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Abstract

Multi-turn problem solving is a critical yet challenging scenario in the practical
application of Large Reasoning Models (LRMs), commonly encountered in do-
mains such as chatbots, programming assistants, and education. Recently, reason-
ing models like DeepSeek-R1 has shown the promise of reinforcement learning
(RL) methods in enhancing model reasoning capabilities. However, we observe
that models trained with existing single-turn RL paradigms often lose their abil-
ity to solve problems across multiple turns, struggling to revise answers based
on context and exhibiting repetitive responses. This raises new challenges in pre-
serving reasoning abilities while enabling multi-turn contextual adaptation. In this
work, we find that simply allowing models to engage in multi-turn problem solv-
ing where they receive only unary feedback (e.g., “Let’s try again”) after incorrect
answers can help recover both single-turn and interactive multi-turn reasoning
skills. We introduce Unary Feedback as Observation (UFO) for reinforcement
learning, a method that explicitly leverages minimal yet natural user feedback dur-
ing iterative problem-solving which can be easily applied to any existing single-
turn RL training paradigm. Experimental results show that RL training with UFO
preserves single-turn performance while improving multi-turn reasoning accuracy
by 14%, effectively utilizing sparse feedback signals when available. To further
reduce superficial guessing and encourage comprehensive reasoning, we explore
reward structures that incentivize thoughtful, deliberate answers across interaction
turns. Code and models will be publicly released.
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Before Zero-Style RL Training, model learns to revise
answer in-context

After Zero-Style RL Training, model improve reasoning
but lose multi-turn problem solving capabilities

Figure 1: An example of using single-turn RL model for multi-turn problem solving. A single-turn RL
trained model lose multi-turn capability, producing identical reasoning chains across interaction turns after
being prompted that its answer is incorrect.
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1 Introduction

Large language and reasoning models (LLMs/LRMs) like DeepSeek-R1 [1-4] have shown promise
in solving complex tasks such as mathematical problem solving and code generation. Multi-turn
problem solving is particularly prevalent in real-world applications including chatbots, program-
ming assistants, and educational tools, where users engage in interactive feedback loops to refine
model responses [5-9]. Reinforcement Learning (RL) [10, 1, 11, 12] has become trending for
LLM/LRM post-training, improving reasoning capabilities by rewarding correct model responses
while penalizing incorrect ones. However, it remains underexplored whether these models trained
with single-turn RL can generalize to real-world interactive problem-solving settings.

In this work, we first observe that single-turn RL may
hinder a model’s ability to engage in interactive, multi-
turn reasoning. Specifically, such models often fail
to incorporate in-context feedback and instead persist
with their initial answers across multiple turns (Fig-
ure 1). Moreover, we find that in 70% of failed cases,
single-turn-trained models generate exactly the same
answer across five interaction turns (Figure 2). Though
these models excel at single turns, how to make them
effectively leverage in-context feedback and improve in
multi-turn setting remains a challenge, especially con-
sidering current reasoning datasets are natually single-
turn and lack multi-turn feedback incorporation which
could also be very expensive. This gap motivates our
central research question: How can we train language
models that not only generate correct solutions but also
improve iteratively from sparse, minimal feedback?
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Figure 2: Validation comparison. Repetition
rate remains high in later validation steps un-
der single-turn RL.

Real-world multi-turn user feedback is very expensive and hard to obtain. Bottle-necked by this,
existing multi-turn framework has been focusing on automatic feedback such as code interpreter
messages [5, 6, 9] and embodied simulator signals [8, 13], while those inherently single-turn static
dataset (e.g. QA, Math) are still predominantly leveraged for single-turn RL training. Moreover,
code interpreter and embodied environment still requires large amount of resource and costly to
build [14]. Considering all above, in this work we explore a surprisingly simple yet effective frame-
work that could leverage static dataset for multi-turn RL training, by simply adding verbal unary
feedback and encourage the model to try again when the model is wrong. We call this Unary Feed-
back as Observation (UFO), as it only occurs in context until model’s answer is finally correct and
the user ends the conversation without providing further signals.

Through experiments, we show that applying UFO in multi-turn RL settings [15] could effectively
simulate interactive reasoning and allow the model to effectively revise its reasoning across turns.
Models trained via UFO inherently learns to try to use different approaches when the current answer
is wrong, and get significantly 14% higher success rates when evaluated under multi-turn scenarios
compared to previous single-turn RL approaches. Interestingly, we find the model trained with
UFO also exhibit higher performance in single-turn reasoning, suggesting that multi-turn training
may promote better internalization of reasoning strategies, which generalize even in the absence of
feedback. We presume this could be due to multi-turn setting inherently enable the model to explore
diverse thinking patterns and learn to self reflection. We further investigated methods to amplify
such self-reflection capabilities, and find that applying a turn-wise reward decay could encourage the
model to think more systematically before answering, effectively enhancing reasoning capabilities
and perform better with constrained interaction overhead.

To summarize, our contributions are as follows:
* We identify that while current single-turn RL training improves reasoning, they could lead to
repetitive and degraded outputs in multi-turn interactive reasoning scenarios.

* We explore a simple yet effective framework, Unary Feedback as Observation (UFO), to enable
multi-turn RL training on existing static single-turn reasoning datasets.

* We show that UFO improves both multi-turn and single-turn reasoning, and that reward decay
further enhances self-reflection and problem-solving behavior.
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2 Reinforcement Learning for LLM Reasoning

2.1 Background

Single-Turn Reinforcement Learning. Reinforcement Learning (RL) is a standard way to align
large language models (LLMs) with human preferences by maximizing

Eonn, yrmy (12 [R5 Y)],

where D is a prompt distribution, 7y the policy, and R(z,y) the reward for response y. Algorithms
such as PPO [10, 16] and GRPO [1, 17] apply this objective to static datasets, yielding strong single-
turn gains in math and code generation.

Multi-Turn Extensions. Real applications—tutoring, coding assistants, embodied agents—demand
multi-turn interaction, where a model refines answers across steps under sparse feedback. RA-
GEN [12] addresses this by framing reasoning as an MDP and optimizing whole trajectories, sup-
porting delayed credit assignment in tasks like symbolic logic and interactive programming. Yet
widely used math and code datasets remain single-turn, and collecting turn-by-turn human signals
is costly. Most prior work instead synthesizes feedback [6, 5] or uses tool-augmented environ-
ments [18, 19, 9], leaving open the key question we study here: Can models trained only with
single-turn RL generalize to multi-turn reasoning ?

2.2 Single-Turn RL Leads to Collapsed Multi-Turn Reasoning

To answer the question posed above, we examine how models trained with single-turn reinforcement
learning (RL) perform in multi-turn interaction settings. While single-turn RL improves response
quality in isolated prompts, we consistently observe that such models fail to revise their answers
when provided with corrective feedback. In practical use cases such as tutoring or mathematical
assistance, users typically offer minimal feedback (e.g., “try again”) and expect the model to adjust
its reasoning accordingly. However, RL-trained models often repeat their initial response even after
being explicitly told it is incorrect, indicating a collapse in multi-turn reasoning capability.

This phenomenon is illustrated in Figure 1: a pre-trained model (left) gradually improves its re-
sponse through contextual revision, while a single-turn RL model (right) produces the same output
across turns, failing to incorporate feedback. We define an effective answer as a distinct attempt
that is not a near-duplicate of any previous response within the same episode (e.g., 1.5 and 3/2 are
considered duplicates). Figure 2 shows that after single-turn RL training, over 70% of model re-
sponses concentrate in the first attempt, with little variation in subsequent turns. We attribute this
failure mode to two key factors: (1) the reward structure in single-turn RL offers no incentive for
incremental improvement, and (2) the policy is trained without access to interaction history, making
it insensitive to feedback. These limitations hinder the model’s ability to develop revision-aware
reasoning strategies.

This observation presents a central challenge: current single-turn RL frameworks are insufficient for
acquiring multi-turn reasoning abilities, yet obtaining fine-grained, turn-level supervision in real-
world tasks—especially in static domains like math—is prohibitively expensive.

In light of this, we ask the following question: Can we leverage only the simplest form of su-
pervision, such as “try again”, to simulate multi-turn interaction on static datasets and train
models to learn adaptive revision behaviors?

Can minimal feedback alone unlock multi-turn reasoning on static datasets?

3 Training Multi-Turn Reasoning Models with Minimal Feedback

3.1 Problem Formulation

We model the process of multi-turn problem solving based on static single-turn datasets as a finite-
horizon Markov Decision Process (MDP), defined by the tuple (S, A, P, R, T ). Here, S is the
state space, A is the action space consisting of all possible answers, P is the transition function
defined by the agent—environment interaction, R is the reward function, and T,,« is the maximum
number of interaction steps per episode. At each turn ¢, the agent observes a state s; € S that
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encodes the original question ¢ and the history of past attempts and feedbacks:

st = Concat(q, {(ak, fr) ;c_zll)7 M

where aj, denotes the k-th answer, and f, is a binary feedback token returned by the environment.
Importantly, the feedback in the observation is restricted to negative signals such as TryAgain.
When the agent produces a correct answer, the episode terminates immediately, and no explicit
confirmation (e.g., Correct) is added to the context. As a result, the agent only receives unary
feedback and must learn to revise its answers based solely on a history of failed attempts. It gener-
ates an answer a; ~ mg(- | s;) and receives a scalar reward:

ry = {1, if a4 is correct, @

0, otherwise.

The episode ends when the agent provides a correct answer or reaches the maximum number of
steps Tax-

This formulation reflects the sparse and delayed nature of real-world feedback in reasoning tasks.
It does not rely on access to ground-truth reasoning traces or executable environments. Unlike
conventional RL settings that assume dense or tool-driven feedback, our MDP is instantiated entirely
from static, single-turn datasets and minimal correctness signals—making it well-suited for weakly-
supervised multi-turn training.

3.2 Unary Feedback as Observation (UFO)

To enable multi-turn reasoning on static datasets without access to tools or step-by-step labels, we
propose a simple yet general mechanism called Unary Feedback as Observation (UFO). The key
idea is to treat minimal feedback (specifically, failure-only textual signals) as part of the observation,
allowing the model to revise its answers based on previously failed attempts.

At each turn ¢, the model receives an input constructed as:

x¢ = Format(q, {(ak, fx) 2;11)7 &)

where g is the original question, and each (ay, fx) represents a previous answer ay, and its associated
feedback signal f. Since episodes terminate immediately after a correct answer, no positive signals
(e.g., Correct) are ever included in the context. Thus, the agent must learn to revise its reasoning
based solely on failure traces (e.g., fx € {TryAgain}).

In practice, the prompt is constructed as a natural-language sequence concatenating all previous
attempts and their feedbacks. For example:

Question: What is the value of ...7
Attempt 1: [wrong answer]
Feedback: Try Again.

Attempt K: [correct answer]

This formulation enables us to transform static single-turn datasets into multi-turn interaction
episodes without requiring structural changes, expert annotations, or execution environments. Thus,
UFO allows multi-turn reinforcement learning on LLMs with minimal supervision. We describe this
training setup as follows.

3.3 Reinforcement Learning with Minimal Feedback

Given the MDP formulation and the UFO-based observation design, we optimize the agent using
reinforcement learning to learn revision-aware, multi-turn policies. Since the dataset contains only
final-answer correctness and lacks ground-truth reasoning traces, supervised finetuning is not ap-
plicable. Reinforcement learning, by contrast, enables exploration of diverse reasoning strategies
under sparse and delayed supervision.

We adopt Proximal Policy Optimization (PPO) to train the policy 7y, following prior work [20, 12]
which shows that a learned critic enables fine-grained value estimates and stabilizes optimization.

At each episode, the agent interacts with a problem over multiple rounds. At each turn ¢, it observes
input x;, generates an answer a;, and receives a binary reward r; € {0, 1}. The resulting trajectory
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is defined as:
T ={(x1,a1,7m1), (22, 02,72), ..., (zT,07,7T)}, “

where T' < Th,x is the number of turns before success or termination. The objective is to maximize
the expected return:

T
T(0) = Erry [Z n} : ®)
t=1

We apply PPO with a clipped surrogate objective. For each training batch, we estimate the advantage
Ay using a baseline value function and update the policy as:

CPPOGZIE{ i (7”"(”t‘“’i)fi,c1' o | w) g0 ey )} 6
O =B i e T 2 Pl T 071 ©
Crucially, the UFO design enables the policy to condition on the full history of failure signals,
giving rise to context-sensitive behaviors such as error correction, elimination, and hypothesis re-
finement—capabilities that are difficult to elicit through static supervision alone.

3.4 Reward Design for Adaptive Reasoning

Binary correctness signals offer a minimal form of supervision, but they often induce suboptimal
behavior such as blind trial-and-error or repeated guesses. To encourage more efficient and reflec-
tive reasoning, we introduce two complementary reward shaping strategies: reward decay and a
trajectory-level repetition penalty.

To promote early success, we apply exponential decay to the reward when a correct answer is pro-
duced at turn ¢:

~%, if a; is correct,
0, otherwise,

DecayReward(t) = { (7

where vy € (0,1) is a decay factor that favors solving the problem in fewer turns.

To reduce answer repetition, we define a global penalty based on the number of effective an-
swers—i.e., responses that are not near-duplicates of any prior attempt in the same episode. Let
T denote the number of turns in the episode, and E(7) the number of effective answers in the
trajectory 7. We define a normalized penalty term:

Penalty(7) = \ - (1 — M) , 8)
T

where A > 0 is a tunable penalty weight, and F(7)/T measures answer diversity. The penalty

reaches its maximum when all answers are identical, and disappears when all are distinct.

Combining these two components, the final reward used during training is defined as:
DY (1 — %) , if aq is correct,

Tt =
0—X- (1 — %) ,  otherwise.

(C)]

This formulation encourages both early success and multi-turn diversity, while requiring no addi-
tional supervision. In our experiments, we find that reward decay improves convergence and sample
efficiency, whereas repetition penalties lead to more exploratory and reflective behaviors. Together,
they significantly stabilize training in the minimal-feedback setting.

4 Experiments

4.1 Experimental Setup

Tasks and Environment Settings. All experiments are conducted on the MATH partition of the
METAMATHQA dataset, where data are augmented from the training sets MATH. This environment
provides math questions with adequate difficulty, enabling us to observe and analyze its reasoning
emergence. We use an adapted version of the RAGEN [15] codebase which supports effective multi-
turn RL training.
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Training Settings. We train Qwen-2.5-3B-Instruct with PPO for 200 optimization steps on A100
GPUs. Each batch samples P=8 prompts, with N=16 rollouts per prompt. During training, we
experiment with three distinct configurations for the maximum number of turns per episode, setting
Thax to 1, 5, and 10, respectively. For the validation phase, T1,,x is fixed at 5 turns. In both training
and validation, episodes are limited to a maximum of 10 actions in total. Policy updates use PPO
with GAE parameters (v, \) = (1.0, 1.0), Adam with 3 = (0.9,0.999), entropy coefficient 10~3.

Evaluation Metrics. We report two complementary metrics to assess both effectiveness and effi-
ciency.

* Success Rate (Succ@k). This metric measures the percentage of problems solved within a fixed
number of interaction turns. Let 7; be the number of turns the agent takes to solve problem g;, or
oo if it fails. We have:

N
1
Suce@k = ; 1[r; < K] (10)

We report Succ@1 for single-turn performance, and Succ@5/10 to reflect multi-turn capability.

* Average Number of Turns. To evaluate interaction efficiency, we report the average number of
turns the agent takes to solve each problem:

N
E[num_turns| = % Z T; (11)
j=1

where T); denotes the number of interactive turns taken for problem g;. This metric reflects how
efficiently the agent reaches a solution, accounting for retries and step-wise refinement across
multi-turn episodes.

4.2 Experimental Results and Findings

In this section, we present empirical findings that address three central questions in our study of
multi-turn reinforcement learning with unary feedback:

1. Section 4.2.1: Does multi-turn RL unlock stronger reasoning than single-turn training?
2. Section 4.2.2: Can models effectively revise their answers from sparse feedback alone?
3. Section 4.2.3: How do reward shaping strategies impact reasoning efficiency and diversity?

We explore each question in the following subsections, with quantitative analyses and ablation stud-
ies. Additional qualitative examples and robustness checks are included in the Supplementary.

4.2.1 Multi-turn RL Unlock Higher Upper Bound of LL.M Reasoning

We compare models trained with multi-turn RL against single-turn PPO baselines, using Succ@5 on
a held-out validation set evaluated at 21 checkpoints across 200 training steps. During validation,
each agent is allowed up to 5 interaction turns per problem (k = 5).

To ensure a fair comparison between single- and multi-turn methods, we evaluate the single-
turn model by sampling 5 independent completions per problem, equivalent to Pass@5, while the
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multi-turn model generates responses sequentially with unary feedback after each attempt. In both
cases, success is recorded if any of the 5 responses is correct. As shown in Figure 3, multi-turn
training consistently outperforms single-turn RL, achieving up to 14% higher success rate with
similar inference cost. This highlights the benefit of iterative revision under sparse feedback.

Furthermore, we conducted additional experiments comparing various multi-turn training budgets
(Tax = 1,5, 10) while consistently using a 5-turn validation setup. Findings presented in Figure 4
demonstrate that larger training budgets yield enhanced performance relative to the single-turn base-
line. Notably, both the Ti,.x = 10 and T,.x = 5 configurations delivered more than a 6% relative
improvement over single-turn training at their peak, clearly emphasizing the benefits of multi-turn
training.

To further validate the robustness of multi-turn training benefits, we expanded our analysis by
evaluating peak-performing models trained with Ti,,x € 1,5, 10 across varied inference-time in-
teraction budgets (k € 1,2,4,6,8,10). Results illustrated in Figure 5 reinforce previous observa-
tions, consistently showing superior Succ @k performance by models trained under multi-turn con-
ditions.Intriguingly, these improvements are observable even at the lowest inference budget (k = 1),
suggesting that multi-turn training enhances not only iterative performance but also generalizes well
to single-shot scenarios. These findings suggest that multi-turn training cultivates robust and flexible
reasoning capabilities adaptable to varying conversational interaction depths.

4.2.2 Multi-turn Setting Enables LRM to Revise From Feedback

The multi-turn setting enables agents to engage repeatedly with each prompt (up to Ti,,x turns),
allowing for richer, more informative interaction trajectories from the same training data. This
enhanced utilization of feedback is hypothesized to extract more meaningful learning signals per
problem, potentially improving solution quality and accelerating convergence, especially in data-
limited contexts.

To empirically validate that LRMs can be improved effectively utilizing conversational feedback for
revision, we compared 5-turn training scenarios with and without explicit feedback prompts. Re-
sults presented in Figure 6(a) confirm our hypothesis, demonstrating over 8% peak performance
improvement when explicit feedback is provided.

An additional analysis with feedback prompt only in training (Figure 6(b)) revealed performance
improvement as well. This suggests that multi-turn training can even intrinsically enhance model
reasoning capabilities.

Finally, our robustness analyses in the Figure 7 indicate that the effectiveness of our method is
maintained across various prompt formulations, underscoring its practical applicability in real-world
scenarios.

4.2.3 Reward Decay Encourages Efficient Problem Solving

We investigate how different reward schedules influence the agent’s learning behavior, particularly
in encouraging early success versus allowing extended exploration. All schedules define a reward
r(n) based on the turn index n when the first correct answer is produced, with n € {1, ..., Ty}

We define and evaluate three distinct reward schedules:
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consistent across all variants, demonstrating UFO’s robustness to various prompts.

* Exponential Decay (rexp): Texp(n) = 2-(n=1) " This schedule imposes a strong penalty for
delayed success, with the reward halving for each additional turn taken. It maximally incentivizes
the agent to find the solution in the earliest possible turn.

* Linear Decay (r4;n): 7in(n) = max(0,1 — 0.2(n — 1)). This provides a gentler, linear decrease
in reward for each turn up to 5 turns, after which the reward is zero. This offers a balanced
incentive for early solutions without excessively penalizing slightly later successes compared to
the exponential schedule.

* Constant Reward (7const): Tconst() = 1. This schedule assigns a constant reward for success
regardless of the turn number (up to Tj,.x). It serves as a baseline to evaluate the impact of the
decaying schedules, reflecting a scenario where only task completion matters, not speed.

All schedules operate for n € 1,. .., T The agent’s objective remains to maximize the expected
cumulative reward.

Experimental validation (Figure 8) confirms that exponential reward decay notably reduces the
mean number of actions by roughly 10 %, without sacrificing overall success rates. This reduction
in action count suggests that the exponential decay schedule encourages the model to engage in more
profound self-reflection and systematic thinking before generating a response. By compelling the
model to find solutions in fewer turns, it learns to be more deliberate and efficient, thus minimizing
redundant interactions.

By considering the normalized penalty term in our experiment (Equation 8), we count the number
of non-repetitive answer for each validation round, as shown in Figure 9. We can tell the percentage
increases from 80% to 90%, suggesting that the model performs better in the later stages of training
as the model learned to generate different responses better, reducing duplicate answers. This is an
important measure of model performance, as high repetition rates lead to higher penalties and thus
lower overall rewards. The chart show that the model did improve in this area during training.

5 Related Work

Reinforcement Learning for Enhancing LLM Reasoning and Multi-Turn Interactions. Rein-
forcement learning from human feedback (RLHF) established that language models can be aligned
with user preferences through iterative fine-tuning in natural-language tasks [21-24]. Follow-
up work verified that RLHF improves instruction following and already produces rudimentary
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multi-step explanations in summarization and narrative settings [25, 26]. To lower annotation
cost, Reinforcement Learning from Al Feedback (RLAIF) replaces human labels with synthetic
preferences [27], while scalable-oversight debate protocols investigate alignment under weak
judges [28]. At the optimisation level, lightweight objectives such as Direct Preference Opti-
misation (DPO) [29, 30], Parameter-Efficient RLHF [31] and Self-Play Fine-Tuning (SPIN) [32]
eliminate most on-policy roll-outs. Memory-augmented agents—POEM [33], Larimar [34] and
Echo [35]—store episodic context, while self-feedback frameworks such as Self-Refine [36] and
CRITIC [37] iteratively repair their own outputs. Real-world applications remain inherently inter-
active: they expose models to stateful environments, long-horizon credit assignment and delayed
rewards [38—40]. Frameworks like Reflexion [41], hierarchical ArCHer [42], search-based Graph-
of-Thought [43] and MCTS Self-Refine [44], together with self-play benchmarks such as UNO
Arena [45], push multi-turn RL towards robust dialogue, planning and embodied control.

Advancements in Mathematical Reasoning with Large Language Models. LLMs have ad-
vanced rapidly on mathematical benchmarks, from grade-school GSM8K [46] to Olympiad-level
MATH [47]. Prompting innovations, like Chain-of-Thought [48], its self-consistent variant [49], and
Tree/Graph-of-Thought [50, 43], made intermediate reasoning explicit. ReAct interleaves reasoning
with environment actions [51], while tool-coupled approaches such as PAL [52], PoT [53] and Tool-
former [54] off-load heavy computation. Verifier pipelines boost reliability: from Let’s Verify Step-
by-Step [55] to AutoPSV [56], MATH-Shepherd [57] and progress-aware verifiers [58]. Binary-
search debuggers like URSA locate first-error steps [59]. Nevertheless, intrinsic self-correction
remains limited [60]. On the scale axis, domain-specialised pre-training (Minerva [61]) and massive
formal corpora (LeanNavigator [62]) provide richer data.

6 Conclusions and Limitations

In this work, we highlight a critical limitation of current single-turn RL training: its tendency to im-
pair multi-turn reasoning by promoting repetitive and shallow responses. To address this, we propose
Unary Feedback as Observation (UFO), a simple yet effective method that integrates minimal feed-
back into existing RL pipelines. UFO enables models to recover and improve both single-turn and
multi-turn reasoning performance. Our experiments show a 14% gain in multi-turn accuracy while
preserving single-turn quality. Additionally, we demonstrate that incorporating reward decay and
repetitive penalty encourages deeper reasoning, self-correction and generating different responses.
Our approach is lightweight, generalizable, and easily applicable to existing datasets. A limitation of
our work is its primary focus on mathematical reasoning tasks, leaving its generalizability to broader
reasoning domains for future investigation.
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vironments. This work is not related to any private or personal data, and there’s no explicit
negative social impacts.

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer:
Justification: We do not foresee any high risk for misuse of this work.
Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]
Justification: We credit the existing assets in appropriate ways.
New assets

Question: Are new assets introduced in the paper well documented and is the documenta-
tion provided alongside the assets?

Answer: [NA|

Justification: The paper primarily introduces methods and evaluations on existing or simu-
lated environments, not new standalone assets for release.

Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the pa-
per include the full text of instructions given to participants and screenshots, if applicable,
as well as details about compensation (if any)?

Answer: [NA]

Justification: The research described does not involve crowdsourcing or direct human sub-
ject experimentation.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: The research described does not involve human subjects, so IRB approval
was not applicable.

Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
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615 Answer: [Yes]

616 Justification: The core of the research involves the study Large Language Models. Their
617 use is central to the methodology.
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