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Abstract
The biasing of dynamical simulations along col-
lective variables uncovered by unsupervised learn-
ing has become a standard approach in analysis
of molecular systems. However, despite parallels
with reinforcement learning (RL), state of the art
RL methods have yet to reach the molecular dy-
namics community. The interaction between un-
supervised learning, dynamical simulations, and
RL is therefore a promising area of research. We
introduce a method for enhanced sampling that
uses non-linear geometry estimated by an unsu-
pervised learning algorithm in a reinforcement-
learning enhanced sampler. We give theoretical
background justifying this method, and show re-
sults on data.

1. Introduction
Molecular dynamics (MD) simulations are an empirical
method for understanding the properties of materials from
proteins to solar panels (15, 22, 9, 11). In these simulations,
positions of individual atoms or sub-molecular agglomer-
ations are sampled through time according to interatomic
forces, but despite knowledge of these forces, the overall
configurational behavior is unknown. Simulations thus pro-
vide information about the low-dimensional dynamics and
properties of the simulated system (16). Unfortunately, the
computational burden of these simulations is high (25). The
potential energy and its gradient are often challenging to
compute, and low-probability but important regions like
transitions between energy wells require huge numbers of
samples to access. Satisfactory exploration of chemical
compound behavior in simulation is therefore a challenging
and unresolved problem.

A variety of machine learning methods have been proposed
to reduce this computational cost (33, 20). For example, po-
tentials generated using supervised learning have been used
to sample from hard-to-compute (6) or hard-to-find (26)
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configurations. Unsupervised learning is also used to assist
simulations through discovery of collective variables (CVs)
that parametrize the slow manifold generated by the under-
lying dynamics (24, 21, 10, 28). Once this data manifold is
learned, it can be used to bias future similar simulations to-
wards interesting high-energy or transitional regions. Many
methods for biasing simulations based on CVs have been
proposed (31, 19, 5).

There are many similarities between reinforcement learn-
ing and this collective-variable based sampling paradigm.
Simulators balance exploration versus exploitation, and can
use tools like differentiable deep networks to identify good
actions for progressing the simulation to interesting states
(3, 23). The variation of experimental conditions like sol-
vents or temperatures to create a more robust understanding
of molecular behavior resembles domain randomization
(32). As in simulated robotics (34), a complicated heirarchy
of simulation fidelity relates the simulated system to the real
world phenomena of ultimate interest (12, 30). Perhaps due
to the relatively recent success of reinforcement learning
methods, formal application of reinforcement learning prin-
cipals is still limited. However, it is reasonable to expect
that application of these principals should integrate with ex-
isting unsupervised-learning based approaches to enhanced
sampling using CVs.

One approach that does perform enhanced sampling through
a combination of CVs and RL is the REinforcement learning
based Adaptive samPling (REAP) method of (27). However,
this approach does not use any non-trivial unsupervised
learning. Our idea therefore is to adapt this approach from
the perspective of non-linear geometry. We therefore in-
troduce Tangent Space Least Adaptive Clustering (TSLC)
that favors exploration of variables that parametrize the data
manifold. We use local tangent space estimation as a simple
and straightforward method for learning the manifold, intro-
duce a new reward based on projection onto tangent spaces,
and give an efficient clustering algorithm for determination
of sets on which to compute the tangent spaces.

2. Background
We motivate this method in the context of unsupervised
learning for dynamical systems.
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Dynamical systems Dynamical models allow simulators
to progress forward in time t through computation of the
derivative of the state vector x(t) ∈ RD w.r.t. t. A simple
model of dynamics is given by the Langevin Equation (27)

d

dt
x(t) =

1

γ
∇E(x(t)) + η(t)

√
TkBγ (1)

where is E(x(t)) is the potential energy, η(t) is a random
force and γ is a constant that, together with the tempera-
ture T and Boltzmann constant kB , determines the degree
of randomness of the random walk through the configu-
ration space. Langevin dynamics for even small systems
are chaotic, and even though we can compute E and its
derivatives, we do not in general know the properties of the
slow-manifold around which the random walk progresses
(1). Additionally, there is no guarantee that this walk will
traverse the slow-manifold in a reasonable amount of time.
Therefore, these dynamics are a motivating application of
unsupervised learning for acceleration of dynamical simula-
tions (17, 2).

Unsupervised learning and tangent spaces Suppose, in
the ideal case, that we are able to simulate from the Boltz-
mann distribution until the density of x(t) is exactly propor-
tional to E. Theoretical analyses often guarantees that these
data are distributed on a manifold M containing a central
slow-manifold S within the D dimensional feature space
(13). Unsupervised learning then estimates a map φ such
that φ(M) = φ|M (S) is 1) diffeomorphic to S and 2) in a
low-dimensional space Rm (m << D).

Given such a φ, the typical approaches for accelerating sim-
ulation are 1) to find a geometric feature of the configuration
parameterizing φ(S) and move the simulation in its direc-
tion (25), or 2) if φ is differentiable, to move the simulation
in a direction∇φk where φk is a coordinate of the learned
latent space (5). In either case, the geometric feature or
coordinate functions φk are a CV that parameterize S.

One issue with the above is that we may not have enough
data to learn a good φ. In this case, tangent space estimation
is a less data-intensive alternative to learning φ. The reason
is that, if φ is suitably well behaved, then the singular value
decomposition of its differential in coordinates of RD and
Rm gives Dφ(x) = (TxS)Σx(Tφ(x)φ(S))T (18), where
TxS is the tangent space of the slow-manifold. Biasing sim-
ulations by the method of collective variables is essentially
moving along the tangent space TxS. In our approach, we
will substitute in a tangent space estimator for TxS without
explicit calculation of φ.

REinforcement learning based Adaptive samPling RE-
inforcement learning based Adaptive samPling (REAP) is
an application of RL principals to accelerating traversal of
configuration spaces in dynamical simulations (27). It is an

extension of least counts adaptive sampling (LC), a simple
iterative paradigm for enhanced sampling that uses cluster-
ing to identify undersampled regions. Our proposed method
for sampling is largely motivated by REAP.

In LC, every iteration consists of simulating dynamics from
given starting states, clustering the trajectory, and then se-
lecting the next starting states from the smallest, or least
count, clusters. Clusters with fewer members correspond to
more sparsely sampled regions of the configuration space,
and will tend to be towards the boundaries of the explored
region.

REAP also proceeds iteratively by simulating, clustering,
and selecting new initial states to start sampling from, but
the way the next initial states are chosen from the least count
clusters is more involved. REAP supposes preselection of
a set of possible functions of the state, θ1(x) . . . θK(x) :
RD → R, also known as collective variables. With no a
priori knowledge of S, this set will be larger than ideal, and
the REAP algorithm must decide their relative importance
on-the-fly. Every iteration, after clustering to find least
count clusters, a weight for each CV is recomputed. These
weights w ∈ RK are determined by maximizing

R =

K∑
i=1

wi

|Cp|∑
m=1

|θi(sm)− 〈θi(T )〉|
σi(T )

(2)

where Cp is the set of states in the least count clusters,
θi(sm) is the value of the ith CV at state sm ∈ Cp, and
〈θi(T )〉 and σi(T ) are the mean and standard deviation of
θi over the full trajectory T thus far, respectively. The wi
are constrained to sum to one, be nonnegative, and each wi
may not change by more than a parameter δ from its value
in the previous round. These weights are then used to select
initial states for the next round of simulation, namely a fixed
number of states in Cp which maximize

r(sm) =

K∑
i=1

wi
|θi(sm)− 〈θi(Cp)〉|

σi(Cp)
(3)

Comparison with the rich universe of RL methods indicates
that there are many areas of potential improvement to this
approach (8). We focus in particular on adapting Equa-
tion 2 with the geometrical underpinnings of the method of
collective variables. The REAP objective only considers pop-
ulation statistics like mean and standard deviation - much
less information than can be captured through unsupervised
learning (29).

3. Methods
We thereby propose a method for determining weights for
CVs which differs from REAP in two key ways. First, we
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select weights which capture global geometry of the under-
lying data manifold from only local geometry. Second, we
replace k-means clustering with our own clustering method
CLUST, which is amenable to the sampling problem. Our
method, Tangent Space Least Adaptive Clustering (TSLC),
like REAP, consists of timestepping, clustering, reweighting,
and reinitialization. CVs are known, and weights calculated
for each CV at each iteration are used to select points from
least count clusters. However, unlike REAP, we assume,
as is typical in unsupervised learning for dynamical sys-
tems, that the explored potential energy surface lies near a
low-dimensional manifold.

Algorithm 1 Tangent Space Least Adaptive Clustering
1: Input: Differentiable energy E, collective variables
θ1 . . . θK , number of least count clusters to sample from
N , number of parallel runs M , number of iterations I ,
timesteps per iteration s, intrinsic dimension d

2: for t ∈ 1 . . . I do
3: Compute clusters, centers, and least count clusters:

C, q, Cp ← CLUST(x(1 : tsM)), N)
4: Compute Vi ← PCA(x(Ci)), d) for i ∈ 1 . . . |C|
5: Compute ∇θk(qi) for i ∈ 1 . . . |C|, k ∈ 1 . . .K

6: Normalize ∇θk(qi)← n∇θk(qi)∑|C|
i=1 ||∇θk(qi)||

for

i ∈ 1 . . . |C|, k ∈ 1 . . .K
7: Compute A as in Equation (5)
8: Compute w̃, the largest eigenvector of A
9: Compute wk = w̃2

k for k ∈ 1 . . .K
10: Select SM , the M states from Cp with the highest

values of Equation (3)
11: For each state sm in SM , timestep Equation (1) s

times starting from sm
12: end for

Algorithm description There are three important obser-
vations in the development of our choice of weights. One is
that the collective variables which characterize the potential
and encourage exploration should have gradients which are
parallel to the tangent spaces of S. In particular, the projec-
tion of gradients onto local tangent spaces should be large.
Two is that local tangent spaces can be computed on each
cluster, using Principal Component Analysis. Since our data
are distributed near S, we can estimate its tangent spaces as
long as our clusters are small enough to reflect local infor-
mation about the manifold, while also large enough to not be
dominated by small-scale fluctuations. These requirements
on the clusters for our purpose are what motivate our clus-
tering algorithm and final observation, that the volume of
the clusters chosen should scale with the volume explored.
Since TSLC only differs from REAP in the computation
of weights and choice of clustering, we only explain those
steps in detail.

Weight Computation (1) We compute a clustering of the
full trajectory thus far CLUST(xfull) = C. We calculate
for each cluster i a d dimensional local tangent space using
standard Principal Component Analysis. Denote a suitable
choice of d D-dimensional orthogonal vectors which span
this space as columns of the matrix Vi ∈ RD×d.
(2) The center of the cluster i, qi, is used as a representative
of that cluster. We compute the values of∇θj(qi) for each
CV θj on each cluster i, which we can can calculate with
automatic differentiation since the CVs are analytic. In order
to avoid favoring CVs that are scaled larger, we normalize
the gradients over the clusters (see Algorithm 1). Let Gi ∈
RD×K be a matrix so that the j-th column is the normalized
gradient ∇θj(qi).
(3) To find the weights, we solve the following optimization
problem: find the unit 2-norm column vector w ∈ RK so
that

R =

n∑
i=1

||ViV Ti Giw||22 (4)

is maximized. This selects a linear combination of the gra-
dients of the CVs that on average makes the projection onto
the local tangent spaces largest. Since the columns of each
Vi are orthogonal, ||ViV Ti Giw||2 = ||V Ti Giw||2. It follows
that this objective is

R = wT

(
n∑
i=1

GTi ViV
T
i Gi

)
w ≡ wTAw, (5)

to which the solution is the eigenvector of A ∈ RK×K
associated with the maximum eigenvalue of A, which exists
because A is symmetric. Finally, let the weights wi be the
squares of the entries of w. These are nonnegative and sum
to one. The states to start sampling from in the next iteration
are the M states in Cp which maximize Equation (3).

Clustering CLUST(x,N) takes as input xfull, the full
trajectory so far and N , the number of least count clusters
we want, and returns the clustering, centers of each cluster,
and least count clusters. It is inspired by the initialization
method of (7), extended to K-means by (4), and simplified to
take into account the need for speed and for small clusters.

In TSLC, we replace k-means clustering with a clustering
procedure that recomputes the number of clusters nclu to
use at every iteration. We calculate the number of clusters
starting from the following premise. In a uniform random
walk, the distance from the start of the data grows asymp-
totically as

√
n, where n is the total number of sampled

points. We expect our sampling to explore faster than a
random walk, and the distance to grow as nγ for a pa-
rameter γ ∈ (1/2, 1). Hence, the volume explored will
grow as (nγ)d and to maintain clusters of approximately



Tangent Space Least Adaptive Clustering

(a) 700 Iterations of REAP (b) 700 Iterations of TSLC (c) Typical REAP weights

(d) Typical TSLC Weights (e) REAP and TSLC Counts of Percentage
of Circle Explored

equal volume, the number of centers should grow propor-
tionally with this number. Therefore nclu is taken to be
floor(b(nγ)d), where b is a parameter. Then, a number of
centers n′clu = floor(nclu log nclu) + l are sampled uni-
formly from xfull where l is a parameter. To these n′clu
centers, we apply the Fastest First Traversal algorithm (14),
pruning the centers until only nclu are left. Finally, we per-
form a single step of k-means with these initialized centers
to assign points to clusters and to recalculate the centers.
The result is nclu clusters which retain approximately the
same volume every iteration of TSLC and whose centers are
spread uniformly over the explored region.

4. Experiments
Comparison of TSLC with REAP We compare
TSLC with REAP on a toy circular potential function
embedded in D = 10 dimensions. The potential is lowest
on the circle(in the x1-x2 plane) and its magnitude decays
exponentially with the square of the distance away from
the circle. It is given by V = −c ∗ exp(−a ∗ dist2), where
a = 10, c = 250, and dist is the distance from the circle in
Euclidean space. Both methods are given the same CVs:
the coordinate projections functions of the state x, θi = xi
for i = 1...D, and θ0 = arctan(x2/x1), the angle on the
circle. The definition of θ0 must be adjusted so that it is
correctly defined on every quadrant of the x1-x2 plane.
To compare, we run both sampling methods I = 700.
iterations, and look at the percentage of the circle explored.
REAP was implemented using code provided by (27),
available online. Timestepping was done the same way as

in (27). Both timestep from two initial states s = 5 times
each every iteration, and sample M = 2 new points from
the N = 2 least count clusters found by their respective
clustering algorithms. REAP uses δ = .02 and k = 20
for k-means for all iterations, while ours uses parameters
b = .07, l = 2 and γ = .7. We repeat this procedure 50
times each and plot histograms of the percentages of the
circle explored in Figure 1(e). On average, REAP explored
approximately 56% of the circle in the given time, while
TSLC explored 85%, indicating strong performance of
TSLC. In Figure 1(a) we show what one round of 700
iterations of REAP typically looks like using the same
methodology as above. The plot shown is a contour plot of
the potential V only as a function of x1 and x2, with the
other 8 state variables set to 0. In 1(b) we do the same for
TSLC. In Figures 1(c) and 1(d) we plot weights of θ1, θ2,
and θ0 that REAP and TSLC select over typical runs, as a
function of iteration number. TSLC is able to identify θ0
as the CV which characterizes the potential, and gradually
becomes more confident in this, while REAP tends to
select one variable at a time which it believes is the most
important.

5. Conclusion
We have described a novel reinforcement learning-based ap-
proach for simulating from dynamical systems. This method
is inspired by unsupervised learning methods currently used
in molecular dynamics, and is a step towards a synthesis of
unsupervised-learning CV based methods with RL.



Tangent Space Least Adaptive Clustering

6. Acknowledgements
This material is based upon work supported by the National
Science Foundation under Grant DMS-1810975, the ARCS
Foundation Award, and the GO-MAP Graduate Excellence
Award.

References
[1] Christian Beck. Dynamical systems of langevin type.

Physica A: Statistical Mechanics and its Applications,
233(1):419–440, November 1996.

[2] Adam Block, Youssef Mroueh, Alexander Rakhlin,
and Jerret Ross. Fast mixing of Multi-Scale langevin
dynamics under the manifold hypothesis. June 2020.

[3] Luigi Bonati, Yue-Yu Zhang, and Michele Parrinello.
Neural networks-based variationally enhanced sam-
pling. Proc. Natl. Acad. Sci. U. S. A., 116(36):17641–
17647, September 2019.

[4] Sebastien Bubeck, Marina Meilă, and Ulrike von
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