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This paper presents an investigation of the approximation property of neural 
networks with unbounded activation functions, such as the rectified linear unit 
(ReLU), which is the new de-facto standard of deep learning. The ReLU network 
can be analyzed by the ridgelet transform with respect to Lizorkin distributions. 
By showing three reconstruction formulas by using the Fourier slice theorem, the 
Radon transform, and Parseval’s relation, it is shown that a neural network with 
unbounded activation functions still satisfies the universal approximation property. 
As an additional consequence, the ridgelet transform, or the backprojection filter in 
the Radon domain, is what the network learns after backpropagation. Subject to a 
constructive admissibility condition, the trained network can be obtained by simply 
discretizing the ridgelet transform, without backpropagation. Numerical examples 
not only support the consistency of the admissibility condition but also imply that 
some non-admissible cases result in low-pass filtering.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

Consider approximating a function f : Rm → C by the neural network gJ with an activation function 
η : R → C

gJ(x) = 1
J

J∑
j

cj η(aj · x − bj), (aj , bj , cj) ∈ Rm × R× C (1)

where we refer to (aj, bj) as a hidden parameter and cj as an output parameter. Let Ym+1 denote the space 
of hidden parameters Rm × R. The network gJ can be obtained by discretizing the integral representation 
of the neural network
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Table 1
Zoo of activation functions with which the corresponding neural network can approximate arbitrary functions 
in L1(Rm) in the sense of pointwise convergence (§5.2) and in L2(Rm) in the sense of mean convergence (§5.3). 
The third column indicates the space W(R) to which an activation function η belong (§6.1, 6.2).

Activation function η(z) W
Unbounded functions

Truncated power function zk
+ :=

{
zk z > 0
0 z ≤ 0

, k ∈ N0 S′
0

Rectified linear unit (ReLU) z+ S′
0

Softplus function σ(−1)(z) := log(1 + ez) OM

Bounded but not integrable functions
Unit step function z0

+ S′
0

(Standard) sigmoidal function σ(z) := (1 + e−z)−1 OM
Hyperbolic tangent function tanh(z) OM

Bump functions
(Gaussian) radial basis function G(z) := (2π)−1/2 exp

(
−z2/2

)
S

The first derivative of sigmoidal function σ′(z) S
Dirac’s δ δ(z) S′

0

Oscillatory functions
The kth derivative of RBF G(k)(z) S
The kth derivative of sigmoidal function σ(k)(z) S
The kth derivative of Dirac’s δ δ(k)(z) S′

0

g(x) =
∫

Ym+1

T(a, b)η(a · x − b)dμ(a, b), (2)

where T : Ym+1 → C corresponds to a continuous version of the output parameter; μ denotes a measure on 
Ym+1. The right-hand side expression is known as the dual ridgelet transform of T with respect to η

R†
ηT(x) =

∫
Ym+1

T(a, b)η(a · x − b)dadb
‖a‖ . (3)

By substituting in T(a, b) the ridgelet transform of f with respect to ψ

Rψf(a, b) :=
∫
Rm

f(x)ψ(a · x − b)‖a‖dx, (4)

under some good conditions, namely the admissibility of (ψ, η) and some regularity of f , we can reconstruct 
f by

R†
ηRψf = f. (5)

By discretizing the reconstruction formula, we can verify the approximation property of neural networks 
with the activation function η.

In this study, we investigate the approximation property of neural networks for the case in which η is a 
Lizorkin distribution, by extensively constructing the ridgelet transform with respect to Lizorkin distribu-
tions. The Lizorkin distribution space S ′

0 is such a large space that contains the rectified linear unit (ReLU) 
z+, truncated power functions zk+, and other unbounded functions that have at most polynomial growth 
(but do not have polynomials as such). Table 1 and Fig. 1 give some examples of Lizorkin distributions.

Recall that the derivative of the ReLU z+ is the step function z0
+. Formally, the following suggestive 

formula ∫
T(a, b)η′(a · x − b)dadb

‖a‖ =
∫

∂bT(a, b)η(a · x − b)dadb
‖a‖ , (6)
Ym+1 Ym+1
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Fig. 1. Zoo of activation functions: the Gaussian G(z) (red), the first derivative G′(z) (yellow), the second derivative G′′(z) (green); 
a truncated power function z2

+ (blue), the ReLU z+ (sky blue), the unit step function z0
+ (rose). (For interpretation of the references 

to color in this figure legend, the reader is referred to the web version of this article.)

holds, because the integral representation is a convolution in b. This formula suggests that once we have 
Tstep(a, b) for the step function, which is implicitly known to exist based on some of our preceding studies 
[1,2], then we can formally obtain TReLU(a, b) for the ReLU by differentiating TReLU(a, b) = ∂bTstep(a, b).

1.1. ReLU and other unbounded activation functions

The ReLU [3–6] became a new building block of deep neural networks, in the place of traditional bounded 
activation functions such as the sigmoidal function and the radial basis function (RBF). Compared with 
traditional units, a neural network with the ReLU is said [3,7–9,6] to learn faster because it has larger 
gradients that can alleviate the vanishing gradient [3], and perform more efficiently because it extracts 
sparser features. To date, these hypotheses have only been empirically verified without analytical evaluation.

It is worth noting that in approximation theory, it was already shown in the 1990s that neural networks 
with such unbounded activation functions have the universal approximation property. To be precise, if the 
activation function is not a polynomial function, then the family of all neural networks is dense in some 
functional spaces such as Lp(Rm) and C0(Rm). Mhaskar and Micchelli [10] seem to be the first to have 
shown such universality by using the B-spline. Later, Leshno et al. [11] reached a stronger claim by using 
functional analysis. Refer to Pinkus [12] for more details.

In this study, we initially work through the same statement by using harmonic analysis, or the ridgelet 
transform. One strength is that our results are very constructive. Therefore, we can construct what the 
network will learn during backpropagation. Note that for bounded cases this idea is already implicit in [13]
and [2], and explicit in [14].

1.2. Integral representation of neural network and ridgelet transform

We use the integral representation of neural networks introduced by Murata [1]. As already mentioned, 
the integral representation corresponds to the dual ridgelet transform. In addition, the ridgelet transform 
corresponds to the composite of a wavelet transform after the Radon transform. Therefore, neural networks 
have a profound connection with harmonic analysis and tomography.

As Kůrková [15] noted, the idea of discretizing integral transforms to obtain an approximation is very old 
in approximation theory. As for neural networks, at first, Carroll and Dickinson [16] and Ito [13] regarded 
a neural network as a Radon transform [17]. Irie and Miyake [18], Funahashi [19], Jones [20], and Barron 
[21] used Fourier analysis to show the approximation property in a constructive way. Kůrková [15] applied 
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Barron’s error bound to evaluate the complexity of neural networks. Refer to Kainen et al. [22] for more 
details.

In the late 1990s, Candès [23,24], Rubin [25], and Murata [1] independently proposed the so-called ridgelet 
transform, which has since been investigated by a number of authors [26–31].

1.3. Variations of ridgelet transform

A ridgelet transform Rψ, along with its reconstruction property, is determined by four classes of functions: 
domain X (Rm), range Y(Ym+1), ridgelet Z(R), and dual ridgelet W(R).

X (Rm) � f

ψ ∈ Z(R)
Rψ

T ∈ Y(Ym+1)

R†
η

η ∈ W(R)

(7)

The following ladder relations by Schwartz [32] are fundamental for describing the variations of the 
ridgelet transform:

(functions) D ⊂ S ⊂ DL1 ⊂ DLp ⊂ OM ⊂ E
∩ ∩ ∩ ∩ ∩ ∩

(distributions) E ′ ⊂ O′
C ⊂ D′

L1 ⊂ D′
Lp ⊂ S ′ ⊂ D′︸ ︷︷ ︸

integrable
︸ ︷︷ ︸

not always bounded
(8)

where the meaning of symbols are given below in Table 2.
The integral transform T by Murata [1] coincides with the case for Z ⊂ D and W ⊂ E ∩ L1. Candès 

[23,24] proposed the “ridgelet transform” for Z = W ⊂ S. Kostadinova et al. [30,31] defined the ridgelet 
transform for the Lizorkin distributions X = S ′

0, which is the broadest domain ever known, at the cost of 
restricting the choice of ridgelet functions to the Lizorkin functions W = Z = S0 ⊂ S.

1.4. Our goal

Although many researchers have investigated the ridgelet transform [26,29–31], in all the settings Z does 
not directly admit some fundamental activation functions, namely the sigmoidal function and the ReLU. 
One of the challenges we faced is to define the ridgelet transform for W = S ′

0, which admits the sigmoidal 
function and the ReLU.

2. Preliminaries

2.1. Notations

Throughout this paper, we consider approximating f : Rm → C by a neural network g with hidden 
parameters (a, b). Following Kostadinova et al. [30,31], we denote by Ym+1 := Rm×R the space of parameters 
(a, b). As already denoted, we symbolize the domain of a ridgelet transform as X (Rm), the range as Y(Ym+1), 
the space of ridgelets as Z(R), and the space of dual ridgelets as W(R).
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Table 2
Classes of functions and distributions, and corresponding dual spaces.

Space A(Rk) Dual space A′(Rk)

Polynomials of all degree P(Rk) –
Smooth functions E(Rk) Compactly supported distributions E′(Rk)
Rapidly decreasing functions S(Rk) Tempered distributions S′(Rk)
Compactly supported smooth functions D(Rk) Schwartz distributions D′(Rk)
Lp of Sobolev order ∞ (1 ≤ p < ∞) DLp (Rk) Schwartz dists. (1/p + 1/q = 1) D′

Lq (Rk)
Completion of D(Rk) in DL∞ (Rk) Ḃ(Rk) Schwartz dists. (p = 1) D′

L1 (Rk)
Slowly increasing functions OM(Rk) –
– Rapidly decreasing distributions O′

C(Rk)
Lizorkin functions S0(Rk) Lizorkin distributions S′

0(R
k)

We denote by Sm−1 the (m − 1)-sphere {u ∈ Rm | ‖u‖ = 1}; by R+ the open half-line {α ∈ R | α > 0}; 
by H the open half-space R+ × R. We denote by N and N0 the sets of natural numbers excluding 0 and 
including 0, respectively.

We denote by ̃· the reflection f̃(x) := f(−x); by · the complex conjugate; by a � b that there exists a 
constant C ≥ 0 such that a ≤ Cb.

2.2. Class of functions and distributions

Following Schwartz, we denote the classes of functions and distributions as in Table 2. For Schwartz’s 
distributions, we refer to Schwartz [32] and Trèves [33]; for Lebesgue spaces, Rudin [34], Brezis [35] and 
Yosida [36]; for Lizorkin distributions, Yuan et al. [37] and Holschneider [38].

The space S0(Rk) of Lizorkin functions is a closed subspace of S(Rk) that consists of elements such that 
all moments vanish. That is, S0(Rk) := {φ ∈ S(Rk) |

∫
Rk xαφ(x)dx = 0 for any α ∈ Nk

0}. The dual space 
S ′

0(Rk), known as the Lizorkin distribution space, is homeomorphic to the quotient space of S ′(Rk) by the 
space of all polynomials P(Rk). That is, S ′

0(Rk) ∼= S ′(Rk)/P(Rk). Refer to Yuan et al. [37, Prop. 8.1] for 
more details. In this work we identify and treat every polynomial as zero in the Lizorkin distribution. That 
is, for p ∈ S ′(Rk), if p ∈ P(Rk) then p ≡ 0 in S ′

0(Rk).
For Sm−1, we work on the two subspaces D(Sm−1) ⊂ D(Rm) and E ′(Sm−1) ⊂ E ′(Rm). In addition, we 

identify D = S = OM = E and E ′ = O′
C = S ′ = D′

Lp = D′.
For H, let E(H) ⊂ E(R2) and D(H) ⊂ D(R2). For T ∈ E(H), write

Dk,�
s,tT(α, β) := (α + 1/α)s (1 + β2)t/2∂k

α∂
�
βT(α, β), s, t, k, � ∈ N0. (9)

The space S(H) consists of T ∈ E(H) such that for any s, t, k, � ∈ N0, the seminorm below is finite

sup
(α,β)∈H

∣∣Dk,�
s,tT(α, β)

∣∣ < ∞. (10)

The space OM(H) consists of T ∈ E(H) such that for any k, � ∈ N0 there exist s, t ∈ N0 such that

∣∣Dk,�
0,0T(α, β)

∣∣ � (α + 1/α)s(1 + β2)t/2. (11)

The space D′(H) consists of all bounded linear functionals Φ on D(H) such that for every compact set 
K ⊂ H, there exists N ∈ N0 such that∣∣∣∣∣

∫
T(α, β)Φ(α, β)dαdβ

α

∣∣∣∣∣ � ∑
k,�≤N

sup
(α,β)∈H

|Dk,�
0,0T(α, β)|, ∀T ∈ D(K) (12)
K
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Table 3
Range of convolution (excerpt from Schwartz [32]).

Case A1 A2 A1 ∗ A2

Regularization D D′,D′
Lp , E′ E, Lp,D

Compactly supported distribution E′ E′, E,D′ E′, E,D′

Regularization S S,S′ S,OM
Schwartz convolutor O′

C S,O′
C,D′

Lp ,S′ S,O′
C,D′

Lp ,S′

Young’s inequality Lp Lq Lr (1/r = 1/p + 1/q − 1)
Young’s inequality D′

Lp DLq ,D′
Lq D′

Lr (1/r = 1/p + 1/q − 1)

where the integral is understood as the action of Φ. The space S ′(H) consists of Φ ∈ S(H) for which there 
exists N ∈ N0 such that∣∣∣∣∣

∫
H

T(α, β)Φ(α, β)dαdβ
α

∣∣∣∣∣ � ∑
s,t,k,�≤N

sup
(α,β)∈H

∣∣Dk,�
s,tT(α, β)

∣∣, ∀T ∈ S(H). (13)

2.3. Convolution of distributions

Table 3 lists the convergent convolutions of distributions and their ranges by Schwartz [32].
In general a convolution of distributions may neither commute φ ∗ ψ �= ψ ∗ φ nor associate φ ∗ (ψ ∗ η) �=

(φ ∗ψ) ∗η. According to Schwartz [32, Ch. 6, Th. 7, Ch. 7, Th. 7], both D′ ∗E ′ ∗E ′ ∗ · · · and S ′ ∗O′
C ∗O′

C ∗ · · ·
are commutative and associative.

2.4. Fourier analysis

The Fourier transform ̂· of f : Rm → C and the inverse Fourier transform ̌· of F : Rm → C are given by

f̂(ξ) :=
∫
Rm

f(x)e−ix·ξdx, ξ ∈ Rm (14)

F̌ (x) := 1
(2π)m

∫
Rm

F (ξ)eix·ξdξ, x ∈ Rm. (15)

The Hilbert transform H of f : R → C is given by

Hf(s) := i

π
p.v.

∞∫
−∞

f(t)
s− t

dt, s ∈ R (16)

where p.v.
∫∞
−∞ denotes the principal value. We set the coefficients above to satisfy

Ĥf(ω) = sgn ω · f̂(ω), (17)

H2f(s) = f(s). (18)

2.5. Radon transform

The Radon transform R of f : Rm → C and the dual Radon transform R∗ of Φ : Sm−1 × R → C are 
given by
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Rf(u, p) :=
∫

(Ru)⊥

f(pu + y)dy, (u, p) ∈ Sm−1 × R (19)

R∗Φ(x) :=
∫

Sm−1

Φ(u,u · x)du, x ∈ Rm (20)

where (Ru)⊥ := {y ∈ Rm | y · u = 0} denotes the orthogonal complement of a line Ru ⊂ Rm; and dy
denotes the Lebesgue measure on (Ru)⊥; and du denotes the surface measure on Sm−1.

We use the following fundamental results [17,39] for f ∈ L1(Rm) without proof: Radon’s inversion formula

R∗Λm−1Rf = 2(2π)m−1f, (21)

where the backprojection filter Λm is defined in (24); the Fourier slice theorem

f̂(ωu) =
∫
R

Rf(u, p)e−ipωdp, (u, ω) ∈ Sm−1 × R (22)

where the left-hand side is the m-dimensional Fourier transform, whereas the right-hand side is the one-
dimensional Fourier transform of the Radon transform; and a corollary of Fubini’s theorem∫

R

Rf(u, p)dp =
∫
Rm

f(x)dx, a.e. u ∈ Sm−1. (23)

2.6. Backprojection filter

For a function Φ(u, p), we define the backprojection filter Λm as

ΛmΦ(u, p) :=
{
∂m
p Φ(u, p), m even

Hp∂
m
p Φ(u, p), m odd.

(24)

where Hp and ∂p denote the Hilbert transform and the partial differentiation with respect to p, respectively. 
It is designed as a one-dimensional Fourier multiplier with respect to p → ω such that

Λ̂mΦ(u, ω) = im|ω|mΦ̂(u, ω). (25)

3. Classical ridgelet transform

3.1. An overview

The ridgelet transform Rψf of f : Rm → C with respect to ψ : R → C is formally given by

Rψf(a, b) :=
∫
Rm

f(x)ψ(a · x − b)‖a‖sdx, (a, b) ∈ Ym+1 and s > 0. (26)

The factor |a|s is simply posed for technical convenience. After the next section we set s = 1, which simplifies 
some notations (e.g., Theorem 4.2). Murata [1] originally posed s = 0, which is suitable for the Euclidean 
formulation. Other authors such as Candès [24] used s = 1/2, Rubin [25] used s = m, and Kostadinova et 
al. [30] used s = 1.
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When f ∈ L1(Rm) and ψ ∈ L∞(R), by using Hölder’s inequality, the ridgelet transform is absolutely 
convergent at every (a, b) ∈ Ym+1,∫

Rm

∣∣f(x)ψ(a · x − b)‖a‖s
∣∣dx ≤ ‖f‖L1(Rm) · ‖ψ‖L∞(R) · ‖a‖s < ∞. (27)

In particular when s = 0, the estimate is independent of a and thus Rψf ∈ L∞(Ym+1). Furthermore, R is 
a bounded bilinear operator L1(Rm) × L∞(R) → L∞(Ym+1).

The dual ridgelet transform R†
ηT of T : Ym+1 → C with respect to η : R → C is formally given by

R†
ηT(x) :=

∫
Ym+1

T(a, b)η(a · x − b)‖a‖−sdadb, x ∈ Rm. (28)

The integral is absolutely convergent when η ∈ L∞(R) and T ∈ L1(Ym+1; ‖a‖−sdadb) at every x ∈ Rm,∫
Ym+1

∣∣T(a, b)η(a · x − b)
∣∣‖a‖−sdadb ≤ ‖T‖L1(Ym+1;‖a‖−sdadb) · ‖η‖L∞(R) < ∞, (29)

and thus R† is a bounded bilinear operator L1(Ym+1; ‖a‖−sdadb) × L∞(R) → L∞(Rm).
Two functions ψ and η are said to be admissible when

Kψ,η := (2π)m−1
∞∫

−∞

ψ̂(ζ)η̂(ζ)
|ζ|m dζ, (30)

is finite and not zero. Provided that ψ, η, and f belong to some good classes, and ψ and η are admissible, 
then the reconstruction formula

R†
ηRψf = Kη,ψf, (31)

holds.

3.2. Ridgelet transform in other expressions

It is convenient to write the ridgelet transform in “polar” coordinates as

Rψf(u, α, β) =
∫
Rm

f(x)ψ
(

u · x − β

α

)
1
αs

dx, (32)

where “polar” variables are given by

u := a/‖a‖, α := 1/‖a‖, β := b/‖a‖. (33)

Emphasizing the connection with wavelet analysis, we define the “radius” α as reciprocal. Provided there 
is no likelihood of confusion, we use the same symbol Ym+1 for the parameter space, regardless of whether 
it is parametrized by (a, b) ∈ Rm × R or (u, α, β) ∈ Sm−1 × R+ × R.

For a fixed (u, α, β) ∈ Ym+1, the ridgelet function

ψu,α,β(x) := ψ

(
u · x − β

)
1
s
, x ∈ Rm (34)
α α
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behaves as a constant function on (Ru)⊥, and as a dilated and translated wavelet function on Ru. That is, 
by using the orthogonal decomposition x = pu + y with p ∈ R and y ∈ (Ru)⊥,

ψu,α,β(x) = ψ

(
u · (pu + y) − β

α

)
1
αs

= ψ

(
p− β

α

)
1
αs

⊗ 1(y). (35)

By using the decomposition above and Fubini’s theorem, and assuming that the ridgelet transform is 
absolutely convergent, we have the following equivalent expressions

Rψf(u, α, β) =
∫
R

⎛⎜⎝ ∫
(Ru)⊥

f(pu + y)dy

⎞⎟⎠ψ

(
p− β

α

)
1
αs

dp (36)

=
∫
R

Rf (u, p)ψ
(
p− β

α

)
1
αs

dp (37)

=
∫
R

α1−sRf (u, αz + β)ψ(z)dz (weak form) (38)

=
(
Rf(u, ·) ∗ ψ̃α

)
(β), ψα(p) := ψ

( p
α

) 1
αs

(convolution form) (39)

= 1
2π

∫
R

f̂(ωu)ψ̂(αω)α1−seiωβdω, (Fourier slice th. [30]) (40)

where R denotes the Radon transform (19); the Fourier form follows by applying the identity F−1
ω Fp = Id

to the convolution form. These reformulations reflect a well-known claim [28,30] that ridgelet analysis is 
wavelet analysis in the Radon domain.

3.3. Dual ridgelet transform in other expressions

Provided the dual ridgelet transform (28) is absolutely convergent, some changes of variables lead to 
other expressions.

R†
ηT(x) =

∫
Rm

∫
R

T(a, b)η(a · x − b)‖a‖−sdb da (41)

=
∞∫
0

∫
Sm−1

∫
R

T(ru, b)η(ru · x − b)db du rm−s−1dr (42)

=
∫

Sm−1

∞∫
0

∫
R

T
(

u
α
,
β

α

)
η

(
u · x − β

α

)
dβdαdu
αm−s+2 (polar expression) (43)

=
∫

Sm−1

∞∫
0

∫
R

T (u, α,u · x − αz) η(z)dzdαdu
αm−s+1 , (weak form) (44)

where every integral is understood to be an iterated integral; the second equation follows by substituting 
(r, u) ← (‖a‖, a/‖a‖) and using the coarea formula for polar coordinates; the third equation follows by 
substituting (α, β) ← (1/r, b/r) and using Fubini’s theorem; in the fourth equation with a slight abuse of 
notation, we write T(u, α, β) := T(u/α, β/α).
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Table 4
Combinations of classes for which the ridgelet transform is well defined as a bilinear map. The first and third 
columns list domains X (Rm) of f and Z(R) of ψ, respectively. The second column lists the range of the Radon 
transform Rf(u, p) for which we reused the same symbol X as it coincides. The fourth, fifth, and sixth columns 
list the range of the ridgelet transform with respect to β, (α, β), and (u, α, β), respectively.

f(x) Rf(u, p) ψ(z) Rψf(u, α, β)
X (Rm) X (Sm−1 × R) Z(R) B(R) A(H) Y(Ym+1)
D D D′ E E E
E′ E′ D′ D′ D′ D′

S S S′ OM OM OM
O′

C O′
C S′ S′ S′ S′

L1 L1 Lp ∩ C0 Lp ∩ C0 S′ S′

D′
L1 D′

L1 D′
Lp D′

Lp S′ S′

Furthermore, write ηα(p) := η(p/α)/αt. Recall that the dual Radon transform R∗ is given by (20) and 
the Mellin transform M [38] is given by Mf(z) :=

∫∞
0 f(α)αz−1dα, z ∈ C. Then,

R†
ηT(x) = R∗ [M[T(u, α, ·) ∗ ηα](s + t−m− 1)] (x). (45)

Note that the composition of the Mellin transform and the convolution is the dual wavelet transform [38]. 
Thus, the dual ridgelet transform is the composition of the dual Radon transform and the dual wavelet 
transform.

4. Ridgelet transform with respect to distributions

Using the weak expressions (38) and (44), we define the ridgelet transform with respect to distributions. 
Henceforth, we focus on the case for which the index s in (26) equals 1.

4.1. Definition and well-definedness

Definition 4.1 (Ridgelet transform with respect to distributions). The ridgelet transform Rψf of a function 
f ∈ X (Rm) with respect to a distribution ψ ∈ Z(R) is given by

Rψf(u, α, β) :=
∫
R

Rf (u, αz + β)ψ(z)dz, (u, α, β) ∈ Ym+1 (46)

where 
∫
R
· ψ(z)dz is understood as the action of a distribution ψ.

Obviously, this “weak” definition coincides with the ordinary strong one when ψ coincides with a locally 
integrable function (L1

loc). With a slight abuse of notation, the weak definition coincides with the convolution 
form

Rψf(u, α, β) =
(
Rf(u, ·) ∗ ψ̃α

)
(β), (u, α, β) ∈ Ym+1 (47)

where ψα(p) := ψ (p/α) /α; the convolution · ∗ ·, dilation ·α, reflection ·̃, and complex conjugation · are 
understood as operations for Schwartz distributions.

Theorem 4.2 (Balancing theorem). The ridgelet transform R : X (Rm) × Z(R) → Y(Ym+1) is well defined 
as a bilinear map when X and Z are chosen from Table 4.
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The proof is provided in Appendix A. Note that each Z is (almost) the largest in the sense that the 
convolution B = X ∗ Z converges. Thus, Table 4 suggests that there is a trade-off relation between X and 
Z, that is, as X increases, Z decreases and vice versa.

Extension of the ridgelet transform of non-integrable functions requires more sophisticated approaches, 
because a direct computation of the Radon transform may diverge. For instance, Kostadinova et al. [30]
extend X = S ′

0 by using a duality technique. In §5.3 we extend the ridgelet transform to L2(Rm), by using 
the bounded extension procedure.

Proposition 4.3 (Continuity of the ridgelet transform L1(Rm) → L∞(Ym+1)). Fix ψ ∈ S(R). The ridgelet 
transform Rψ : L1(Rm) → L∞(Ym+1) is bounded.

Proof. Fix an arbitrary f ∈ L1(Rm) and ψ ∈ S(R). Recall that this case is absolutely convergent. By using 
the convolution form,

ess sup
(u,α,β)

∣∣∣ (Rf(u, ·) ∗ ψ̃α

)
(β)

∣∣∣ ≤ ‖f‖L1(Rm) · ess sup
(α,β)

|ψα(β)| (48)

≤ ‖f‖L1(Rm) · ess sup
(r,β)

|r · ψ(rβ)| < ∞, (49)

where the first inequality follows by using Young’s inequality and applying 
∫
R
|Rf(u, p)|dp ≤ ‖f‖1; the 

second inequality follows by changing the variable r ← 1/α, and the resultant is finite because ψ decays 
rapidly. �

The ridgelet transform Rψ is injective when ψ is admissible, because if ψ is admissible then the recon-
struction formula holds and thus Rψ has the inverse. However, Rψ is not always injective. For instance, take 
a Laplacian f := Δg of some function g ∈ S(Rm) and a polynomial ψ(z) = z + 1, which satisfies ψ(2) ≡ 0. 
According to Table 4, Rψf exists as a smooth function because f ∈ S(Rm) and ψ ∈ S ′(R). In this case 
Rψf = 0, which means Rψ is not injective. That is,

Rψf(u, α, β) =
(
RΔg(u, ·) ∗ ψ̃α

)
(β) (50)

=
(
∂2Rg(u, ·) ∗ ψ̃α

)
(β) (51)

=
(
Rg(u, ·) ∗ ∂2ψ̃α

)
(β) (52)

= (Rg(u, ·) ∗ 0) (β) (53)

= 0, (54)

where the second equality follows by the intertwining relation RΔg(u, p) = ∂2
pRg(u, p) [17]. Clearly the 

non-injectivity stems from the choice of ψ. In fact, as we see in the next section, no polynomial can be 
admissible and thus Rψ is not injective for any polynomial ψ.

4.2. Dual ridgelet transform with respect to distributions

Definition 4.4 (Dual ridgelet transform with respect to distributions). The dual ridgelet transform R†
ηT of 

T ∈ Y(Ym+1) with respect to η ∈ W(R) is given by

R†
ηT(x) = lim

δ→∞
ε→0

∫
Sm−1

δ∫
ε

∫
R

T (u, α,u · x − αz) η(z)dzdαdu
αm

, x ∈ Rm (55)

where 
∫

·η(z)dz is understood as the action of a distribution η.

R
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If the dual ridgelet transform R†
η exists, then it coincides with the dual operator [36] of the ridgelet 

transform Rη.

Theorem 4.5. Let X and Z be chosen from Table 4. Fix ψ ∈ Z. Assume that Rψ : X (Rm) → Y(Ym+1) is 
injective and that R†

ψ : Y ′(Ym+1) → X ′(Rm) exists. Then R†
ψ is the dual operator (Rψ)′ : Y ′(Ym+1) →

X ′(Rm) of Rψ.

Proof. By assumption Rψ is densely defined on X (Rm) and injective. Therefore, by a classical result on 
the existence of the dual operator [36, VII. 1. Th. 1, pp.193], there uniquely exists a dual operator (Rψ)′ :
Y ′(Ym+1) → X ′(Rm). On the other hand, for f ∈ X (Rm) and T ∈ Y(Ym+1),

〈Rψf,T〉
Ym+1 =

∫
Rm×Ym+1

f(x)ψ(a · x − b)T(a, b)dxdadb =
〈
f,R†

ψT
〉
Rm

. (56)

By the uniqueness of the dual operator, we can conclude (Rψ)′ = R†
ψ. �

5. Reconstruction formula for weak ridgelet transform

In this section we discuss the admissibility condition and the reconstruction formula, not only in the 
Fourier domain as many authors did [23,24,1,30,31], but also in the real domain and in the Radon do-
main. Both domains are key to the constructive formulation. In §5.1 we derive a constructive admissibility 
condition. In §5.2 we show two reconstruction formulas. The first of these formulas is obtained by using 
the Fourier slice theorem and the other by using the Radon transform. In §5.3 we will extend the ridgelet 
transform to L2.

5.1. Admissibility condition

Definition 5.1 (Admissibility condition). A pair (ψ, η) ∈ S(R) × S ′(R) is said to be admissible when there 
exists a neighborhood Ω ⊂ R of 0 such that η̂ ∈ L1

loc(Ω \ {0}), and the integral

Kψ,η := (2π)m−1

⎛⎜⎝ ∫
Ω\{0}

+
∫

R\Ω

⎞⎟⎠ ψ̂(ζ)η̂(ζ)
|ζ|m dζ, (57)

converges and is not zero, where 
∫
Ω\{0} and 

∫
R\Ω are understood as Lebesgue’s integral and the action of 

η̂, respectively.

Using the Fourier transform in W requires us to assume that W ⊂ S ′.
The second integral 

∫
R\Ω is always finite because |ζ|−m ∈ OM(R \Ω) and thus |ζ|−mψ̂(ζ) decays rapidly; 

therefore, by definition the action of a tempered distribution η̂ always converges. The convergence of the 
first integral 

∫
Ω\{0} does not depend on the choice of Ω because for every two neighborhoods Ω and Ω′ of 

0, the residual 
∫
Ω\Ω′ is always finite. Hence, the convergence of Kψ,η does not depend on the choice of Ω.

The removal of 0 from the integral is essential because a product of two singular distributions, which is 
indeterminate in general, can occur at 0. See examples below. In Appendix C, we have to treat |ζ|−m as a 
locally integrable function, rather than simply a regularized distribution such as Hadamard’s finite part. If 
the integrand coincides with a function at 0, then obviously 

∫
R\{0} =

∫
R
.

If η̂ is supported in the singleton {0} then η cannot be admissible because Kψ,η = 0 for any ψ ∈ S(R). 
According to Rudin [34, Ex. 7.16], it happens if and only if η is a polynomial. Therefore, it is natural to take 
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W = S ′/P ∼= S ′
0 rather than W = S ′. That is, in S ′

0(R), we identify a polynomial η ∈ P(R) as 0 ∈ S ′(R). 
The integral Kψ,η is well-defined for S ′

0(R). Namely Kψ,η is invariant under the addition of a polynomial Q
to η

Kψ,η = Kψ,η+Q. (58)

Example 5.2 (Modification of Schwartz [32, Ch. 5, Th. 6]). Let η(z) = z and ψ(z) = ΛG(z) with G(z) =
exp(−z2/2). Then,

η̂(ζ) = δ(ζ) and ψ̂(ζ) = |ζ| · G(ζ). (59)

In this case the product of the two distributions is not associative∫
R

p.v. 1
|ζ| × (|ζ| · G(ζ) × δ(ζ)) dζ = 0, (60)

∫
R

(
p.v. 1

|ζ| × |ζ| · G(ζ)
)
× δ(ζ)dζ = G(0) �= 0. (61)

On the other hand (57) is well defined

Kψ,η =
∫

0<|ζ|<1

|ζ| · G(ζ) × 0
|ζ| dζ +

∫
1≤|ζ|

|ζ| · G(ζ)
|ζ| δ(ζ)dζ = 0. (62)

Example 5.3. Let η(z) = z0
+ + (2π)−1 exp iz and ψ(z) = ΛG(z). Then,

η̂(ζ) = i

ζ
+ δ(ζ) + δ(ζ − 1) and ψ̂(ζ) = |ζ| · G(ζ). (63)

The product of the two distributions is not associative∫
R

p.v. 1
|ζ| ×

(
|ζ| · G(ζ) ×

(
i

ζ
+ δ(ζ) + δ(ζ − 1)

))
dζ = G(1), (64)

∫
R

(
p.v. 1

|ζ| × |ζ| · G(ζ)
)
×
(
i

ζ
+ δ(ζ) + δ(ζ − 1)

)
dζ = G(0) + G(1) �= 0. (65)

On the other hand, (57) is well defined

Kψ,η =
∫

0<|ζ|<1

|ζ| · G(ζ) × iζ−1

|ζ| dζ +
∫

1≤|ζ|

|ζ| · G(ζ)
|ζ|

(
p.v. i

ζ
+ δ(ζ) + δ(ζ − 1)

)
dζ = ∞ + G(1). (66)

Observe that formally the integrand û(ζ) := ψ̂(ζ)η̂(ζ)|ζ|−m is a solution of |ζ|mû(ζ) = ψ̂(ζ)η̂(ζ). By 

taking the Fourier inversion, we have Λmu = ψ̃ ∗ η. To be exact, η̂ may contain a point mass at the origin, 
such as Dirac’s δ.

Theorem 5.4 (Structure theorem for admissible pairs). Let (ψ, η) ∈ S(R) × S ′(R). Assume that there exists 
k ∈ N0 such that
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η̂(ζ) =
k∑

j=0
cjδ

(j)(ζ), ζ ∈ {0}. (67)

Assume that there exists a neighborhood Ω of 0 such that η̂ ∈ C0(Ω \ {0}). Then ψ and η are admissible if 
and only if there exists u ∈ OM(R) such that

Λmu = ψ̃ ∗

⎛⎝η −
k∑

j=0
cjz

j

⎞⎠ and
∫

R\{0}

û(ζ)dζ �= 0, (68)

where Λ is the backprojection filter defined in (24). In addition, limζ→+0 |û(ζ)| < ∞ and limζ→−0 |û(ζ)| < ∞.

The proof is provided in Appendix B. Note that the continuity implies local integrability. If ψ has �
vanishing moments with � ≥ k, namely 

∫
R
ψ(z)zjdz = 0 for j ≤ �, then the condition reduces to

Λmu = ψ̃ ∗ η,
∣∣∣∣∣
∫
R

u(z)dz

∣∣∣∣∣ < ∞ and
∫
R

û(ζ)dζ �= 0. (69)

As a consequence of Theorem 5.4, we can construct admissible pairs as below.

Corollary 5.5 (Construction of admissible pairs). Given η ∈ S ′
0(R). Assume that there exists a neighborhood 

Ω of 0 and k ∈ N0 such that ζk · η̂(ζ) ∈ C0(Ω). Take ψ0 ∈ S(R) such that∫
R

ζk ψ̂0(ζ)η̂(ζ)dζ �= 0. (70)

Then

ψ := Λmψ
(k)
0 , (71)

is admissible with η.

The proof is obvious because u := ψ̃
(k)
0 ∗ η satisfies the conditions in Theorem 5.4.

5.2. Reconstruction formula

Theorem 5.6 (Reconstruction formula). Let f ∈ L1(Rm) satisfy f̂ ∈ L1(Rm) and let (ψ, η) ∈ S(R) × S ′
0(R)

be admissible. Then the reconstruction formula

R†
ηRψf(x) = Kψ,ηf(x), (72)

holds for almost every x ∈ Rm. The equality holds for every point where f is continuous.

The proof is provided in Appendix C. The admissibility condition can be easily inverted to (ψ, η) ∈ S ′
0×S. 

However, extensions to S ′
0 × S ′

0 and S × D′ may not be easy. This is because the multiplication S ′
0 · S ′

0 is 
not always commutative, nor associative, and the Fourier transform is not always defined over D′ [32].

The following theorem is another suggestive reconstruction formula that implies wavelet analysis in the 
Radon domain works as a backprojection filter. In other words, the admissibility condition requires (ψ, η) to 
construct the filter Λm. Note that similar techniques are obtained for “wavelet measures” by Rubin [29,25].
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Theorem 5.7 (Reconstruction formula via radon transform). Let f ∈ L1(Rm) be sufficiently smooth and 
(ψ, η) ∈ S(R) × S ′(R) be admissible. Assume that there exists a real-valued smooth and integrable function 
u such that

Λmu = ψ̃ ∗ η and
∫
R

û(ζ)dζ = −1. (73)

Then,

R†
ηRψf(x) = R∗Λm−1Rf(x) = 2(2π)m−1f(x), (74)

holds for almost every x ∈ Rm.

The proof is provided in Appendix D. Note that here we imposed a stronger condition on u than the 
u ∈ L1(R \ {0}) we imposed in Theorem 5.4.

Recall intertwining relations ([17, Lem. 2.1, Th. 3.1, Th. 3.7])

(−Δ)
m−1

2 R∗ = Λm−1R, and R(−Δ)
m−1

2 = R∗Λm−1. (75)

Therefore, we have the following.

Corollary 5.8.

R†
ηRψ = R∗Λm−1R = (−Δ)

m−1
2 R∗R = R∗R(−Δ)

m−1
2 . (76)

5.3. Extension to L2

By (·, ·) and ‖ ·‖2, with a slight abuse of notation, we denote the inner product of L2(Rm) and L2(Ym+1). 
Here we endow Ym+1 with a fixed measure α−mdαdβdu, and omit writing it explicitly as L2(Ym+1; . . .). 
We say that ψ is self-admissible if ψ is admissible in itself, i.e. the pair (ψ, ψ) is admissible. The following 
relation is immediate by the duality.

Theorem 5.9 (Parseval’s relation and Plancherel’s identity). Let (ψ, η) ∈ S × S ′ be admissible with, for 
simplicity, Kψ,η = 1. For f, g ∈ L1 ∩ L2(Rm),

(Rψf,Rηg) =
(
R†

ηRψf, g
)

= (f, g) . Parseval’s Relation (77)

In particular, if ψ is self-admissible, then

‖Rψf‖2 = ‖f‖2. Plancherel’s identity (78)

Recall Proposition 4.3 that the ridgelet transform is a bounded linear operator on L1(Rm). If ψ ∈ S(R)
is self-admissible, then we can extend the ridgelet transform to L2(Rm), by following the bounded extension 
procedure [40, 2.2.4]. That is, for f ∈ L2(Rm), take a sequence fn ∈ L1 ∩ L2(Rm) such that fn → f in L2. 
Then by Plancherel’s identity,

‖fn − fm‖2 = ‖Rψfn − Rψfm‖2, ∀n,m ∈ N. (79)

The right-hand side is a Cauchy sequence in L2(Ym+1) as n, m → ∞. By the completeness, there uniquely 
exists the limit T∞ ∈ L2(Ym+1) of Rψfn. We regard T∞ as the ridgelet transform of f and define Rψf :=
T∞.
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Theorem 5.10 (Bounded extension of ridgelet transform on L2). Let ψ ∈ S(R) be self-admissible with Kψ,ψ=1. 
The ridgelet transform on L1 ∩ L2(Rm) admits a unique bounded extension to L2(Rm), with satisfying 
‖Rψf‖2 = ‖f‖2.

We say that (ψ, η) and (ψ
, η
) are equivalent, if two admissible pairs (ψ, η) and (ψ
, η
) define the same 

convolution ψ̃ ∗ η = ψ̃
 ∗ η
 in common. If (ψ, η) and (ψ
, η
) are equivalent, then obviously

(Rψf,Rηg) = (Rψ�f,Rη�g) . (80)

We say that an admissible pair (ψ, η) is admissibly decomposable, when there exist self-admissible pairs 
(ψ
, ψ
) and (η
, η
) such that (ψ
, η
) is equivalent to (ψ, η). If (ψ, η) is admissibly decomposable with 
(ψ
, η
), then by the Schwartz inequality

(Rψf,Rηg) ≤ ‖Rψ�f‖2‖Rη�g‖2. (81)

Theorem 5.11 (Reconstruction formula in L2). Let f ∈ L2(Rm) and (ψ, η) ∈ S × S ′ be admissibly decom-
posable with Kψ,η = 1. Then,

R†
ηRψf → f, in L2. (82)

The proof is provided in Appendix E. Even when ψ is not self-admissible and thus Rψ cannot be defined 
on L2(Rm), the reconstruction operator R†

ηRψ can be defined with the aid of η.

6. Neural network with unbounded activation functions

In this section we instantiate the universal approximation property for the variants of neural networks. 
Recall that a neural network coincides with the dual ridgelet transform of a function. Henceforth, we rephrase 
a dual ridgelet function as an activation function. According to the reconstruction formulas (Theorem 5.6, 
5.7, and 5.11), we can determine whether a neural network with an activation function η is a universal 
approximator by checking the admissibility of η.

Table 1 lists some Lizorkin distributions for potential activation functions. In §6.1 we verify that they 
belong to S ′

0(R) and some of them belong to OM(R) and S(R), which are subspaces of S ′
0(R). In §6.2 we 

show that they are admissible with some ridgelet function ψ ∈ S(R); therefore, each of their corresponding 
neural networks is a universal approximator.

6.1. Examples of Lizorkin distributions

We proved the class properties by using the following propositions.

Proposition 6.1 (Tempered distribution S ′(R) [40, Ex. 2.3.5]). Let g ∈ L1
loc(R). If |g(z)| � (1 + |z|)k for 

some k ∈ N0, then g ∈ S ′(R).

Proposition 6.2 (Slowly increasing function OM(R) [40, Def. 2.3.15]). Let g ∈ E(R). If for any α ∈
N0, |∂αg(x)| � (1 + |z|)kα for some kα ∈ N0, then g ∈ OM(R).

Example 6.3. Truncated power functions zk+ (k ∈ N0), which contain the ReLU z+ and the step function z0
+, 

belong to S ′
0(R).

Proof. For any � ∈ N0 there exists a constant C� such that |∂�(zk+)| ≤ C�(1 +|z|)k−�. Hence, zk+ ∈ S ′
0(R). �
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Example 6.4. The sigmoidal function σ(z) and the softplus σ(−1)(z) belong to OM(R). The derivatives 
σ(k)(z) (k ∈ N) belong to S(R). Hyperbolic tangent tanh(z) belongs to OM(R).

The proof is provided in Appendix F.

Example 6.5. (See [40, Ex. 2.2.2].) RBF G(z) and their derivatives G(k)(z) belong to S(R).

Example 6.6. (See [40, Ex. 2.3.5].) Dirac’s δ(z) and their derivatives δ(k)(z) belong to S ′(R).

6.2. Kψ,η when ψ is a derivative of the Gaussian

Given an activation function η ∈ S ′
0(R), according to Corollary 5.5 we can construct an admissible ridgelet 

function ψ ∈ S(R) by letting

ψ := Λmψ0, (83)

where ψ0 ∈ S(R) satisfies 〈
η̂, ψ̂0

〉
:=

∫
R\{0}

ψ̂0(ζ)η̂(ζ)dζ �= 0, ±∞. (84)

Here we consider the case when ψ0 is given by

ψ0 = G(�), (85)

for some � ∈ N0, where G denotes the Gaussian G(z) := exp(−z2/2).
The Fourier transform of the Gaussian is given by Ĝ(ζ) = exp(−ζ2/2) =

√
2πG(ζ). The Hilbert transform 

of the Gaussian, which we encounter by computing ψ = ΛmG when m is odd, is given by

HG(z) = 2i√
π
F

(
z√
2

)
, (86)

where F (z) is the Dawson function F (z) := exp(−z2) 
∫ z

0 exp(w2)dw.

Example 6.7. zk+ (k ∈ N0) is admissible with ψ = ΛmG(�+k+1) (� ∈ N0) iff � is even. If odd, then Kψ,η = 0.

Proof. It follows from the fact that, according to Gel’fand and Shilov [41, § 9.3],

ẑk+(ζ) = k!
(iζ)k+1 + πikδ(k)(ζ), k ∈ N0. � (87)

Example 6.8. η(z) = δ(k)(z) (k ∈ N0) is admissible with ψ = ΛmG iff k is even. If odd, then Kψ,η = 0.

In contrast to polynomial functions, Dirac’s δ can be an admissible activation function.

Example 6.9. η(z) = G(k)(z) (k ∈ N0) is admissible with ψ = ΛmG iff k is even. If odd, then Kψ,η = 0.

Example 6.10. η(z) = σ(k)(z) (k ∈ N0) is admissible with ψ = ΛmG iff k is odd. If odd, then Kψ,η = 0. 
σ(−1) is admissible with ψ = ΛmG′′.

The proof is provided in Appendix F.
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Table 5
Theoretical diagnoses for admissibility of ψ = Λmψ0 and η. ‘+’ indicates that (ψ, η) is admissible. ‘0’ and ‘∞’ indicate that Kψ,η

vanishes and diverges, respectively, and thus (ψ, η) is not admissible.

Activation function η ψ = ΛmG ψ = ΛmG′ ψ = ΛmG′′

Derivative of sigmoidal ft. σ′ + 0 +
Sigmoidal function σ ∞ + 0
Softplus σ(−1) ∞ ∞ +

Dirac’s δ δ + 0 +
Unit step function z0

+ ∞ + 0
ReLU z+ ∞ ∞ +

Linear function z 0 0 0

RBF G + 0 +

7. Numerical examples of reconstruction

We performed some numerical experiments on reconstructing a one-dimensional signal and a two-
dimensional image, with reference to our theoretical diagnoses for admissibility in the previous section. 
Table 5 lists the diagnoses of (Λmψ0, η) we employ in this section. The symbols ‘+,’ ‘0,’ and ‘∞’ in each 
cell indicate that Kψ,η of the corresponding (ψ, η) converges to a non-zero constant (+), converges to zero 
(0), and diverges (∞). Hence, by Theorem 5.6, if the cell (ψ, η) indicates ‘+’ then a neural network with an 
activation function η is a universal approximator.

7.1. Sinusoidal curve

We studied a one-dimensional signal f(x) = sin 2πx defined on x ∈ [−1, 1]. The ridgelet functions 
ψ = Λψ0 were chosen from derivatives of the Gaussian ψ0 = G(�), (� = 0, 1, 2). The activation functions 
η were chosen from among the softplus σ(−1), the sigmoidal function σ and its derivative σ′, the ReLU 
z+, unit step function z0

+, and Dirac’s δ. In addition, we examined the case when the activation function is 
simply a linear function: η(z) = z, which cannot be admissible because the Fourier transform of polynomials 
is supported at the origin in the Fourier domain.

The signal was sampled from [−1, 1] with Δx = 1/100. We computed the reconstruction formula∫
R

∫
R

Rψf(a, b)η(a · x− b)dadb
|a| , (88)

by simply discretizing (a, b) ∈ [−30, 30] × [−30, 30] by Δa = Δb = 1/10. That is,

Rψf(a, b) ≈
N∑

n=0
f(xn)ψ(a · xn − b)|a|Δx, xn = x0 + nΔx (89)

R†
ηRψf(x) ≈

I,J∑
(i,j)=(0,0)

Rψf(ai, bj)η(ai · x− bj)
ΔaΔb

|ai|
, ai = a0 + iΔa, bj = b0 + jΔb (90)

where x0 = −1, a0 = −30, b0 = −30, and N = 200, (I, J) = (600, 600).
Fig. 2 depicts the ridgelet transform Rψf(a, b). As the order � of ψ = ΛG(�) increases, the localization of 

Rψf increases. As shown in Fig. 3, every Rψf can be reconstructed to f with some admissible activation 
function η. It is somewhat intriguing that the case ψ = ΛG′′ can be reconstructed with two different 
activation functions.

Figs. 3, 4, and 5 tile the results of reconstruction with sigmoidal functions, truncated power functions, 
and a linear function. The solid line is a plot of the reconstruction result; the dotted line draws the original 
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Fig. 2. Ridgelet transform Rψf(a, b) of f(x) = sin 2πx defined on [−1, 1] with respect to ψ.

Fig. 3. Reconstruction with the derivative of sigmoidal function σ′, sigmoidal function σ, and softplus σ(−1). The solid line plots
the reconstruction result; the dotted line plots the original signal.
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Fig. 4. Reconstruction with truncated power functions — Dirac’s δ, unit step z0
+, and ReLU z+. The solid line plots the reconstruction 

result; the dotted line plots the original signal.

Fig. 5. Reconstruction with linear function η(z) = z. The solid line plots the reconstruction result; the dotted line plots the original 
signal.
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signal. In each of the figures, the theoretical diagnoses and experimental results are almost consistent and 
reasonable.

In Fig. 3, at the bottom left, the reconstruction signal with the softplus seems incompletely reconstructed, 
in spite of Table 5 indicating ’∞’. Recall that σ̂(−1)(ζ) has a pole ζ−2; thus, we can understand this cell in 
terms of σ(−1) ∗ ΛG working as an integrator, that is, a low-pass filter.

In Fig. 4, in the top row, all the reconstructions with Dirac’s δ fail. These results seem to contradict 
the theory. However, it simply reflects the implementation difficulty of realizing Dirac’s δ, because δ(z) is a 
“function” that is almost constantly zero, except for the origin. Nevertheless, z = ax − b rarely happens to 
be exactly zero, provided a, b, and x are discretized. This is the reason why this row fails. At the bottom 
left, the ReLU seems to lack sharpness for reconstruction. Here we can again understand that z+ ∗ ΛG
worked as a low-pass filter. It is worth noting that the unit step function and the ReLU provide a sharper 
reconstruction than the sigmoidal function and the softplus.

In Fig. 5, all the reconstructions with a linear function fail. This is consistent with the theory that 
polynomials cannot be admissible as their Fourier transforms are singular at the origin.

7.2. Shepp–Logan phantom

We next studied a gray-scale image Shepp–Logan phantom [42]. The ridgelet functions ψ = Λ2ψ0 were 
chosen from the �th derivatives of the Gaussian ψ0 = G(�), (� = 0, 1, 2). The activation functions η were 
chosen from the RBF G (instead of Dirac’s δ), the unit step function z0

+, and the ReLU z+.
The original image was composed of 256 × 256 pixels. We treated it as a two-dimensional signal f(x)

defined on [−1, 1]2. We computed the reconstruction formula∫
R

∫
R2

Rψf(a, b)η(a · x − b)dadb
‖a‖ , (91)

by discretizing (a, b) ∈ [−300, 300]2 × [−30, 30] by Δa = (1, 1) and Δb = 1.
Fig. 6 lists the results of the reconstruction. As observed in the one-dimensional case, the results are fairly 

consistent with the theory. Again, at the bottom left, the reconstructed image seems dim. Our understanding 
is that it was caused by low-pass filtering.

8. Concluding remarks

We have shown that neural networks with unbounded non-polynomial activation functions have the uni-
versal approximation property. Because the integral representation of the neural network coincides with the 
dual ridgelet transform, our goal reduces to constructing the ridgelet transform with respect to distributions. 
Our results cover a wide range of activation functions: not only the traditional RBF, sigmoidal function, 
and unit step function, but also truncated power functions zk+, which contain the ReLU and even Dirac’s 
δ. In particular, we concluded that a neural network can approximate L1 ∩ C0 functions in the pointwise 
sense, and L2 functions in the L2 sense, when its activation “function” is a Lizorkin distribution (S ′

0) that 
is admissible. The Lizorkin distribution is a tempered distribution (S ′) that is not a polynomial. As an 
important consequence, what a neural network learns is a ridgelet transform of the target function f . In 
other words, during backpropagation the network indirectly searches for an admissible ridgelet function, by 
constructing a backprojection filter.

Using the weak form expression of the ridgelet transform, we extensively defined the ridgelet transform 
with respect to distributions. Theorem 4.2 guarantees the existence of the ridgelet transform with respect to 
distributions. Table 4 suggests that for the convolution of distributions to converge, the class X of domain 
and the class Z of ridgelets should be balanced. Proposition 4.3 states that Rψ : L1(Rm) → S ′(Ym+1)
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Fig. 6. Reconstruction with RBF G, unit step z0
+, and ReLU z+.

is a bounded linear operator. Theorem 4.5 states that the dual ridgelet transform coincides with a dual 
operator. Provided the reconstruction formula holds, that is, when the ridgelets are admissible, the ridgelet 
transform is injective and the dual ridgelet transform is surjective.

For an unbounded η ∈ Z(R) to be admissible, it cannot be a polynomial and it can be associated with 
a backprojection filter. If η ∈ Z(R) is a polynomial then the product of distributions in the admissibility 
condition should be indeterminate. Therefore, Z(R) excludes polynomials. Theorem 5.4 rephrases the admis-
sibility condition in the real domain. As a direct consequence, Corollary 5.5 gives a constructive sufficiently 
admissible condition.

After investigating the construction of the admissibility condition, we showed that formulas can be 
reconstructed on L1(Rm) in two ways. Theorem 5.6 uses the Fourier slice theorem. Theorem 5.7 uses 
approximations to the identity and reduces to the inversion formula of the Radon transform. Theorem 5.7
as well as Corollary 5.8 suggest that the admissibility condition requires (ψ, η) to construct a backprojection 
filter.

In addition, we have extended the ridgelet transform on L1(Rm) to L2(Rm). Theorem 5.9 states that Par-
seval’s relation, which is a weak version of the reconstruction formula, holds on L1∩L2(Rm). Theorem 5.10
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follows the bounded extension of Rψ from L1 ∩ L2(Rm) to L2(Rm). Theorem 5.11 gives the reconstruction 
formula in L2(Rm).

By showing that zk+ and other activation functions belong to S ′
0, and that they are admissible with some 

derivatives of the Gaussian, we proved the universal approximation property of a neural network with an 
unbounded activation function. Numerical examples were consistent with our theoretical diagnoses on the 
admissibility. In addition, we found that some non-admissible combinations worked as a low-pass filter; for 
example, (ψ, η) = (Λm[Gaussian], ReLU) and (ψ, η) = (Λm[Gaussian], softplus).

We plan to perform the following interesting investigations in future.

1. Given an activation function η ∈ S ′
0(R), which is the “best” ridgelet function ψ ∈ S(R)?

In fact, for a given activation function η, we have plenty of choices. By Corollary 5.5, all elements of

Aη :=
{

Λmψ0

∣∣∣ ψ0 ∈ S(R) such that 〈η̂, ψ̂0〉 is finite and nonzero.
}
, (92)

are admissible with η.
2. How are ridgelet functions related to deep neural networks?

Because ridgelet analysis is so fruitful, we aim to develop “deep” ridgelet analysis. One of the essential 
leaps from shallow to deep is that the network output expands from scalar to vector because a deep 
structure is a cascade of multi-input multi-output layers. In this regard, we expect Corollary 5.8 to 
play a key role. By using the intertwining relations, we can “cascade” the reconstruction operators 
as below

R†
ηRψR†

ηRψ = R∗Λk−1R(−Δ)m−1− k+�
2 R∗Λ�−1R. (0 ≤ k, � ≤ m) (93)

This equation suggests that the cascade of ridgelet transforms coincides with a composite of back-
projection filtering in the Radon domain and differentiation in the real domain. We conjecture that 
this point of view can be expected to facilitate analysis of the deep structure.
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Appendix A. Proof of Theorem 4.2

A ridgelet transform Rψf(u, α, β) is the convolution of a Radon transform Rf(u, p) and a dilated dis-
tribution ψα(p) in the sense of a Schwartz distribution. That is,

f(x) �→ Rf(u, p) �→
(
Rf(u, ·) ∗ ψ̃α

)
(β) = Rψf(u, α, β). (A.1)

We verify that the ridgelet transform is well defined in a stepwise manner. Provided there is no danger of 
confusion, in the following steps we denote by X the classes D, E ′, S, O′

C , L
1, or D′

1 .
L
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Step 1: Class X (Sm−1 × R) of Rf(u, p)
Hertle’s results found [39, Th. 4.6, Cor. 4.8] that the Radon transform is the continuous injection

R : X (Rm) ↪→ X (Sm−1 × R), (A.2)

where X = D, E ′, S, O′
C , L

1, or D′
L1 ; if f ∈ X (Rm) then Rf ∈ X (Sm−1 × R), which determines the second 

column. Our possible choice of the domain X is restricted to them.

Step 2: Class B(R) of Rψf(u, α, β) with respect to β

Fix α > 0. Recall that Rψf(u, α, β) =
(
Rf(u, ·) ∗ ψ̃α

)
(β) in the sense of Schwartz distributions. By the 

nuclearity of X [33, §51], the kernel theorem

X (Sm−1 × R) ∼= X (Sm−1)⊗̂X (R), (A.3)

holds. Therefore, we can omit u ∈ Sm−1 in the considerations for (α, β) ∈ H. According to Schwartz’s results 
shown in Table 3, for the convolution g ∗ ψ of g ∈ X (R) and ψ ∈ Z(R) to converge in B(R), we can assign 
the largest possible class Z for each X as in the third column. Note that for X = L1 we even assumed the 
continuity Z = Lp ∩C0, which is technically required in Step 3. Obviously for Z = D′, S ′, Lp ∩C0, or D′

Lp , 
if ψ ∈ Z(R) then ψα ∈ Z(R). Therefore, we can determine the fourth column by evaluating X ∗Z according 
to Table 3.

Step 3: Class A(H) of Rψf(u, α, β) with respect to (α, β)
Fix u0 ∈ Sm−1 and assume f ∈ X (Rm). Write g(p) := Rf(u0, p) and

W[ψ; g](α, β) :=
∫
R

g(αz + β)ψ(z)dz, (A.4)

then Rψf(u0, α, β) = W[ψ; g](α, β) for every (α, β) ∈ H. By the kernel theorem, g ∈ X (R).

Case 3a: (X = D and Z = D′ then B = E and A = E)
We begin by considering the case in the first row. Observe that

∂αW[ψ; g](α, β) = ∂α

∫
R

g(αz + β)ψ(z)dz =
∫
R

g′(αz + β)z · ψ(z)dz = W[z · ψ; g′](α, β), (A.5)

∂βW[ψ; g](α, β) = ∂β

∫
R

g(αz + β)ψ(z)dz =
∫
R

g′(αz + β)ψ(z)dz = W[ψ; g′](α, β), (A.6)

and thus that for every k, � ∈ N0,

∂k
α∂

�
βW[ψ; g](α, β) = W[zk · ψ; g(k+�)](α, β). (A.7)

Obviously if g ∈ D(R) and ψ ∈ D′(R) then g(k+�) ∈ D(R) and zk · ψ ∈ D′(R), respectively, and thus 
∂k
α∂

�
βW[ψ; g](α, β) exists at every (α, β) ∈ H. Therefore, we can conclude that if g ∈ D(R) and ψ ∈ D′(R)

then W[ψ; g] ∈ E(H).

Case 3b: (X = E ′ and Z = D′ then B = D′ and A = D′)
Let g ∈ E ′(R) and ψ ∈ D′(R). We show that W[ψ; g] ∈ D′(H), that is, for every compact set K ⊂ H, 

there exists N ∈ N0 such that∣∣∣∣∣
∫

T(α, β)W[ψ; g](α, β)dαdβ
α

∣∣∣∣∣ � ∑
k,�≤N

sup
(α,β)∈H

|∂k
α∂

�
βT(α, β)|, ∀T ∈ D(K). (A.8)
K
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Fix an arbitrary compact set K ⊂ H and a smooth function T ∈ D(K), which is supported in K. Take two 
compact sets A ⊂ R+ and B ⊂ R such that K ⊂ A × B. By the assumption that g ∈ E ′(R) and ψ ∈ D′(R), 
there exist k, � ∈ N0 such that

∣∣∣∣∣
∫
R

u(z)g(z)dz

∣∣∣∣∣ � sup
z∈supp g

|u(k)(z)|, ∀u ∈ E(R) (A.9)

∣∣∣∣∣
∫
R

v(z)ψ(z)dz

∣∣∣∣∣ � sup
z∈R

|v(�)(z)|, ∀v ∈ D(B). (A.10)

Observe that for every fixed α, T(α, ·) ∗ g̃ ∈ D′(R). Then, by applying (A.9) and (A.10) incrementally,

∣∣∣∣∣
∫
R

T(α, β)
∫
R

g(αz + β)ψ(z)dzdαdβ
α

∣∣∣∣∣ ≤
∞∫
0

∣∣∣∣∣
∫
R

∫
R

T(α, β − αz)ψ(z)dz · g(β)dβ

∣∣∣∣∣dαα (A.11)

�
∞∫
0

sup
β∈supp g

∣∣∣∣∣
∫
R

∂k
βT(α, β − αz)ψ(z)dz

∣∣∣∣∣dαα (A.12)

�
∞∫
0

sup
β∈supp g

sup
z

∣∣∣∂k+�
β T(α, β − αz)

∣∣∣α�−1dα (A.13)

=
∫
A

sup
β∈B

∣∣∣∂k+�
β T(α, β)

∣∣∣α�−1dα (A.14)

≤ sup
(α,β)∈K

∣∣∣∂k+�
β T(α, β)

∣∣∣ · ∫
A

α�−1dα, (A.15)

where the third inequality follows by repeatedly applying ∂z[T(α, β−αz)] = (−α)∂βT(α, β−αz); the fourth 
inequality follows by the compactness of the support of T. Thus, we conclude that W[ψ; g] ∈ D′(H).

Case 3c: (X = S and Z = S ′ then B = OM and A = OM)
Let g ∈ S(R) and ψ ∈ S ′(R). Recall the case when X = D. Obviously, for every k, � ∈ N0, g(k+�) ∈ S(R)

and zk · ψ ∈ S ′(R), respectively, which implies W[ψ; g] ∈ E(H). Now we even show that W[ψ; g] ∈ OM(H), 
that is, for every k, � ∈ N0 there exist s, t ∈ N0 such that

∣∣∂k
α∂

�
βW[ψ; g](α, β)

∣∣ � (α + 1/α)s(1 + β2)t/2. (A.16)

Recall that by (A.7), we can regard ∂k
α∂

�
βW[ψ; g](α, β) as ∂0

α∂
0
βW[ψ0; g0](α, β), by setting g0 := g(k+�) ∈ S(R)

and ψ0 := zk · ψ ∈ S ′(R). Henceforth we focus on the case when k = � = 0. Since ψ ∈ S ′(R), there exists 
N ∈ N0 such that

∣∣∣∣∣
∫
R

u(z)ψ(z)dz

∣∣∣∣∣ � ∑
s,t≤N

sup
z∈R

|zsu(t)(z)|, ∀u ∈ S(R). (A.17)

By substituting u(z) ← g(αz + β), we have
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∣∣∣∣∣
∫
R

g(αz + β)ψ(z)dz

∣∣∣∣∣ � ∑
s,t≤N

sup
z∈R

|zs∂t
zg(αz + β)| (A.18)

=
∑

s,t≤N

sup
p∈R

∣∣∣∣∣
(
p− β

α

)s

αtg(t)(p)

∣∣∣∣∣ (A.19)

�
∑

s,t≤N

αt−sβs sup
p∈R

|psg(t)(p)| (A.20)

� (α + 1/α)N (1 + β2)N/2, (A.21)

where the second equation follows by substituting p ← αz + β; the fourth inequality follows because every 
supp |psgt(p)| is finite by assumption that g ∈ S(R). Therefore, we can conclude that if g ∈ S(R) and 
ψ ∈ S ′(R) then W[ψ; g] ∈ OM(H).

Case 3d: (X = O′
C and Z = S ′ then B = S ′ and A = S ′)

Let g ∈ O′
C(R) and ψ ∈ S ′(R). We show that W[ψ; g] ∈ S ′(H), that is, there exists N ∈ N0 depending 

only on ψ and g such that∣∣∣∣∣
∫
H

T(α, β)W[ψ; g](α, β)dαdβ
α

∣∣∣∣∣ � ∑
s,t,k,�≤N

sup
α,β∈H

∣∣Dk,�
s,tT(α, β)

∣∣, ∀T ∈ S(H) (A.22)

where we defined

Dk,�
s,tT(α, β) := (α + 1/α)s (1 + β2)t/2∂k

α∂
�
βT(α, β). (A.23)

Fix an arbitrary T ∈ S(H). By the assumption that ψ ∈ S ′(R), there exist s, t ∈ N0 such that∣∣∣∣∣
∫
R

u(z)ψ(z)dz

∣∣∣∣∣ � sup
z

|ztu(s)(z)|, ∀u ∈ S(R). (A.24)

Observe that for every fixed α, T(α, ·) ∗ g̃ ∈ S(R). Then we can provide an estimate as below.∣∣∣∣∣
∫
H

T(α, β)
∫
R

g(αz + β)ψ(z)dzdαdβ
α

∣∣∣∣∣ ≤
∞∫
0

∣∣∣∣∣
∫
R

∫
R

T(α, β)g(αz + β)dβ · ψ(z)dz

∣∣∣∣∣dαα (A.25)

�
∫
R

sup
z

∣∣∣∣∣zt
∫
R

D0,0
s,0T(α, β)g(s)(αz + β)dβ

∣∣∣∣∣dαα (A.26)

�
∫
R

sup
p

∣∣∣∣∣pt
∫
R

D0,0
s+t,0T(α, β)g(s)(p + β)dβ

∣∣∣∣∣dαα (A.27)

≤
∫
R

∫
R

sup
p

∣∣ptg(s)(p + β)
∣∣∣∣D0,0

s+t,0T(α, β)
∣∣dβdα

α
(A.28)

�
∫
R

∫
R

sup
p

∣∣(1 + |p + β|2)t/2g(s)(p + β)
∣∣∣∣D0,0

s+t,tT(α, β)
∣∣dβdα

α

(A.29)

�
∫ ∣∣D0,0

s+t,tT(α, β)
∣∣dβdα

α
(A.30)
H
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≤ sup
(α,β)∈H

∣∣D0,0
s+t+ε,t+δT(α, β)

∣∣ ∫
H

(α + 1/α)−ε (1 + β2)−δ/2 dβdα
α

,

(A.31)

where the second inequality follows by repeatedly applying ∂z[g(αz + β)] = α · g′(αz + β) and α � α+ 1/α; 
the third inequality follows by changing the variable p ← αz and applying (α+ 1/α)s ·α−t � (α+ 1/α)s+t; 
the fifth inequality follows by applying |p| � (1 +p2)1/2 and Peetre’s inequality 1 +p2 � (1 +β2)(1 +|p +β|2); 
the sixth inequality follows by the assumption that (1 + p2)t/2g(p) is bounded for any t; the last inequality 
follows by Hölder’s inequality and the integral is convergent when ε > 0 and δ > 1.

Case 3e: (X = L1 and Z = Lp ∩ C0 then B = Lp ∩ C0 and A = S ′)
Let g ∈ L1(R) and ψ ∈ Lp ∩ C0(R). We show that W[g; ψ] ∈ S ′(H), that is, it has at most polynomial 

growth at infinity. Because ψ is continuous, g∗ψ is continuous. By Lusin’s theorem, there exists a continuous 
function g
 such that g
(x) = g(x) for almost every x ∈ R; thus, by the continuity of g ∗ ψ,

g
 ∗ ψ(x) = g ∗ ψ(x), for every x ∈ R. (A.32)

By the continuity and the integrability of g
 and ψ, there exist s, t ∈ R such that

|g
(x)| � (1 + x2)−s/2, s > 1 (A.33)

|ψ(x)| � (1 + x2)−t/2, tp > 1 (A.34)

Therefore,

∣∣∣∣∣
∫
R

g(x)ψ
(
x− β

α

)
1
α

dx

∣∣∣∣∣ �
∣∣∣∣∣
∫
R

(1 + x2)−s/2

(
1 +

(
x− β

α

)2
)−t/2

dx

∣∣∣∣∣α−1 (A.35)

�
∣∣∣∣∣
∫
R

(1 + x2)−s/2
(
1 + (x− β)2

)−t/2
dx

∣∣∣∣∣(1 + α2)t/2α−1 (A.36)

� (1 + β2)− min(s,t)/2(α + 1/α)t−1, (A.37)

which means W[ψ; g] is a locally integrable function that grows at most polynomially at infinity.
Note that if (t − 1)p < m − 1 then W[ψ; g] ∈ Lp(H; α−mdαdβ), because |W[ψ; g](α, β)|p behaves as 

β− min(s,t)α(t−1)p at infinity.

Case 3f: (X = D′
L1 and Z = D′

Lp then B = D′
Lp and A = S ′)

Let g ∈ D′
L1(R) and ψ ∈ D′

Lp . We estimate (A.22). Fix an arbitrary T ∈ S(H). By the assumption that 
ψ ∈ D′

Lp(R), for every fixed α, T(α, ·) ∗ ψ ∈ E ∩ Lp(R). Therefore, we can take ψ
 ∈ E ∩ Lp(R) such that 
ψ
 = ψ a.e. and T(α, ·) ∗ ψ
 = T(α, ·) ∗ ψ. In the same way, we can take g
 ∈ E ∩ L1(R) such that g
 = g

almost everywhere and T(α, ·) ∗ g
 = T(α, ·) ∗ g. Therefore, this case reduces to show that if X = L1 and 
Z = Lp then A = S ′. This coincides with case 3e.

Step 4: Class Y(Ym+1) of Rψf(u, α, β)
The last column (Y) is obtained by applying Y(Ym+1) = X (Sm−1)⊗̂A(H). Recall that for Sm−1, as it is 

compact, D = S = OM = E and E ′ = O′
C = S ′ = D′

Lp = D′. Therefore, we have Y as in the last column of 
Table 4.
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Appendix B. Proof of Theorem 5.4

Let (ψ, η) ∈ S(R) × S ′(R). Assume that η̂ is singular at 0. That is, there exists k ∈ N0 such that

η̂(ζ) =
k∑

j=0
cjδ

(j)(ζ), ζ ∈ {0}. (B.1)

Assume there exists a neighborhood Ω of 0 such that η̂ ∈ C0(Ω \{0}). Note that the continuity implies local 
integrability. We show that ψ and η are admissible if and only if there exists u ∈ OM(R) such that

Λmu = ψ̃ ∗

⎛⎝η −
k∑

j=0
cjz

j

⎞⎠ , and
∫

R\{0}

û(ζ)dζ �= 0. (B.2)

Recall that the Fourier transform OM(R) → O′
C(R) is bijective. Thus, the action of û on the indicator 

function 1R\{0}(ζ) is always finite.

Sufficiency:
On Ω \{0}, η̂ coincides with a function. Thus the product ψ̂(ζ)η̂(ζ)|ζ|−m is defined in the sense of ordinary 

functions, and coincides with û(ζ). On R \ Ω, |ζ|−m is in OM(R \ Ω). Thus, the product ψ̂(ζ)η̂(ζ)|ζ|−m

is defined in the sense of distributions, which is associative because it contains at most one tempered 
distribution (S · S ′ · OM), and reduces to û(ζ). Therefore,

Kψ,η

(2π)m−1 =

⎛⎜⎝ ∫
Ω\{0}

+
∫

R\Ω

⎞⎟⎠ û(ζ)dζ, (B.3)

which is finite by assumption.

Necessity:
Write Ω0 := Ω ∩ [−1, 1] and Ω1 := R \Ω0. By the assumption that 

∫
Ω0\{0} ψ̂(ζ)η̂(ζ)|ζ|−mdζ is absolutely 

convergent and η̂ is continuous in Ω0 \ {0}, there exists ε > 0 such that∣∣∣ψ̂(ζ)η̂(ζ)
∣∣∣ � |ζ|m−1+ε, ζ ∈ Ω0 \ {0}. (B.4)

Therefore, there exists v0 ∈ L1(R) ∩ C0(R \ {0}) such that its restriction to Ω0 \ {0} coincides with

ψ̂(ζ)η̂(ζ) = |ζ|mv0(ζ), ζ ∈ Ω0 \ {0}. (B.5)

By integrability and continuity, v0 ∈ L∞(R). In particular, both limζ→+0 v0(ζ) and limζ→−0 v0(ζ) are finite.
However, in Ω1, |ζ|−m ∈ OM(Ω1). By the construction, ψ̂ · η̂ ∈ O′

C(R). Thus, there exists v1 ∈ O′
C(R)

such that

ψ̂(ζ)η̂(ζ) = |ζ|mv1(ζ), ζ ∈ Ω1 (B.6)

where the equality is in the sense of distribution.
Let

v := v0 · 1Ω0 + v1 · 1Ω1 . (B.7)
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Clearly, v ∈ O′
C(R) because v0 · 1Ω0 ∈ E ′(R) and v1 · 1Ω1 ∈ O′

C(R). Therefore, there exists u ∈ OM(R) such 
that û = v and

ψ̂(ζ)η̂(ζ) = |ζ|mû(ζ), ζ ∈ R \ {0}. (B.8)

By the admissibility condition,

∫
R\{0}

û(ζ)dζ =
∫

Ω0\{0}

v0(ζ)dζ +
∫
Ω1

v1(ζ)dζ �= 0. (B.9)

In consideration of the singularity at 0, we have

ψ̂(ζ)

⎛⎝η̂(ζ) −
k∑

j=0
cjδ

(j)(ζ)

⎞⎠ = |ζ|mû(ζ), ζ ∈ R. (B.10)

By taking the Fourier inversion in the sense of distributions,

⎡⎣ψ̃ ∗

⎛⎝η −
k∑

j=0
cjz

j

⎞⎠⎤⎦ (z) = Λmu(z), z ∈ R. (B.11)

Appendix C. Proof of Theorem 5.6

Let f ∈ L1(Rm) satisfy f̂ ∈ L1(Rm) and (ψ, η) ∈ S(R) × S ′
0(R) be admissible. For simplicity, we rescale 

ψ to satisfy Kψ,η = 1. Write

I(x; ε, δ) :=
∫

Sm−1

δ∫
ε

∫
R

Rψf (u, α,u · x − αz) η(z)dzdαdu
αm

. (C.1)

We show that

lim
δ→∞
ε→0

I(x; ε, δ) = f(x), a.e. x ∈ Rm (C.2)

and the equality holds at every continuous point of f .
By using the Fourier slice theorem in the sense of distribution,

∫
R

Rψf (u, α, β − αz) η(z)dz = 1
2π

∫
R

f̂(ωu)ψ̂(αω)η̂(αω)eiωβdω (C.3)

= 1
2π

∫
R\{0}

f̂(ωu)û(αω)|αω|meiωβdω, (C.4)

where |ζ|mû(ζ) := ψ̂(ζ)η̂(ζ) (ζ �= 0) is defined as in Theorem 5.4.
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Then,

δ∫
ε

(C.4) dα
αm

= 1
2π

∫
R\{0}

δ∫
ε

f̂(ωu)û(αω)|ω|meiωβdαdω (C.5)

= 1
2π

∫
R

∫
ε≤ ζ

ω≤δ

û(ζ)f̂(ωu)eiωβ |ω|m−1dζdω (C.6)

= 1
2π

∞∫
0

∫
rε≤|ζ|≤rδ

û(ζ)f̂(sgn(ζ)ru) exp(sgn(ζ)irβ)rm−1dζdr, (C.7)

where the second equation follows by changing the variable ζ ← αω with αm−1dα = |ω|m−1|ζ|−mdζ; the 
third equation follows by changing the variable r ← |ω| with sgn ω = sgn ζ. In the following, we substitute 
β ← u · x. Observe that in 

∫
Sm−1 du,

∫
Sm−1

f̂(−ru) exp(−iru · x)du =
∫

Sm−1

f̂(ru) exp(iru · x)du. (C.8)

Hence, we can omit sgn ζ.
Then, by substituting β ← u · x and changing the variable ξ ← ru,

I(x; ε, δ) =
∫

Sm−1

(C.7) du (C.9)

= 1
2π

∫
Sm−1

∞∫
0

⎡⎢⎣ ∫
rε≤|ζ|≤rδ

û(ζ)dζ

⎤⎥⎦ f̂(ru)eiru·xrm−1drdu (C.10)

= 1
2π

∫
Rm

⎡⎢⎣ ∫
‖ξ‖ε≤|ζ|≤‖ξ‖δ

û(ζ)dζ

⎤⎥⎦ f̂(ξ)eiξ·xdζdξ. (C.11)

Recall that û ∈ O′
C(R); thus, its action is continuous. That is, the limits and the integral commute.

Therefore,

R†
ηRψf(x) = lim

δ→∞
ε→0

I(x; ε, δ) (C.12)

= 1
(2π)

∫
Rm

⎡⎢⎣ ∫
R\{0}

û(ζ)dζ

⎤⎥⎦ f̂(ξ)eiξ·xdξ (C.13)

= 1
(2π)m

∫
Rm

f̂(ξ)eiξ·xdξ (C.14)

= f(x), a.e. x ∈ Rm (C.15)

where the last equation follows by the Fourier inversion formula, a consequence of which the equality holds 
at x0 if f is continuous at x0.



S. Sonoda, N. Murata / Appl. Comput. Harmon. Anal. 43 (2017) 233–268 263
Appendix D. Proof of Theorem 5.7

Let f ∈ L1(Rm) and (ψ, η) ∈ S(R) × S ′(R). Assume that there exists u ∈ E ∩ L1(R) that is real-valued, 
Λmu = ψ̃ ∗ η and 

∫
R
û(ζ)dζ = −1. Write

I(x; ε, δ) :=
∫

Sm−1

δ∫
ε

∫
R

Rψf (u, α,u · x − αz) η(z)dzdαdu
αm

. (D.1)

We show that

lim
δ→∞
ε→0

I(x; ε, δ) = R∗Λm−1R(x), a.e. x ∈ Rm. (D.2)

In the following we write (·)α(p) = (·)(p/α)/α. By using the convolution form,∫
R

Rψf (u, α, β − αz) η(z)dz =
[
Rf(u, ·) ∗

(
ψ̃ ∗ η

)
α

]
(β) (D.3)

= [Rf(u, ·) ∗ (Λmu)α] (β). (D.4)

Observe that

δ∫
ε

(Λmu)α(p) dα
αm

= Λm−1

⎡⎣ δ∫
ε

(Λu)
( p
α

) dα
α2

⎤⎦ (D.5)

= Λm−1

⎡⎢⎣1
p

p/ε∫
p/δ

(Λu)(z)dz

⎤⎥⎦ (D.6)

= Λm−1
[
1
p
Hu

(p
ε

)
− 1

p
Hu

(p
δ

)]
(D.7)

= Λm−1[kε(p) − kδ(p)], (D.8)

where the first equality follows by repeatedly applying (Λu)α = αΛ(uα); the second equality follows by 
substituting z ← p/α; the fourth equality follows by defining

k(z) := 1
z
Hu (z) and kγ(p) := 1

γ
k

(
p

γ

)
for γ = ε, δ. (D.9)

Therefore, we have

δ∫
ε

(D.4) dα
αm

= [Rf(u, ·) ∗ (D.8)] (β) (D.10)

=
[
Λm−1Rf(u, ·) ∗ (kε − kδ)

]
(β). (D.11)

We show that k ∈ L1 ∩ L∞(R) and 
∫
R
k(z)dz = 1. To begin with, k ∈ L1(R) because there exist s, t > 0

such that
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|k(z)| � |z|−1+s, as |z| → 0 (D.12)

|k(z)| � |z|−1−t, as |z| → ∞. (D.13)

The first claim holds because u is real-valued and thus û is odd, then

Hu(0) =
∫
R

sgn ζ · û(ζ)dζ (D.14)

=
∫

(−∞,0]

û(ζ)dζ −
∫

(0,∞)

û(ζ)dζ (D.15)

= 0. (D.16)

The second claim holds because u ∈ L1(R) and thus u as well as Hu decays at infinity. Then, by the 
continuity and the integrability of k, it is bounded. By the assumption that 

∫
R
û(ζ)dζ = −1,

∫
R

k(z)dz = −
∫
R

Hu(z)
0 − z

dz (D.17)

= −u(0) (D.18)

= 1. (D.19)

Write

J(u, p) := Λm−1Rf(u, p). (D.20)

Because k ∈ L1(R) and 
∫
R
k(z)dz = 1, kε is an approximation of the identity [43, III, Th. 2]. Then,

lim
ε→0

J(u, ·) ∗ kε(p) = J(u, p), a.e. (u, p) ∈ Sm−1 × R. (D.21)

However, as k ∈ L∞(R),

‖J ∗ kδ‖L∞(Sm−1×R) ≤ δ−1‖J‖L1(Sm−1×R)‖k‖L∞(R), (D.22)

and thus,

lim
δ→∞

J(u, ·) ∗ kδ(p) = 0, a.e. (u, p) ∈ Sm−1 × R. (D.23)

Because it is an approximation to the identity, J ∗ kγ ∈ L1(Sm−1 × R) for 0 ≤ γ. Hence, there exists a 
maximal function M(u, p) [43, III, Th. 2] such that

sup
0<ε

|(J(u, ·) ∗ vε)(p)| � M(u, p). (D.24)

Therefore, |J(u, ·) ∗ (vε − vδ)(u · x)| is uniformly integrable [35, Ex. 4.15.4] on Sm−1. That is, if Ω ⊂ Sm−1

satisfies 
∫
Ω du ≤ A then ∫

|J(u, ·) ∗ kγ |(u · x)du � A sup
u,p

|M(u, p)|, ∀γ ≥ 0. (D.25)

Ω
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Thus, by the Vitali convergence theorem, we have

R†
ηRψf(x) = lim

δ→∞
ε→0

∫
Sm−1

[J(u, ·) ∗ (vε − vδ)](u · x)du (D.26)

=
∫

Sm−1

J(u,u · x)du, a.e. x ∈ Rm (D.27)

= R∗Λm−1Rf(x). (D.28)

Appendix E. Proof of Theorem 5.11

Let f ∈ L2(Rm) and (ψ, η) be admissible with Kψ,η = 1. Assume without loss of generality that (ψ, ψ)
and (η, η) are self-admissible respectively. Write

I[f ; (ε, δ)](x) :=
∫

Sm−1

δ∫
ε

∫
R

Rψf (u, α,u · x − αz) η(z)dzdαdu
αm

. (E.1)

In the following we write Ω[ε, δ] := Sm−1 × [R+ \ (ε, δ)] × R ⊂ Ym+1. We show that

lim
δ→∞
ε→0

∥∥f − I[f ; (ε, δ)]
∥∥

2 = 0. (E.2)

Observe that

∥∥f − I[f ; (ε, δ)]
∥∥

2 = sup
‖g‖2=1

∣∣ (f − I[f ; (ε, δ)], g)
∣∣ (E.3)

= sup
‖g‖2=1

∣∣ (Rψf,Rηg)Ω[ε,δ]
∣∣ (E.4)

≤ sup
‖g‖2=1

∣∣Rψf
∣∣
L2(Ω[ε,δ])

∥∥Rηg
∥∥
L2(Ym+1) (E.5)

= sup
‖g‖2=1

∣∣Rψf
∣∣
L2(Ω[ε,δ])

∥∥g∥∥2 (E.6)

→ 0 · 1, as ε → 0, δ → ∞ (E.7)

where the third inequality follows by the Schwartz inequality; the last limit follows by ‖Rψf‖L2(Ω[ε,δ]), 
which shrinks as the domain Ω[ε, δ] tends to ∅.

Appendix F. Proofs of Example 6.4 and Example 6.10

Let σ(z) := (1 + e−z)−1. Obviously σ(z) ∈ E(R).

Step 0: Derivatives of σ(z).
For every k ∈ N,

σ(k)(z) = Sk(σ(z)), (F.1)

where Sk(z) is a polynomial defined by
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Sk(z) :=
{
z(1 − z) k = 1
S′
k−1(z)S1(z) k > 1,

(F.2)

which is justified by induction on k.

Step 1: σ, tanh ∈ OM(R).
Recall that |σ(z)| ≤ 1. Hence, for every k ∈ N,∣∣σ(k)(z)

∣∣ = |Sk(σ(z))| ≤ max
z∈[0,1]

|Sk(z)| < ∞. (F.3)

Therefore, every k ∈ N0, σ(k)(z) is bounded, which concludes σ(z) ∈ OM(R).
Hence, immediately tanh ∈ OM(R) because

tanh(z) = 2σ(2z) − 1. (F.4)

Step 2: σ(k) ∈ S(R), k ∈ N.
Observe that

σ′(z) = (e z/2 + e−z/2)−2. (F.5)

Hence, σ′(z) decays faster than any polynomial, which means supz |z�σ′(z)| < ∞ for any � ∈ N0. Then, for 
every k, � ∈ N0,

sup
z

∣∣z�σ(k+1)(z)
∣∣ = sup

z

∣∣z�Sk+1(σ(z))
∣∣ ≤ max

z
|z�σ′(z)| · max

z
|S′

k(σ(z))| < ∞, (F.6)

which concludes σ′ ∈ S(R). Therefore, σ(k) ∈ S(R) for every k ∈ N.

Step 3: σ(−1) ∈ OM(R).
Observe that

σ(−1)(z) =
z∫

0

σ(w)dw. (F.7)

Hence, it is already known that [σ(−1)](k) = σ(k−1) ∈ OM(R) for every k ∈ N. We show that σ(−1)(z) has 
at most polynomial growth. Write

ρ(z) := σ(−1)(z) − z+. (F.8)

Then ρ(z) attains at 0 its maximum maxz ρ(z) = log 2, because ρ′(z) < 0 when z > 0 and ρ′(z) > 0 when 
z < 0. Therefore, ∣∣σ(−1)(z)

∣∣ ≤ |ρ(z)| + |z+| ≤ log 2 + |z|, (F.9)

which concludes σ(−1)(z) ∈ OM.

Step 4: η = σ(k) is admissible with ψ = ΛmG when k ∈ N is positive and odd.
Recall that η = σ(k) ∈ S(R). Hence, 〈η̂, ̂ψ0〉 = 〈η, ψ0〉. Observe that if k is odd, then σ(k) is an odd 

function and thus 〈η, ψ0〉 = 0. However, if k is even, then σ(k) is an even function and thus 〈η, ψ0〉 �= 0.

Step 5: σ and σ(−1) cannot be admissible with ψ = ΛmG.
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This follows by Theorem 5.4, because both∫
R

(
G̃ ∗ σ

)
(z)dz and

∫
R

(
G̃ ∗ σ(−1)

)
(z)dz, (F.10)

diverge.

Step 6: σ and σ(−1) are admissible with ψ = ΛmG′ and ψ = ΛmG′′, respectively.
Observe that both

u0 := G̃′ ∗ σ = G̃ ∗ σ′ and u−1 := G̃′′ ∗ σ(−1) = G̃ ∗ σ′, (F.11)

belong to S(R). Hence, u0 and u−1 satisfy the sufficient condition in Theorem 5.4.
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