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Abstract

Multi-turn problem solving is a critical yet challenging scenario in the practical1

application of Large Reasoning Models (LRMs), commonly encountered in do-2

mains such as chatbots, programming assistants, and education. Recently, reason-3

ing models like DeepSeek-R1 has shown the promise of reinforcement learning4

(RL) methods in enhancing model reasoning capabilities. However, we observe5

that models trained with existing single-turn RL paradigms often lose their abil-6

ity to solve problems across multiple turns, struggling to revise answers based7

on context and exhibiting repetitive responses. This raises new challenges in pre-8

serving reasoning abilities while enabling multi-turn contextual adaptation. In this9

work, we find that simply allowing models to engage in multi-turn problem solv-10

ing where they receive only unary feedback (e.g., “Let’s try again”) after incorrect11

answers can help recover both single-turn and interactive multi-turn reasoning12

skills. We introduce Unary Feedback as Observation (UFO) for reinforcement13

learning, a method that explicitly leverages minimal yet natural user feedback dur-14

ing iterative problem-solving which can be easily applied to any existing single-15

turn RL training paradigm. Experimental results show that RL training with UFO16

preserves single-turn performance while improving multi-turn reasoning accuracy17

by 14%, effectively utilizing sparse feedback signals when available. To further18

reduce superficial guessing and encourage comprehensive reasoning, we explore19

reward structures that incentivize thoughtful, deliberate answers across interaction20

turns. Code and models will be publicly released.21

Figure 1: An example of using single-turn RL model for multi-turn problem solving. A single-turn RL
trained model lose multi-turn capability, producing identical reasoning chains across interaction turns after
being prompted that its answer is incorrect.
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1 Introduction22

Large language and reasoning models (LLMs/LRMs) like DeepSeek-R1 [1–4] have shown promise23

in solving complex tasks such as mathematical problem solving and code generation. Multi-turn24

problem solving is particularly prevalent in real-world applications including chatbots, program-25

ming assistants, and educational tools, where users engage in interactive feedback loops to refine26

model responses [5–9]. Reinforcement Learning (RL) [10, 1, 11, 12] has become trending for27

LLM/LRM post-training, improving reasoning capabilities by rewarding correct model responses28

while penalizing incorrect ones. However, it remains underexplored whether these models trained29

with single-turn RL can generalize to real-world interactive problem-solving settings.30
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Figure 2: Validation comparison. Repetition
rate remains high in later validation steps un-
der single-turn RL.

In this work, we first observe that single-turn RL may31

hinder a model’s ability to engage in interactive, multi-32

turn reasoning. Specifically, such models often fail33

to incorporate in-context feedback and instead persist34

with their initial answers across multiple turns (Fig-35

ure 1). Moreover, we find that in 70% of failed cases,36

single-turn-trained models generate exactly the same37

answer across five interaction turns (Figure 2). Though38

these models excel at single turns, how to make them39

effectively leverage in-context feedback and improve in40

multi-turn setting remains a challenge, especially con-41

sidering current reasoning datasets are natually single-42

turn and lack multi-turn feedback incorporation which43

could also be very expensive. This gap motivates our44

central research question: How can we train language45

models that not only generate correct solutions but also46

improve iteratively from sparse, minimal feedback?47

Real-world multi-turn user feedback is very expensive and hard to obtain. Bottle-necked by this,48

existing multi-turn framework has been focusing on automatic feedback such as code interpreter49

messages [5, 6, 9] and embodied simulator signals [8, 13], while those inherently single-turn static50

dataset (e.g. QA, Math) are still predominantly leveraged for single-turn RL training. Moreover,51

code interpreter and embodied environment still requires large amount of resource and costly to52

build [14]. Considering all above, in this work we explore a surprisingly simple yet effective frame-53

work that could leverage static dataset for multi-turn RL training, by simply adding verbal unary54

feedback and encourage the model to try again when the model is wrong. We call this Unary Feed-55

back as Observation (UFO), as it only occurs in context until model’s answer is finally correct and56

the user ends the conversation without providing further signals.57

Through experiments, we show that applying UFO in multi-turn RL settings [15] could effectively58

simulate interactive reasoning and allow the model to effectively revise its reasoning across turns.59

Models trained via UFO inherently learns to try to use different approaches when the current answer60

is wrong, and get significantly 14% higher success rates when evaluated under multi-turn scenarios61

compared to previous single-turn RL approaches. Interestingly, we find the model trained with62

UFO also exhibit higher performance in single-turn reasoning, suggesting that multi-turn training63

may promote better internalization of reasoning strategies, which generalize even in the absence of64

feedback. We presume this could be due to multi-turn setting inherently enable the model to explore65

diverse thinking patterns and learn to self reflection. We further investigated methods to amplify66

such self-reflection capabilities, and find that applying a turn-wise reward decay could encourage the67

model to think more systematically before answering, effectively enhancing reasoning capabilities68

and perform better with constrained interaction overhead.69

To summarize, our contributions are as follows:70

• We identify that while current single-turn RL training improves reasoning, they could lead to71

repetitive and degraded outputs in multi-turn interactive reasoning scenarios.72

• We explore a simple yet effective framework, Unary Feedback as Observation (UFO), to enable73

multi-turn RL training on existing static single-turn reasoning datasets.74

• We show that UFO improves both multi-turn and single-turn reasoning, and that reward decay75

further enhances self-reflection and problem-solving behavior.76
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2 Reinforcement Learning for LLM Reasoning77

2.1 Background78

Single-Turn Reinforcement Learning. Reinforcement Learning (RL) is a standard way to align79

large language models (LLMs) with human preferences by maximizing80

Ex∼D, y∼πθ(·|x)[R(x, y)],

where D is a prompt distribution, πθ the policy, and R(x, y) the reward for response y. Algorithms81

such as PPO [10, 16] and GRPO [1, 17] apply this objective to static datasets, yielding strong single-82

turn gains in math and code generation.83

Multi-Turn Extensions. Real applications—tutoring, coding assistants, embodied agents—demand84

multi-turn interaction, where a model refines answers across steps under sparse feedback. RA-85

GEN [12] addresses this by framing reasoning as an MDP and optimizing whole trajectories, sup-86

porting delayed credit assignment in tasks like symbolic logic and interactive programming. Yet87

widely used math and code datasets remain single-turn, and collecting turn-by-turn human signals88

is costly. Most prior work instead synthesizes feedback [6, 5] or uses tool-augmented environ-89

ments [18, 19, 9], leaving open the key question we study here: Can models trained only with90

single-turn RL generalize to multi-turn reasoning?91

2.2 Single-Turn RL Leads to Collapsed Multi-Turn Reasoning92

To answer the question posed above, we examine how models trained with single-turn reinforcement93

learning (RL) perform in multi-turn interaction settings. While single-turn RL improves response94

quality in isolated prompts, we consistently observe that such models fail to revise their answers95

when provided with corrective feedback. In practical use cases such as tutoring or mathematical96

assistance, users typically offer minimal feedback (e.g., “try again”) and expect the model to adjust97

its reasoning accordingly. However, RL-trained models often repeat their initial response even after98

being explicitly told it is incorrect, indicating a collapse in multi-turn reasoning capability.99

This phenomenon is illustrated in Figure 1: a pre-trained model (left) gradually improves its re-100

sponse through contextual revision, while a single-turn RL model (right) produces the same output101

across turns, failing to incorporate feedback. We define an effective answer as a distinct attempt102

that is not a near-duplicate of any previous response within the same episode (e.g., 1.5 and 3/2 are103

considered duplicates). Figure 2 shows that after single-turn RL training, over 70% of model re-104

sponses concentrate in the first attempt, with little variation in subsequent turns. We attribute this105

failure mode to two key factors: (1) the reward structure in single-turn RL offers no incentive for106

incremental improvement, and (2) the policy is trained without access to interaction history, making107

it insensitive to feedback. These limitations hinder the model’s ability to develop revision-aware108

reasoning strategies.109

This observation presents a central challenge: current single-turn RL frameworks are insufficient for110

acquiring multi-turn reasoning abilities, yet obtaining fine-grained, turn-level supervision in real-111

world tasks—especially in static domains like math—is prohibitively expensive.112

In light of this, we ask the following question: Can we leverage only the simplest form of su-113

pervision, such as “try again”, to simulate multi-turn interaction on static datasets and train114

models to learn adaptive revision behaviors?115

Can minimal feedback alone unlock multi-turn reasoning on static datasets?116

3 Training Multi-Turn Reasoning Models with Minimal Feedback117

3.1 Problem Formulation118

We model the process of multi-turn problem solving based on static single-turn datasets as a finite-119

horizon Markov Decision Process (MDP), defined by the tuple (S,A,P, R, Tmax). Here, S is the120

state space, A is the action space consisting of all possible answers, P is the transition function121

defined by the agent–environment interaction, R is the reward function, and Tmax is the maximum122

number of interaction steps per episode. At each turn t, the agent observes a state st ∈ S that123
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encodes the original question q and the history of past attempts and feedbacks:124

st = Concat(q, {(ak, fk)}t−1
k=1), (1)

where ak denotes the k-th answer, and fk is a binary feedback token returned by the environment.125

Importantly, the feedback in the observation is restricted to negative signals such as TryAgain.126

When the agent produces a correct answer, the episode terminates immediately, and no explicit127

confirmation (e.g., Correct) is added to the context. As a result, the agent only receives unary128

feedback and must learn to revise its answers based solely on a history of failed attempts. It gener-129

ates an answer at ∼ πθ(· | st) and receives a scalar reward:130

rt =

{
1, if at is correct,
0, otherwise.

(2)

The episode ends when the agent provides a correct answer or reaches the maximum number of131

steps Tmax.132

This formulation reflects the sparse and delayed nature of real-world feedback in reasoning tasks.133

It does not rely on access to ground-truth reasoning traces or executable environments. Unlike134

conventional RL settings that assume dense or tool-driven feedback, our MDP is instantiated entirely135

from static, single-turn datasets and minimal correctness signals—making it well-suited for weakly-136

supervised multi-turn training.137

3.2 Unary Feedback as Observation (UFO)138

To enable multi-turn reasoning on static datasets without access to tools or step-by-step labels, we139

propose a simple yet general mechanism called Unary Feedback as Observation (UFO). The key140

idea is to treat minimal feedback (specifically, failure-only textual signals) as part of the observation,141

allowing the model to revise its answers based on previously failed attempts.142

At each turn t, the model receives an input constructed as:143

xt = Format(q, {(ak, fk)}t−1
k=1), (3)

where q is the original question, and each (ak, fk) represents a previous answer ak and its associated144

feedback signal fk. Since episodes terminate immediately after a correct answer, no positive signals145

(e.g., Correct) are ever included in the context. Thus, the agent must learn to revise its reasoning146

based solely on failure traces (e.g., fk ∈ {TryAgain}).147

In practice, the prompt is constructed as a natural-language sequence concatenating all previous148

attempts and their feedbacks. For example:149

Question: What is the value of ...?150

Attempt 1: [wrong answer]151

Feedback: Try Again.152

...153

Attempt K: [correct answer]154

This formulation enables us to transform static single-turn datasets into multi-turn interaction155

episodes without requiring structural changes, expert annotations, or execution environments. Thus,156

UFO allows multi-turn reinforcement learning on LLMs with minimal supervision. We describe this157

training setup as follows.158

3.3 Reinforcement Learning with Minimal Feedback159

Given the MDP formulation and the UFO-based observation design, we optimize the agent using160

reinforcement learning to learn revision-aware, multi-turn policies. Since the dataset contains only161

final-answer correctness and lacks ground-truth reasoning traces, supervised finetuning is not ap-162

plicable. Reinforcement learning, by contrast, enables exploration of diverse reasoning strategies163

under sparse and delayed supervision.164

We adopt Proximal Policy Optimization (PPO) to train the policy πθ, following prior work [20, 12]165

which shows that a learned critic enables fine-grained value estimates and stabilizes optimization.166

At each episode, the agent interacts with a problem over multiple rounds. At each turn t, it observes167

input xt, generates an answer at, and receives a binary reward rt ∈ {0, 1}. The resulting trajectory168
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is defined as:169

τ = {(x1, a1, r1), (x2, a2, r2), . . . , (xT , aT , rT )}, (4)

where T ≤ Tmax is the number of turns before success or termination. The objective is to maximize170

the expected return:171

J RL(θ) = Eτ∼πθ

[
T∑

t=1

rt

]
. (5)

We apply PPO with a clipped surrogate objective. For each training batch, we estimate the advantage172

Ât using a baseline value function and update the policy as:173

LPPO(θ) = Et

[
min

(
πθ(at | xt)

πθold(at | xt)
Ât, clip(

πθ(at | xt)

πθold(at | xt)
Ât, 1− ϵ, 1 + ϵ)

)]
. (6)

Crucially, the UFO design enables the policy to condition on the full history of failure signals,174

giving rise to context-sensitive behaviors such as error correction, elimination, and hypothesis re-175

finement—capabilities that are difficult to elicit through static supervision alone.176

3.4 Reward Design for Adaptive Reasoning177

Binary correctness signals offer a minimal form of supervision, but they often induce suboptimal178

behavior such as blind trial-and-error or repeated guesses. To encourage more efficient and reflec-179

tive reasoning, we introduce two complementary reward shaping strategies: reward decay and a180

trajectory-level repetition penalty.181

To promote early success, we apply exponential decay to the reward when a correct answer is pro-182

duced at turn t:183

DecayReward(t) =

{
γt, if at is correct,
0, otherwise,

(7)

where γ ∈ (0, 1) is a decay factor that favors solving the problem in fewer turns.184

To reduce answer repetition, we define a global penalty based on the number of effective an-185

swers—i.e., responses that are not near-duplicates of any prior attempt in the same episode. Let186

T denote the number of turns in the episode, and E(τ) the number of effective answers in the187

trajectory τ . We define a normalized penalty term:188

Penalty(τ) = λ ·
(
1− E(τ)

T

)
, (8)

where λ > 0 is a tunable penalty weight, and E(τ)/T measures answer diversity. The penalty189

reaches its maximum when all answers are identical, and disappears when all are distinct.190

Combining these two components, the final reward used during training is defined as:191

rt =

γt − λ ·
(
1− E(τ)

T

)
, if at is correct,

0− λ ·
(
1− E(τ)

T

)
, otherwise.

(9)

This formulation encourages both early success and multi-turn diversity, while requiring no addi-192

tional supervision. In our experiments, we find that reward decay improves convergence and sample193

efficiency, whereas repetition penalties lead to more exploratory and reflective behaviors. Together,194

they significantly stabilize training in the minimal-feedback setting.195

4 Experiments196

4.1 Experimental Setup197

Tasks and Environment Settings. All experiments are conducted on the MATH partition of the198

METAMATHQA dataset, where data are augmented from the training sets MATH. This environment199

provides math questions with adequate difficulty, enabling us to observe and analyze its reasoning200

emergence. We use an adapted version of the RAGEN [15] codebase which supports effective multi-201

turn RL training.202
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Figure 3: Multi-turn RL significantly outperforms
single-turn baselines, achieving higher success rates
with similar inference cost.
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Figure 4: Moderate episodes (5 turns) for multi-turn
training yield the best performance, while increasing
to 10 turns offers no explicit gain.

Training Settings. We train Qwen-2.5-3B-Instruct with PPO for 200 optimization steps on A100203

GPUs. Each batch samples P=8 prompts, with N=16 rollouts per prompt. During training, we204

experiment with three distinct configurations for the maximum number of turns per episode, setting205

Tmax to 1, 5, and 10, respectively. For the validation phase, Tmax is fixed at 5 turns. In both training206

and validation, episodes are limited to a maximum of 10 actions in total. Policy updates use PPO207

with GAE parameters (γ, λ) = (1.0, 1.0), Adam with β = (0.9, 0.999), entropy coefficient 10−3.208

Evaluation Metrics. We report two complementary metrics to assess both effectiveness and effi-209

ciency.210

• Success Rate (Succ@k). This metric measures the percentage of problems solved within a fixed211

number of interaction turns. Let τj be the number of turns the agent takes to solve problem qj , or212

∞ if it fails. We have:213

Succ@k =
1

N

N∑
j=1

1[τj ≤ k] (10)

We report Succ@1 for single-turn performance, and Succ@5/10 to reflect multi-turn capability.214

• Average Number of Turns. To evaluate interaction efficiency, we report the average number of215

turns the agent takes to solve each problem:216

E[num turns] =
1

N

N∑
j=1

Tj (11)

where Tj denotes the number of interactive turns taken for problem qj . This metric reflects how217

efficiently the agent reaches a solution, accounting for retries and step-wise refinement across218

multi-turn episodes.219

4.2 Experimental Results and Findings220

In this section, we present empirical findings that address three central questions in our study of221

multi-turn reinforcement learning with unary feedback:222

1. Section 4.2.1: Does multi-turn RL unlock stronger reasoning than single-turn training?223

2. Section 4.2.2: Can models effectively revise their answers from sparse feedback alone?224

3. Section 4.2.3: How do reward shaping strategies impact reasoning efficiency and diversity?225

We explore each question in the following subsections, with quantitative analyses and ablation stud-226

ies. Additional qualitative examples and robustness checks are included in the Supplementary.227

4.2.1 Multi-turn RL Unlock Higher Upper Bound of LLM Reasoning228

We compare models trained with multi-turn RL against single-turn PPO baselines, using Succ@5 on229

a held-out validation set evaluated at 21 checkpoints across 200 training steps. During validation,230

each agent is allowed up to 5 interaction turns per problem (k = 5).231

To ensure a fair comparison between single- and multi-turn methods, we evaluate the single-232

turn model by sampling 5 independent completions per problem, equivalent to Pass@5, while the233
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Figure 5: Validation performance (Succ@k) of models trained with different rollout turns under varying
inference-time turn budgets. Multi-turn training (5 or 10 turns) consistently yields higher success rates across
all inference turn budgets, including k = 1, indicating better generalization even to single-turn reasoning.

multi-turn model generates responses sequentially with unary feedback after each attempt. In both234

cases, success is recorded if any of the 5 responses is correct. As shown in Figure 3, multi-turn235

training consistently outperforms single-turn RL, achieving up to 14% higher success rate with236

similar inference cost. This highlights the benefit of iterative revision under sparse feedback.237

Furthermore, we conducted additional experiments comparing various multi-turn training budgets238

(Tmax = 1, 5, 10) while consistently using a 5-turn validation setup. Findings presented in Figure 4239

demonstrate that larger training budgets yield enhanced performance relative to the single-turn base-240

line. Notably, both the Tmax = 10 and Tmax = 5 configurations delivered more than a 6% relative241

improvement over single-turn training at their peak, clearly emphasizing the benefits of multi-turn242

training.243

To further validate the robustness of multi-turn training benefits, we expanded our analysis by244

evaluating peak-performing models trained with Tmax ∈ 1, 5, 10 across varied inference-time in-245

teraction budgets (k ∈ 1, 2, 4, 6, 8, 10). Results illustrated in Figure 5 reinforce previous observa-246

tions, consistently showing superior Succ@k performance by models trained under multi-turn con-247

ditions.Intriguingly, these improvements are observable even at the lowest inference budget (k = 1),248

suggesting that multi-turn training enhances not only iterative performance but also generalizes well249

to single-shot scenarios. These findings suggest that multi-turn training cultivates robust and flexible250

reasoning capabilities adaptable to varying conversational interaction depths.251

4.2.2 Multi-turn Setting Enables LRM to Revise From Feedback252

The multi-turn setting enables agents to engage repeatedly with each prompt (up to Tmax turns),253

allowing for richer, more informative interaction trajectories from the same training data. This254

enhanced utilization of feedback is hypothesized to extract more meaningful learning signals per255

problem, potentially improving solution quality and accelerating convergence, especially in data-256

limited contexts.257

To empirically validate that LRMs can be improved effectively utilizing conversational feedback for258

revision, we compared 5-turn training scenarios with and without explicit feedback prompts. Re-259

sults presented in Figure 6(a) confirm our hypothesis, demonstrating over 8% peak performance260

improvement when explicit feedback is provided.261

An additional analysis with feedback prompt only in training (Figure 6(b)) revealed performance262

improvement as well. This suggests that multi-turn training can even intrinsically enhance model263

reasoning capabilities.264

Finally, our robustness analyses in the Figure 7 indicate that the effectiveness of our method is265

maintained across various prompt formulations, underscoring its practical applicability in real-world266

scenarios.267

4.2.3 Reward Decay Encourages Efficient Problem Solving268

We investigate how different reward schedules influence the agent’s learning behavior, particularly269

in encouraging early success versus allowing extended exploration. All schedules define a reward270

r(n) based on the turn index n when the first correct answer is produced, with n ∈ {1, . . . , Tmax}.271

We define and evaluate three distinct reward schedules:272
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Figure 6: Comparison of success rate with multi-turn setting. (a) with feedback prompt in both training and
validation compared to blank prompt; (b) with feedback prompt only in training compared to blank prompt.
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Figure 7: Evaluation under different verbal feedback prompts. Success rates and action counts remain
consistent across all variants, demonstrating UFO’s robustness to various prompts.

• Exponential Decay (rexp): rexp(n) = 2−(n−1). This schedule imposes a strong penalty for273

delayed success, with the reward halving for each additional turn taken. It maximally incentivizes274

the agent to find the solution in the earliest possible turn.275

• Linear Decay (rlin): rlin(n) = max(0, 1 − 0.2(n − 1)). This provides a gentler, linear decrease276

in reward for each turn up to 5 turns, after which the reward is zero. This offers a balanced277

incentive for early solutions without excessively penalizing slightly later successes compared to278

the exponential schedule.279

• Constant Reward (rconst): rconst(n) = 1. This schedule assigns a constant reward for success280

regardless of the turn number (up to Tmax). It serves as a baseline to evaluate the impact of the281

decaying schedules, reflecting a scenario where only task completion matters, not speed.282

All schedules operate for n ∈ 1, . . . , Tmax. The agent’s objective remains to maximize the expected283

cumulative reward.284

Experimental validation (Figure 8) confirms that exponential reward decay notably reduces the285

mean number of actions by roughly 10%, without sacrificing overall success rates. This reduction286

in action count suggests that the exponential decay schedule encourages the model to engage in more287

profound self-reflection and systematic thinking before generating a response. By compelling the288

model to find solutions in fewer turns, it learns to be more deliberate and efficient, thus minimizing289

redundant interactions.290

By considering the normalized penalty term in our experiment (Equation 8), we count the number291

of non-repetitive answer for each validation round, as shown in Figure 9. We can tell the percentage292

increases from 80% to 90%, suggesting that the model performs better in the later stages of training293

as the model learned to generate different responses better, reducing duplicate answers. This is an294

important measure of model performance, as high repetition rates lead to higher penalties and thus295

lower overall rewards. The chart show that the model did improve in this area during training.296

5 Related Work297

Reinforcement Learning for Enhancing LLM Reasoning and Multi-Turn Interactions. Rein-298

forcement learning from human feedback (RLHF) established that language models can be aligned299

with user preferences through iterative fine-tuning in natural-language tasks [21–24]. Follow-300

up work verified that RLHF improves instruction following and already produces rudimentary301
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Figure 8: Comparison of reward shaping strategies. While constant, linear decay, and exponential decay
schedules achieve similar success rates (left), exponential decay consistently leads to fewer actions per episode
(right), indicating more efficient problem solving with less external supervision.
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Figure 9: Proportion of non-repetitive answers over training. The upward trend suggests improved diversity
across turns, which reduces penalty from repeated responses and contributes to higher overall rewards.

multi-step explanations in summarization and narrative settings [25, 26]. To lower annotation302

cost, Reinforcement Learning from AI Feedback (RLAIF) replaces human labels with synthetic303

preferences [27], while scalable-oversight debate protocols investigate alignment under weak304

judges [28]. At the optimisation level, lightweight objectives such as Direct Preference Opti-305

misation (DPO) [29, 30], Parameter-Efficient RLHF [31] and Self-Play Fine-Tuning (SPIN) [32]306

eliminate most on-policy roll-outs. Memory-augmented agents—POEM [33], Larimar [34] and307

Echo [35]—store episodic context, while self-feedback frameworks such as Self-Refine [36] and308

CRITIC [37] iteratively repair their own outputs. Real-world applications remain inherently inter-309

active: they expose models to stateful environments, long-horizon credit assignment and delayed310

rewards [38–40]. Frameworks like Reflexion [41], hierarchical ArCHer [42], search-based Graph-311

of-Thought [43] and MCTS Self-Refine [44], together with self-play benchmarks such as UNO312

Arena [45], push multi-turn RL towards robust dialogue, planning and embodied control.313

Advancements in Mathematical Reasoning with Large Language Models. LLMs have ad-314

vanced rapidly on mathematical benchmarks, from grade-school GSM8K [46] to Olympiad-level315

MATH [47]. Prompting innovations, like Chain-of-Thought [48], its self-consistent variant [49], and316

Tree/Graph-of-Thought [50, 43], made intermediate reasoning explicit. ReAct interleaves reasoning317

with environment actions [51], while tool-coupled approaches such as PAL [52], PoT [53] and Tool-318

former [54] off-load heavy computation. Verifier pipelines boost reliability: from Let’s Verify Step-319

by-Step [55] to AutoPSV [56], MATH-Shepherd [57] and progress-aware verifiers [58]. Binary-320

search debuggers like URSA locate first-error steps [59]. Nevertheless, intrinsic self-correction321

remains limited [60]. On the scale axis, domain-specialised pre-training (Minerva [61]) and massive322

formal corpora (LeanNavigator [62]) provide richer data.323

6 Conclusions and Limitations324

In this work, we highlight a critical limitation of current single-turn RL training: its tendency to im-325

pair multi-turn reasoning by promoting repetitive and shallow responses. To address this, we propose326

Unary Feedback as Observation (UFO), a simple yet effective method that integrates minimal feed-327

back into existing RL pipelines. UFO enables models to recover and improve both single-turn and328

multi-turn reasoning performance. Our experiments show a 14% gain in multi-turn accuracy while329

preserving single-turn quality. Additionally, we demonstrate that incorporating reward decay and330

repetitive penalty encourages deeper reasoning, self-correction and generating different responses.331

Our approach is lightweight, generalizable, and easily applicable to existing datasets. A limitation of332

our work is its primary focus on mathematical reasoning tasks, leaving its generalizability to broader333

reasoning domains for future investigation.334

9



References335

[1] DeepSeek-AI. Deepseek-r1: Incentivizing reasoning capability in llms via reinforcement336

learning, 2025. URL https://arxiv.org/abs/2501.12948. 1, 2.1337

[2] OpenAI. Gpt-4 technical report, 2024. URL https://arxiv.org/abs/2303.08774.338

[3] Qwen, :, An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu,339

Chengyuan Li, Dayiheng Liu, Fei Huang, Haoran Wei, Huan Lin, Jian Yang, Jianhong Tu,340

Jianwei Zhang, Jianxin Yang, Jiaxi Yang, Jingren Zhou, Junyang Lin, Kai Dang, Keming Lu,341

Keqin Bao, Kexin Yang, Le Yu, Mei Li, Mingfeng Xue, Pei Zhang, Qin Zhu, Rui Men, Runji342

Lin, Tianhao Li, Tianyi Tang, Tingyu Xia, Xingzhang Ren, Xuancheng Ren, Yang Fan, Yang343

Su, Yichang Zhang, Yu Wan, Yuqiong Liu, Zeyu Cui, Zhenru Zhang, and Zihan Qiu. Qwen2.5344

technical report, 2025. URL https://arxiv.org/abs/2412.15115.345

[4] Gemini Team. Gemini: A family of highly capable multimodal models, 2025. URL https:346

//arxiv.org/abs/2312.11805. 1347

[5] Tianbao Xie, Danyang Zhang, Jixuan Chen, Xiaochuan Li, Siheng Zhao, Ruisheng Cao,348

Toh Jing Hua, Zhoujun Cheng, Dongchan Shin, Fangyu Lei, Yitao Liu, Yiheng Xu, Shuyan349

Zhou, Silvio Savarese, Caiming Xiong, Victor Zhong, and Tao Yu. Osworld: Benchmark-350

ing multimodal agents for open-ended tasks in real computer environments, 2024. URL351

https://arxiv.org/abs/2404.07972. 1, 1, 2.1352

[6] Jiayi Pan, Xingyao Wang, Graham Neubig, Navdeep Jaitly, Heng Ji, Alane Suhr, and Yizhe353

Zhang. Training software engineering agents and verifiers with swe-gym, 2024. URL https:354

//arxiv.org/abs/2412.21139. 1, 2.1355

[7] Shunyu Yao, Howard Chen, John Yang, and Karthik Narasimhan. Webshop: Towards scalable356

real-world web interaction with grounded language agents, 2023. URL https://arxiv.357

org/abs/2207.01206.358

[8] Mohit Shridhar, Xingdi Yuan, Marc-Alexandre Côté, Yonatan Bisk, Adam Trischler, and359
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Answer: [Yes]615

Justification: The core of the research involves the study Large Language Models. Their616

use is central to the methodology.617
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