o © ® N o O b~ W N =

N N = 4 4 a4 4 a4 a4 o
= O © ©® N O U A~ W N =

Let’s Try Again: Eliciting Multi-Turn Reasoning in

Language Models via Simplistic Feedback

Anonymous Author(s)
Affiliation
Address

email

Abstract

Multi-turn problem solving is a critical yet challenging scenario in the practical
application of Large Reasoning Models (LRMs), commonly encountered in do-
mains such as chatbots, programming assistants, and education. Recently, reason-
ing models like DeepSeek-R1 has shown the promise of reinforcement learning
(RL) methods in enhancing model reasoning capabilities. However, we observe
that models trained with existing single-turn RL paradigms often lose their abil-
ity to solve problems across multiple turns, struggling to revise answers based
on context and exhibiting repetitive responses. This raises new challenges in pre-
serving reasoning abilities while enabling multi-turn contextual adaptation. In this
work, we find that simply allowing models to engage in multi-turn problem solv-
ing where they receive only unary feedback (e.g., “Let’s try again”) after incorrect
answers can help recover both single-turn and interactive multi-turn reasoning
skills. We introduce Unary Feedback as Observation (UFO) for reinforcement
learning, a method that explicitly leverages minimal yet natural user feedback dur-
ing iterative problem-solving which can be easily applied to any existing single-
turn RL training paradigm. Experimental results show that RL training with UFO
preserves single-turn performance while improving multi-turn reasoning accuracy
by 14%, effectively utilizing sparse feedback signals when available. To further
reduce superficial guessing and encourage comprehensive reasoning, we explore
reward structures that incentivize thoughtful, deliberate answers across interaction
turns. Code and models will be publicly released.

@ [Thelettors of the alphabet are given numeric values @ [Theletters of the alphabet are given numeric values
@ | based on two conditions below..What s the value of X? @I | based on two conditions below..What s the value of X?
\) (
————————————— —_———————————
<think> First, Let's list the numeric values <think> First, Let's list the numeric values
X for the letters based on given pattern... X for the letters based on given pattern...
</think> <answer>4</answer> </think> <answer>4</answer> |
7 .) | / —— \
Effectively Revisin, [Repeating Answers
. Incorrect. Please try again. Y 9 i . Incorrect. Please try again. P 9
- Answers -
! L J
<think> Given the sequence 1,2, X, 0, -1, ! <think> Let's list the numeric values for |
2,-1,0,1,2,1,0,-1,-2,-1,0, knowing I X the letters based on given pattern...
that...</think> <answer>0</answer> [</think> <answer>4</answer>
N ! N J
|
® | \ e
Incorrect. Please try again. ! Incorrect. Please try again.
- - |)
— | —
v <think> OK, let's try again. We are sure the ! x <think> Let’s list the numeric values for
sequenceis 1,2,X,0,-1,-2... We know | the letters based on given pattern...
this is...</think> <answer>-1</answer> ! </think> <answer>4</answer> |

Before Zero-Style RL Training, model learns to revise
answer in-context

After Zero-Style RL Training, model improve reasoning
but lose multi-turn problem solving capabilities

Figure 1: An example of using single-turn RL model for multi-turn problem solving. A single-turn RL
trained model lose multi-turn capability, producing identical reasoning chains across interaction turns after
being prompted that its answer is incorrect.

Submitted to 39th Conference on Neural Information Processing Systems (NeurIPS 2025). Do not distribute.

23
24
25
26
27
28
29
30

31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47

48
49
50
51
52
53
54
55
56
57

58
59
60
61
62
63
64
65
66
67
68
69

70

71

72

73
74

75

1 Introduction

Large language and reasoning models (LLMs/LRMs) like DeepSeek-R1 [1-4] have shown promise
in solving complex tasks such as mathematical problem solving and code generation. Multi-turn
problem solving is particularly prevalent in real-world applications including chatbots, program-
ming assistants, and educational tools, where users engage in interactive feedback loops to refine
model responses [5-9]. Reinforcement Learning (RL) [10, 1, 11, 12] has become trending for
LLM/LRM post-training, improving reasoning capabilities by rewarding correct model responses
while penalizing incorrect ones. However, it remains underexplored whether these models trained
with single-turn RL can generalize to real-world interactive problem-solving settings.

In this work, we first observe that single-turn RL may
hinder a model’s ability to engage in interactive, multi-
turn reasoning. Specifically, such models often fail
to incorporate in-context feedback and instead persist
with their initial answers across multiple turns (Fig-
ure 1). Moreover, we find that in 70% of failed cases,
single-turn-trained models generate exactly the same
answer across five interaction turns (Figure 2). Though
these models excel at single turns, how to make them
effectively leverage in-context feedback and improve in
multi-turn setting remains a challenge, especially con-
sidering current reasoning datasets are natually single-
turn and lack multi-turn feedback incorporation which
could also be very expensive. This gap motivates our
central research question: How can we train language
models that not only generate correct solutions but also
improve iteratively from sparse, minimal feedback?

Comparison of Effective Answers

[o-0% Before Training
0.0% After Training

(6.}

7.7%

Iy

To.0%

11.5%

61.5%

N
s

30.0%

19.2%

of Effective Answers
=] w

70.0%

0 20 40 60
Percentage (%)
Figure 2: Validation comparison. Repetition
rate remains high in later validation steps un-
der single-turn RL.

Real-world multi-turn user feedback is very expensive and hard to obtain. Bottle-necked by this,
existing multi-turn framework has been focusing on automatic feedback such as code interpreter
messages [5, 6, 9] and embodied simulator signals [8, 13], while those inherently single-turn static
dataset (e.g. QA, Math) are still predominantly leveraged for single-turn RL training. Moreover,
code interpreter and embodied environment still requires large amount of resource and costly to
build [14]. Considering all above, in this work we explore a surprisingly simple yet effective frame-
work that could leverage static dataset for multi-turn RL training, by simply adding verbal unary
feedback and encourage the model to try again when the model is wrong. We call this Unary Feed-
back as Observation (UFO), as it only occurs in context until model’s answer is finally correct and
the user ends the conversation without providing further signals.

Through experiments, we show that applying UFO in multi-turn RL settings [15] could effectively
simulate interactive reasoning and allow the model to effectively revise its reasoning across turns.
Models trained via UFO inherently learns to try to use different approaches when the current answer
is wrong, and get significantly 14% higher success rates when evaluated under multi-turn scenarios
compared to previous single-turn RL approaches. Interestingly, we find the model trained with
UFO also exhibit higher performance in single-turn reasoning, suggesting that multi-turn training
may promote better internalization of reasoning strategies, which generalize even in the absence of
feedback. We presume this could be due to multi-turn setting inherently enable the model to explore
diverse thinking patterns and learn to self reflection. We further investigated methods to amplify
such self-reflection capabilities, and find that applying a turn-wise reward decay could encourage the
model to think more systematically before answering, effectively enhancing reasoning capabilities
and perform better with constrained interaction overhead.

To summarize, our contributions are as follows:
* We identify that while current single-turn RL training improves reasoning, they could lead to
repetitive and degraded outputs in multi-turn interactive reasoning scenarios.

* We explore a simple yet effective framework, Unary Feedback as Observation (UFO), to enable
multi-turn RL training on existing static single-turn reasoning datasets.

* We show that UFO improves both multi-turn and single-turn reasoning, and that reward decay
further enhances self-reflection and problem-solving behavior.

7

78

79
80

81
82
83

84
85
86
87
88
89
90
91

92

93
94
95
96
97
98
99

100
101
102
103
104
105
106
107
108
109

110
111
112

113
114
115

116

17

118

119
120
121
122
123

2 Reinforcement Learning for LLM Reasoning

2.1 Background

Single-Turn Reinforcement Learning. Reinforcement Learning (RL) is a standard way to align
large language models (LLMs) with human preferences by maximizing

Eonn, yrmy (12 [R5 Y)],

where D is a prompt distribution, 7y the policy, and R(z,y) the reward for response y. Algorithms
such as PPO [10, 16] and GRPO [1, 17] apply this objective to static datasets, yielding strong single-
turn gains in math and code generation.

Multi-Turn Extensions. Real applications—tutoring, coding assistants, embodied agents—demand
multi-turn interaction, where a model refines answers across steps under sparse feedback. RA-
GEN [12] addresses this by framing reasoning as an MDP and optimizing whole trajectories, sup-
porting delayed credit assignment in tasks like symbolic logic and interactive programming. Yet
widely used math and code datasets remain single-turn, and collecting turn-by-turn human signals
is costly. Most prior work instead synthesizes feedback [6, 5] or uses tool-augmented environ-
ments [18, 19, 9], leaving open the key question we study here: Can models trained only with
single-turn RL generalize to multi-turn reasoning ?

2.2 Single-Turn RL Leads to Collapsed Multi-Turn Reasoning

To answer the question posed above, we examine how models trained with single-turn reinforcement
learning (RL) perform in multi-turn interaction settings. While single-turn RL improves response
quality in isolated prompts, we consistently observe that such models fail to revise their answers
when provided with corrective feedback. In practical use cases such as tutoring or mathematical
assistance, users typically offer minimal feedback (e.g., “try again”) and expect the model to adjust
its reasoning accordingly. However, RL-trained models often repeat their initial response even after
being explicitly told it is incorrect, indicating a collapse in multi-turn reasoning capability.

This phenomenon is illustrated in Figure 1: a pre-trained model (left) gradually improves its re-
sponse through contextual revision, while a single-turn RL model (right) produces the same output
across turns, failing to incorporate feedback. We define an effective answer as a distinct attempt
that is not a near-duplicate of any previous response within the same episode (e.g., 1.5 and 3/2 are
considered duplicates). Figure 2 shows that after single-turn RL training, over 70% of model re-
sponses concentrate in the first attempt, with little variation in subsequent turns. We attribute this
failure mode to two key factors: (1) the reward structure in single-turn RL offers no incentive for
incremental improvement, and (2) the policy is trained without access to interaction history, making
it insensitive to feedback. These limitations hinder the model’s ability to develop revision-aware
reasoning strategies.

This observation presents a central challenge: current single-turn RL frameworks are insufficient for
acquiring multi-turn reasoning abilities, yet obtaining fine-grained, turn-level supervision in real-
world tasks—especially in static domains like math—is prohibitively expensive.

In light of this, we ask the following question: Can we leverage only the simplest form of su-
pervision, such as “try again”, to simulate multi-turn interaction on static datasets and train
models to learn adaptive revision behaviors?

Can minimal feedback alone unlock multi-turn reasoning on static datasets?

3 Training Multi-Turn Reasoning Models with Minimal Feedback

3.1 Problem Formulation

We model the process of multi-turn problem solving based on static single-turn datasets as a finite-
horizon Markov Decision Process (MDP), defined by the tuple (S, A, P, R, T). Here, S is the
state space, A is the action space consisting of all possible answers, P is the transition function
defined by the agent—environment interaction, R is the reward function, and T,,« is the maximum
number of interaction steps per episode. At each turn ¢, the agent observes a state s; € S that

124

125
126
127
128
129
130

131
132

133
134
135
136
137

138

139
140
141
142

143

144
145
146
147

148
149

150
151
152
153
154

155
156
157

159

160
161
162
163
164

165
166

167
168

encodes the original question ¢ and the history of past attempts and feedbacks:

st = Concat(q, {(ak, fr) ;c_zll)7 M

where aj, denotes the k-th answer, and f, is a binary feedback token returned by the environment.
Importantly, the feedback in the observation is restricted to negative signals such as TryAgain.
When the agent produces a correct answer, the episode terminates immediately, and no explicit
confirmation (e.g., Correct) is added to the context. As a result, the agent only receives unary
feedback and must learn to revise its answers based solely on a history of failed attempts. It gener-
ates an answer a; ~ mg(- | s;) and receives a scalar reward:

ry = {1, if a4 is correct, @

0, otherwise.

The episode ends when the agent provides a correct answer or reaches the maximum number of
steps Tax-

This formulation reflects the sparse and delayed nature of real-world feedback in reasoning tasks.
It does not rely on access to ground-truth reasoning traces or executable environments. Unlike
conventional RL settings that assume dense or tool-driven feedback, our MDP is instantiated entirely
from static, single-turn datasets and minimal correctness signals—making it well-suited for weakly-
supervised multi-turn training.

3.2 Unary Feedback as Observation (UFO)

To enable multi-turn reasoning on static datasets without access to tools or step-by-step labels, we
propose a simple yet general mechanism called Unary Feedback as Observation (UFO). The key
idea is to treat minimal feedback (specifically, failure-only textual signals) as part of the observation,
allowing the model to revise its answers based on previously failed attempts.

At each turn ¢, the model receives an input constructed as:

x¢ = Format(q, {(ak, fx) 2;11)7 &)

where g is the original question, and each (ay, fx) represents a previous answer ay, and its associated
feedback signal f. Since episodes terminate immediately after a correct answer, no positive signals
(e.g., Correct) are ever included in the context. Thus, the agent must learn to revise its reasoning
based solely on failure traces (e.g., fx € {TryAgain}).

In practice, the prompt is constructed as a natural-language sequence concatenating all previous
attempts and their feedbacks. For example:

Question: What is the value of ...7
Attempt 1: [wrong answer]
Feedback: Try Again.

Attempt K: [correct answer]

This formulation enables us to transform static single-turn datasets into multi-turn interaction
episodes without requiring structural changes, expert annotations, or execution environments. Thus,
UFO allows multi-turn reinforcement learning on LLMs with minimal supervision. We describe this
training setup as follows.

3.3 Reinforcement Learning with Minimal Feedback

Given the MDP formulation and the UFO-based observation design, we optimize the agent using
reinforcement learning to learn revision-aware, multi-turn policies. Since the dataset contains only
final-answer correctness and lacks ground-truth reasoning traces, supervised finetuning is not ap-
plicable. Reinforcement learning, by contrast, enables exploration of diverse reasoning strategies
under sparse and delayed supervision.

We adopt Proximal Policy Optimization (PPO) to train the policy 7y, following prior work [20, 12]
which shows that a learned critic enables fine-grained value estimates and stabilizes optimization.

At each episode, the agent interacts with a problem over multiple rounds. At each turn ¢, it observes
input x;, generates an answer a;, and receives a binary reward r; € {0, 1}. The resulting trajectory

169

170
171

172
173

174
175
176

177

178
179
180
181

182
183

184

185
186
187
188

189
190

191

192
193
194
195

196

197

198
199

201
202

is defined as:
T ={(x1,a1,7m1), (22, 02,72), ..., (zT,07,7T)}, “

where T' < Th,x is the number of turns before success or termination. The objective is to maximize
the expected return:

T
T(0) = Erry [Z n} : ®)
t=1

We apply PPO with a clipped surrogate objective. For each training batch, we estimate the advantage
Ay using a baseline value function and update the policy as:

CPPOGZIE{ i (7”"(”t‘“’i)fi,c1' o | w) g0 ey)} 6
O =B i e T 2 Pl T 071 ©
Crucially, the UFO design enables the policy to condition on the full history of failure signals,
giving rise to context-sensitive behaviors such as error correction, elimination, and hypothesis re-
finement—capabilities that are difficult to elicit through static supervision alone.

3.4 Reward Design for Adaptive Reasoning

Binary correctness signals offer a minimal form of supervision, but they often induce suboptimal
behavior such as blind trial-and-error or repeated guesses. To encourage more efficient and reflec-
tive reasoning, we introduce two complementary reward shaping strategies: reward decay and a
trajectory-level repetition penalty.

To promote early success, we apply exponential decay to the reward when a correct answer is pro-
duced at turn ¢:

~%, if a; is correct,
0, otherwise,

DecayReward(t) = { (7

where vy € (0,1) is a decay factor that favors solving the problem in fewer turns.

To reduce answer repetition, we define a global penalty based on the number of effective an-
swers—i.e., responses that are not near-duplicates of any prior attempt in the same episode. Let
T denote the number of turns in the episode, and E(7) the number of effective answers in the
trajectory 7. We define a normalized penalty term:

Penalty(7) = \ - (1 — M) , 8)
T

where A > 0 is a tunable penalty weight, and F(7)/T measures answer diversity. The penalty

reaches its maximum when all answers are identical, and disappears when all are distinct.

Combining these two components, the final reward used during training is defined as:
DY (1 — %) , if aq is correct,

Tt =
0—X- (1 — %) , otherwise.

(C)]

This formulation encourages both early success and multi-turn diversity, while requiring no addi-
tional supervision. In our experiments, we find that reward decay improves convergence and sample
efficiency, whereas repetition penalties lead to more exploratory and reflective behaviors. Together,
they significantly stabilize training in the minimal-feedback setting.

4 Experiments

4.1 Experimental Setup

Tasks and Environment Settings. All experiments are conducted on the MATH partition of the
METAMATHQA dataset, where data are augmented from the training sets MATH. This environment
provides math questions with adequate difficulty, enabling us to observe and analyze its reasoning
emergence. We use an adapted version of the RAGEN [15] codebase which supports effective multi-
turn RL training.

204
205
206
207
208

209
210

211
212
213

214

215
216

217
218
219

220

221
222

223
224
225

226

227

228

229
230
231

232
233

0.9
0 0.8 3z
5 5 0.8
2 0.6 g
] S 0.7
S 32 —e— 10round
v 0.4 Multi-turn 5round
—e— Single turn 0.6 —— 1round
0 50 100 150 200 0 50 100 150 200
Steps Steps

Figure 3: Multi-turn RL significantly outperforms Figure 4: Moderate episodes (5 turns) for multi-turn
single-turn baselines, achieving higher success rates training yield the best performance, while increasing
with similar inference cost. to 10 turns offers no explicit gain.

Training Settings. We train Qwen-2.5-3B-Instruct with PPO for 200 optimization steps on A100
GPUs. Each batch samples P=8 prompts, with N=16 rollouts per prompt. During training, we
experiment with three distinct configurations for the maximum number of turns per episode, setting
Thax to 1, 5, and 10, respectively. For the validation phase, T1,,x is fixed at 5 turns. In both training
and validation, episodes are limited to a maximum of 10 actions in total. Policy updates use PPO
with GAE parameters (v, \) = (1.0, 1.0), Adam with 3 = (0.9,0.999), entropy coefficient 10~3.

Evaluation Metrics. We report two complementary metrics to assess both effectiveness and effi-
ciency.

* Success Rate (Succ@k). This metric measures the percentage of problems solved within a fixed
number of interaction turns. Let 7; be the number of turns the agent takes to solve problem g;, or
oo if it fails. We have:

N
1
Suce@k = ; 1[r; < K] (10)

We report Succ@1 for single-turn performance, and Succ@5/10 to reflect multi-turn capability.

* Average Number of Turns. To evaluate interaction efficiency, we report the average number of
turns the agent takes to solve each problem:

N
E[num_turns| = % Z T; (11)
j=1

where T); denotes the number of interactive turns taken for problem g;. This metric reflects how
efficiently the agent reaches a solution, accounting for retries and step-wise refinement across
multi-turn episodes.

4.2 Experimental Results and Findings

In this section, we present empirical findings that address three central questions in our study of
multi-turn reinforcement learning with unary feedback:

1. Section 4.2.1: Does multi-turn RL unlock stronger reasoning than single-turn training?
2. Section 4.2.2: Can models effectively revise their answers from sparse feedback alone?
3. Section 4.2.3: How do reward shaping strategies impact reasoning efficiency and diversity?

We explore each question in the following subsections, with quantitative analyses and ablation stud-
ies. Additional qualitative examples and robustness checks are included in the Supplementary.

4.2.1 Multi-turn RL Unlock Higher Upper Bound of LL.M Reasoning

We compare models trained with multi-turn RL against single-turn PPO baselines, using Succ@5 on
a held-out validation set evaluated at 21 checkpoints across 200 training steps. During validation,
each agent is allowed up to 5 interaction turns per problem (k = 5).

To ensure a fair comparison between single- and multi-turn methods, we evaluate the single-
turn model by sampling 5 independent completions per problem, equivalent to Pass@5, while the

234

244

254

268

269
270
271

272

0.950

0.925 \o\o__,/o

-0~ 10-round training

0.900 5-round training
—O- 1-round training

0.875 / —0 0— \

0.850

success rate

1 2 4 6 8 10
validation rounds
Figure 5: Validation performance (Succ@k) of models trained with different rollout turns under varying
inference-time turn budgets. Multi-turn training (5 or 10 turns) consistently yields higher success rates across
all inference turn budgets, including k£ = 1, indicating better generalization even to single-turn reasoning.

multi-turn model generates responses sequentially with unary feedback after each attempt. In both
cases, success is recorded if any of the 5 responses is correct. As shown in Figure 3, multi-turn
training consistently outperforms single-turn RL, achieving up to 14% higher success rate with
similar inference cost. This highlights the benefit of iterative revision under sparse feedback.

Furthermore, we conducted additional experiments comparing various multi-turn training budgets
(Tax = 1,5, 10) while consistently using a 5-turn validation setup. Findings presented in Figure 4
demonstrate that larger training budgets yield enhanced performance relative to the single-turn base-
line. Notably, both the Ti,.x = 10 and T,.x = 5 configurations delivered more than a 6% relative
improvement over single-turn training at their peak, clearly emphasizing the benefits of multi-turn
training.

To further validate the robustness of multi-turn training benefits, we expanded our analysis by
evaluating peak-performing models trained with Ti,,x € 1,5, 10 across varied inference-time in-
teraction budgets (k € 1,2,4,6,8,10). Results illustrated in Figure 5 reinforce previous observa-
tions, consistently showing superior Succ @k performance by models trained under multi-turn con-
ditions.Intriguingly, these improvements are observable even at the lowest inference budget (k = 1),
suggesting that multi-turn training enhances not only iterative performance but also generalizes well
to single-shot scenarios. These findings suggest that multi-turn training cultivates robust and flexible
reasoning capabilities adaptable to varying conversational interaction depths.

4.2.2 Multi-turn Setting Enables LRM to Revise From Feedback

The multi-turn setting enables agents to engage repeatedly with each prompt (up to Ti,,x turns),
allowing for richer, more informative interaction trajectories from the same training data. This
enhanced utilization of feedback is hypothesized to extract more meaningful learning signals per
problem, potentially improving solution quality and accelerating convergence, especially in data-
limited contexts.

To empirically validate that LRMs can be improved effectively utilizing conversational feedback for
revision, we compared 5-turn training scenarios with and without explicit feedback prompts. Re-
sults presented in Figure 6(a) confirm our hypothesis, demonstrating over 8% peak performance
improvement when explicit feedback is provided.

An additional analysis with feedback prompt only in training (Figure 6(b)) revealed performance
improvement as well. This suggests that multi-turn training can even intrinsically enhance model
reasoning capabilities.

Finally, our robustness analyses in the Figure 7 indicate that the effectiveness of our method is
maintained across various prompt formulations, underscoring its practical applicability in real-world
scenarios.

4.2.3 Reward Decay Encourages Efficient Problem Solving

We investigate how different reward schedules influence the agent’s learning behavior, particularly
in encouraging early success versus allowing extended exploration. All schedules define a reward
r(n) based on the turn index n when the first correct answer is produced, with n € {1, ..., Ty}

We define and evaluate three distinct reward schedules:

273
274
275

276
277
278
279

280
281
282

283
284

285
286
287

289
290

291
292

294
295
296

297

298
299
300
301

(a) (b)

0.9 0.9
208 g 08
© ©
o -4
@ 0.7 @ 0.7
[} [}
S S
& 0.6 7 0.6

Feedback available in training and val Feedback available in only training
0.5 —— No available feedback 0.5 —e— No available feedback
0 50 100 150 200 0 50 100 150 200
Steps Steps

Figure 6: Comparison of success rate with multi-turn setting. (a) with feedback prompt in both training and
validation compared to blank prompt; (b) with feedback prompt only in training compared to blank prompt.

8 ~— ﬂwy‘q 03 p'\
£08 s
5 : g
0}
g 0.6 £2
a LS, z ——a_ .

) e e

0 50 100 150 200 0 50 100 150 200
Steps Steps
—— Incorrect. —e— Incorrect. Please think again.
Incorrect. Please try again. Incorrect. Let's try again.

Figure 7: Evaluation under different verbal feedback prompts. Success rates and action counts remain
consistent across all variants, demonstrating UFO’s robustness to various prompts.

* Exponential Decay (rexp): Texp(n) = 2-(n=1) " This schedule imposes a strong penalty for
delayed success, with the reward halving for each additional turn taken. It maximally incentivizes
the agent to find the solution in the earliest possible turn.

* Linear Decay (r4;n): 7in(n) = max(0,1 — 0.2(n — 1)). This provides a gentler, linear decrease
in reward for each turn up to 5 turns, after which the reward is zero. This offers a balanced
incentive for early solutions without excessively penalizing slightly later successes compared to
the exponential schedule.

* Constant Reward (7const): Tconst() = 1. This schedule assigns a constant reward for success
regardless of the turn number (up to Tj,.x). It serves as a baseline to evaluate the impact of the
decaying schedules, reflecting a scenario where only task completion matters, not speed.

All schedules operate for n € 1,. .., T The agent’s objective remains to maximize the expected
cumulative reward.

Experimental validation (Figure 8) confirms that exponential reward decay notably reduces the
mean number of actions by roughly 10 %, without sacrificing overall success rates. This reduction
in action count suggests that the exponential decay schedule encourages the model to engage in more
profound self-reflection and systematic thinking before generating a response. By compelling the
model to find solutions in fewer turns, it learns to be more deliberate and efficient, thus minimizing
redundant interactions.

By considering the normalized penalty term in our experiment (Equation 8), we count the number
of non-repetitive answer for each validation round, as shown in Figure 9. We can tell the percentage
increases from 80% to 90%, suggesting that the model performs better in the later stages of training
as the model learned to generate different responses better, reducing duplicate answers. This is an
important measure of model performance, as high repetition rates lead to higher penalties and thus
lower overall rewards. The chart show that the model did improve in this area during training.

5 Related Work

Reinforcement Learning for Enhancing LLM Reasoning and Multi-Turn Interactions. Rein-
forcement learning from human feedback (RLHF) established that language models can be aligned
with user preferences through iterative fine-tuning in natural-language tasks [21-24]. Follow-
up work verified that RLHF improves instruction following and already produces rudimentary

302
303
304
305
306
307
308
309

311
312
313

314
315
316
317
318
319
320
321
322
323

324

326
327
328
329
330
331
332
333
334

9 03
£ 0.8 S
7 g
g)
35 =]
? 0.6 =
0 50 100 150 200 0 50 100 150 200
Steps Steps
—e— constant reward linear decay reward —e— exponential decay reward

Figure 8: Comparison of reward shaping strategies. While constant, linear decay, and exponential decay
schedules achieve similar success rates (left), exponential decay consistently leads to fewer actions per episode
(right), indicating more efficient problem solving with less external supervision.

0.9

Percentage

—e— non-repetitive answers

0.8

0 20 40 60 80 100 120 140 160 180 200
Training Steps
Figure 9: Proportion of non-repetitive answers over training. The upward trend suggests improved diversity
across turns, which reduces penalty from repeated responses and contributes to higher overall rewards.

multi-step explanations in summarization and narrative settings [25, 26]. To lower annotation
cost, Reinforcement Learning from Al Feedback (RLAIF) replaces human labels with synthetic
preferences [27], while scalable-oversight debate protocols investigate alignment under weak
judges [28]. At the optimisation level, lightweight objectives such as Direct Preference Opti-
misation (DPO) [29, 30], Parameter-Efficient RLHF [31] and Self-Play Fine-Tuning (SPIN) [32]
eliminate most on-policy roll-outs. Memory-augmented agents—POEM [33], Larimar [34] and
Echo [35]—store episodic context, while self-feedback frameworks such as Self-Refine [36] and
CRITIC [37] iteratively repair their own outputs. Real-world applications remain inherently inter-
active: they expose models to stateful environments, long-horizon credit assignment and delayed
rewards [38—40]. Frameworks like Reflexion [41], hierarchical ArCHer [42], search-based Graph-
of-Thought [43] and MCTS Self-Refine [44], together with self-play benchmarks such as UNO
Arena [45], push multi-turn RL towards robust dialogue, planning and embodied control.

Advancements in Mathematical Reasoning with Large Language Models. LLMs have ad-
vanced rapidly on mathematical benchmarks, from grade-school GSM8K [46] to Olympiad-level
MATH [47]. Prompting innovations, like Chain-of-Thought [48], its self-consistent variant [49], and
Tree/Graph-of-Thought [50, 43], made intermediate reasoning explicit. ReAct interleaves reasoning
with environment actions [51], while tool-coupled approaches such as PAL [52], PoT [53] and Tool-
former [54] off-load heavy computation. Verifier pipelines boost reliability: from Let’s Verify Step-
by-Step [55] to AutoPSV [56], MATH-Shepherd [57] and progress-aware verifiers [58]. Binary-
search debuggers like URSA locate first-error steps [59]. Nevertheless, intrinsic self-correction
remains limited [60]. On the scale axis, domain-specialised pre-training (Minerva [61]) and massive
formal corpora (LeanNavigator [62]) provide richer data.

6 Conclusions and Limitations

In this work, we highlight a critical limitation of current single-turn RL training: its tendency to im-
pair multi-turn reasoning by promoting repetitive and shallow responses. To address this, we propose
Unary Feedback as Observation (UFO), a simple yet effective method that integrates minimal feed-
back into existing RL pipelines. UFO enables models to recover and improve both single-turn and
multi-turn reasoning performance. Our experiments show a 14% gain in multi-turn accuracy while
preserving single-turn quality. Additionally, we demonstrate that incorporating reward decay and
repetitive penalty encourages deeper reasoning, self-correction and generating different responses.
Our approach is lightweight, generalizable, and easily applicable to existing datasets. A limitation of
our work is its primary focus on mathematical reasoning tasks, leaving its generalizability to broader
reasoning domains for future investigation.

335

336
337

338

339

341
342
343
344
345

346
347

348
349
350
351
352

353
354
355

356
357
358

359
360
361

362
363
364

365
366

368
369

370
371
372
373
374

375
376
377
378

379
380
381
382

References

(1]

(2]
(3]

(4]

(5]

(6]

(7]

(8]

(9]

[10]

[11]

[12]

[13]

[14]

DeepSeek-Al. Deepseek-rl: Incentivizing reasoning capability in llms via reinforcement
learning, 2025. URL https://arxiv.org/abs/2501.12948. 1, 2.1

OpenAl. Gpt-4 technical report, 2024. URL https://arxiv.org/abs/2303.08774.

Qwen, :, An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu,
Chengyuan Li, Dayiheng Liu, Fei Huang, Haoran Wei, Huan Lin, Jian Yang, Jianhong Tu,
Jianwei Zhang, Jianxin Yang, Jiaxi Yang, Jingren Zhou, Junyang Lin, Kai Dang, Keming Lu,
Keqin Bao, Kexin Yang, Le Yu, Mei Li, Mingfeng Xue, Pei Zhang, Qin Zhu, Rui Men, Runji
Lin, Tianhao Li, Tianyi Tang, Tingyu Xia, Xingzhang Ren, Xuancheng Ren, Yang Fan, Yang
Su, Yichang Zhang, Yu Wan, Yuqiong Liu, Zeyu Cui, Zhenru Zhang, and Zihan Qiu. Qwen2.5
technical report, 2025. URL https://arxiv.org/abs/2412.15115.

Gemini Team. Gemini: A family of highly capable multimodal models, 2025. URL https:
//arxiv.org/abs/2312.11805. 1

Tianbao Xie, Danyang Zhang, Jixuan Chen, Xiaochuan Li, Siheng Zhao, Ruisheng Cao,
Toh Jing Hua, Zhoujun Cheng, Dongchan Shin, Fangyu Lei, Yitao Liu, Yiheng Xu, Shuyan
Zhou, Silvio Savarese, Caiming Xiong, Victor Zhong, and Tao Yu. Osworld: Benchmark-
ing multimodal agents for open-ended tasks in real computer environments, 2024. URL
https://arxiv.org/abs/2404.07972. 1, 1, 2.1

Jiayi Pan, Xingyao Wang, Graham Neubig, Navdeep Jaitly, Heng Ji, Alane Suhr, and Yizhe
Zhang. Training software engineering agents and verifiers with swe-gym, 2024. URL https:
//arxiv.org/abs/2412.21139. 1, 2.1

Shunyu Yao, Howard Chen, John Yang, and Karthik Narasimhan. Webshop: Towards scalable
real-world web interaction with grounded language agents, 2023. URL https://arxiv.
org/abs/2207.01206.

Mohit Shridhar, Xingdi Yuan, Marc-Alexandre Co6té, Yonatan Bisk, Adam Trischler, and
Matthew Hausknecht. Alfworld: Aligning text and embodied environments for interactive
learning, 2021. URL https://arxiv.org/abs/2010.03768. |

Xingyao Wang, Zihan Wang, Jiateng Liu, Yangyi Chen, Lifan Yuan, Hao Peng, and Heng Ji.
Mint: Evaluating llms in multi-turn interaction with tools and language feedback, 2024. URL
https://arxiv.org/abs/2309.10691. 1, 1, 2.1

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal
policy optimization algorithms, 2017. URL https://arxiv.org/abs/1707.06347. 1, 2.1

Yifei Zhou, Andrea Zanette, Jiayi Pan, Sergey Levine, and Aviral Kumar. Archer: Training
language model agents via hierarchical multi-turn rl, 2024. URL https://arxiv.org/abs/
2402.19446. 1

Zihan Wang, Kangrui Wang, Qineng Wang, Pingyue Zhang, Linjie Li, Zhengyuan Yang, Kefan
Yu, Minh Nhat Nguyen, Licheng Liu, Eli Gottlieb, Monica Lam, Yiping Lu, Kyunghyun Cho,
Jiajun Wu, Li Fei-Fei, Lijuan Wang, Yejin Choi, and Manling Li. Ragen: Understanding self-
evolution in 1lm agents via multi-turn reinforcement learning, 2025. URL https://arxiv.
org/abs/2504.20073. 1,2.1,3.3

Yan Zhuang*, Jiawei Ren*, Xiaokang Ye*, Xuhong He, Zijun Gao, Ryan Wu, Mrinaal Dogra,
Cassie Zhang, Kai Kim, Bertt Wolfinger, Zigiao Ma, Tianmin Shuf, Zhiting Hut, and Lianhui

Qinf. Simworld: A world simulator for scaling photorealistic multi-agent interactions, 2025.
1

Shiyi Cao, Sumanth Hegde, Dacheng Li, Tyler Griggs, Shu Liu, Eric Tang, Jiayi Pan, Xingyao
Wang, Akshay Malik, Graham Neubig, Kourosh Hakhamaneshi, Richard Liaw, Philipp Moritz,
Matei Zaharia, Joseph E. Gonzalez, and Ion Stoica. Skyrl-v0: Train real-world long-horizon
agents via reinforcement learning, 2025. 1

10

https://arxiv.org/abs/2501.12948
https://arxiv.org/abs/2303.08774
https://arxiv.org/abs/2412.15115
https://arxiv.org/abs/2312.11805
https://arxiv.org/abs/2312.11805
https://arxiv.org/abs/2312.11805
https://arxiv.org/abs/2404.07972
https://arxiv.org/abs/2412.21139
https://arxiv.org/abs/2412.21139
https://arxiv.org/abs/2412.21139
https://arxiv.org/abs/2207.01206
https://arxiv.org/abs/2207.01206
https://arxiv.org/abs/2207.01206
https://arxiv.org/abs/2010.03768
https://arxiv.org/abs/2309.10691
https://arxiv.org/abs/1707.06347
https://arxiv.org/abs/2402.19446
https://arxiv.org/abs/2402.19446
https://arxiv.org/abs/2402.19446
https://arxiv.org/abs/2504.20073
https://arxiv.org/abs/2504.20073
https://arxiv.org/abs/2504.20073

383
384
385
386
387

388
389
390
391
392

393
394
395
396

397
398
399

401
402

403
404
405

406
407

409
410
411
412
413

414
415
416

417
418
419

420
421
422

423
424
425

426
427
428

429
430
431

432
433
434

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

(28]

[29]

Qineng Wang Pingyue Zhang Linjie Li Zhengyuan Yang Kefan Yu Minh Nhat Nguyen Licheng
Liu Eli Gottlieb Monica Lam Yiping Lu Kyunghyun Cho Jiajun Wu Li Fei-Fei Lijuan Wang
Yejin Choi Manling Li Zihan Wang, Kangrui Wang. Ragen: Understanding self-evolution
in 1lm agents via multi-turn reinforcement learning, 2025. URL https://arxiv.org/abs/
2504.20073. 1,4.1

Long Ouyang, Jeff Wu, Xu Jiang, Diogo Almeida, Carroll L. Wainwright, Pamela Mishkin,
Chong Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, John Schulman, Jacob Hilton,
Fraser Kelton, Luke Miller, Maddie Simens, Amanda Askell, Peter Welinder, Paul Christiano,
Jan Leike, and Ryan Lowe. Training language models to follow instructions with human
feedback, 2022. URL https://arxiv.org/abs/2203.02155. 2.1

Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Xiao Bi, Haowei Zhang,
Mingchuan Zhang, Y. K. Li, Y. Wu, and Daya Guo. Deepseekmath: Pushing the limits of
mathematical reasoning in open language models, 2024. URL https://arxiv.org/abs/
2402.03300. 2.1

Bowen Jin, Hansi Zeng, Zhenrui Yue, Jinsung Yoon, Sercan Arik, Dong Wang, Hamed Za-
mani, and Jiawei Han. Search-rl: Training llms to reason and leverage search engines with
reinforcement learning, 2025. URL https://arxiv.org/abs/2503.09516. 2.1

Jiazhan Feng, Shijue Huang, Xingwei Qu, Ge Zhang, Yujia Qin, Baoquan Zhong, Chengquan
Jiang, Jinxin Chi, and Wanjun Zhong. Retool: Reinforcement learning for strategic tool use in
llms, 2025. URL https://arxiv.org/abs/2504.11536. 2.1

Jingcheng Hu, Yinmin Zhang, Qi Han, Daxin Jiang, Xiangyu Zhang, and Heung- Yeung Shum.
Open-reasoner-zero: An open source approach to scaling up reinforcement learning on the
base model, 2025. URL https://arxiv.org/abs/2503.24290. 3.3

Jeffrey Wu Tom B. Brown Alec Radford Dario Amodei Paul Christiano Geoffrey Irving Daniel
M. Ziegler, Nisan Stiennon. Fine-tuning language models from human preferences, 2019. URL
https://arxiv.org/abs/1909.08593. 5

Long Ouyang, Jeff Wu, Xu Jiang, Diogo Almeida, Carroll L. Wainwright, Pamela Mishkin,
Chong Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, John Schulman, Jacob Hilton,
Fraser Kelton, Luke Miller, Maddie Simens, Amanda Askell, Peter Welinder, Paul Christiano,
Jan Leike, and Ryan Lowe. Training language models to follow instructions with human
feedback, 2022. URL https://arxiv.org/abs/2203.02155.

Paul F. Christiano, Jan Leike, Tom B. Brown, Miljan Martic, Shane Legg, and Dario Amodei.
Deep reinforcement learning from human preferences, 2017. URL https://arxiv.org/
abs/1706.03741.

Takeshi Kojima, Shixiang Shane Gu, Machel Reid, Yutaka Matsuo, and Yusuke Iwasawa.
Large language models are zero-shot reasoners, 2023. URL https://arxiv.org/abs/
2205.11916. 5

Jeff Wu Daniel M. Ziegler Ryan Lowe Chelsea Voss Alec Radford Dario Amodei Paul Chris-
tiano Nisan Stiennon, Long Ouyang. Learning to summarize from human feedback, 2020.
URL https://arxiv.org/abs/2310.03708. 5

Daniel M. Ziegler Nisan Stiennon Ryan Lowe Jan Leike Paul Christiano Jeff Wu,
Long Ouyang. Recursively summarizing books with human feedback, 2021. URL https:
//arxiv.org/abs/2109.10862. 5

Harrison Lee, Samrat Phatale, Hassan Mansoor, Thomas Mesnard, Johan Ferret, et al. Rlaif
vs. rlhf: Scaling reinforcement learning from human feedback with ai feedback, 2023. URL
https://arxiv.org/abs/2309.00267. 5

Anton Bakhtin, Jeffrey Ling, Jack Hessel, Ari Holtzman, Sam McCandlish, et al. On scalable
oversight with weak Ilms judging strong llms, 2024. URL https://arxiv.org/abs/2407.
04622. 5

Rafael Rafailov, Archit Sharma, Eric Mitchell, Stefano Ermon, Christopher D. Manning, and
Chelsea Finn. Direct preference optimization: Your language model is secretly a reward model,
2023. URL https://arxiv.org/abs/2305.18290. 5

11

https://arxiv.org/abs/2504.20073
https://arxiv.org/abs/2504.20073
https://arxiv.org/abs/2504.20073
https://arxiv.org/abs/2203.02155
https://arxiv.org/abs/2402.03300
https://arxiv.org/abs/2402.03300
https://arxiv.org/abs/2402.03300
https://arxiv.org/abs/2503.09516
https://arxiv.org/abs/2504.11536
https://arxiv.org/abs/2503.24290
https://arxiv.org/abs/1909.08593
https://arxiv.org/abs/2203.02155
https://arxiv.org/abs/1706.03741
https://arxiv.org/abs/1706.03741
https://arxiv.org/abs/1706.03741
https://arxiv.org/abs/2205.11916
https://arxiv.org/abs/2205.11916
https://arxiv.org/abs/2205.11916
https://arxiv.org/abs/2310.03708
https://arxiv.org/abs/2109.10862
https://arxiv.org/abs/2109.10862
https://arxiv.org/abs/2109.10862
https://arxiv.org/abs/2309.00267
https://arxiv.org/abs/2407.04622
https://arxiv.org/abs/2407.04622
https://arxiv.org/abs/2407.04622
https://arxiv.org/abs/2305.18290

435
436
437

439

440
441
442

443
444

445
446

447
448

449
450

451
452

453

454
455
456

457
458
459

461
462

463
464
465

466
467
468

469
470
471

472
473
474

475
476

477
478
479

480
481
482

[30] Jing Shao Xiangyu Yue Chao Yang Wanli Ouyang Yu Qiao Zhanhui Zhou, Jie Liu. Beyond
one-preference-fits-all alignment: Multi-objective direct preference optimization, 2023. URL
https://arxiv.org/abs/2310.03708. 5

[31] Yihe Deng, Yujia Xu, Shangqgian Chen, and Kai-Wei Chang. Parameter efficient reinforcement
learning from human feedback, 2024. URL https://arxiv.org/abs/2403.10704. 5

[32] Zixiang Chen, Yihe Deng, Huizhuo Yuan, Kaixuan Ji, and Quanquan Gu. Self-play fine-tuning
converts weak language models to strong language models, 2024. URL https://arxiv.
org/abs/2401.01335. 5

[33] Hieu D. Do, Chunting Zhou, and Pengfei Liu. Large language models prompting with episodic
memory, 2024. URL https://arxiv.org/abs/2408.07465. 5

[34] Lingpeng Liu, Sam Roberts, Yuhuai Wu, et al. Larimar: Large language models with episodic
memory control, 2024. URL https://arxiv.org/abs/2403.11901. 5

[35] Haoyang Zhou, Qianjiang Wang, Yuwei Wang, et al. Echo: A large language model with
temporal episodic memory, 2025. URL https://arxiv.org/abs/2502.16090. 5

[36] Aman Madaan, Uri Alon, Yiming Yang, Graham Neubig, and Zico Kolter. Self-refine: Iterative
refinement with self-feedback, 2023. URL https://arxiv.org/abs/2303.17651. 5

[37] Linyi Gou, Yang Song, Kun Zhou, et al. Critic: Large language models can self-correct with
tool-augmented critiquing, 2023. URL https://arxiv.org/abs/2305.11738. 5

[38] Richard S Sutton. Reinforcement learning: An introduction. A Bradford Book, 2018. 5

[39] Guanzhi Wang, Yuqi Xie, Yunfan Jiang, Ajay Mandlekar, Chaowei Xiao, Yuke Zhu, Linxi
Fan, and Anima Anandkumar. Voyager: An open-ended embodied agent with large language
models, 2023. URL https://arxiv.org/abs/2305.16291.

[40] Yun Qu, Yuhang Jiang, Boyuan Wang, Yixiu Mao, Cheems Wang, et al. Latent reward:
Llm-empowered credit assignment in episodic reinforcement learning, 2024. URL https:
//arxiv.org/abs/2412.11120. 5

[41] Edward Berman Ashwin Gopinath Karthik Narasimhan Shunyu Yao Noah Shinn, Fed-
erico Cassano. Reflexion: Language agents with verbal reinforcement learning, 2023. URL
https://arxiv.org/abs/2303.11366. 5

[42] Yifei Zhou, Andrea Zanette, Jiayi Pan, Sergey Levine, and Aviral Kumar. Archer: Training
language model agents via hierarchical multi-turn rl, 2024. URL https://arxiv.org/abs/
2402.19446. 5

[43] Ronald Peng, Zijun Xue, Yujia Qin, and Chen Liang. Graph of thoughts: Solving elaborate
problems with large language models, 2023. URL https://arxiv.org/abs/2308.09687.
5

[44] Long Ouyang, B. Li, Prescott T. Ulmer, et al. Accessing gpt-4 level mathematical olympiad
solutions via monte carlo tree search self-refinement, 2024. URL https://arxiv.org/abs/
2406.07394. 5

[45] Zhanyue Qin, Haochuan Wang, Deyuan Liu, et al. Uno arena for evaluating sequential
decision-making capability of large language models, 2024. URL https://arxiv.org/abs/
2406.16382. 5

[46] Karl Cobbe, Jacob Hilton, Reiichiro Nakano, and John Schulman. Training verifiers to solve
math word problems, 2021. URL https://arxiv.org/abs/2110.14168. 5

[47] Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul Arora, Steven Basart, et al. Measuring
mathematical problem solving with the math dataset, 2021. URL https://arxiv.org/abs/
2103.03874. 5

[48] Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Brian Ichter, et al. Chain-of-
thought prompting elicits reasoning in large language models, 2022. URL https://arxiv.
org/abs/2201.11903. 5

12

https://arxiv.org/abs/2310.03708
https://arxiv.org/abs/2403.10704
https://arxiv.org/abs/2401.01335
https://arxiv.org/abs/2401.01335
https://arxiv.org/abs/2401.01335
https://arxiv.org/abs/2408.07465
https://arxiv.org/abs/2403.11901
https://arxiv.org/abs/2502.16090
https://arxiv.org/abs/2303.17651
https://arxiv.org/abs/2305.11738
https://arxiv.org/abs/2305.16291
https://arxiv.org/abs/2412.11120
https://arxiv.org/abs/2412.11120
https://arxiv.org/abs/2412.11120
https://arxiv.org/abs/2303.11366
https://arxiv.org/abs/2402.19446
https://arxiv.org/abs/2402.19446
https://arxiv.org/abs/2402.19446
https://arxiv.org/abs/2308.09687
https://arxiv.org/abs/2406.07394
https://arxiv.org/abs/2406.07394
https://arxiv.org/abs/2406.07394
https://arxiv.org/abs/2406.16382
https://arxiv.org/abs/2406.16382
https://arxiv.org/abs/2406.16382
https://arxiv.org/abs/2110.14168
https://arxiv.org/abs/2103.03874
https://arxiv.org/abs/2103.03874
https://arxiv.org/abs/2103.03874
https://arxiv.org/abs/2201.11903
https://arxiv.org/abs/2201.11903
https://arxiv.org/abs/2201.11903

483
484
485

486
487
488

489
490
491

492
493

494
495
496

497

499

500
501

502
503

504
505

506
507

508
509

510
511

512
513
514

515
516

[49] Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc Le, Ed Chi, and Denny Zhou. Self-
consistency improves chain-of-thought reasoning in language models, 2022. URL https:
//arxiv.org/abs/2203.11171. 5

[50] Shunyu Yao, Dian Yu, Jeffrey Zhang, Yuan Yang, Daniel Khashabi, et al. Tree of thoughts:
Deliberate problem solving with large language models, 2023. URL https://arxiv.org/
abs/2305.10601. 5

[51] Dian Yu Nan Du Izhak Shafran Karthik Narasimhan Yuan Cao Shunyu Yao, Jeffrey Zhao.
React: Synergizing reasoning and acting in language models, 2022. URL https://arxiv.
org/abs/2210.03629. 5

[52] Luyu Gao, Aman Madaan, Shuyan Zhou, Uri Alon, Pengfei Liu, et al. Pal: Program-aided
language models, 2022. URL https://arxiv.org/abs/2211.10435. 5

[53] Zhuohan Chen, Kaili Huang, Teddy Lee, Zhen Zhang, Lindsay Lamont, et al. Program
of thoughts prompting: Disentangling computation from reasoning, 2023. URL https:
//arxiv.org/abs/2211.12588. 5

[54] Timo Schick, Jane Dwivedi-Yu, Ruiqi Zhong, Dinghan Shen, Hin Richter, et al. Toolformer:
Language models can teach themselves to use tools, 2023. URL https://arxiv.org/abs/
2302.04761. 5

[55] Sam Lightman, John Schulman, Jacob Hilton, et al. Let’s verify step by step, 2023. URL
https://arxiv.org/abs/2305.20050. 5

[56] Qijing Li, Yuchen Li, and Minlie Huang. Autopsv: Automated process-supervised verifier,
2024. URL https://arxiv.org/abs/2405.16802. 5

[57] Shuchen Wang, Linyi Yang, Linfeng Zhang, et al. Math-shepherd: Verify and reinforce 1lms
step by step, 2024. URL https://arxiv.org/abs/2312.08935. 5

[58] Cheng Zhang, Detian Deng, and Tao Lei. Rewarding progress: Scaling automated process
verifiers for llm reasoning, 2024. URL https://arxiv.org/abs/2410.08146. 5

[59] Jiacheng Liu, Haoran Li, Tianyu Du, et al. Ursa: Understanding and verifying chain-of-thought
reasoning in large language models, 2024. URL https://arxiv.org/abs/2501.04686. 5

[60] Junnan Huang, Zhihao Zhou, Zihang Long, et al. Large language models cannot self-correct
reasoning yet, 2023. URL https://arxiv.org/abs/2310.01798. 5

[61] Minjia Huang, Noah Friedman, Ethan Dyer, S. Dhebar, Daniel Gilat, et al. Solving quantitative
reasoning problems with language models, 2022. URL https://arxiv.org/abs/2206.
14858. 5

[62] Kaiyang Yang, Yuxuan Jiang, Jialin Song, et al. Generating millions of lean theorems with
proofs by exploring libraries, 2025. URL https://arxiv.org/abs/2503.04772. 5

13

https://arxiv.org/abs/2203.11171
https://arxiv.org/abs/2203.11171
https://arxiv.org/abs/2203.11171
https://arxiv.org/abs/2305.10601
https://arxiv.org/abs/2305.10601
https://arxiv.org/abs/2305.10601
https://arxiv.org/abs/2210.03629
https://arxiv.org/abs/2210.03629
https://arxiv.org/abs/2210.03629
https://arxiv.org/abs/2211.10435
https://arxiv.org/abs/2211.12588
https://arxiv.org/abs/2211.12588
https://arxiv.org/abs/2211.12588
https://arxiv.org/abs/2302.04761
https://arxiv.org/abs/2302.04761
https://arxiv.org/abs/2302.04761
https://arxiv.org/abs/2305.20050
https://arxiv.org/abs/2405.16802
https://arxiv.org/abs/2312.08935
https://arxiv.org/abs/2410.08146
https://arxiv.org/abs/2501.04686
https://arxiv.org/abs/2310.01798
https://arxiv.org/abs/2206.14858
https://arxiv.org/abs/2206.14858
https://arxiv.org/abs/2206.14858
https://arxiv.org/abs/2503.04772

5

7

518

519
520

521

522

523

524

525

526

527

528
529

530

531
532

533

534
535
536

537

538

539

540
541
542

543

544
545
546

547

548
549
550

552

553

554
555

556

557

558

559
560
561

562

563

564

NeurlIPS Paper Checklist

1.

Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]
Justification: We clearly state our problem scope and contributions.

. Limitations

Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: Please refer to Section 6.

. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]

Justification: The paper is primarily empirical and does not present new theoretical results
with formal proofs.

. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main
experimental results of the paper to the extent that it affects the main claims and/or conclu-
sions of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: Please refer to Section 4.1.

. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: We use publicly-accessable environments, as detailed in Section 4.1. We
upload the codes and instructions to recover the results. Once the blind review period is
finished, we’ll open-source all codes and instructions.

. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]
Justification: Please refer to Section 4.1.

. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropri-
ate information about the statistical significance of the experiments?

Answer:

Justification: LLM training and inference tasks are very resource intensive and costly.

. Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: Please refer to Section 4.1.

. Code of ethics

14

565
566

567

568

569

570
571

572

573
574
575

576

577
578
579

580

581

582

583
584
585

586

587

588

589
590

591

592
593

595
596

598

599
600

601
602

603
604
605
606

607

608
609

610

611
612
613
614

10.

11.

12.

13.

14.

15.

16.

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]
Justification: We followed the NeurIPS Code of Ethics.
Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer:

Justification: Our work focuses on academic, publicly-available evaluation suites and en-
vironments. This work is not related to any private or personal data, and there’s no explicit
negative social impacts.

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer:
Justification: We do not foresee any high risk for misuse of this work.
Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]
Justification: We credit the existing assets in appropriate ways.
New assets

Question: Are new assets introduced in the paper well documented and is the documenta-
tion provided alongside the assets?

Answer: [NA|

Justification: The paper primarily introduces methods and evaluations on existing or simu-
lated environments, not new standalone assets for release.

Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the pa-
per include the full text of instructions given to participants and screenshots, if applicable,
as well as details about compensation (if any)?

Answer: [NA]

Justification: The research described does not involve crowdsourcing or direct human sub-
ject experimentation.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: The research described does not involve human subjects, so IRB approval
was not applicable.

Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

15

https://neurips.cc/public/EthicsGuidelines

615 Answer: [Yes]

616 Justification: The core of the research involves the study Large Language Models. Their
617 use is central to the methodology.

16

	Introduction
	Reinforcement Learning for LLM Reasoning
	Background
	Single-Turn RL Leads to Collapsed Multi-Turn Reasoning

	Training Multi-Turn Reasoning Models with Minimal Feedback
	Problem Formulation
	Unary Feedback as Observation (UFO)
	Reinforcement Learning with Minimal Feedback
	Reward Design for Adaptive Reasoning

	Experiments
	Experimental Setup
	Experimental Results and Findings
	Multi-turn RL Unlock Higher Upper Bound of LLM Reasoning
	Multi-turn Setting Enables LRM to Revise From Feedback
	Reward Decay Encourages Efficient Problem Solving

	Related Work
	Conclusions and Limitations

