞

Because this is true for all x ∈ X ,a ∈ A, we can write the following,

||Qj
j −Qi

j ||∞ ≤
δrij

1− γ +
2γδTVij Rmax,j

(1− γ)2

Finally, we can combine (a) and (b) to write the following,

||Qi
i −Qj

i ||∞ ≤
2δrij

1− γ +
2γδTVij (Rmax,i +Rmax,j)

(1− γ)2

18

Under review as submission to TMLR

environment change type source Target 1 Target 2 Target 3 Target 4
(S) (T1) (T2) (T3) (T4)

HalfCheetah-v3

bthigh damping
bshin damping
bfoot damping
fthigh damping
fshin damping
ffoot damping

6.0
4.5
3.0
4.5
3.0
1.5

9.0
6.0
3.0
9

6.0
3.0

12.0
9.0
6.0
12.0
9.0
6.0

15.0
12.0
9.0
15.0
12.0
9.0

18.0
15.0
12.0
18.0
15.0
12.0

Ant-v3

fright upper length
fright lower length
fleft upper length
fleft lower length

bright upper length
bright lower length
bleft upper length
bleft lower length

0.2
0.4
0.2
0.4
0.2
0.4
0.2
0.4

0.2
0.5
0.2
0.5
0.2
0.5
0.2
0.5

0.2
0.2
0.2
0.2
0.2
0.2
0.2
0.2

0.2
0.3
0.2
0.3
0.2
0.5
0.2
0.5

0.2
0.3
0.2
0.3
0.2
0.3
0.2
0.5

Humanoid-v3

right shin length
right upper arm
left upper arm
right shin size
left shin size

right foot size
left foot size

right lower arm size
left lower arm size

right hand size
left hand size

0.30
0.277
0.277
0.049
0.049
0.075
0.075
0.031
0.031
0.04
0.04

0.05
0.277
0.277
0.049
0.049
0.075
0.075
0.031
0.031
0.04
0.04

0.05
0.139
0.139
0.049
0.049
0.075
0.075
0.031
0.031
0.04
0.04

0.30
0.277
0.277
0.01
0.01
0.01
0.01
0.031
0.031
0.04
0.04

0.30
0.277
0.277
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01

Table 2: Target task specifications

19

Under review as submission to TMLR

0.0 0.2 0.4 0.6 0.8 1.0

timesteps (×106)

−200

0

200

400

600

τ t

ΞS,T2
= 26.85

ΞS,T3
= 41.84

ΞS,T4
= 52.93

0.0 0.2 0.4 0.6 0.8 1.0

timesteps (×106)

0

250

500

750

1000

1250

1500

1750

τ t

ΞS,T1
= 2.41

ΞS,T2
= 8.95

ΞS,T3
= 24.39

ΞS,T4
= 33.73

(a) Half-Cheetah (b) Ant

Figure 6: Relative transfer performance for REPAINT against PPO

C Experiment details

HalfCheetah-v3: This is a complex continuous control task of a 2D cat-like robot where the objective is to
apply torque on the joints to make it run as fast as possible. The observation space is 17-dimensional and the
action space, a ∈ R6∀a ∈ A. Each action is a torque applied to one of the front or back rotors of the robot
and can take a value between [−1.0, 1.0]. We make two types of perturbations to create target tasks; reward
variation and dynamics variation. For the reward variation, the source environment uses a forward reward
of +1, and the four target environments have a forward reward r = [−2,−1, 1, 2]. Note that a negative
forward reward is a target task where the robot needs to run in the opposite direction than the source. For
this type of example, the source acts as an adversarial task and the goal is to learn at least as good as
learning from scratch. Next, we consider target tasks with varying dynamics. The source environment has
the standard gym values for damping and the four target environments have different values of damping
increased gradually in each task. The least similar task has the highest damping values in the joints.

Ant-v3: This is also a high dimensional continuous control task where the goal is to make an ant-robot
move in the forward direction by applying torques on the hinges that connect each leg and torso of the
robot. The observation space is 27-dimensional and the action space, a ∈ R8∀a ∈ A where each action is a
torque applied at the hinge joints with a value between [−1.0, 1.0]. The source environment has the standard
gym robot and the four target environments have varied dynamics by changing the leg lengths of the robot.
Representative figures of these dynamics can be found in the appendix.

Humanoid-v3: This is a high-dimensional continuous control task where the goal is to make a humanoid
robot move in the forward direction by applying torques on the hinge joints. The observation space is 376-
dimensional and the action space, a ∈ R17∀a ∈ A where each action is a torque applied at the hinge joints
with a value between [−0.4, 0.4]. The source environment has the standard gym robot and the four target
environments have varied dynamics by changing the hand and leg lengths as well as sizes.

D Algorithm hyperparameters

We keep the hyperparameters the same across all environments.

parameter name value
policy network hidden size

policy network layers
learning rate

replay buffer size
evaluation steps per epoch
maximum episode length

batch size
number of gradient updates

200
4

3e-4
100000
1000
1000
64
50

20

Under review as submission to TMLR

E REPAINT algorithm

The authors utilizes the clipped loss from PPO algorithm(Schulman et al., 2017) for building the REPAINT
algorithm,

Lclip(θ) = Êt
[
min

(
lθ(xt,at) · Ât, clipϵ(lθ(xt,at)) · Ât

)]
where lθ = πθ(at|xt)

πold(at|xt)
.

A modified version of this clipped loss is expressed using the ratio of target and source policy,

Lins(θ) = Êt
[
min

(
lθ(xt,at) · Ât, clipϵ(lθ(xt,at)) · Ât

)]
where ρθ = πθ(at|xt)

π∗
S(at|xt)

.

The details of the algorithm are provided in Algorithm 3.

Algorithm 3 REPAINT algorithm (Tao et al., 2020)
1: Initialize: value network parameter ν,policy network parameter θ, source policy π∗

S
2: Set hyper-parameters: ζ, α1, α2, βk
3: for k = 1, 2, . . . do
4: Set θold ← θ
5: Collect sample S = {(x,a,x′, r)}
6: Collect sample S̃ = {(x̃, ã, x̃′, r̃)}
7: Fir state-value network, Vν using only S to update ν
8: Compute advantage estimates Â1, . . . , ÂT for S and Â′

1, . . . , Â
′
T for S̃

9: for t = 1, . . . , T ′ do
10: if Ât < ζ then
11: Remove Â′

t and the corresponding transition (x̃, ã, x̃′, r̃) from S̃
12: end if
13: end for
14: Compute sample gradient of Lkrep(θ) using S where

Lkrep(θ) = Lclip(θ)− βkLaux(θ)

15: Compute sample gradient of Lins(θ) using S̃ where

Lins(θ) = Êt[minρθ(xt,at) · Ât, clipϵ(ρθ(xt,at)) · Â′
t]

16: Update policy network by

θ ← θ + α1∇θLkrep(θ) + α2∇θLins(θ)

17: end for

F Soft Actor-Critic (SAC) algorithm

Soft actor-critic (SAC) is an off-policy model-free reinforcement learning algorithm. SAC builds upon the
maximum entropy objective in RL where the optimal policy aims to maximize both the expected sum of
returns and its entropy at each visited state. This can be expressed as the following

π∗ = arg max
π

∑
t

E(xt,at)∼ρπ [rt + αH(π(·|xt))], (9)

where ρπ is the state-action marginal of the trajectory distribution induced by the policy π(·|xt) and H(·)
is the entropy of the policy and α is a temperature parameter to control the effect of entropy. Using this
objective it is possible to derive soft-Q values and soft-policy iteration algorithm as the following,

21

Under review as submission to TMLR

T πQ(xt,at) = rt + γExt+1∼p[V (xt+1)], (10)

where T π is the modified bellman backup operator and V (xt) = Eat∼π[Q(xt,at)− α log π(at|xt)].

Using several approximations to the soft-policy iteration algorithm it is possible to obtain an actor-critic
architecture that maximizes the objective in Eq. 9. This is specifically done by using deep neural networks
to parameterize the value function and the policy. Finally, the objective function can be re-written as the
following,

J(ϕ) = Ext∼D

[
DKL

(
πϕ(·|xt)

∣∣∣∣∣∣∣∣ exp (Qθ(xt, ·))
Zθ(xt)

)]
(11)

Symbol meaning
M,MS ,MT MDP, source MDP, target MDP

S source task
T target task
X ,A state space, action space
RS ,PS source reward, source transition dynamics
RT ,PT target reward, target transition dynamics
KS source knowledge
KT target knowledge
DT dataset collected in target task
H(·, ·) cross-entropy
π∗

S optimal source policy
πT target policy

AS , AT advantage using source policy, advantage using target policy
ρ transfer evaluation metric
τ relative transfer performance
Λi transferability of algorithm i
Gt returns at timestep t

ΞP
S,T dyanmics similarity between S, T

ΞR
S,T reward similarity between S, T
β temperature parameter
ψ source policy parameters e.g. π∗

S ≡ πψ
ϕ target policy parameters e.g. πθ
θ value function parameters

Table 3: Nomenclature

22

	Introduction
	Related work
	APT-RL: An off-policy advantage based policy transfer algorithm
	Advantage-based policy regularization
	Synchronous update of the source policy

	An evaluation framework for transfer RL
	A measure of transferability
	Theoretical support
	Revisiting the toy problem

	Measuring task similarity
	Theoretical motivation
	A model-based task similarity measurement algorithm

	Experiment Setup
	Experiment Results
	Task similarity
	Transferability of APT-RL, APT-RL
	Half-cheetah-v3
	Ant-v3

	Humanoid-v3

	Limitations
	Conclusion
	Proof of Theorem 1
	Proof of Theorem 2
	Experiment details
	Algorithm hyperparameters
	REPAINT algorithm
	Soft Actor-Critic (SAC) algorithm

